1
|
Fan Q, Wang H, Yuan S, Quan Y, Li R, Yi L, Jia A, Wang Y, Wang Y. Pyruvate formate lyase regulates fermentation metabolism and virulence of Streptococcus suis. Virulence 2025; 16:2467156. [PMID: 39977342 PMCID: PMC11845055 DOI: 10.1080/21505594.2025.2467156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/17/2025] [Accepted: 02/10/2025] [Indexed: 02/22/2025] Open
Abstract
Streptococcus suis, a zoonotic pathogen, is commonly found as a commensal bacterium in the respiratory tracts of pigs. Under specific conditions, it becomes invasive and enters the blood, causing severe systemic infections. For S. suis, effective acquisition of carbon sources in different host niches is necessary for its survival. However, as of now, our understanding of the metabolism of S. suis within the host is highly restricted. Pyruvate formate lyase (PFL) plays a crucial role in bacterial survival of in glucose-limited and hypoxic host tissues. Here, we investigated the physiological and metabolic functions of PFL PflB in S. suis and elucidated its pivotal role in regulating virulence within the mucosal and blood niches. We demonstrate that PflB is a key enzyme for S. suis to support mixed-acid fermentation under glucose-limited and hypoxic conditions. Additionally, PflB is involved in regulating S. suis morphology and stress tolerance, and its regulation of capsular polysaccharide content depends on dynamic carbon availability. We also found that PflB is associated with the capacity of S. suis to cause bacteremia and persist in the upper respiratory tract to induce persistent infection. Our results provide highly persuasive evidence for the relationship between metabolic regulation and the virulence of S. suis.
Collapse
Affiliation(s)
- Qingying Fan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, Henan, China
| | - Haikun Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, Henan, China
| | - Shuo Yuan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, Henan, China
| | - Yingying Quan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, Henan, China
| | - Rishun Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, Henan, China
| | - Li Yi
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, Henan, China
- College of Life Science, Luoyang Normal University, Luoyang, China
| | - Aiqing Jia
- Guangdong Haid Institute of Animal Husbandry and Veterinary, Guangzhou, P.R. China
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, Henan, China
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, Henan, China
| |
Collapse
|
2
|
Yuan S, Liu B, Quan Y, Gao S, Zuo J, Jin W, Shen Y, Li Y, Wang Y, Wang Y. Streptococcus suis regulates central carbon fluxes in response to environment to balance drug resistance and virulence. Microbiol Res 2025; 296:128157. [PMID: 40174362 DOI: 10.1016/j.micres.2025.128157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/28/2025] [Accepted: 03/25/2025] [Indexed: 04/04/2025]
Abstract
Streptococcus suis, a zoonotic pathogen, must adapt to the distinct nutritional environment of the host microhabitat during infection and the establishment of invasive disease, primarily by modulating its metabolic pathways. Metabolic plasticity endows S. suis with an enhanced capacity for environmental adaptation. Multidrug-resistant S. suis is increasingly prevalent due to the extensive use of antibiotics in swine production. In this study, an environment-dependent evolutionary model demonstrated that S. suis could modulate its metabolism in response to environmental changes, thereby altering its drug resistance and virulence. The central carbon flux regulated by pyruvate dehydrogenase (PDH) was identified as a pivotal node in balancing drug resistance and virulence in S. suis. Within the in vivo host environment, increased carbon flux through PDH enhances the production of capsular polysaccharide (CPS), thereby improving immune evasion. Conversely, in the antibiotic environment, reduced carbon flux through PDH downregulates the bacterial metabolic state, which diminishes the induction of toxic metabolites by antibiotics, thereby augmenting drug resistance. This concept provides a reasonable explanation for the puzzling phenomena observed with S. suis in clinical settings. For instance, antibiotic-resistant S. suis has a survival advantage in pig farms where antibiotics are frequently used but is less frequently associated with invasive infections. Furthermore, this study demonstrates that exogenous pyruvate can enhance the bactericidal effect of gentamicin against clinically multidrug-resistant S. suis, offering new insights and potential strategies for controlling clinical multidrug-resistant S. suis infections.
Collapse
Affiliation(s)
- Shuo Yuan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China.
| | - Baobao Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China.
| | - Yingying Quan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China.
| | - Shuji Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China.
| | - Jing Zuo
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China; College of Life Sciences, Sichuan University, Chengdu 610000, China.
| | - Wenjie Jin
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China.
| | - Yamin Shen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China.
| | - Yue Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China.
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China.
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China.
| |
Collapse
|
3
|
Wise AD, TenBarge EG, Mendonça JDC, Mennen EC, McDaniel SR, Reber CP, Holder BE, Bunch ML, Belevska E, Marshall MG, Vaccaro NM, Blakely CR, Wellawa DH, Ferris J, Sheldon JR, Bieber JD, Johnson JG, Burcham LR, Monteith AJ. Mitochondria sense bacterial lactate and drive release of neutrophil extracellular traps. Cell Host Microbe 2025; 33:341-357.e9. [PMID: 40020664 PMCID: PMC11955204 DOI: 10.1016/j.chom.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/06/2024] [Accepted: 02/05/2025] [Indexed: 03/03/2025]
Abstract
Neutrophils induce oxidative stress, creating a harsh phagosomal environment. However, Staphylococcus aureus can survive these conditions, requiring neutrophils to deploy mechanisms that sense bacterial persistence. We find that staphylococcal lactate is a metabolic danger signal that triggers neutrophil extracellular trap release (NETosis). Neutrophils coordinate mitochondria in proximity to S. aureus-containing phagosomes, allowing transfer of staphylococcal lactate to mitochondria where it is rapidly converted into pyruvate and causes mitochondrial reactive oxygen species, a precursor to NETosis. Similar results were observed in response to phylogenetically distinct bacteria, implicating lactate accumulation as a broad signal triggering NETosis. Furthermore, patients with systemic lupus erythematosus (SLE) are more susceptible to bacterial infections. We find that SLE neutrophils cannot sense bacterial lactate impairing their capacity to undergo NETosis upon S. aureus infection but initiate aberrant NETosis triggered by apoptotic debris. Thus, neutrophils adapt mitochondria as sensory organelles that detect bacterial metabolic activity and dictate downstream antibacterial processes.
