1
|
Zhu M, Feng M, Tao X. NLR-mediated antiviral immunity in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:786-800. [PMID: 39777907 DOI: 10.1111/jipb.13821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025]
Abstract
Plant viruses cause substantial agricultural devastation and economic losses worldwide. Plant nucleotide-binding domain leucine-rich repeat receptors (NLRs) play a pivotal role in detecting viral infection and activating robust immune responses. Recent advances, including the elucidation of the interaction mechanisms between NLRs and pathogen effectors, the discovery of helper NLRs, and the resolution of the ZAR1 resistosome structure, have significantly deepened our understanding of NLR-mediated immune responses, marking a new era in NLR research. In this scenario, significant progress has been made in the study of NLR-mediated antiviral immunity. This review comprehensively summarizes the progress made in plant antiviral NLR research over the past decades, with a focus on NLR recognition of viral pathogen effectors, NLR activation and regulation, downstream immune signaling, and the engineering of NLRs.
Collapse
Affiliation(s)
- Min Zhu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingfeng Feng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaorong Tao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
2
|
Jia Z, Rui P, Fang X, Han K, Yu T, Lu Y, Zheng H, Chen J, Yan F, Wu G. Proteolysis of host DEAD-box RNA helicase by potyviral proteases activates plant immunity. THE NEW PHYTOLOGIST 2025; 245:1655-1672. [PMID: 39611543 DOI: 10.1111/nph.20318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024]
Abstract
The precise mechanisms by which plant viral proteases interact with and cleave host proteins, thereby participating in virus-host interactions, are not well understood. Potyviruses, the largest group of known plant-infecting RNA viruses, are known to rely on the nuclear inclusion protease a (NIa-Pro) for the processing of viral polyproteins. Here, we demonstrate that the proteolytic activity of NIa-Pro from potyvirus turnip mosaic virus (TuMV) is indispensable for inducing hypersensitive cell death in Nicotiana benthamiana. NIa-Pro targets and degrades the host DEAD-box protein 5 (DBP5) via a specific cleavage motif, which initiates host cell death. Both the silencing of DBP5 and the overexpression of NIa-Pro lead to an increased frequency of stop codon readthrough, which could be potentially harmful to the host, as it may result in the production of aberrant proteins. Unlike the NIa-Pro of most other potyviruses, the NIa-Pro of tobacco etch virus can also degrade DBP5 and trigger cell death, in both pepper and N. benthamiana. Furthermore, we discovered that the TuMV-encoded nuclear inclusion b can counteract NIa-Pro-induced cell death by co-opting DBP5. These findings unveil hitherto uncharacterized roles for plant virus proteases in cleaving host proteins and highlight the role of host DBP5 in modulating plant immunity.
Collapse
Affiliation(s)
- Zhaoxing Jia
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Penghuan Rui
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Xinxin Fang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Kelei Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Tianqi Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Yuwen Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Hongying Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jianping Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Guanwei Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
3
|
Wei J, Li Y, Chen X, Tan P, Muhammad T, Liang Y. Advances in understanding the interaction between Solanaceae NLR resistance proteins and the viral effector Avr. PLANT SIGNALING & BEHAVIOR 2024; 19:2382497. [PMID: 39312190 PMCID: PMC11421380 DOI: 10.1080/15592324.2024.2382497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 09/26/2024]
Abstract
The rising prevalence of viral-induced diseases, particularly those caused by certain strains, poses a substantial risk to the genetic diversity of Solanaceae crops and the overall safety of horticultural produce. According to the "gene-for-gene" hypothesis, resistance proteins are capable of selectively identifying nontoxic effectors produced by pathogens, as they are under purview of the host's immune defenses. The sensitivity and responsiveness of Solanaceae plants to viral attacks play a crucial role in shaping the outcomes of their interactions with viruses. Pathogenic organisms, devise an array of infection tactics aimed at circumventing or neutralizing the host's immune defenses to facilitate effective invasion. The invasion often accomplishes by suppressing or disrupting the host's defensive mechanisms or immune signals, which are integral to the infection strategies of such invading pathogens. This comprehensive review delves into the myriad approaches that pathogenic viruses employ to infiltrate and overcome the sophisticated immune system of tomatoes. Furthermore, the review explores the possibility of utilizing these viral strategies to bolster the resilience of horticultural crops, presenting a hopeful direction for forthcoming progress in plant health and agricultural stability.
Collapse
Affiliation(s)
- Jianming Wei
- College of Agriculture, Guizhou University, Guiyang, China
| | - Yunzhou Li
- College of Agriculture, Guizhou University, Guiyang, China
| | - Xiangru Chen
- College of Agriculture, Guizhou University, Guiyang, China
| | - Ping Tan
- Field management station, Guiyang Agricultural Test Center, Guiyang, China
| | - Tayeb Muhammad
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Yan Liang
- College of Horticulture, Northwest A&F University, Yangling, China
| |
Collapse
|
4
|
Wen Q, Wang S, Zhang X, Zhou Z. Recent advances of NLR receptors in vegetable disease resistance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 348:112224. [PMID: 39142606 DOI: 10.1016/j.plantsci.2024.112224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024]
Abstract
Plants mainly depend on both cell-surface and intracellular receptors to defend against various pathogens. The nucleotide-binding leucine-rich repeat (NLR) proteins are intracellular receptors that recognize pathogen effectors. The first NLR was cloned thirty years ago. Genomic sequencing and biotechnologies accelerated NLR gene isolation. NLR genes have been proven useful in breeding disease resistant crops. Here, we summarized the current knowledge of strategies for NLR gene isolation and provided a list of NLRs cloned in vegetables. We also discussed the mechanisms underlying NLR gene function, the challenges of NLRs in vegetable breeding and directions for future studies.
Collapse
Affiliation(s)
- Qing Wen
- Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Shaoyun Wang
- Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaolan Zhang
- Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Zhaoyang Zhou
- Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
5
|
Wang C, Zhu M, Hong H, Li J, Zuo C, Zhang Y, Shi Y, Liu S, Yu H, Yan Y, Chen J, Shangguan L, Zhi A, Chen R, Devendrakumar KT, Tao X. A viral effector blocks the turnover of a plant NLR receptor to trigger a robust immune response. EMBO J 2024; 43:3650-3676. [PMID: 39020150 PMCID: PMC11377725 DOI: 10.1038/s44318-024-00174-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 06/16/2024] [Accepted: 06/24/2024] [Indexed: 07/19/2024] Open
Abstract
Plant intracellular nucleotide-binding and leucine-rich repeat immune receptors (NLRs) play a key role in activating a strong pathogen defense response. Plant NLR proteins are tightly regulated and accumulate at very low levels in the absence of pathogen effectors. However, little is known about how this low level of NLR proteins is able to induce robust immune responses upon recognition of pathogen effectors. Here, we report that, in the absence of effector, the inactive form of the tomato NLR Sw-5b is targeted for ubiquitination by the E3 ligase SBP1. Interaction of SBP1 with Sw-5b via only its N-terminal domain leads to slow turnover. In contrast, in its auto-active state, Sw-5b is rapidly turned over as SBP1 is upregulated and interacts with both its N-terminal and NB-LRR domains. During infection with the tomato spotted wilt virus, the viral effector NSm interacts with Sw-5b and disrupts the interaction of Sw-5b with SBP1, thereby stabilizing the active Sw-5b and allowing it to induce a robust immune response.
Collapse
Affiliation(s)
- Chunli Wang
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Min Zhu
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Hao Hong
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Jia Li
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Chongkun Zuo
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Yu Zhang
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Yajie Shi
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Suyu Liu
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Haohua Yu
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Yuling Yan
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Jing Chen
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Lingna Shangguan
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Aiping Zhi
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Rongzhen Chen
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Karen Thulasi Devendrakumar
- Department of Botany and Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Xiaorong Tao
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China.
| |
Collapse
|
6
|
Oliver JE, Rotenberg D, Agosto-Shaw K, McInnes HA, Lahre KA, Mulot M, Adkins S, Whitfield AE. Multigenic Hairpin Transgenes in Tomato Confer Resistance to Multiple Orthotospoviruses Including Sw-5 Resistance-Breaking Tomato Spotted Wilt Virus. PHYTOPATHOLOGY 2024; 114:1137-1149. [PMID: 37856697 DOI: 10.1094/phyto-07-23-0256-kc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Tomato spotted wilt virus (TSWV) and related thrips-borne orthotospoviruses are a threat to food and ornamental crops. Orthotospoviruses have the capacity for rapid genetic change by genome segment reassortment and mutation. Genetic resistance is one of the most effective strategies for managing orthotospoviruses, but there are multiple examples of resistance gene breakdown. Our goal was to develop effective multigenic, broad-spectrum resistance to TSWV and other orthotospoviruses. The most conserved sequences for each open reading frame (ORF) of the TSWV genome were identified, and comparison with other orthotospoviruses revealed sequence conservation within virus clades; some overlapped with domains with well-documented biological functions. We made six hairpin constructs, each of which incorporated sequences matching portions of all five ORFs. Tomato plants expressing the hairpin transgene were challenged with TSWV by thrips and leaf-rub inoculation, and four constructs provided strong protection against TSWV in foliage and fruit. To determine if the hairpin constructs provided protection against other emerging orthotospoviruses, we challenged the plants with tomato chlorotic spot virus and resistance-breaking TSWV and found that the same constructs also provided resistance to these related viruses. Antiviral hairpin constructs are an effective way to protect plants from multiple orthotospoviruses and are an important strategy in the fight against resistance-breaking TSWV and emerging viruses. Targeting of all five viral ORFs is expected to increase the durability of resistance, and combining them with other resistance genes could further extend the utility of this disease control strategy. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Jonathan E Oliver
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66502
| | - Dorith Rotenberg
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695
| | - Karolyn Agosto-Shaw
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695
| | - Holly A McInnes
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695
| | - Kirsten A Lahre
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695
| | - Michaël Mulot
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695
| | - Scott Adkins
- U.S. Department of Agriculture-Agricultural Research Service-USHRL, Fort Pierce, FL 34945
| | - Anna E Whitfield
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
7
|
Ordaz NA, Nagalakshmi U, Boiteux LS, Atamian HS, Ullman DE, Dinesh-Kumar SP. The Sw-5b NLR Immune Receptor Induces Early Transcriptional Changes in Response to Thrips and Mechanical Modes of Inoculation of Tomato spotted wilt orthotospovirus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:705-715. [PMID: 37432156 DOI: 10.1094/mpmi-03-23-0032-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
The NLR (nucleotide-binding leucine-rich repeat) class immune receptor Sw-5b confers resistance to Tomato spotted wilt orthotospovirus (TSWV). Although Sw-5b is known to activate immunity upon recognition of the TSWV movement protein NSm, we know very little about the downstream events that lead to resistance. Here, we investigated the Sw-5b-mediated early transcriptomic changes that occur in response to mechanical and thrips-mediated inoculation of TSWV, using near-isogenic tomato lines CNPH-LAM 147 (Sw5b+/+) and Santa Clara (Sw-5b-/-). We observed earlier Sw-5b-mediated transcriptional changes in response to thrips-mediated inoculation compared with that in response to mechanical inoculation of TSWV. With thrips-mediated inoculation, differentially expressed genes (DEGs) were observed at 12, 24, and 72 h postinoculation (hpi). Whereas with mechanical inoculation, DEGs were observed only at 72 hpi. Although some DEGs were shared between the two methods of inoculation, many DEGs were specific to either thrips-mediated or mechanical inoculation of TSWV. In response to thrips-mediated inoculation, an NLR immune receptor, cysteine-rich receptor-like kinase, G-type lectin S-receptor-like kinases, the ethylene response factor 1, and the calmodulin-binding protein 60 were induced. Fatty acid desaturase 2-9, cell death genes, DCL2b, RIPK/PBL14-like, ERF017, and WRKY75 were differentially expressed in response to mechanical inoculation. Our findings reveal Sw-5b responses specific to the method of TSWV inoculation. Although TSWV is transmitted in nature primarily by the thrips, Sw-5b responses to thrips inoculation have not been previously studied. Therefore, the DEGs we have identified in response to thrips-mediated inoculation provide a new foundation for understanding the mechanistic roles of these genes in the Sw-5b-mediated resistance. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Norma A Ordaz
- Department of Plant Pathology, College of Agricultural and Environmental Sciences, University of California, Davis, CA 95616, U.S.A
| | - Ugrappa Nagalakshmi
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, U.S.A
| | - Leonardo S Boiteux
- National Center for Vegetable Crops Research (CNPH), Embrapa Hortaliças, Brasilia-DF, Brazil
| | - Hagop S Atamian
- Biological Sciences program, Schmid College of Science & Technology, Chapman University, Orange, CA 92866, U.S.A
| | - Diane E Ullman
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, CA 95616, U.S.A
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, U.S.A
- The Genome Center, College of Biological Sciences, University of California, Davis, CA 95616, U.S.A
| |
Collapse
|
8
|
Contreras MP, Lüdke D, Pai H, Toghani A, Kamoun S. NLR receptors in plant immunity: making sense of the alphabet soup. EMBO Rep 2023; 24:e57495. [PMID: 37602936 PMCID: PMC10561179 DOI: 10.15252/embr.202357495] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/22/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023] Open
Abstract
Plants coordinately use cell-surface and intracellular immune receptors to perceive pathogens and mount an immune response. Intracellular events of pathogen recognition are largely mediated by immune receptors of the nucleotide binding and leucine rich-repeat (NLR) classes. Upon pathogen perception, NLRs trigger a potent broad-spectrum immune reaction, usually accompanied by a form of programmed cell death termed the hypersensitive response. Some plant NLRs act as multifunctional singleton receptors which combine pathogen detection and immune signaling. However, NLRs can also function in higher order pairs and networks of functionally specialized interconnected receptors. In this article, we cover the basic aspects of plant NLR biology with an emphasis on NLR networks. We highlight some of the recent advances in NLR structure, function, and activation and discuss emerging topics such as modulator NLRs, pathogen suppression of NLRs, and NLR bioengineering. Multi-disciplinary approaches are required to disentangle how these NLR immune receptor pairs and networks function and evolve. Answering these questions holds the potential to deepen our understanding of the plant immune system and unlock a new era of disease resistance breeding.