Collapse
Affiliation(s)
- Ashley D Wise
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - Eden G TenBarge
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | | | - Ellie C Mennen
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - Sarah R McDaniel
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - Callista P Reber
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - Bailey E Holder
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - Madison L Bunch
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA; Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Eva Belevska
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | | | - Nicole M Vaccaro
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | | | - Dinesh H Wellawa
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK, Canada; Vaccine and Infectious Disease Organization, Saskatoon, SK, Canada
| | - Jennifer Ferris
- Division of Rheumatology, University of Tennessee Medical Center, Knoxville, TN, USA
| | - Jessica R Sheldon
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK, Canada; Vaccine and Infectious Disease Organization, Saskatoon, SK, Canada
| | - Jeffry D Bieber
- Division of Rheumatology, University of Tennessee Medical Center, Knoxville, TN, USA
| | - Jeremiah G Johnson
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA; Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Lindsey R Burcham
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - Andrew J Monteith
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA; Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
4
|
Vidal AGJ, Francis M, Chitanvis M, Takeshita K, Frame IJ, Sharma P, Vidal P, Lanata CF, Grijalva C, Daley W, Vidal JE. Fluorescent antibody-based detection and ultrastructural analysis of Streptococcus pneumoniae in human sputum. Pneumonia (Nathan) 2025; 17:4. [PMID: 40038770 DOI: 10.1186/s41479-025-00157-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/09/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Pneumococcal pneumonia continues to be a significant global health burden, affecting both children and adults. Traditional diagnostic methods for sputum analysis remain challenging. The objective of this study was twofold: to develop a rapid and easy-to-perform assay for the identification of Streptococcus pneumoniae (Spn) directly in sputum specimens using fluorescence microscopy, and to characterize with high-resolution confocal microscopy the ultrastructure of pneumococci residing in human sputum. METHODS We fluorescently labeled antibodies against the pneumococcal capsule (Spn-FLUO). The specificity and sensitivity of Spn-FLUO for detecting Spn was evaluated in vitro and in vivo using mouse models of carriage and disease, human nasopharyngeal specimens, and sputum from patients with pneumococcal pneumonia. Spn was confirmed in the specimens using culture and a species-specific qPCR assay. Spn strains were serotyped by Quellung. Confocal microscopy and Imaris software analysis were utilized to resolve the ultrastructure of pneumococci in human sputum. RESULTS Compared with cultures and qPCR, Spn-FLUO demonstrated high sensitivity (78-96%) in nasopharyngeal samples from mice and humans. The limit of detection (LOD) in nasopharyngeal samples was ≥ 1.6 × 10⁴ GenEq/ml. The specificity in human nasopharyngeal specimens was 100%. In lung specimens from mice infected with pneumococci, Spn-FLUO reached 100% sensitivity with a LOD of ≥ 1.39 × 10⁴ GenEq/ml. In human sputum, the sensitivity for detecting Spn was 92.7% with a LOD of 3.6 × 10³ GenEq/ml. Ultrastructural studies revealed that pneumococci are expectorated as large aggregates with a median size of 1336 μm². CONCLUSIONS Spn-FLUO is a rapid and sensitive assay for detecting Spn in human sputum within 30 min, encompassing a range of both vaccine and non-vaccine serotypes associated with pneumococcal pneumonia. The study highlights that most pneumococci form aggregates in human sputum.
Collapse
Affiliation(s)
- Ana G Jop Vidal
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Meg Francis
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA
| | | | - Kenichi Takeshita
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Ithiel J Frame
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS, USA
- Quest Diagnostics, Lewisville, TX, USA
| | - Poonam Sharma
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Patricio Vidal
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA
| | | | - Carlos Grijalva
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, TN, USA
| | - William Daley
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jorge E Vidal
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA.
- Center for Immunology and Microbial Research, University of Mississippi Medical Center, Jackson, MS, USA.
| |
Collapse
|
5
|
Gao S, Yuan S, Quan Y, Jin W, Shen Y, Liu B, Wang Y, Wang Y. Effects of AI-2 quorum sensing related luxS gene on Streptococcus suis formatting monosaccharide metabolism-dependent biofilm. Arch Microbiol 2024; 206:407. [PMID: 39297992 DOI: 10.1007/s00203-024-04126-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/21/2024] [Accepted: 09/01/2024] [Indexed: 09/21/2024]
Abstract
Biofilm is the primary cause of persistent infections caused by Streptococcus suis (S. suis). Metabolism and AI-2 quorum sensing are intricately linked to S. suis biofilm formation. Although the role of the AI-2 quorum sensing luxS gene in S. suis biofilm has been reported, its specific regulatory mechanism remains unclear. This study explored the differences in biofilm formation and monosaccharide metabolism among the wild type (WT), luxS mutant (ΔluxS) and complement strain (CΔluxS), and Galleria mellonella larvae were used to access the effect of luxS gene deletion on the virulence of S. suis in different monosaccharide medias. The results indicated that deletion of the luxS gene further compromised the monosaccharide metabolism of S. suis, impacting its growth in media with fructose, galactose, rhamnose, and mannose as the sole carbon sources. However, no significant impact was observed in media with glucose and N-acetylglucosamine. This deletion also weakened EPS synthesis, thereby diminishing the biofilm formation capacity of S. suis. Additionally, the downregulation of adhesion gene expression due to luxS gene deletion was found to be independent of the monosaccharide medias of S. suis.
Collapse
Affiliation(s)
- Shuji Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Shuo Yuan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yingying Quan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Wenjie Jin
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yamin Shen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Baobao Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China.
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China.
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China.
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China.
| |
Collapse
|
6
|
Gao S, Wang Y, Yuan S, Zuo J, Jin W, Shen Y, Grenier D, Yi L, Wang Y. Cooperation of quorum sensing and central carbon metabolism in the pathogenesis of Gram-positive bacteria. Microbiol Res 2024; 282:127655. [PMID: 38402726 DOI: 10.1016/j.micres.2024.127655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/25/2024] [Accepted: 02/17/2024] [Indexed: 02/27/2024]
Abstract
Quorum sensing (QS), an integral component of bacterial communication, is essential in coordinating the collective response of diverse bacterial pathogens. Central carbon metabolism (CCM), serving as the primary metabolic hub for substances such as sugars, lipids, and amino acids, plays a crucial role in the life cycle of bacteria. Pathogenic bacteria often utilize CCM to regulate population metabolism and enhance the synthesis of specific cellular structures, thereby facilitating in adaptation to the host microecological environment and expediting infection. Research has demonstrated that QS can both directly or indirectly affect the CCM of numerous pathogenic bacteria, thus altering their virulence and pathogenicity. This article reviews the interplay between QS and CCM in Gram-positive pathogenic bacteria, details the molecular mechanisms by which QS modulates CCM, and lays the groundwork for investigating bacterial pathogenicity and developing innovative infection treatment drugs.
Collapse
Affiliation(s)
- Shuji Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China
| | - Shuo Yuan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China
| | - Jing Zuo
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China
| | - Wenjie Jin
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China
| | - Yamin Shen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China
| | - Daniel Grenier
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Quebec City, Quebec, Canada
| | - Li Yi
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China; College of Life Science, Luoyang Normal University, Luoyang 471934, China.
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China.
| |
Collapse
|
7
|
Huang YW, Shu HY, Lin GH. Gene Expression of Ethanol and Acetate Metabolic Pathways in the Acinetobacter baumannii EmaSR Regulon. Microorganisms 2024; 12:331. [PMID: 38399734 PMCID: PMC10891947 DOI: 10.3390/microorganisms12020331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Previous studies have confirmed the involvement of EmaSR (ethanol metabolism a sensor/regulator) in the regulation of Acinetobacter baumannii ATCC 19606 ethanol and acetate metabolism. RNA-seq analysis further revealed that DJ41_568-571, DJ41_2796, DJ41_3218, and DJ41_3568 regulatory gene clusters potentially participate in ethanol and acetate metabolism under the control of EmaSR. METHODS This study fused the EmaSR regulon promoter segments with reporter genes and used fluorescence expression levels to determine whether EmaSR influences regulon expression in ethanol or acetate salt environments. The enzymatic function and kinetics of significantly regulated regulons were also studied. RESULTS The EmaSR regulons P2796 and P3218 exhibited > 2-fold increase in fluorescence expression in wild type compared to mutant strains in both ethanol and acetate environments, and PemaR demonstrated a comparable trend. Moreover, increases in DJ41_2796 concentration enhanced the conversion of acetate and succinyl-CoA into acetyl-CoA and succinate, suggesting that DJ41_2796 possesses acetate: succinyl-CoA transferase (ASCT) activity. The kcat/KM values for DJ41_2796 with potassium acetate, sodium acetate, and succinyl-CoA were 0.2131, 0.4547, and 20.4623 mM-1s-1, respectively. CONCLUSIONS In A. baumannii, EmaSR controls genes involved in ethanol and acetate metabolism, and the EmaSR regulon DJ41_2796 was found to possess ASCT activity.
Collapse
Affiliation(s)
- Yu-Weng Huang
- Department of Biomedical Sciences and Engineering, School of Medicine, Tzu Chi University, Hualien 970374, Taiwan
| | - Hung-Yu Shu
- Department of Bioscience Technology, Chang Jung Christian University, Tainan 711301, Taiwan
| | - Guang-Huey Lin
- Master Program in Biomedical Sciences, School of Medicine, Tzu Chi University, Hualien 970374, Taiwan
- International College, Tzu Chi University, Hualien 970374, Taiwan
| |
Collapse
|
8
|
Alibayov B, Scasny A, Vidal AGJ, Murin L, Wong S, Edwards KS, Eichembaun Z, Punshon T, Jackson BP, Hopp MT, McDaniel LS, Akerley BJ, Imhof D, Vidal JE. Oxidation of hemoglobin in the lung parenchyma facilitates the differentiation of pneumococci into encapsulated bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.14.567109. [PMID: 38014009 PMCID: PMC10680745 DOI: 10.1101/2023.11.14.567109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Pneumococcal pneumonia causes cytotoxicity in the lung parenchyma but the underlying mechanism involves multiple factors contributing to cell death. Here, we discovered that hydrogen peroxide produced by Streptococcus pneumoniae (Spn-H 2 O 2 ) plays a pivotal role by oxidizing hemoglobin, leading to its polymerization and subsequent release of labile heme. At physiologically relevant levels, heme selected a population of encapsulated pneumococci. In the absence of capsule and Spn-H 2 O 2 , host intracellular heme exhibited toxicity towards pneumococci, thus acting as an antibacterial mechanism. Further investigation revealed that heme-mediated toxicity required the ABC transporter GlnPQ. In vivo experiments demonstrated that pneumococci release H 2 O 2 to cause cytotoxicity in bronchi and alveoli through the non-proteolytic degradation of intracellular proteins such as actin, tubulin and GAPDH. Overall, our findings uncover a mechanism of lung toxicity mediated by oxidative stress that favor the growth of encapsulated pneumococci suggesting a therapeutic potential by targeting oxidative reactions. Graphical abstract Highlights Oxidation of hemoglobin by Streptococcus pneumoniae facilitates differentiation to encapsulated pneumococci in vivo Differentiated S. pneumoniae produces capsule and hydrogen peroxide (Spn-H 2 O 2 ) as defense mechanism against host heme-mediated toxicity. Spn-H 2 O 2 -induced lung toxicity causes the oxidation and non-proteolytic degradation of intracellular proteins tubulin, actin, and GAPDH. The ABC transporter GlnPQ is a heme-binding complex that makes Spn susceptible to heme toxicity.
Collapse
|
9
|
Klabunde B, Wesener A, Bertrams W, Beinborn I, Paczia N, Surmann K, Blankenburg S, Wilhelm J, Serrania J, Knoops K, Elsayed EM, Laakmann K, Jung AL, Kirschbaum A, Hammerschmidt S, Alshaar B, Gisch N, Abu Mraheil M, Becker A, Völker U, Vollmeister E, Benedikter BJ, Schmeck B. NAD + metabolism is a key modulator of bacterial respiratory epithelial infections. Nat Commun 2023; 14:5818. [PMID: 37783679 PMCID: PMC10545792 DOI: 10.1038/s41467-023-41372-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/30/2023] [Indexed: 10/04/2023] Open
Abstract
Lower respiratory tract infections caused by Streptococcus pneumoniae (Spn) are a leading cause of death globally. Here we investigate the bronchial epithelial cellular response to Spn infection on a transcriptomic, proteomic and metabolic level. We found the NAD+ salvage pathway to be dysregulated upon infection in a cell line model, primary human lung tissue and in vivo in rodents, leading to a reduced production of NAD+. Knockdown of NAD+ salvage enzymes (NAMPT, NMNAT1) increased bacterial replication. NAD+ treatment of Spn inhibited its growth while growth of other respiratory pathogens improved. Boosting NAD+ production increased NAD+ levels in immortalized and primary cells and decreased bacterial replication upon infection. NAD+ treatment of Spn dysregulated the bacterial metabolism and reduced intrabacterial ATP. Enhancing the bacterial ATP metabolism abolished the antibacterial effect of NAD+. Thus, we identified the NAD+ salvage pathway as an antibacterial pathway in Spn infections, predicting an antibacterial mechanism of NAD+.