Collapse
Affiliation(s)
| | - Daniel Lüdke
- The Sainsbury LaboratoryUniversity of East AngliaNorwichUK
| | - Hsuan Pai
- The Sainsbury LaboratoryUniversity of East AngliaNorwichUK
| | | | - Sophien Kamoun
- The Sainsbury LaboratoryUniversity of East AngliaNorwichUK
| |
Collapse
|
9
|
Rodríguez‐Negrete EA, Guevara‐Rivera EA, Arce‐Leal ÁP, Leyva‐López NE, Méndez‐Lozano J. A novel tomato spotted wilt virus isolate encoding a noncanonical NSm C118F substitution associated with Sw-5 tomato gene resistance breaking. MOLECULAR PLANT PATHOLOGY 2023; 24:1300-1311. [PMID: 37403515 PMCID: PMC10502823 DOI: 10.1111/mpp.13371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 07/06/2023]
Abstract
The nonstructural protein NSm of tomato spotted wilt virus (TSWV) has been identified as the avirulence determinant of the tomato single dominant Sw-5 resistance gene. Although Sw-5 effectiveness has been shown for most TSWV isolates, the emergence of resistance-breaking (RB) isolates has been observed. It is strongly associated with two point mutations (C118Y or T120N) in the NSm viral protein. TSWV-like symptoms were observed in tomato crop cultivars (+Sw-5) in the Baja California peninsula, Mexico, and molecular methods confirmed the presence of TSWV. Sequence analysis of the NSm 118-120 motif and three-dimensional protein modelling exhibited a noncanonical C118F substitution in seven isolates, suggesting that this substitution could emulate the C118Y-related RB phenotype. Furthermore, phylogenetic and molecular analysis of the full-length genome (TSWV-MX) revealed its reassortment-related evolution and confirmed that putative RB-related features are restricted to the NSm protein. Biological and mutational NSm 118 residue assays in tomato (+Sw-5) confirmed the RB nature of TSWV-MX isolate, and the F118 residue plays a critical role in the RB phenotype. The discovery of a novel TSWV-RB Mexican isolate with the presence of C118F substitution highlights a not previously described viral adaptation in the genus Orthotospovirus, and hence, the necessity of further crop monitoring to alert the establishment of novel RB isolates in cultivated tomatoes.
Collapse
|
10
|
Chinnaiah S, Gautam S, Herron B, Workneh F, Rush CM, Gadhave KR. Novel strains of a pandemic plant virus, tomato spotted wilt orthotospovirus, increase vector fitness and modulate virus transmission in a resistant host. Front Microbiol 2023; 14:1257724. [PMID: 37840712 PMCID: PMC10570800 DOI: 10.3389/fmicb.2023.1257724] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/07/2023] [Indexed: 10/17/2023] Open
Abstract
Tomato spotted wilt orthotospovirus (TSWV) is one of the most successful pandemic agricultural pathogens transmitted by several species of thrips in a persistent propagative manner. Current management strategies for TSWV heavily rely on growing single-gene resistant cultivars of tomato ("Sw-5b" gene) and pepper ("Tsw" gene) deployed worldwide. However, the emergence of resistance-breaking strains (RB) in recent years has compounded the threat of TSWV to agricultural production worldwide. Despite this, an extensive study on the thrips transmission biology of RB strains is currently lacking. It is also unclear whether mutualistic TSWV-thrips interactions vary across different novel strains with disparate geographical origins. To address both critical questions, we studied whether and how four novel RB strains of TSWV (two sympatric and two allopatric), along with a non-RB strain, impact western flower thrips (WFT) fitness and whether this leads to differences in TSWV incidence, symptom severity (virulence), and virus accumulation in two differentially resistant tomato cultivars. Our findings show that all RB strains increased WFT fitness by prolonging the adult period and increasing fecundity compared to non-RB and non-viruliferous controls, regardless of the geographical origin of strains or the TSWV titers in individual thrips, which were substantially low in allopatric strains. TSWV accumulation in thrips varied at different developmental stages and was unrelated to the infected tissues from which thrips acquired the virus. However, it was significantly positively correlated to that in WFT-inoculated susceptible plants, but not the resistant ones. The TSW incidences were high in tomato plants infected with all RB strains, ranging from 80% to 90% and 100% in resistant and susceptible plants, respectively. However, TSW incidence in the non-RB-infected susceptible tomato plants was 80%. Our findings provide new insights into how novel strains of TSWV, by selectively offering substantial fitness benefits to vectors, modulate transmission and gain a potential epidemiological advantage over non-RB strains. This study presents the first direct evidence of how vector-imposed selection pressure, besides the one imposed by resistant cultivars, may contribute to the worldwide emergence of RB strains.
Collapse
Affiliation(s)
- Senthilraja Chinnaiah
- Texas A&M AgriLife Research, Amarillo, TX, United States
- Department of Entomology, Texas A&M University, College Station, TX, United States
| | - Saurabh Gautam
- Texas A&M AgriLife Research, Amarillo, TX, United States
- Department of Entomology, Texas A&M University, College Station, TX, United States
| | - Benjamin Herron
- Texas A&M AgriLife Research, Amarillo, TX, United States
- Department of Entomology, Texas A&M University, College Station, TX, United States
| | - Fekede Workneh
- Texas A&M AgriLife Research, Amarillo, TX, United States
- Department of Plant Pathology, Texas A&M University, College Station, TX, United States
| | - Charles M. Rush
- Texas A&M AgriLife Research, Amarillo, TX, United States
- Department of Plant Pathology, Texas A&M University, College Station, TX, United States
| | - Kiran R. Gadhave
- Texas A&M AgriLife Research, Amarillo, TX, United States
- Department of Entomology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
11
|
Piau M, Schmitt-Keichinger C. The Hypersensitive Response to Plant Viruses. Viruses 2023; 15:2000. [PMID: 37896777 PMCID: PMC10612061 DOI: 10.3390/v15102000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
Plant proteins with domains rich in leucine repeats play important roles in detecting pathogens and triggering defense reactions, both at the cellular surface for pattern-triggered immunity and in the cell to ensure effector-triggered immunity. As intracellular parasites, viruses are mostly detected intracellularly by proteins with a nucleotide binding site and leucine-rich repeats but receptor-like kinases with leucine-rich repeats, known to localize at the cell surface, have also been involved in response to viruses. In the present review we report on the progress that has been achieved in the last decade on the role of these leucine-rich proteins in antiviral immunity, with a special focus on our current understanding of the hypersensitive response.
Collapse
|
12
|
Ivanov PA, Gasanova TV, Repina MN, Zamyatnin AA. Signaling and Resistosome Formation in Plant Innate Immunity to Viruses: Is There a Common Mechanism of Antiviral Resistance Conserved across Kingdoms? Int J Mol Sci 2023; 24:13625. [PMID: 37686431 PMCID: PMC10487714 DOI: 10.3390/ijms241713625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/16/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
Virus-specific proteins, including coat proteins, movement proteins, replication proteins, and suppressors of RNA interference are capable of triggering the hypersensitive response (HR), which is a type of cell death in plants. The main cell death signaling pathway involves direct interaction of HR-inducing proteins with nucleotide-binding leucine-rich repeats (NLR) proteins encoded by plant resistance genes. Singleton NLR proteins act as both sensor and helper. In other cases, NLR proteins form an activation network leading to their oligomerization and formation of membrane-associated resistosomes, similar to metazoan inflammasomes and apoptosomes. In resistosomes, coiled-coil domains of NLR proteins form Ca2+ channels, while toll-like/interleukin-1 receptor-type (TIR) domains form oligomers that display NAD+ glycohydrolase (NADase) activity. This review is intended to highlight the current knowledge on plant innate antiviral defense signaling pathways in an attempt to define common features of antiviral resistance across the kingdoms of life.