Collapse
Affiliation(s)
- Björn Klabunde
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Philipps-Universität Marburg, Marburg, Germany
| | - André Wesener
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Philipps-Universität Marburg, Marburg, Germany
| | - Wilhelm Bertrams
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Philipps-Universität Marburg, Marburg, Germany
| | - Isabell Beinborn
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Philipps-Universität Marburg, Marburg, Germany
| | - Nicole Paczia
- Core Facility for Metabolomics and Small Molecule Mass Spectrometry, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Kristin Surmann
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Sascha Blankenburg
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Jochen Wilhelm
- Institute for Lung Health (ILH), Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-Universität Giessen, German Center for Lung Research (DZL), Giessen, Germany
| | - Javier Serrania
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
| | - Kèvin Knoops
- Microscopy CORE Lab, Maastricht Multimodal Molecular Imaging Institute (M4I), Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Eslam M Elsayed
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
- Department of Biology, Philipps-Universität Marburg, Marburg, Germany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Katrin Laakmann
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Philipps-Universität Marburg, Marburg, Germany
| | - Anna Lena Jung
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Philipps-Universität Marburg, Marburg, Germany
- Core Facility Flow Cytometry - Bacterial Vesicles, Philipps-Universität Marburg, Marburg, Germany
| | - Andreas Kirschbaum
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Gießen and Marburg (UKGM), Marburg, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Belal Alshaar
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Nicolas Gisch
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Mobarak Abu Mraheil
- Institute for Medical Microbiology, Justus-Liebig Universität Giessen, Giessen, Germany
| | - Anke Becker
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
| | - Uwe Völker
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Evelyn Vollmeister
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Philipps-Universität Marburg, Marburg, Germany
| | - Birke J Benedikter
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Philipps-Universität Marburg, Marburg, Germany.
- University Eye Clinic Maastricht, Maastricht University Medical Center (MUMC+), School for Mental Health and Neuroscience, Maastricht University, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands.
| | - Bernd Schmeck
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Philipps-Universität Marburg, Marburg, Germany.
- Institute for Lung Health (ILH), Giessen, Germany.
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany.
- Core Facility Flow Cytometry - Bacterial Vesicles, Philipps-Universität Marburg, Marburg, Germany.
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Marburg, Philipps-Universität Marburg, Marburg, Germany.
- Member of the German Center for Infectious Disease Research (DZIF), Marburg, Germany.
| |
Collapse
|
10
|
Hernandez-Morfa M, Olivero NB, Zappia VE, Piñas GE, Reinoso-Vizcaino NM, Cian MB, Nuñez-Fernandez M, Cortes PR, Echenique J. The oxidative stress response of Streptococcus pneumoniae: its contribution to both extracellular and intracellular survival. Front Microbiol 2023; 14:1269843. [PMID: 37789846 PMCID: PMC10543277 DOI: 10.3389/fmicb.2023.1269843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 08/28/2023] [Indexed: 10/05/2023] Open
Abstract
Streptococcus pneumoniae is a gram-positive, aerotolerant bacterium that naturally colonizes the human nasopharynx, but also causes invasive infections and is a major cause of morbidity and mortality worldwide. This pathogen produces high levels of H2O2 to eliminate other microorganisms that belong to the microbiota of the respiratory tract. However, it also induces an oxidative stress response to survive under this stressful condition. Furthermore, this self-defense mechanism is advantageous in tolerating oxidative stress imposed by the host's immune response. This review provides a comprehensive overview of the strategies employed by the pneumococcus to survive oxidative stress. These strategies encompass the utilization of H2O2 scavengers and thioredoxins, the adaptive response to antimicrobial host oxidants, the regulation of manganese and iron homeostasis, and the intricate regulatory networks that control the stress response. Here, we have also summarized less explored aspects such as the involvement of reparation systems and polyamine metabolism. A particular emphasis is put on the role of the oxidative stress response during the transient intracellular life of Streptococcus pneumoniae, including coinfection with influenza A and the induction of antibiotic persistence in host cells.
Collapse
Affiliation(s)
- Mirelys Hernandez-Morfa
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Nadia B. Olivero
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Victoria E. Zappia
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - German E. Piñas
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Nicolas M. Reinoso-Vizcaino
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Melina B. Cian
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mariana Nuñez-Fernandez
- Centro de Química Aplicada, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Paulo R. Cortes
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Jose Echenique
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
11
|
Green AE, Pottenger S, Monshi MS, Barton TE, Phelan M, Neill DR. Airway metabolic profiling during Streptococcus pneumoniae infection identifies branched chain amino acids as signatures of upper airway colonisation. PLoS Pathog 2023; 19:e1011630. [PMID: 37669280 PMCID: PMC10503754 DOI: 10.1371/journal.ppat.1011630] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/15/2023] [Accepted: 08/21/2023] [Indexed: 09/07/2023] Open
Abstract
Streptococcus pneumoniae is a leading cause of community-acquired pneumonia and bacteraemia and is capable of remarkable phenotypic plasticity, responding rapidly to environmental change. Pneumococcus is a nasopharyngeal commensal, but is responsible for severe, acute infections following dissemination within-host. Pneumococcus is adept at utilising host resources, but the airways are compartmentalised and those resources are not evenly distributed. Challenges and opportunities in metabolite acquisition within different airway niches may contribute to the commensal-pathogen switch when pneumococcus moves from nasopharynx into lungs. We used NMR to characterise the metabolic landscape of the mouse airways, in health and during infection. Using paired nasopharynx and lung samples from naïve animals, we identified fundamental differences in metabolite bioavailability between airway niches. Pneumococcal pneumonia was associated with rapid and dramatic shifts in the lung metabolic environment, whilst nasopharyngeal carriage led to only modest change in upper airway metabolite profiles. NMR spectra derived from the nasopharynx of mice infected with closely-related pneumococcal strains that differ in their colonisation potential could be distinguished from one another using multivariate dimensionality reduction methods. The resulting models highlighted that increased branched-chain amino acid (BCAA) bioavailability in nasopharynx is a feature of infection with the high colonisation potential strain. Subsequent analysis revealed increased expression of BCAA transport genes and increased intracellular concentrations of BCAA in that same strain. Movement from upper to lower airway environments is associated with shifting challenges in metabolic resource allocation for pneumococci. Efficient biosynthesis, liberation or acquisition of BCAA is a feature of adaptation to nasopharyngeal colonisation.
Collapse
Affiliation(s)
- Angharad E. Green
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Sian Pottenger
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Manal S. Monshi
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Thomas E. Barton
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Marie Phelan
- Highfield NMR Facility, Liverpool Shared Research Facilities (LIV-SRF), University of Liverpool, Liverpool, United Kingdom
- Department of Biochemistry and Systems Biology, Institute of Molecular, Systems and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Daniel R. Neill
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
12
|
Zhang C, Liu Y, An H, Wang X, Xu L, Deng H, Wu S, Zhang JR, Liu X. Amino Acid Starvation-Induced Glutamine Accumulation Enhances Pneumococcal Survival. mSphere 2023; 8:e0062522. [PMID: 37017541 PMCID: PMC10286718 DOI: 10.1128/msphere.00625-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/19/2023] [Indexed: 04/06/2023] Open
Abstract
Bacteria are known to cope with amino acid starvation by the stringent response signaling system, which is mediated by the accumulation of the (p)ppGpp alarmones when uncharged tRNAs stall at the ribosomal A site. While a number of metabolic processes have been shown to be regulatory targets of the stringent response in many bacteria, the global impact of amino acid starvation on bacterial metabolism remains obscure. This work reports the metabolomic profiling of the human pathogen Streptococcus pneumoniae under methionine starvation. Methionine limitation led to the massive overhaul of the pneumococcal metabolome. In particular, methionine-starved pneumococci showed a massive accumulation of many metabolites such as glutamine, glutamic acid, lactate, and cyclic AMP (cAMP). In the meantime, methionine-starved pneumococci showed a lower intracellular pH and prolonged survival. Isotope tracing revealed that pneumococci depend predominantly on amino acid uptake to replenish intracellular glutamine but cannot convert glutamine to methionine. Further genetic and biochemical analyses strongly suggested that glutamine is involved in the formation of a "prosurvival" metabolic state by maintaining an appropriate intracellular pH, which is accomplished by the enzymatic release of ammonia from glutamine. Methionine starvation-induced intracellular pH reduction and glutamine accumulation also occurred to various extents under the limitation of other amino acids. These findings have uncovered a new metabolic mechanism of bacterial adaptation to amino acid limitation and perhaps other stresses, which may be used as a potential therapeutic target for infection control. IMPORTANCE Bacteria are known to cope with amino acid starvation by halting growth and prolonging survival via the stringent response signaling system. Previous investigations have allowed us to understand how the stringent response regulates many aspects of macromolecule synthesis and catabolism, but how amino acid starvation promotes bacterial survival at the metabolic level remains largely unclear. This paper reports our systematic profiling of the methionine starvation-induced metabolome in S. pneumoniae. To the best of our knowledge, this represents the first reported bacterial metabolome under amino acid starvation. These data have revealed that the significant accumulation of glutamine and lactate enables S. pneumoniae to form a "prosurvival" metabolic state with a lower intracellular pH, which inhibits bacterial growth for prolonged survival. Our findings have provided insightful information on the metabolic mechanisms of pneumococcal adaptation to nutrient limitation during the colonization of the human upper airway.
Collapse
Affiliation(s)
- Chengwang Zhang
- Department of Basic Medical Science, School of Medicine, Lishui University, Lishui, Zhejiang, China
| | - Yanhong Liu
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
| | - Haoran An
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Xueying Wang
- National Protein Science Facility, Tsinghua University, Beijing, China
| | - Lina Xu
- National Protein Science Facility, Tsinghua University, Beijing, China
| | - Haiteng Deng
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Songquan Wu
- Department of Basic Medical Science, School of Medicine, Lishui University, Lishui, Zhejiang, China
| | - Jing-Ren Zhang
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Xiaohui Liu
- National Protein Science Facility, Tsinghua University, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
13
|
Taguchi A, Nakashima R, Nishino K. Functional and structural characterization of Streptococcus pneumoniae pyruvate kinase involved in fosfomycin resistance. J Biol Chem 2023:104892. [PMID: 37286036 PMCID: PMC10338316 DOI: 10.1016/j.jbc.2023.104892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/09/2023] Open
Abstract
Glycolysis is the primary metabolic pathway in the strictly fermentative Streptococcus pneumoniae, which is a major human pathogen associated with antibiotic resistance. Pyruvate kinase (PYK) is the last enzyme in this pathway that catalyzes the production of pyruvate from phosphoenolpyruvate (PEP) and plays a crucial role in controlling carbon flux; however, while S. pneumoniae PYK (SpPYK) is indispensable for growth, surprisingly little is known about its functional properties. Here, we report that compromising mutations in SpPYK confer resistance to the antibiotic fosfomycin, which inhibits the peptidoglycan synthesis enzyme MurA, implying a direct link between PYK and cell wall biogenesis. The crystal structures of SpPYK in the apo and ligand-bound states reveal key interactions that contribute to its conformational change as well as residues responsible for the recognition of PEP and the allosteric activator fructose 1,6-bisphosphate (FBP). Strikingly, FBP binding was observed at a location distinct from previously reported PYK effector binding sites. Furthermore, we show that SpPYK could be engineered to become more responsive to glucose 6-phosphate instead of FBP by sequence and structure-guided mutagenesis of the effector binding site. Together, our work sheds light on the regulatory mechanism of SpPYK and lays the groundwork for antibiotic development that targets this essential enzyme.
Collapse
Affiliation(s)
- Atsushi Taguchi
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka 567-0047, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Ryosuke Nakashima
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Kunihiko Nishino
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka 567-0047, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan; Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
14
|
Im H, Pearson ML, Martinez E, Cichos KH, Song X, Kruckow KL, Andrews RM, Ghanem ES, Orihuela CJ. Targeting NAD+ regeneration enhances antibiotic susceptibility of Streptococcus pneumoniae during invasive disease. PLoS Biol 2023; 21:e3002020. [PMID: 36928033 PMCID: PMC10019625 DOI: 10.1371/journal.pbio.3002020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 02/02/2023] [Indexed: 03/18/2023] Open
Abstract
Anaerobic bacteria are responsible for half of all pulmonary infections. One such pathogen is Streptococcus pneumoniae (Spn), a leading cause of community-acquired pneumonia, bacteremia/sepsis, and meningitis. Using a panel of isogenic mutants deficient in lactate, acetyl-CoA, and ethanol fermentation, as well as pharmacological inhibition, we observed that NAD(H) redox balance during fermentation was vital for Spn energy generation, capsule production, and in vivo fitness. Redox balance disruption in fermentation pathway-specific fashion substantially enhanced susceptibility to killing in antimicrobial class-specific manner. Blocking of alcohol dehydrogenase activity with 4-methylpyrazole (fomepizole), an FDA-approved drug used as an antidote for toxic alcohol ingestion, enhanced susceptibility of multidrug-resistant Spn to erythromycin and reduced bacterial burden in the lungs of mice with pneumonia and prevented the development of invasive disease. Our results indicate fermentation enzymes are de novo targets for antibiotic development and a novel strategy to combat multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Hansol Im
- Department of Microbiology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Madison L. Pearson
- Department of Microbiology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Eriel Martinez
- Department of Microbiology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Kyle H. Cichos
- Department of Orthopaedic Surgery Arthroplasty Section, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Xiuhong Song
- Department of Microbiology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Katherine L. Kruckow
- Department of Microbiology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Rachel M. Andrews
- Department of Microbiology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Elie S. Ghanem
- Department of Orthopaedic Surgery Arthroplasty Section, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Carlos J. Orihuela
- Department of Microbiology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
15
|
De S, Hakansson AP. Measuring Niche-Associated Metabolic Activity in Planktonic and Biofilm Bacteria. Methods Mol Biol 2023; 2674:3-32. [PMID: 37258957 DOI: 10.1007/978-1-0716-3243-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Most pathobionts of the respiratory tract form biofilms during asymptomatic colonization to survive and persist in this niche. Environmental changes of the host niche, often resulting from infection with respiratory viruses, changes of the microbiota composition, or other host assaults, can result in biofilm dispersion and spread of bacteria to other host niches, resulting in infections, such as otitis media, pneumonia, sepsis, and meningitis. The niches that these bacteria encounter during colonization and infection vary markedly in nutritional availability and contain different carbon sources and levels of other essential nutrients needed for bacterial growth and survival. As these niche-related nutritional variations regulate bacterial behavior and phenotype, a better understanding of bacterial niche-associated metabolic activity is likely to provide a broader understanding of bacterial pathogenesis. In this chapter, we use Streptococcus pneumoniae as a model respiratory pathobiont. We describe methods and models used to grow bacteria planktonically or to form biofilms in vitro by incorporating crucial host environmental factors, including the various carbon sources associated with specific niches, such as the nasopharynx or bloodstream. We then present methods describing how these models can be used to study bacterial phenotypes and their association with metabolic energy production and the generation of fermentation products.