Collapse
Affiliation(s)
- Peter A. Ivanov
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (P.A.I.); (T.V.G.); (M.N.R.)
| | - Tatiana V. Gasanova
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (P.A.I.); (T.V.G.); (M.N.R.)
| | - Maria N. Repina
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (P.A.I.); (T.V.G.); (M.N.R.)
| | - Andrey A. Zamyatnin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119234, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
- Research Center for Translational Medicine, Sirius University of Science and Technology, Sirius 354340, Krasnodar Region, Russia
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| |
Collapse
|
13
|
Sett S, Prasad A, Prasad M. Resistance genes on the verge of plant-virus interaction. TRENDS IN PLANT SCIENCE 2022; 27:1242-1252. [PMID: 35902346 DOI: 10.1016/j.tplants.2022.07.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 06/06/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Viruses are acellular pathogens that cause severe infections in plants, resulting in worldwide crop losses every year. The lack of chemical agents to control viral diseases exacerbates the situation. Thus, to devise proper management strategies, it is important that the defense mechanisms of plants against viruses are understood. Resistance (R) genes regulate plant defense against invading pathogens by eliciting a hypersensitive response (HR). Compatible interaction between plant R gene and viral avirulence (Avr) protein activates the necrotic cell death response at the site of infection, resulting in the cessation of disease. Here, we review different aspects of R gene-mediated dominant resistance against plant viruses in dicotyledonous plants and possible ways for developing crops with better disease resistance.
Collapse
Affiliation(s)
- Susmita Sett
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ashish Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India; Department of Plant Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India.
| |
Collapse
|
14
|
Lv J, Deng M, Jiang S, Zhu H, Li Z, Wang Z, Li J, Yang Z, Yue Y, Xu J, Zhao K. Mapping and functional characterization of the tomato spotted wilt virus resistance gene SlCHS3 in Solanum lycopersicum. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:55. [PMID: 37313421 PMCID: PMC10248591 DOI: 10.1007/s11032-022-01325-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Tomato spotted wilt virus (TSWV) poses a serious threat to tomato (Solanum lycopersicum) production. In this study, tomato inbred line YNAU335 was developed without the Sw-5 locus, which confers resistance or immunity to TSWV (absence of infection). Genetic analysis demonstrated that immunity to TSWV was controlled by a dominant nuclear gene. The candidate genes were mapped into a 20-kb region in the terminal of the long arm of chromosome 9 using bulk segregant analysis and linkage analysis. In this candidate region, a chalcone synthase-encoding gene (SlCHS3) was identified as a strong candidate gene for TSWV resistance. Silencing SlCHS3 reduced flavonoid synthesis, and SlCHS3 overexpression increased flavonoid content. The increase in flavonoids improved TSWV resistance in tomato. These findings indicate that SlCHS3 is indeed involved in the regulation of flavonoid synthesis and plays a significant role in TSWV resistance of YNAU335. This could provide new insights and lay the foundation for analyzing TSWV resistance mechanisms. Supplementary information The online version contains supplementary material available at 10.1007/s11032-022-01325-5.
Collapse
Affiliation(s)
- Junheng Lv
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, 650201 China
| | - Minghua Deng
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, 650201 China
| | - Shurui Jiang
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, 650201 China
| | - Haishan Zhu
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, 650201 China
| | - Zuosen Li
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, 650201 China
| | - Ziran Wang
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, 650201 China
| | - Jing Li
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, 650201 China
| | - Zhengan Yang
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, 650201 China
| | - Yanling Yue
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, 650201 China
| | - Junqiang Xu
- Dian-Tai Engineering Research Center for Characteristic Agriculture Industrialization of Yunnan Province, YunnanAgricultural University, Kunming, 650201 China
| | - Kai Zhao
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, 650201 China
| |
Collapse
|
15
|
Huang H, Zuo C, Zhao Y, Huang S, Wang T, Zhu M, Li J, Tao X. Determination of key residues in tospoviral NSm required for Sw-5b recognition, their potential ability to overcome resistance, and the effective resistance provided by improved Sw-5b mutants. MOLECULAR PLANT PATHOLOGY 2022; 23:622-633. [PMID: 34962031 PMCID: PMC8995064 DOI: 10.1111/mpp.13182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 05/03/2023]
Abstract
Sw-5b is an effective resistance gene used widely in tomato to control tomato spotted wilt virus (TSWV), which causes severe losses in crops worldwide. Sw-5b confers resistance by recognizing a 21-amino-acid peptide region of the viral movement protein NSm (NSm21, amino acids 115-135). However, C118Y or T120N mutation within this peptide region of NSm has given rise to field resistance-breaking (RB) TSWV isolates. To investigate the potential ability of TSWV to break Sw-5b-mediated resistance, we mutagenized each amino acid on NSm21 and determined which amino acid mutations would evade Sw-5b recognition. Among all alanine-scan mutants, NSmP119A , NSmW121A , NSmD122A , NSmR124A , and NSmQ126A failed to induce a hypersensitive response (HR) when coexpressed with Sw-5b in Nicotiana benthamiana leaves. TSWV with the NSmP119A , NSmW121A , or NSmQ126A mutation was defective in viral cell-to-cell movement and systemic infection, while TSWV carrying the NSmD122A or NSmR124A mutation was not only able to infect wild-type N. benthamiana plants systemically but also able to break Sw-5b-mediated resistance and establish systemic infection on Sw-5b-transgenic N. benthamiana plants. Two improved mutants, Sw-5bL33P/K319E/R927A and Sw-5bL33P/K319E/R927Q , which we recently engineered and which provide effective resistance against field RB isolates carrying NSmC118Y or NSmT120N mutations, recognized all NSm21 alanine-substitution mutants and conferred effective resistance against new experimental RB TSWV with the NSmD122A or NSmR124A mutation. Collectively, we determined the key residues of NSm for Sw-5b recognition, investigated their potential RB ability, and demonstrated that the improved Sw-5b mutants could provide effective resistance to both field and potential RB TSWV isolates.
Collapse
Affiliation(s)
- Haining Huang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Disease and PestsMinistry of EducationNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Chongkun Zuo
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Disease and PestsMinistry of EducationNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Yaqian Zhao
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Disease and PestsMinistry of EducationNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Shen Huang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Disease and PestsMinistry of EducationNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Tongkai Wang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Disease and PestsMinistry of EducationNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Min Zhu
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Disease and PestsMinistry of EducationNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Jia Li
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Disease and PestsMinistry of EducationNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Xiaorong Tao
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Disease and PestsMinistry of EducationNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
16
|
Ngou BPM, Ding P, Jones JDG. Thirty years of resistance: Zig-zag through the plant immune system. THE PLANT CELL 2022; 34:1447-1478. [PMID: 35167697 PMCID: PMC9048904 DOI: 10.1093/plcell/koac041] [Citation(s) in RCA: 395] [Impact Index Per Article: 131.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/02/2022] [Indexed: 05/05/2023]
Abstract
Understanding the plant immune system is crucial for using genetics to protect crops from diseases. Plants resist pathogens via a two-tiered innate immune detection-and-response system. The first plant Resistance (R) gene was cloned in 1992 . Since then, many cell-surface pattern recognition receptors (PRRs) have been identified, and R genes that encode intracellular nucleotide-binding leucine-rich repeat receptors (NLRs) have been cloned. Here, we provide a list of characterized PRRs and NLRs. In addition to immune receptors, many components of immune signaling networks were discovered over the last 30 years. We review the signaling pathways, physiological responses, and molecular regulation of both PRR- and NLR-mediated immunity. Recent studies have reinforced the importance of interactions between the two immune systems. We provide an overview of interactions between PRR- and NLR-mediated immunity, highlighting challenges and perspectives for future research.
Collapse
Affiliation(s)
- Bruno Pok Man Ngou
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, UK
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Pingtao Ding
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, UK
- Institute of Biology Leiden, Leiden University, Leiden 2333 BE, The Netherlands
| | - Jonathan D G Jones
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, UK
| |
Collapse
|
17
|
Role of the Sw5 Gene Cluster in the Fight against Plant Viruses. J Virol 2022; 96:e0208421. [PMID: 34985996 DOI: 10.1128/jvi.02084-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Sw5 gene cluster furnishes robust resistance to Tomato spotted wilt virus in tomato, which has led to its widespread applicability in agriculture. Among the five orthologs, Sw5b functions as a resistance gene against a broad-spectrum tospovirus and is linked with tospovirus resistance. However, its paralog Sw5a has been recently implicated in providing resistance against Tomato leaf curl New Delhi virus, broadening the relevance of the Sw5 gene cluster in promoting defense against plant viruses. We propose that plants have established modifications within the homologs of R genes that permit identification of different effector proteins and provide broad and robust resistance against different pathogens through activation of the hypersensitive response and cell death.
Collapse
|
18
|
Xu T, Lei L, Chen X, Li R, Wu X, Long Y, Jia MA. Identification and genome analysis of a tomato zonate spot virus isolate from Bidens pilosa. Arch Virol 2022; 167:625-630. [DOI: 10.1007/s00705-021-05330-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/30/2021] [Indexed: 12/01/2022]
|
19
|
Leastro MO, Villar-Álvarez D, Freitas-Astúa J, Kitajima EW, Pallás V, Sánchez-Navarro JÁ. Spontaneous Mutation in the Movement Protein of Citrus Leprosis Virus C2, in a Heterologous Virus Infection Context, Increases Cell-to-Cell Transport and Generates Fitness Advantage. Viruses 2021; 13:v13122498. [PMID: 34960766 PMCID: PMC8708801 DOI: 10.3390/v13122498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/30/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
Previous results using a movement defective alfalfa mosaic virus (AMV) vector revealed that citrus leprosis virus C (CiLV-C) movement protein (MP) generates a more efficient local movement, but not more systemic transport, than citrus leprosis virus C2 (CiLV-C2) MP, MPs belonging to two important viruses for the citrus industry. Here, competition experiment assays in transgenic tobacco plants (P12) between transcripts of AMV constructs expressing the cilevirus MPs, followed by several biological passages, showed the prevalence of the AMV construct carrying the CiLV-C2 MP. The analysis of AMV RNA 3 progeny recovered from P12 plant at the second viral passage revealed the presence of a mix of progeny encompassing the CiLV-C2 MP wild type (MPWT) and two variants carrying serines instead phenylalanines at positions 72 (MPS72F) or 259 (MPS259F), respectively. We evaluated the effects of each modified residue in virus replication, and cell-to-cell and long-distance movements. Results indicated that phenylalanine at position 259 favors viral cell-to-cell transport with an improvement in viral fitness, but has no effect on viral replication, whereas mutation at position 72 (MPS72F) has a penalty in the viral fitness. Our findings indicate that the prevalence of a viral population may be correlated with its greater efficiency in cell-to-cell and systemic movements.
Collapse
Affiliation(s)
- Mikhail Oliveira Leastro
- Unidade Laboratorial de Referência em Biologia Molecular Aplicada, Instituto Biológico, São Paulo 04014-900, Brazil;
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC), 46022 Valencia, Spain; (D.V.-Á.); (V.P.)
- Correspondence: (M.O.L.); (J.Á.S.-N.)
| | - David Villar-Álvarez
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC), 46022 Valencia, Spain; (D.V.-Á.); (V.P.)
| | - Juliana Freitas-Astúa
- Unidade Laboratorial de Referência em Biologia Molecular Aplicada, Instituto Biológico, São Paulo 04014-900, Brazil;
- Embrapa Mandioca e Fruticultura, Cruz das Almas 70770-901, Brazil
| | - Elliot Watanabe Kitajima
- Departamento de Fitopatologia e Nematologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba 13418-900, Brazil;
| | - Vicente Pallás
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC), 46022 Valencia, Spain; (D.V.-Á.); (V.P.)
| | - Jesús Ángel Sánchez-Navarro
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC), 46022 Valencia, Spain; (D.V.-Á.); (V.P.)
- Correspondence: (M.O.L.); (J.Á.S.-N.)
| |
Collapse
|
20
|
Huang H, Huang S, Li J, Wang H, Zhao Y, Feng M, Dai J, Wang T, Zhu M, Tao X. Stepwise artificial evolution of an Sw-5b immune receptor extends its resistance spectrum against resistance-breaking isolates of Tomato spotted wilt virus. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2164-2176. [PMID: 34036713 PMCID: PMC8541788 DOI: 10.1111/pbi.13641] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/10/2021] [Accepted: 05/16/2021] [Indexed: 05/20/2023]
Abstract
Plants use intracellular nucleotide-binding leucine-rich repeat immune receptors (NLRs) to recognize pathogen-encoded effectors and initiate immune responses. Tomato spotted wilt virus (TSWV), which has been found to infect >1000 plant species, is among the most destructive plant viruses worldwide. The Sw-5b is the most effective and widely used resistance gene in tomato breeding to control TSWV. However, broad application of tomato cultivars carrying Sw-5b has resulted in an emergence of resistance-breaking (RB) TSWV. Therefore, new effective genes are urgently needed to prevent further RB TSWV outbreaks. In this study, we conducted artificial evolution to select Sw-5b mutants that could extend the resistance spectrum against TSWV RB isolates. Unlike regular NLRs, Sw-5b detects viral elicitor NSm using both the N-terminal Solanaceae-specific domain (SD) and the C-terminal LRR domain in a two-step recognition process. Our attempts to select gain-of-function mutants by random mutagenesis involving either the SD or the LRR of Sw-5b failed; therefore, we adopted a stepwise strategy, first introducing a NSmRB -responsive mutation at the R927 residue in the LRR, followed by random mutagenesis involving the Sw-5b SD domain. Using this strategy, we obtained Sw-5bL33P/K319E/R927A and Sw-5bL33P/K319E/R927Q mutants, which are effective against TSWV RB carrying the NSmC118Y or NSmT120N mutation, and against other American-type tospoviruses. Thus, we were able to extend the resistance spectrum of Sw-5b; the selected Sw-5b mutants will provide new gene resources to control RB TSWV.
Collapse
Affiliation(s)
- Haining Huang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Shen Huang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Jia Li
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Huiyuan Wang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Yaqian Zhao
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Mingfeng Feng
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Jing Dai
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Tongkai Wang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Min Zhu
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Xiaorong Tao
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
21
|
Impact of Host Resistance to Tomato Spotted Wilt Orthotospovirus in Peanut Cultivars on Virus Population Genetics and Thrips Fitness. Pathogens 2021; 10:pathogens10111418. [PMID: 34832574 PMCID: PMC8625697 DOI: 10.3390/pathogens10111418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 11/25/2022] Open
Abstract
Thrips-transmitted tomato spotted wilt orthotospovirus (TSWV) is a major constraint to peanut production in the southeastern United States. Peanut cultivars with resistance to TSWV have been widely used for over twenty years. Intensive usage of resistant cultivars has raised concerns about possible selection pressure against TSWV and a likelihood of resistance breakdown. Population genetics of TSWV isolates collected from cultivars with varying levels of TSWV resistance was investigated using five TSWV genes. Phylogenetic trees of genes did not indicate host resistance-based clustering of TSWV isolates. Genetic variation in TSWV isolates and neutrality tests suggested recent population expansion. Mutation and purifying selection seem to be the major forces driving TSWV evolution. Positive selection was found in N and RdRp genes but was not influenced by TSWV resistance. Population differentiation occurred between isolates collected from 1998 and 2010 and from 2016 to 2019 but not between isolates from susceptible and resistant cultivars. Evaluated TSWV-resistant cultivars differed, albeit not substantially, in their susceptibility to thrips. Thrips oviposition was reduced, and development was delayed in some cultivars. Overall, no evidence was found to support exertion of selection pressure on TSWV by host resistance in peanut cultivars, and some cultivars differentially affected thrips fitness than others.
Collapse
|
22
|
Zhao X, Chen Z, Wu Q, Cai Y, Zhang Y, Zhao R, Yan J, Qian X, Li J, Zhu M, Hong L, Xing J, Khan NU, Ji Y, Wu P, Huang C, Ding XS, Zhang H, Tao X. The Sw-5b NLR nucleotide-binding domain plays a role in oligomerization, and its self-association is important for activation of cell death signaling. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6581-6595. [PMID: 34115862 DOI: 10.1093/jxb/erab279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/09/2021] [Indexed: 06/12/2023]
Abstract
Plant and animal intracellular nucleotide-binding and leucine-rich repeat (NLR) receptors play important roles in sensing pathogens and activating defense signaling. However, the molecular mechanisms underlying the activation of host defense signaling by NLR proteins remain largely unknown. Many studies have determined that the coil-coil (CC) or Toll and interleukin-1 receptor/resistance protein (TIR) domain of NLR proteins and their dimerization/oligomerization are critical for activating downstream defense signaling. In this study, we demonstrated that, in tomato, the nucleotide-binding (NB) domain Sw-5b NLR alone can activate downstream defense signaling, leading to elicitor-independent cell death. Sw-5b NB domains can self-associate, and this self-association is crucial for activating cell death signaling. The self-association was strongly compromised after the introduction of a K568R mutation into the P-loop of the NB domain. Consequently, the NBK568R mutant induced cell death very weakly. The NBCΔ20 mutant lacking the C-terminal 20 amino acids can self-associate but cannot activate cell death signaling. The NBCΔ20 mutant also interfered with wild-type NB domain self-association, leading to compromised cell death induction. By contrast, the NBK568R mutant did not interfere with wild-type NB domain self-association and its ability to induce cell death. Structural modeling of Sw-5b suggests that NB domains associate with one another and likely participate in oligomerization. As Sw-5b-triggered cell death is dependent on helper NLR proteins, we propose that the Sw-5b NB domain acts as a nucleation point for the assembly of an oligomeric resistosome, probably by recruiting downstream helper partners, to trigger defense signaling.
Collapse
Affiliation(s)
- Xiaohui Zhao
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng, Jiangsu, China
| | - Zhengqiang Chen
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Qian Wu
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Yazhen Cai
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Yu Zhang
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Ruizhen Zhao
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Jiaoling Yan
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Xin Qian
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Jia Li
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Min Zhu
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Lizhou Hong
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng, Jiangsu, China
| | - Jincheng Xing
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng, Jiangsu, China
| | - Nasr Ullah Khan
- Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yinghua Ji
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Peijun Wu
- Financial Department, Nanjing Agricultural University, Nanjing, China
| | - Changjun Huang
- Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming, China
| | - Xin Shun Ding
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Hui Zhang
- Institute of Horticulture Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xiaorong Tao
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
23
|
Chen H, Qian X, Chen X, Yang T, Feng M, Chen J, Cheng R, Hong H, Zheng Y, Mei Y, Shen D, Xu Y, Zhu M, Ding XS, Tao X. Cytoplasmic and nuclear Sw-5b NLR act both independently and synergistically to confer full host defense against tospovirus infection. THE NEW PHYTOLOGIST 2021; 231:2262-2281. [PMID: 34096619 DOI: 10.1111/nph.17535] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Plant intracellular nucleotide-binding leucine-rich repeat (NLR) receptors play critical roles in mediating host immunity to pathogen attack. We use tomato Sw-5b::tospovirus as a model system to study the specific role of the compartmentalized plant NLR in dictating host defenses against the virus at different infection steps. We demonstrated here that tomato NLR Sw-5b distributes to the cytoplasm and nucleus, respectively, to play different roles in inducing host resistances against tomato spotted wilt orthotospovirus (TSWV) infection. The cytoplasmic-enriched Sw-5b induces a strong cell death response to inhibit TSWV replication. This host response is, however, insufficient to block viral intercellular and long-distance movement. The nuclear-enriched Sw-5b triggers a host defense that weakly inhibits viral replication but strongly impedes virus intercellular and systemic movement. Furthermore, the cytoplasmic and nuclear Sw-5b act synergistically to dictate a full host defense of TSWV infection. We further demonstrated that the extended N-terminal Solanaceae domain (SD) of Sw-5b plays critical roles in cytoplasm/nucleus partitioning. Sw-5b NLR controls its cytoplasm localization. Strikingly, the SD but not coil-coil domain is crucial for Sw-5b receptor to import into the nucleus to trigger the immunity. The SD was found to interact with importins. Silencing both importin α and β expression disrupted Sw-5b nucleus import and host immunity against TSWV systemic infection. Collectively, our findings suggest that Sw-5b bifurcates disease resistances by cytoplasm/nucleus partitioning to block different infection steps of TSWV. The findings also identified a new regulatory role of extra domain of a plant NLR in mediating host innate immunity.
Collapse
Affiliation(s)
- Hongyu Chen
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Qian
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Huaiyin Institute of Agricultural Sciences of Xuhuai Region in Jiangsu, Huaian, Jiangsu, 223001, China
| | - Xiaojiao Chen
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Tongqing Yang
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingfeng Feng
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing Chen
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruixiang Cheng
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hao Hong
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ying Zheng
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuzhen Mei
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hanghzou, 310029, China
| | - Danyu Shen
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yi Xu
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Min Zhu
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Shun Ding
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaorong Tao
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
24
|
Characterization of the Roles of SGT1/RAR1, EDS1/NDR1, NPR1, and NRC/ADR1/NRG1 in Sw-5b-Mediated Resistance to Tomato Spotted Wilt Virus. Viruses 2021; 13:v13081447. [PMID: 34452313 PMCID: PMC8402918 DOI: 10.3390/v13081447] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 01/23/2023] Open
Abstract
The tomato Sw-5b gene confers resistance to tomato spotted wilt virus (TSWV) and encodes a nucleotide-binding leucine-rich repeat (NLR) protein with an N-terminal Solanaceae-specific domain (SD). Although our understanding of how Sw-5b recognizes the viral NSm elicitor has increased significantly, the process by which Sw-5b activates downstream defense signaling remains to be elucidated. In this study, we used a tobacco rattle virus (TRV)-based virus-induced gene silencing (VIGS) system to investigate the roles of the SGT1/RAR1, EDS1/NDR1, NPR1, and NRC/ADR1/NRG1 genes in the Sw-5b-mediated signaling pathway. We found that chaperone SGT1 was required for Sw-5b function, but co-chaperone RAR1 was not. Sw-5b-mediated immune signaling was independent of both EDS1 and NDR1. Silencing NPR1, which is a central component in SA signaling, did not result in TSWV systemic infection in Sw-5b-transgenic N. benthamiana plants. Helper NLR NRCs (NLRs required for cell death) were required for Sw-5b-mediated systemic resistance to TSWV infection. Suppression of NRC2/3/4 compromised the Sw-5b resistance. However, the helper NLRs ADR1 and NRG1 may not participate in the Sw-5b signaling pathway. Silencing ADR1, NRG1, or both genes did not affect Sw-5b-mediated resistance to TSWV. Our findings provide new insight into the requirement for conserved key components in Sw-5b-mediated signaling pathways.