Collapse
Affiliation(s)
- Supradipta De
- Department of Translational Medicine, Division of Experimental Infection Medicine, Wallenberg Laboratory, Lund University, Malmö, Sweden
| | - Anders P Hakansson
- Department of Translational Medicine, Division of Experimental Infection Medicine, Wallenberg Laboratory, Lund University, Malmö, Sweden.
| |
Collapse
|
16
|
Alibayov B, Scasny A, Khan F, Creel A, Smith P, Vidal AGJ, Fitisemanu FM, Padilla-Benavides T, Weiser JN, Vidal JE. Oxidative Reactions Catalyzed by Hydrogen Peroxide Produced by Streptococcus pneumoniae and Other Streptococci Cause the Release and Degradation of Heme from Hemoglobin. Infect Immun 2022; 90:e0047122. [PMID: 36409115 PMCID: PMC9753736 DOI: 10.1128/iai.00471-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 11/23/2022] Open
Abstract
Streptococcus pneumoniae (Spn) strains cause pneumonia that kills millions every year worldwide. Spn produces Ply, a hemolysin that lyses erythrocytes releasing hemoglobin, and also produces the pro-oxidant hydrogen peroxide (Spn-H2O2) during growth. The hallmark of the pathophysiology of hemolytic diseases is the oxidation of hemoglobin, but oxidative reactions catalyzed by Spn-H2O2 have been poorly studied. We characterized the oxidation of hemoglobin by Spn-H2O2. We prepared a series of single-mutant (ΔspxB or ΔlctO), double-mutant (ΔspxB ΔlctO), and complemented strains in TIGR4, D39, and EF3030. We then utilized an in vitro model with oxyhemoglobin to demonstrate that oxyhemoglobin was oxidized rapidly, within 30 min of incubation, by Spn-H2O2 to methemoglobin and that the main source of Spn-H2O2 was pyruvate oxidase (SpxB). Moreover, extended incubation caused the release and the degradation of heme. We then assessed oxidation of hemoglobin and heme degradation by other bacterial inhabitants of the respiratory tract. All hydrogen peroxide-producing streptococci tested caused the oxidation of hemoglobin and heme degradation, whereas bacterial species that produce <1 μM H2O2 neither oxidized hemoglobin nor degraded heme. An ex vivo bacteremia model confirmed that oxidation of hemoglobin and heme degradation occurred concurrently with hemoglobin that was released from erythrocytes by Ply. Finally, gene expression studies demonstrated that heme, but not red blood cells or hemoglobin, induced upregulated transcription of the spxB gene. Oxidation of hemoglobin may be important for pathogenesis and for the symbiosis of hydrogen peroxide-producing bacteria with other species by providing nutrients such as iron.
Collapse
Affiliation(s)
- Babek Alibayov
- Department of Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Anna Scasny
- Department of Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Faidad Khan
- Department of Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Aidan Creel
- Department of Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Summer Undergraduate Research Experience Program, School of Graduate Studies in the Health Sciences, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Perriann Smith
- Department of Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Mississippi INBRE program, University of Southern Mississippi, Hattiesburg, Mississippi, USA
| | - Ana G. Jop Vidal
- Department of Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | | | | | - Jeffrey N. Weiser
- Department of Microbiology, NYU Langone Health, New York, New York, USA
| | - Jorge E. Vidal
- Department of Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
17
|
Pn-AqpC-Mediated Fermentation Pattern Coordination with the Two-Component System 07 Regulates Host N-Glycan Degradation of Streptococcus pneumoniae. Microbiol Spectr 2022; 10:e0249622. [PMID: 36106896 PMCID: PMC9603416 DOI: 10.1128/spectrum.02496-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The opportunistic pathogen Streptococcus pneumoniae (pneumococcus) is a human nasopharyngeal commensal, and host N-glycan metabolism promotes its colonization and invasion. It has been reported that glucose represses, while fetuin, a glycoconjugated model protein, induces, the genes involved in N-glycan degradation through the two-component system TCS07. However, the mechanisms of glucose repression and TCS07 induction remain unknown. Previously, we found that the pneumococcal aquaglyceroporin Pn-AqpC facilitates oxygen uptake, thereby contributing to the antioxidant potential and virulence. In this study, through Tandem Mass Tag (TMT) quantitative proteomics, we found that the deletion of Pn-aqpC caused a marked upregulation of 11 proteins involved in N-glycan degradation in glucose-grown pneumococcus R6. Both quantitative RT-PCR and GFP fluorescence reporters revealed that the upregulation of N-glycan genes was completely dependent on response regulator (RR) 07, but not on the histidine kinase HK07 of TCS07 or the phosphoryl-receiving aspartate residue of RR07 in ΔPn-aqpC, indicating that RR07 was activated in an HK07-independent manner when Pn-AqpC was absent. The deletion of Pn-aqpC also enhanced the expression of pyruvate formate lyase and increased formate production, probably due to reduced cellular oxygen content, indicating that a shunt of glucose catabolism to mixed acid fermentation occurs. Notably, formate induced the N-glycan degradation genes in glucose-grown R6, but the deletion of rr07 abolished this induction, indicating that formate activates RR07. However, the induction of N-glycan degradation proteins reduced the intraspecies competition of R6 in glucose. Therefore, although N-glycan degradation promotes pneumococcal pathogenesis, the glucose metabolites-based RR07 regulation reported here is of importance for balancing growth fitness and the pathogenicity of pneumococcus. IMPORTANCE Pneumococcus, a human opportunistic pathogen, is capable of metabolizing host complex N-glycans. N-glycan degradation promotes pneumococcus colonization in the nasopharynx as well as invasion into deeper tissues, thus significantly contributing to pathogenesis. It is known that the two-component system 07 induces the N-glycan metabolizing genes; however, how TCS07 is activated remains unknown. This study reveals that formate, the anaerobic fermentation metabolite of pneumococcus, is a novel activator of the response regulator (RR) 07. Although the high expression of N-glycan degradation genes promotes pneumococcal colonization in the nasopharynx and pathogenesis, this reduces pneumococcal growth fitness in glucose as indicated in this work. Notably, the presence of Pn-AqpC, an oxygen-transporting aquaglyceroporin, enables pneumococcus to maintain glucose homolactic acid fermentation, thus reducing formate production, maintaining RR07 inactivation, and controlling N-glycan degrading genes at a non-induced status. Thus, this study highlights a novel fermentation metabolism pattern linking TCS-regulated carbohydrate utilization strategies as a trade-off between the fitness and the pathogenicity of pneumococcus.