Collapse
|
25
|
Wetzel V, Willlems G, Darracq A, Galein Y, Liebe S, Varrelmann M. The Beta vulgaris-derived resistance gene Rz2 confers broad-spectrum resistance against soilborne sugar beet-infecting viruses from different families by recognizing triple gene block protein 1. MOLECULAR PLANT PATHOLOGY 2021; 22:829-842. [PMID: 33951264 PMCID: PMC8232027 DOI: 10.1111/mpp.13066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 05/03/2023]
Abstract
Sugar beet cultivation is dependent on an effective control of beet necrotic yellow vein virus (BNYVV, family Benyviridae), which causes tremendous economic losses in sugar production. As the virus is transmitted by a soilborne protist, the use of resistant cultivars is currently the only way to control the disease. The Rz2 gene product belongs to a family of proteins conferring resistance towards diverse pathogens in plants. These proteins contain coiled-coil and leucine-rich repeat domains. After artificial inoculation of homozygous Rz2 resistant sugar beet lines, BNYVV and beet soilborne mosaic virus (BSBMV, family Benyviridae) were not detected. Analysis of the expression of Rz2 in naturally infected plants indicated constitutive expression in the root system. In a transient assay, coexpression of Rz2 and the individual BNYVV-encoded proteins revealed that only the combination of Rz2 and triple gene block protein 1 (TGB1) resulted in a hypersensitive reaction (HR)-like response. Furthermore, HR was also triggered by the TGB1 homologues from BSBMV as well as from the more distantly related beet soilborne virus (family Virgaviridae). This is the first report of an R gene providing resistance across different plant virus families.
Collapse
|
26
|
Huang C. From Player to Pawn: Viral Avirulence Factors Involved in Plant Immunity. Viruses 2021; 13:v13040688. [PMID: 33923435 PMCID: PMC8073968 DOI: 10.3390/v13040688] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023] Open
Abstract
In the plant immune system, according to the 'gene-for-gene' model, a resistance (R) gene product in the plant specifically surveils a corresponding effector protein functioning as an avirulence (Avr) gene product. This system differs from other plant-pathogen interaction systems, in which plant R genes recognize a single type of gene or gene family because almost all virus genes with distinct structures and functions can also interact with R genes as Avr determinants. Thus, research conducted on viral Avr-R systems can provide a novel understanding of Avr and R gene product interactions and identify mechanisms that enable rapid co-evolution of plants and phytopathogens. In this review, we intend to provide a brief overview of virus-encoded proteins and their roles in triggering plant resistance, and we also summarize current progress in understanding plant resistance against virus Avr genes. Moreover, we present applications of Avr gene-mediated phenotyping in R gene identification and screening of segregating populations during breeding processes.
Collapse
Affiliation(s)
- Changjun Huang
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China
| |
Collapse
|
27
|
Zhan J, Shi H, Li W, Zhang C, Zhang Y. NbTMP14 Is Involved in Tomato Spotted Wilt Virus Infection and Symptom Development by Interaction with the Viral NSm Protein. Viruses 2021; 13:427. [PMID: 33800072 PMCID: PMC7999277 DOI: 10.3390/v13030427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 11/18/2022] Open
Abstract
Tomato spotted wilt virus (TSWV) is one of the most destructive plant viruses, causing severe losses in many important crops worldwide. The non-structural protein NSm of TSWV is a viral movement protein that induces viral symptoms. However, the molecular mechanisms by which NSm contributes to symptom development are unclear. Here, we present evidence that NSm directly interacts with Nicotiana benthamiana chloroplast thylakoid membrane protein TMP14 (NbTMP14) by yeast two-hybrid and bimolecular fluorescence complementation (BiFC) assays. The interaction between NSm and NbTMP14 led to the translocation of the NbTMP14 protein from the chloroplast to the cytoplasm in TSWV-infected plants, and overexpressing NSm decreased NbTMP14 mRNA accumulation. In addition, abnormal chloroplasts and starch accumulation were observed in TSWV-infected plants. Silencing of NbTMP14 by TRV VIGS also showed similar results to those of TSWV-infected plants. Overexpressing NbTMP14 in transgenic N. benthamiana plants impeded TSWV infection, and silencing NbTMP14 in N. benthamiana plants increased disease symptom severity and virus accumulation. To our knowledge, this is the first report showing that the plant chloroplast TMP14 protein is involved in viral infection. Knowledge of the interaction between NSm and NbTMP14 advances our understanding of the molecular mechanisms underlying TSWV symptom development and infection.
Collapse
Affiliation(s)
| | | | | | - Chao Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.Z.); (H.S.); (W.L.)
| | - Yongqiang Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.Z.); (H.S.); (W.L.)
| |
Collapse
|
28
|
Leastro MO, Freitas-Astúa J, Kitajima EW, Pallás V, Sánchez-Navarro JA. Unravelling the involvement of cilevirus p32 protein in the viral transport. Sci Rep 2021; 11:2943. [PMID: 33536554 PMCID: PMC7859179 DOI: 10.1038/s41598-021-82453-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 01/13/2021] [Indexed: 12/04/2022] Open
Abstract
Citrus leprosis (CL) is a severe disease that affects citrus orchards mainly in Latin America. It is caused by Brevipalpus-transmitted viruses from genera Cilevirus and Dichorhavirus. Currently, no reports have explored the movement machinery for the cilevirus. Here, we have performed a detailed functional study of the p32 movement protein (MP) of two cileviruses. Citrus leprosis-associated viruses are not able to move systemically in neither their natural nor experimental host plants. However, here we show that cilevirus MPs are able to allow the cell-to-cell and long-distance transport of movement-defective alfalfa mosaic virus (AMV). Several features related with the viral transport were explored, including: (i) the ability of cilevirus MPs to facilitate virus movement on a nucleocapsid assembly independent-manner; (ii) the generation of tubular structures from transient expression in protoplast; (iii) the capability of the N- and C- terminus of MP to interact with the cognate capsid protein (p29) and; (iv) the role of the C-terminus of p32 in the cell-to-cell and long-distance transport, tubule formation and the MP-plasmodesmata co-localization. The MP was able to direct the p29 to the plasmodesmata, whereby the C-terminus of MP is independently responsible to recruit the p29 to the cell periphery. Furthermore, we report that MP possess the capacity to enter the nucleolus and to bind to a major nucleolar protein, the fibrillarin. Based on our findings, we provide a model for the role of the p32 in the intra- and intercellular viral spread.
Collapse
Affiliation(s)
- Mikhail Oliveira Leastro
- Unidade Laboratorial de Referência em Biologia Molecular Aplicada, Instituto Biológico, São Paulo, SP, Brazil. .,Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain.
| | - Juliana Freitas-Astúa
- Unidade Laboratorial de Referência em Biologia Molecular Aplicada, Instituto Biológico, São Paulo, SP, Brazil.,Embrapa Mandioca e Fruticultura, Cruz das Almas, BA, Brazil
| | - Elliot Watanabe Kitajima
- Departamento de Fitopatologia e Nematologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Vicente Pallás
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Jesús A Sánchez-Navarro
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain.
| |
Collapse
|
29
|
Li J, Xin J, Zhao X, Zhao Y, Wang T, Xing W, Tao X. Expression, purification and crystallization of the N-terminal Solanaceae domain of the Sw-5b NLR immune receptor. Acta Crystallogr F Struct Biol Commun 2021; 77:8-12. [PMID: 33439150 PMCID: PMC7805550 DOI: 10.1107/s2053230x20016398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/17/2020] [Indexed: 11/10/2022] Open
Abstract
Plant nucleotide-binding domain and leucine-rich repeat receptors (NLRs) play crucial roles in recognizing pathogen effectors and activating plant immunity. The tomato NLR Sw-5b is a coiled-coil NLR (CC-NLR) immune receptor that confers resistance against tospoviruses, which cause serious economic losses in agronomic crops worldwide. Compared with other CC-NLRs, Sw-5b possesses an extended N-terminal Solanaceae domain (SD). The SD of Sw-5b is critical for recognition of the tospovirus viral movement protein NSm. An SD is also frequently detected in many NLRs from Solanaceae plants. However, no sequences homologous to the SD have been detected in animals or in plants other than Solanaceae. The properties of the SD protein are largely unknown, and thus 3D structural information is vital in order to better understand its role in pathogen perception and the activation of immune receptors. Here, the expression, purification and crystallization of Sw-5b SD (amino acids 1-245) are reported. Native and selenomethionine-substituted crystals of the SD protein belonged to space group P3112, with unit-cell parameters a = 81.53, b = 81.53, c = 98.44 Å and a = 81.63, b = 81.63, c = 98.80 Å, respectively. This is the first report of a structural study of the noncanonical SD domain of the NLR proteins from Solanaceae plants.
Collapse
Affiliation(s)
- Jia Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Jian Xin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201204, People’s Republic of China
| | - Xinyan Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201204, People’s Republic of China
| | - Yaqian Zhao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Tongkai Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Weiman Xing
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 201204, People’s Republic of China
| | - Xiaorong Tao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| |
Collapse
|
30
|
Singh A, Rajput V, Singh AK, Sengar RS, Singh RK, Minkina T. Transformation Techniques and Their Role in Crop Improvements: A Global Scenario of GM Crops. POLICY ISSUES IN GENETICALLY MODIFIED CROPS 2021:515-542. [DOI: 10.1016/b978-0-12-820780-2.00023-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
31
|
Leastro MO, Freitas-Astúa J, Kitajima EW, Pallás V, Sánchez-Navarro JÁ. Dichorhaviruses Movement Protein and Nucleoprotein Form a Protein Complex That May Be Required for Virus Spread and Interacts in vivo With Viral Movement-Related Cilevirus Proteins. Front Microbiol 2020; 11:571807. [PMID: 33250868 PMCID: PMC7672204 DOI: 10.3389/fmicb.2020.571807] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/06/2020] [Indexed: 11/28/2022] Open
Abstract
Brevipalpus-transmitted viruses (BTVs) belong to the genera Dichorhavirus and Cilevirus and are the main causal agents of the citrus leprosis (CL) disease. In this report, we explored aspects related to the movement mechanism mediated by dichorhaviruses movement proteins (MPs) and the homologous and heterologous interactions among viral proteins related to the movement of citrus leprosis-associated viruses. The membrane-spanning property and topology analysis of the nucleocapsid (N) and MP proteins from two dichorhaviruses revealed that the MPs are proteins tightly associated with the cell membrane, exposing their N- and C-termini to the cytoplasm and the inner part of the nucleus, whereas the N proteins are not membrane-associated. Subcellular localization analysis revealed the presence of dichorhavirus MPs at the cell surface and in the nucleus, while the phosphoproteins (P) were located exclusively in the nucleus and the N proteins in both the cytoplasm and the nucleus. Co-expression analysis with the MP, P, and N proteins showed an interaction network formed between them. We highlight the MP capability to partially redistribute the previously reported N-P core complex, redirecting a portion of the N from the nucleus to the plasmodesmata at the cell periphery, which indicates not only that the MP might guide the intracellular trafficking of the viral infective complex but also that the N protein may be associated with the cell-to-cell movement mechanism of dichorhaviruses. The movement functionality of these MPs was analyzed by using three movement-defective infectious systems. Also, the MP capacity to generate tubular structures on the protoplast surface by ectopic expression was analyzed. Finally, we evaluated the in vivo protein–protein interaction networks between the dichorhavirus MP and/or N proteins with the heterologous cilevirus movement components, which suggest a broad spectrum of interactions, highlighting those among capsid proteins (CP), MPs, and Ns from citrus leprosis-associated viruses. These data may aid in understanding the mixed infection process naturally observed in the field caused by distinct BTVs.