Collapse
|
18
|
The Pyruvate Dehydrogenase Complex Mitigates LPS-Induced Endothelial Barrier Dysfunction by Metabolic Regulation. Shock 2022; 57:308-317. [PMID: 35759309 DOI: 10.1097/shk.0000000000001931] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
ABSTRACT Sepsis is a fatal health issue induced by an aberrant host response to infection, and it correlates with organ damage and a high mortality rate. Endothelial barrier dysfunction and subsequent capillary leakage play major roles in sepsis-induced multiorgan dysfunction. Anaerobic glycolysis is the primary metabolic mode in sepsis and the pyruvate dehydrogenase complex (PDHC) serves as a critical hub in energy regulation. Therefore, it is important to understand the role of PDHC in metabolic regulation during the development of sepsis-induced endothelial barrier dysfunction.In present study, human umbilical vein endothelial cells (HUVECs) and C57 BL/6 mice were treated with lipopolysaccharide (LPS) as models of endotoxemia. LPS increased basal glycolysis, compensatory glycolysis, and lactate secretion, indicating increased glycolysis level in endothelial cells (ECs). Activation of PDHC with dichloroacetate (DCA) reversed LPS-induced glycolysis, allowing PDHC to remain in the active dephosphorylated state, thereby preventing lactic acid production and HUVECs monolayers barrier dysfunction, as assessed by transendothelial electrical resistance and Fluorescein Isothiocyanate-labeled dextran. The in vivo study also showed that the lactate level and vascular permeability were increased in LPS-treated mice, but pretreatment with DCA attenuated these increases. The LPS-treated HUVEC model showed that DCA reversed LPS-induced phosphorylation of pyruvate dehydrogenase E1α Ser293 and Ser300 to restore PDHC activity. Immunoprecipitation results showed that LPS treatment increased the acetylation level of PDH E1α in HUVECs.Our study suggested that activation of PDHC may represent a therapeutic target for treatment of LPS-induced endothelial barrier dysfunction.
Collapse
|
19
|
Pathogen detection and characterization from throat swabs using unbiased metatranscriptomic analyses. Int J Infect Dis 2022; 122:260-265. [PMID: 35662643 DOI: 10.1016/j.ijid.2022.05.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/05/2022] [Accepted: 05/27/2022] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES Infectious diseases are common but are not easily or readily diagnosed with current methodologies. This problem is further exacerbated by the constant presence of mutated, emerging, and novel pathogens. One of the most common sites of infection by many pathogens is the human throat. However, there is no universal diagnostic test that can distinguish these pathogens. Metatranscriptomic (MT) analysis of the throat represents an important and novel development in infectious disease detection and characterization, because it is able to identify all pathogens using a fully unbiased approach. METHODS To test the utility of an MT approach to pathogen detection, throat samples were collected from participants before, during, and after an acute sickness. RESULTS Clear sickness-associated shifts in pathogenic microorganisms were detected in the patients. Important insights into microbial functions and antimicrobial resistance genes were obtained. CONCLUSION MT analysis of the throat represents an effective method for the unbiased identification and characterization of pathogens. Because MT data include all microorganisms in the sample, this approach should not only allow the identification of pathogens, but provide an understanding of the effects of the resident throat microbiome in the context of human health and disease.
Collapse
|
20
|
Sbaoui Y, Nouadi B, Ezaouine A, Rida Salam M, Elmessal M, Bennis F, Chegdani F. Functional Prediction of Biological Profile During Eutrophication in Marine Environment. Bioinform Biol Insights 2022; 16:11779322211063993. [PMID: 35023908 PMCID: PMC8744080 DOI: 10.1177/11779322211063993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/13/2021] [Indexed: 11/17/2022] Open
Abstract
In the marine environment, coastal nutrient pollution and algal blooms are increasing in many coral reefs and surface waters around the world, leading to higher concentrations of dissolved organic carbon (DOC), nitrogen (N), phosphate (P), and sulfur (S) compounds. The adaptation of the marine microbiota to this stress involves evolutionary processes through mutations that can provide selective phenotypes. The aim of this in silico analysis is to elucidate the potential candidate hub proteins, biological processes, and key metabolic pathways involved in the pathogenicity of bacterioplankton during excess of nutrients. The analysis was carried out on the model organism Escherichia coli K-12, by adopting an analysis pipeline consisting of a set of packages from the Cystoscape platform. The results obtained show that the metabolism of carbon and sugars generally are the 2 driving mechanisms for the expression of virulence factors.