Collapse
Affiliation(s)
- Mikhail Oliveira Leastro
- Unidade Laboratorial de Referência em Biologia Molecular Aplicada, Instituto Biológico, São Paulo, Brazil.,Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Juliana Freitas-Astúa
- Unidade Laboratorial de Referência em Biologia Molecular Aplicada, Instituto Biológico, São Paulo, Brazil.,Embrapa Mandioca e Fruticultura, Cruz das Almas, Brazil
| | - Elliot Watanabe Kitajima
- Departamento de Fitopatologia e Nematologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Vicente Pallás
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Jesús Ángel Sánchez-Navarro
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| |
Collapse
|
32
|
Seong K, Seo E, Witek K, Li M, Staskawicz B. Evolution of NLR resistance genes with noncanonical N-terminal domains in wild tomato species. THE NEW PHYTOLOGIST 2020; 227:1530-1543. [PMID: 32344448 DOI: 10.1111/nph.16628] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/11/2020] [Indexed: 06/11/2023]
Abstract
Nucleotide-binding and leucine-rich repeat immune receptors (NLRs) provide resistance against diverse pathogens. To create comparative NLR resources, we conducted resistance gene enrichment sequencing (RenSeq) with single-molecule real-time sequencing of PacBio for 18 accessions in Solanaceae, including 15 accessions of five wild tomato species. We investigated the evolution of a class of NLRs, CNLs with extended N-terminal sequences previously named Solanaceae Domain. Through comparative genomic analysis, we revealed that the extended CNLs (exCNLs) anciently emerged in the most recent common ancestor between Asterids and Amaranthaceae, far predating the Solanaceae family. In tomatoes, the exCNLs display exceptional modes of evolution in a clade-specific manner. In the clade G3, exCNLs have substantially elongated their N-termini through tandem duplications of exon segments. In the clade G1, exCNLs have evolved through recent proliferation and sequence diversification. In the clade G6, an ancestral exCNL has lost its N-terminal domains in the course of evolution. Our study provides high-quality NLR gene models for close relatives of domesticated tomatoes that can serve as a useful resource for breeding and molecular engineering for disease resistance. Our findings regarding the exCNLs offer unique backgrounds and insights for future functional studies of the NLRs.
Collapse
Affiliation(s)
- Kyungyong Seong
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, 94704, USA
| | - Eunyoung Seo
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, 94704, USA
| | - Kamil Witek
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Meng Li
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, 94704, USA
| | - Brian Staskawicz
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, 94704, USA
| |
Collapse
|
33
|
Spanò R, Ferrara M, Gallitelli D, Mascia T. The Role of Grafting in the Resistance of Tomato to Viruses. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1042. [PMID: 32824316 PMCID: PMC7463508 DOI: 10.3390/plants9081042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 12/14/2022]
Abstract
Grafting is routinely implemented in modern agriculture to manage soilborne pathogens such as fungi, oomycetes, bacteria, and viruses of solanaceous crops in a sustainable and environmentally friendly approach. Some rootstock/scion combinations use specific genetic resistance mechanisms to impact also some foliar and airborne pathogens, including arthropod or contact-transmitted viruses. These approaches resulted in poor efficiency in the management of plant viruses with superior virulence such as the strains of tomato spotted wilt virus breaking the Sw5 resistance, strains of cucumber mosaic virus carrying necrogenic satellite RNAs, and necrogenic strains of potato virus Y. Three different studies from our lab documented that suitable levels of resistance/tolerance can be obtained by grafting commercial tomato varieties onto the tomato ecotype Manduria (Ma) rescued in the framework of an Apulian (southern Italy) regional program on biodiversity. Here we review the main approaches, methods, and results of the three case studies and propose some mechanisms leading to the tolerance/resistance observed in susceptible tomato varieties grafted onto Ma as well as in self-grafted plants. The proposed mechanisms include virus movement in plants, RNA interference, genes involved in graft wound response, resilience, and tolerance to virus infection.
Collapse
Affiliation(s)
- Roberta Spanò
- Department of Soil, Plant and Food Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy; (D.G.); (T.M.)
| | - Massimo Ferrara
- Institute of Sciences of Food Production (ISPA)—CNR, 70126 Bari, Italy;
| | - Donato Gallitelli
- Department of Soil, Plant and Food Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy; (D.G.); (T.M.)
| | - Tiziana Mascia
- Department of Soil, Plant and Food Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy; (D.G.); (T.M.)
| |
Collapse
|
34
|
Rubio L, Galipienso L, Ferriol I. Detection of Plant Viruses and Disease Management: Relevance of Genetic Diversity and Evolution. FRONTIERS IN PLANT SCIENCE 2020; 11:1092. [PMID: 32765569 PMCID: PMC7380168 DOI: 10.3389/fpls.2020.01092] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/02/2020] [Indexed: 05/04/2023]
Abstract
Plant viruses cause considerable economic losses and are a threat for sustainable agriculture. The frequent emergence of new viral diseases is mainly due to international trade, climate change, and the ability of viruses for rapid evolution. Disease control is based on two strategies: i) immunization (genetic resistance obtained by plant breeding, plant transformation, cross-protection, or others), and ii) prophylaxis to restrain virus dispersion (using quarantine, certification, removal of infected plants, control of natural vectors, or other procedures). Disease management relies strongly on a fast and accurate identification of the causal agent. For known viruses, diagnosis consists in assigning a virus infecting a plant sample to a group of viruses sharing common characteristics, which is usually referred to as species. However, the specificity of diagnosis can also reach higher taxonomic levels, as genus or family, or lower levels, as strain or variant. Diagnostic procedures must be optimized for accuracy by detecting the maximum number of members within the group (sensitivity as the true positive rate) and distinguishing them from outgroup viruses (specificity as the true negative rate). This requires information on the genetic relationships within-group and with members of other groups. The influence of the genetic diversity of virus populations in diagnosis and disease management is well documented, but information on how to integrate the genetic diversity in the detection methods is still scarce. Here we review the techniques used for plant virus diagnosis and disease control, including characteristics such as accuracy, detection level, multiplexing, quantification, portability, and designability. The effect of genetic diversity and evolution of plant viruses in the design and performance of some detection and disease control techniques are also discussed. High-throughput or next-generation sequencing provides broad-spectrum and accurate identification of viruses enabling multiplex detection, quantification, and the discovery of new viruses. Likely, this technique will be the future standard in diagnostics as its cost will be dropping and becoming more affordable.
Collapse
Affiliation(s)
- Luis Rubio
- Centro de Protección Vegetal y Biotecnology, Instituto Valenciano de Investigaciones Agrarias, Moncada, Spain
- *Correspondence: Luis Rubio,
| | - Luis Galipienso
- Centro de Protección Vegetal y Biotecnology, Instituto Valenciano de Investigaciones Agrarias, Moncada, Spain
| | - Inmaculada Ferriol
- Plant Responses to Stress Programme, Centre for Research in Agricultural Genomics (CRAG-CSIC_UAB-UB) Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
35
|
Meier N, Hatch C, Nagalakshmi U, Dinesh‐Kumar SP. Perspectives on intracellular perception of plant viruses. MOLECULAR PLANT PATHOLOGY 2019; 20:1185-1190. [PMID: 31282091 PMCID: PMC6715608 DOI: 10.1111/mpp.12839] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The intracellular nucleotide-binding domain leucine-rich repeat (NLR) class of immune receptors plays an important role in plant viral defence. Plant NLRs recognize viruses through direct or indirect association of viral proteins, triggering a downstream defence response to prevent viral proliferation and movement within the plant. This review focuses on current knowledge of intracellular perception of viral pathogens, activation of NLRs and the downstream signalling components involved in plant viral defence.
Collapse
Affiliation(s)
- Nathan Meier
- Department of Plant Biology and The Genome Center, College of Biological SciencesUniversity of CaliforniaDavisCA95616USA
| | - Cameron Hatch
- Department of Plant Biology and The Genome Center, College of Biological SciencesUniversity of CaliforniaDavisCA95616USA
| | - Ugrappa Nagalakshmi
- Department of Plant Biology and The Genome Center, College of Biological SciencesUniversity of CaliforniaDavisCA95616USA
| | - Savithramma P. Dinesh‐Kumar
- Department of Plant Biology and The Genome Center, College of Biological SciencesUniversity of CaliforniaDavisCA95616USA
| |
Collapse
|
36
|
Zhu M, van Grinsven IL, Kormelink R, Tao X. Paving the Way to Tospovirus Infection: Multilined Interplays with Plant Innate Immunity. ANNUAL REVIEW OF PHYTOPATHOLOGY 2019; 57:41-62. [PMID: 30893008 DOI: 10.1146/annurev-phyto-082718-100309] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Tospoviruses are among the most important plant pathogens and cause serious crop losses worldwide. Tospoviruses have evolved to smartly utilize the host cellular machinery to accomplish their life cycle. Plants mount two layers of defense to combat their invasion. The first one involves the activation of an antiviral RNA interference (RNAi) defense response. However, tospoviruses encode an RNA silencing suppressor that enables them to counteract antiviral RNAi. To further combat viral invasion, plants also employ intracellular innate immune receptors (e.g., Sw-5b and Tsw) to recognize different viral effectors (e.g., NSm and NSs). This leads to the triggering of a much more robust defense against tospoviruses called effector-triggered immunity (ETI). Tospoviruses have further evolved their effectors and can break Sw-5b-/Tsw-mediated resistance. The arms race between tospoviruses and both layers of innate immunity drives the coevolution of host defense and viral genes involved in counter defense. In this review, a state-of-the-art overview is presented on the tospoviral life cycle and the multilined interplays between tospoviruses and the distinct layers of defense.
Collapse
Affiliation(s)
- Min Zhu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China;
| | - Irene Louise van Grinsven
- Laboratory of Virology, Department of Plant Sciences, Wageningen University, 6708PB Wageningen, The Netherlands
| | - Richard Kormelink
- Laboratory of Virology, Department of Plant Sciences, Wageningen University, 6708PB Wageningen, The Netherlands
| | - Xiaorong Tao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China;
| |
Collapse
|
37
|
Navarro JA, Sanchez-Navarro JA, Pallas V. Key checkpoints in the movement of plant viruses through the host. Adv Virus Res 2019; 104:1-64. [PMID: 31439146 DOI: 10.1016/bs.aivir.2019.05.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Plant viruses cannot exploit any of the membrane fusion-based routes of entry described for animal viruses. In addition, one of the distinctive structures of plant cells, the cell wall, acts as the first barrier against the invasion of pathogens. To overcome the rigidity of the cell wall, plant viruses normally take advantage of the way of life of different biological vectors. Alternatively, the physical damage caused by environmental stresses can facilitate virus entry. Once inside the cell and taking advantage of the characteristic symplastic continuity of plant cells, viruses need to remodel and/or modify the restricted pore size of the plasmodesmata (channels that connect plant cells). In a successful interaction for the virus, it can reach the vascular tissue to systematically invade the plant. The connections between the different cell types in this path are not designed to allow the passage of molecules with the complexity of viruses. During this process, viruses face different cell barriers that must be overcome to reach the distal parts of the plant. In this review, we highlight the current knowledge about how plant RNA viruses enter plant cells, move between them to reach vascular cells and overcome the different physical and cellular barriers that the phloem imposes. Finally, we update the current research on cellular organelles as key regulator checkpoints in the long-distance movement of plant viruses.
Collapse
Affiliation(s)
- Jose A Navarro
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Jesus A Sanchez-Navarro
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Vicente Pallas
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Valencia, Spain.
| |
Collapse
|
38
|
Hua-Ying M, Wen-Ju W, Wei-Hua S, Ya-Chun S, Feng L, Cong-Na L, Ling W, Xu Z, Li-Ping X, You-Xiong Q. Genome-wide identification, phylogeny, and expression analysis of Sec14-like PITP gene family in sugarcane. PLANT CELL REPORTS 2019; 38:637-655. [PMID: 30747272 DOI: 10.1007/s00299-019-02394-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/02/2019] [Indexed: 06/09/2023]
Abstract
Six Sec14-like PITP genes from sugarcane were identified, two of them were cloned, and their biological functions were characterized indicating their involvement in plant defense against biotic and abiotic stresses. Sec14, a phosphatidylinositol transfer protein (PITP) is widely present in eukaryotes. In this study, the structure and expression patterns of six Sec14-like PITP genes (ScSEC14-1, ScSEC14p, ScSFH1, ScSFH2, ScPATL1, and ScPATL2) from sugarcane were analyzed, and two of them (ScSEC14-1 and ScSEC14p) were cloned and functionally verified. Phylogenetic analysis divided these genes into four groups, including group I (ScSFH1 and ScSFH2), group II (ScPATL1 and ScPATL2), Group III (ScSEC14p), and group V (ScSEC14-1). qRT-PCR analysis showed tissue-specific expression of these genes, primarily in the root, leaf, and bud tissues. They responded differently to SA, MeJA, and ABA stresses. ScSEC14-1, ScSEC14p, and ScSFH2 were upregulated by CuCl2 and CdCl2, while ScSEC14-1, ScSFH1, ScSFH2, and ScPATL1 were upregulated by PEG and NaCl. When infected by Sporisorium scitamineum, the transcripts of ScSFH1, ScSFH2, ScPATL1, and ScPATL2 were upregulated in the resistant genotype Yacheng 05-179, while those of ScSEC14-1 and ScSEC14p were upregulated in the susceptible genotype ROC22. Subcellular localization showed that ScSEC14-1 and ScSEC14p were mainly localized in the plasma membrane and cytoplasm. Enhanced growth of Escherichia coli BL21 cells expressing ScSEC14-1 and ScSEC14p showed high tolerance to NaCl and mannitol stresses. The transient overexpression of ScSEC14-1 and ScSEC14p in Nicotiana benthamiana leaves enhanced its resistance to the infection of tobacco pathogens Ralstonia solanacearum and Fusarium solani var. coeruleum. We can conclude the involvement of ScSEC14-1 and ScSEC14p in the defense against biotic and abiotic stresses, which should facilitate further research on Sec14-like PITP gene family, especially its regulatory mechanisms in sugarcane.
Collapse
Affiliation(s)
- Mao Hua-Ying
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wang Wen-Ju
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Su Wei-Hua
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Su Ya-Chun
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liu Feng
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Li Cong-Na
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wang Ling
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhang Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xu Li-Ping
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Que You-Xiong
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
39
|
Li J, Huang H, Zhu M, Huang S, Zhang W, Dinesh-Kumar SP, Tao X. A Plant Immune Receptor Adopts a Two-Step Recognition Mechanism to Enhance Viral Effector Perception. MOLECULAR PLANT 2019; 12:248-262. [PMID: 30639751 DOI: 10.1016/j.molp.2019.01.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/05/2019] [Accepted: 01/06/2019] [Indexed: 06/09/2023]
Abstract
Plant intracellular nucleotide binding leucine-rich repeat (NLR) immune receptors play critical roles in pathogen surveillance. Most plant NLRs characterized so far were found to use a single domain/sensor to recognize pathogen effectors. Here we report that the Sw-5b NLR immune receptor uses two distinct domains to detect the viral movement protein NSm encoded by tospovirus. In addition to its leucine-rich repeat (LRR) domain that has been previously reported, the N-terminal Solanaceae domain (SD) of Sw-5b also interacts with NSm and a conserved 21-amino-acid region of NSm (NSm21). The specific interaction between Sw-5b SD and NSm is required for releasing the inhibitory effect of coiled-coil domain on the NB-ARC-LRR region. Furthermore, we found that the binding of NSm affects the nucleotide binding activity of the NB-ARC-LRR in vitro, while Sw-5b NB-ARC-LRR is activated only when NSm and NSm21 levels are high. Interestingly, Sw-5b SD could significantly enhance the ability of the NB-ARC-LRR to detect low levels of NSm effector and facilitate its activation and induction of defense response. An Sw-5b SD mutant that is disrupted in NSm recognition failed to enhance the ability of the NB-ARC-LRR to sense low levels of NSm and NSm21. Taken together, our results suggest that Sw-5b SD functions as an extra sensor and the NB-ARC-LRR as an activator, and that Sw-5b NLR adopts a two-step recognition mechanism to enhance viral effector perception.
Collapse
Affiliation(s)
- Jia Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Haining Huang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Min Zhu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Shen Huang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Wenhua Zhang
- College of Life Science, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, CA, USA
| | - Xiaorong Tao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| |
Collapse
|
40
|
Kapos P, Devendrakumar KT, Li X. Plant NLRs: From discovery to application. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 279:3-18. [PMID: 30709490 DOI: 10.1016/j.plantsci.2018.03.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 05/09/2023]
Abstract
Plants require a complex immune system to defend themselves against a wide range of pathogens which threaten their growth and development. The nucleotide-binding leucine-rich repeat proteins (NLRs) are immune sensors that recognize effectors delivered by pathogens. The first NLR was cloned more than twenty years ago. Since this initial discovery, NLRs have been described as key components of plant immunity responsible for pathogen recognition and triggering defense responses. They have now been described in most of the well-studied mulitcellular plant species, with most having large NLR repertoires. As research has progressed so has the understanding of how NLRs interact with their recognition substrates and how they in turn activate downstream signalling. It has also become apparent that NLR regulation occurs at the transcriptional, post-transcriptional, translational, and post-translational levels. Even before the first NLR was cloned, breeders were utilising such genes to increase crop performance. Increased understanding of the mechanistic details of the plant immune system enable the generation of plants resistant against devastating pathogens. This review aims to give an updated summary of the NLR field.
Collapse
Affiliation(s)
- Paul Kapos
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Karen Thulasi Devendrakumar
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
41
|
Wieczorek P, Wrzesińska B, Frąckowiak P, Przybylska A, Obrępalska-Stęplowska A. Contribution of Tomato torrado virus Vp26 coat protein subunit to systemic necrosis induction and virus infectivity in Solanum lycopersicum. Virol J 2019; 16:9. [PMID: 30642343 PMCID: PMC6332883 DOI: 10.1186/s12985-019-1117-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 01/06/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Tomato torrado virus (ToTV) infection manifests with burn-like symptoms on leaves, leaflets and upper stem parts of susceptible infected plants. The symptoms caused by ToTV may be considered as one of the most severe virus-induced forms of systemic necrosis, which spreads within the whole plant and leads to a lethal phenotype. However, to date there are no data revealing which viral genes encode for a specific pathogenicity determinant that triggers the plant necrotic response for any torradovirus. In this study we evaluated the influence of three coat protein subunits of ToTV: Vp23, Vp26 and Vp35, transiently expressed from a PVX-based vector, and checked their association with the induction of systemic necrosis in infected Solanum lycopersicum L. (cv. Beta Lux), a natural host of ToTV. METHODS To estimate how ToTV coat protein subunits might contribute in plant response to virus infection we over-expressed the proteins from PVX-based vector in tomato and analyzed enzymatic activities related with plant defense response. By doing protein qualitative analysis performed by mass spectrometry we indicated the PR10 in protein fraction with induced ribonuclease activity. RESULTS We observed that only the Vp26 enhanced PVX pathogenicity causing severe necrosis of the infected plant. Moreover, we indicated increased RNase and oxidative activities in plants infected with PVX-Vp26 chimeras only. Importantly, we suspected that this increased RNase activity is associated with increased accumulation of PR10 mRNA and products of its translation. CONCLUSIONS On the basis of the obtained results, we indicated that Vp26 acts as the elicitor of hypersensitive response-like reactions of PVX-Vp26 manifesting with enhanced pathogenicity of the recombined PVX. This might be the first described suspected necrosis determinant of torradoviruses infecting tomatoes.
Collapse
Affiliation(s)
- Przemysław Wieczorek
- Department of Entomology, Animal Pests & Biotechnology, Institute of Plant Protection-National Research Institute, Władysława Węgorka 20 St, 60-318, Poznań, Poland
| | - Barbara Wrzesińska
- Department of Entomology, Animal Pests & Biotechnology, Institute of Plant Protection-National Research Institute, Władysława Węgorka 20 St, 60-318, Poznań, Poland
| | - Patryk Frąckowiak
- Department of Entomology, Animal Pests & Biotechnology, Institute of Plant Protection-National Research Institute, Władysława Węgorka 20 St, 60-318, Poznań, Poland
| | - Arnika Przybylska
- Department of Entomology, Animal Pests & Biotechnology, Institute of Plant Protection-National Research Institute, Władysława Węgorka 20 St, 60-318, Poznań, Poland
| | - Aleksandra Obrępalska-Stęplowska
- Department of Entomology, Animal Pests & Biotechnology, Institute of Plant Protection-National Research Institute, Władysława Węgorka 20 St, 60-318, Poznań, Poland.
| |
Collapse
|
42
|
Huang C, Liu Y, Yu H, Yuan C, Zeng J, Zhao L, Tong Z, Tao X. Non-Structural Protein NSm of Tomato Spotted Wilt Virus Is an Avirulence Factor Recognized by Resistance Genes of Tobacco and Tomato via Different Elicitor Active Sites. Viruses 2018; 10:E660. [PMID: 30469406 PMCID: PMC6265799 DOI: 10.3390/v10110660] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/16/2018] [Accepted: 11/20/2018] [Indexed: 01/23/2023] Open
Abstract
Tomato spotted wilt virus (TSWV) is one of the most destructive viral pathogens of plants. Recently, a single dominant gene conferring complete resistance to TSWV (RTSW) was identified in Nicotina alata and introgressed into cultivated tobacco (N. tabacum). However, whether the TSWV carries an avirulence (Avr) factor directed against RTSW remains obscure. In the present study, we identified the non-structural protein (NSm), the movement protein of TSWV, which is an RTSW-specific Avr factor, by using two different transient expression systems. Using amino acid (aa) substitution mutants, we demonstrated the ability to induce RTSW-mediated hypersensitive response (HR) of NSm is independent of its movement function. Moreover, key substitutions (C118Y and T120N), a 21-aa viral effector epitope, and different truncated versions of NSm, which are responsible for the recognition of the Sw-5b resistance gene of tomato, were tested for their ability to trigger HR to TSWV in tobacco. Together, our results demonstrated that RTSW-mediated resistance is triggered by NSm in the same way as by Sw-5b, however, via different elicitor active sites. Finally, an Avr gene-based diagnostic approach was established and used to determine the presence and effectiveness of resistance genes in tobacco.