Collapse
Affiliation(s)
- Yousra Sbaoui
- Immunology and Biodiversity Laboratory, Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, Casablanca, Morocco
| | - Badreddine Nouadi
- Immunology and Biodiversity Laboratory, Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, Casablanca, Morocco
| | - Abdelkarim Ezaouine
- Immunology and Biodiversity Laboratory, Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, Casablanca, Morocco
| | - Mohamed Rida Salam
- Immunology and Biodiversity Laboratory, Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, Casablanca, Morocco
| | - Mariame Elmessal
- Immunology and Biodiversity Laboratory, Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, Casablanca, Morocco
| | - Faiza Bennis
- Immunology and Biodiversity Laboratory, Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, Casablanca, Morocco
| | - Fatima Chegdani
- Immunology and Biodiversity Laboratory, Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, Casablanca, Morocco
| |
Collapse
|
21
|
Vidal JE, Wier MN, A. Angulo-Zamudio U, McDevitt E, Jop Vidal AG, Alibayov B, Scasny A, Wong SM, Akerley BJ, McDaniel LS. Prophylactic Inhibition of Colonization by Streptococcus pneumoniae with the Secondary Bile Acid Metabolite Deoxycholic Acid. Infect Immun 2021; 89:e0046321. [PMID: 34543118 PMCID: PMC8594607 DOI: 10.1128/iai.00463-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/07/2021] [Indexed: 12/26/2022] Open
Abstract
Streptococcus pneumoniae colonizes the nasopharynx of children and the elderly but also kills millions worldwide yearly. The secondary bile acid metabolite deoxycholic acid (DoC) affects the viability of human pathogens but also plays multiple roles in host physiology. We assessed in vitro the antimicrobial activity of DoC and investigated its potential to eradicate S. pneumoniae colonization using a model of human nasopharyngeal colonization and an in vivo mouse model of colonization. At a physiological concentration, DoC (0.5 mg/ml; 1.27 mM) killed all tested S. pneumoniae strains (n = 48) 2 h postinoculation. The model of nasopharyngeal colonization showed that DoC eradicated colonization by S. pneumoniae strains as soon as 10 min postexposure. The mechanism of action did not involve activation of autolysis, since the autolysis-defective double mutants ΔlytAΔlytC and ΔspxBΔlctO were as susceptible to DoC as was the wild type (WT). Oral streptococcal species (n = 20), however, were not susceptible to DoC (0.5 mg/ml). Unlike trimethoprim, whose spontaneous resistance frequency (srF) for TIGR4 or EF3030 was ≥1 × 10-9, no spontaneous resistance was observed with DoC (srF, ≥1 × 10-12). Finally, the efficacy of DoC to eradicate S. pneumoniae colonization was assessed in vivo using a topical route via intranasal (i.n.) administration and as a prophylactic treatment. Mice challenged with S. pneumoniae EF3030 carried a median of 4.05 × 105 CFU/ml 4 days postinoculation compared to 6.67 × 104 CFU/ml for mice treated with DoC. Mice in the prophylactic group had an ∼99% reduction of the pneumococcal density (median, 2.61 × 103 CFU/ml). Thus, DoC, an endogenous human bile salt, has therapeutic potential against S. pneumoniae.
Collapse
Affiliation(s)
- Jorge E. Vidal
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Meagan N. Wier
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | | | - Erin McDevitt
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Ana G. Jop Vidal
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Babek Alibayov
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Anna Scasny
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Sandy M. Wong
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Brian J. Akerley
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Larry S. McDaniel
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
22
|
Mucus, Microbiomes and Pulmonary Disease. Biomedicines 2021; 9:biomedicines9060675. [PMID: 34199312 PMCID: PMC8232003 DOI: 10.3390/biomedicines9060675] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 12/20/2022] Open
Abstract
The respiratory tract harbors a stable and diverse microbial population within an extracellular mucus layer. Mucus provides a formidable defense against infection and maintaining healthy mucus is essential to normal pulmonary physiology, promoting immune tolerance and facilitating a healthy, commensal lung microbiome that can be altered in association with chronic respiratory disease. How one maintains a specialized (healthy) microbiome that resists significant fluctuation remains unknown, although smoking, diet, antimicrobial therapy, and infection have all been observed to influence microbial lung homeostasis. In this review, we outline the specific role of polymerizing mucin, a key functional component of the mucus layer that changes during pulmonary disease. We discuss strategies by which mucin feed and spatial orientation directly influence microbial behavior and highlight how a compromised mucus layer gives rise to inflammation and microbial dysbiosis. This emerging field of respiratory research provides fresh opportunities to examine mucus, and its function as predictors of infection risk or disease progression and severity across a range of chronic pulmonary disease states and consider new perspectives in the development of mucolytic treatments.
Collapse
|
23
|
Sa DW, Lu Q, Wang Z, Ge G, Sun L, Jia Y. The potential and effects of saline-alkali alfalfa microbiota under salt stress on the fermentation quality and microbial. BMC Microbiol 2021; 21:149. [PMID: 34011262 PMCID: PMC8132353 DOI: 10.1186/s12866-021-02213-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 05/03/2021] [Indexed: 11/10/2022] Open
Abstract
Background The objective of this study was to evaluate the chemical compositions and microbial communities of salt-tolerant alfalfa silage. Salt-tolerant alfalfa was ensiled with no additive control, and cellulase for 30 and 60 to 90 days. In this study, the dry matter (DM) content of the raw material was 29.9% DM, and the crude protein (CP) content of the alfalfa was 21.9% CP. Results After 30 days of fermentation, the DM content with the cellulase treatment was reduced by 3.6%, and the CP content was reduced by 12.7%. After 60 days of fermentation, compared with alfalfa raw material, the DM content in the control group (CK) was reduced by 1%, the CP content was reduced by 9.5%, and the WSC (water-soluble carbohydrates) content was reduced by 22.6%. With the cellulase, the lactic acid content of the 30- and 60-day silages was 2.66% DM and 3.48% DM. The content of Firmicutes in salinized alfalfa raw material was less than 0.1% of the total bacterial content. Before and after ensiling, the microbes had similar composition at the phylum level, and were composed of Firmicutes, Actinobacteria, Bacteroidetes, and Proteobacteria. The abundance of Pantoea was dominant in fresh alfalfa. In the absence of additives, after 30 days and 60 days of silage, the dominant lactic acid bacteria species became Lactococcus and Enterococcus. Conclusions The results showed that LAB (Lactobacillus, Lactococcus, Enterococcus, and Pediococcus) played a major role in the fermentation of saline alfalfa silage. It also can better preserve the nutrients of saline alfalfa silage. The use of cellulase enhances the reproduction of Lactobacillus. The fermentation time would also change the microbial community of silage fermentation. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02213-2.
Collapse
Affiliation(s)
- Duo Wen Sa
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, , Erdos Street, Hohhot, 010019, Inner Mongolia, China
| | - Qiang Lu
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, , Erdos Street, Hohhot, 010019, Inner Mongolia, China
| | - Zhen Wang
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Gentu Ge
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, , Erdos Street, Hohhot, 010019, Inner Mongolia, China
| | - Lin Sun
- Inner Mongolia Academy of Agriculture Animal and Husbandry Sciences, Hohhot, Inner Mongolia Autonomous Region, China
| | - Yushan Jia
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, , Erdos Street, Hohhot, 010019, Inner Mongolia, China.
| |
Collapse
|