Collapse
Affiliation(s)
- Changjun Huang
- Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming 650021, China.
| | - Yong Liu
- Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming 650021, China.
| | - Haiqin Yu
- Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming 650021, China.
| | - Cheng Yuan
- Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming 650021, China.
| | - Jianmin Zeng
- Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming 650021, China.
| | - Lu Zhao
- Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming 650021, China.
| | - Zhijun Tong
- Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming 650021, China.
| | - Xiaorong Tao
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
43
|
de Oliveira AS, Boiteux LS, Kormelink R, Resende RO. The Sw-5 Gene Cluster: Tomato Breeding and Research Toward Orthotospovirus Disease Control. FRONTIERS IN PLANT SCIENCE 2018; 9:1055. [PMID: 30073012 PMCID: PMC6060272 DOI: 10.3389/fpls.2018.01055] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/28/2018] [Indexed: 05/19/2023]
Abstract
The Sw-5 gene cluster encodes protein receptors that are potentially able to recognize microbial products and activate signaling pathways that lead to plant cell immunity. Although there are several Sw-5 homologs in the tomato genome, only one of them, named Sw-5b, has been extensively studied due to its functionality against a wide range of (thrips-transmitted) orthotospoviruses. The Sw-5b gene is a dominant resistance gene originally from a wild Peruvian tomato that has been used in tomato breeding programs aiming to develop cultivars with resistance to these viruses. Here, we provide an overview starting from the first reports of Sw-5 resistance, positional cloning and the sequencing of the Sw-5 gene cluster from resistant tomatoes and the validation of Sw-5b as the functional protein that triggers resistance against orthotospoviruses. Moreover, molecular details of this plant-virus interaction are also described, especially concerning the roles of Sw-5b domains in the sensing of orthotospoviruses and in the signaling cascade leading to resistance and hypersensitive response.
Collapse
Affiliation(s)
- Athos S. de Oliveira
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
- *Correspondence: Athos S. de Oliveira,
| | - Leonardo S. Boiteux
- National Center for Vegetable Crops Research (CNPH), Embrapa Vegetables, Brasília, Brazil
| | - Richard Kormelink
- Laboratory of Virology, Wageningen University and Research Center, Wageningen, Netherlands
| | - Renato O. Resende
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| |
Collapse
|
44
|
Zhu M, Jiang L, Bai B, Zhao W, Chen X, Li J, Liu Y, Chen Z, Wang B, Wang C, Wu Q, Shen Q, Dinesh-Kumar SP, Tao X. The Intracellular Immune Receptor Sw-5b Confers Broad-Spectrum Resistance to Tospoviruses through Recognition of a Conserved 21-Amino Acid Viral Effector Epitope. THE PLANT CELL 2017; 29:2214-2232. [PMID: 28814646 PMCID: PMC5635987 DOI: 10.1105/tpc.17.00180] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 07/20/2017] [Accepted: 08/16/2017] [Indexed: 05/20/2023]
Abstract
Plants use both cell surface-resident pattern recognition receptors (PRRs) and intracellular nucleotide binding leucine-rich repeat (NLR) receptors to detect various pathogens. Plant PRRs typically recognize conserved pathogen-associated molecular patterns (PAMPs) to provide broad-spectrum resistance. By contrast, plant NLRs generally detect pathogen strain-specific effectors and confer race-specific resistance. Here, we demonstrate that the tomato (Solanum lycopersicum) NLR Sw-5b confers broad-spectrum resistance against American-type tospoviruses by recognizing a conserved 21-amino acid peptide region within viral movement protein NSm (NSm21). Sw-5b NB-ARC-LRR domains directly associate with NSm21 in vitro and in planta. Domain swap, site-directed mutagenesis and structure modeling analyses identified four polymorphic sites in the Sw-5b LRR domain that are critical for the recognition of NSm21 Furthermore, recognition of NSm21 by Sw-5b likely disturbs the residues adjacent to R927 in the LRR domain to weaken the intramolecular interaction between LRR and NB-ARC domains, thus translating recognition of NSm21 into activation of Sw-5b. Natural variation analysis of Sw-5b homologs from wild tomato species of South America revealed that the four polymorphic sites in the Sw-5b LRR domain were positively selected during evolution and are all necessary to confer resistance to tospovirus. The results described here provide a new example of a plant NLR mediating broad-spectrum resistance through recognition of a small conserved PAMP-like region within the pathogen effector.
Collapse
Affiliation(s)
- Min Zhu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Lei Jiang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Baohui Bai
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Wenyang Zhao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Xiaojiao Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Jia Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Yong Liu
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Zhengqiang Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Boting Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Chunli Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Qian Wu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Qianhua Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, California 95616
| | - Xiaorong Tao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, P.R. China
| |
Collapse
|
45
|
Leastro MO, De Oliveira AS, Pallás V, Sánchez-Navarro JA, Kormelink R, Resende RO. The NSm proteins of phylogenetically related tospoviruses trigger Sw-5b-mediated resistance dissociated of their cell-to-cell movement function. Virus Res 2017; 240:25-34. [PMID: 28754561 DOI: 10.1016/j.virusres.2017.07.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/20/2017] [Accepted: 07/22/2017] [Indexed: 10/19/2022]
Abstract
The cell-to-cell movement protein (NSM) of tomato spotted wilt virus (TSWV) has been recently identified as the effector of the single dominant Sw-5b resistance gene from tomato (Solanum lycopersicum L.). Although most TSWV isolates shows a resistance-inducing (RI) phenotype, regular reports have appeared on the emergence of resistance-breaking (RB) isolates in tomato fields, and suggested a strong association with two point mutations (C118Y and T120N) in the NSM protein. In this study the Sw-5b gene has been demonstrated to confer not only resistance against TSWV but to members of five additional, phylogenetically-related classified within the so-called "American" evolutionary clade, i.e., Alstroemeria necrotic streak virus (ANSV), chrysanthemum stem necrosis virus (CSNV), groundnut ringspot virus (GRSV), Impatiens necrotic spot virus (INSV) and tomato chlorotic spot virus (TCSV). Remarkably, bean necrotic mosaic virus (BeNMV), a recently discovered tospovirus classified in a distinct American subclade and circulating on the American continent, did not trigger a Sw-5b-mediated hypersensitive (HR) response. Introduction of point mutations C118Y and T120N into the NSM protein of TSWV, TCSV and CSNV abrogated the ability to trigger Sw-5b-mediated HR in both transgenic-N. benthamiana and tomato isolines harboring the Sw-5b gene whereas it had no effect on BeNMV NSM. Truncated versions of TSWV NSM lacking motifs associated with tubule formation, cell-to-cell or systemic viral movement were made and tested for triggering of resistance. HR was still observed with truncated NSM proteins lacking 50 amino acids (out of 301) from either the amino- or carboxy-terminal end. These data altogether indicate the importance of amino acid residues C118 and T120 in Sw-5b-mediated HR only for the NSM proteins from one cluster of tospoviruses within the American clade, and that the ability to support viral cell-to-cell movement is not required for effector functionality.
Collapse
Affiliation(s)
- Mikhail Oliveira Leastro
- Departamento de Biologia Celular, Universidade de Brasília (UnB), 70910-900 Brasília, Brazil; Instituto de Biología Molecular y Celular de Planta, Universidad Politécnica de Valencia - CISC, E-46022 Valencia, Spain.
| | - Athos Silva De Oliveira
- Departamento de Biologia Celular, Universidade de Brasília (UnB), 70910-900 Brasília, Brazil; Laboratory of Virology, Department of Plant Science, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, Netherlands.
| | - Vicente Pallás
- Instituto de Biología Molecular y Celular de Planta, Universidad Politécnica de Valencia - CISC, E-46022 Valencia, Spain.
| | - Jesús A Sánchez-Navarro
- Instituto de Biología Molecular y Celular de Planta, Universidad Politécnica de Valencia - CISC, E-46022 Valencia, Spain.
| | - Richard Kormelink
- Laboratory of Virology, Department of Plant Science, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, Netherlands.
| | - Renato Oliveira Resende
- Departamento de Biologia Celular, Universidade de Brasília (UnB), 70910-900 Brasília, Brazil.
| |
Collapse
|
46
|
Chou WC, Lin SS, Yeh SD, Li SL, Peng YC, Fan YH, Chen TC. Characterization of the genome of a phylogenetically distinct tospovirus and its interactions with the local lesion-induced host Chenopodium quinoa by whole-transcriptome analyses. PLoS One 2017; 12:e0182425. [PMID: 28771638 PMCID: PMC5542687 DOI: 10.1371/journal.pone.0182425] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/18/2017] [Indexed: 01/26/2023] Open
Abstract
Chenopodium quinoa is a natural local lesion host of numerous plant viruses, including tospoviruses (family Bunyaviridae). Groundnut chlorotic fan-spot tospovirus (GCFSV) has been shown to consistently induce local lesions on the leaves of C. quinoa 4 days post-inoculation (dpi). To reveal the whole genome of GCFSV and its interactions with C. quinoa, RNA-seq was performed to determine the transcriptome profiles of C. quinoa leaves. The high-throughput reads from infected C. quinoa leaves were used to identify the whole genome sequence of GCFSV and its single nucleotide polymorphisms. Our results indicated that GCFSV is a phylogenetically distinct tospovirus. Moreover, 27,170 coding and 29,563 non-coding sequences of C. quinoa were identified through de novo assembly, mixing reads from mock and infected samples. Several key genes involved in the modulation of hypersensitive response (HR) were identified. The expression levels of 4,893 deduced complete genes annotated using the Arabidopsis genome indicated that several HR-related orthologues of pathogenesis-related proteins, transcription factors, mitogen-activated protein kinases, and defense proteins were significantly expressed in leaves that formed local lesions. Here, we also provide new insights into the replication progression of a tospovirus and the molecular regulation of the C. quinoa response to virus infection.
Collapse
Affiliation(s)
- Wan-Chen Chou
- Department of Biotechnology, Asia University, Wufeng, Taichung, Taiwan
| | - Shih-Shun Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan, Taiwan
| | - Shyi-Dong Yeh
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan
- NCHU-UCD Plant and Food Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Siang-Ling Li
- Department of Biotechnology, Asia University, Wufeng, Taichung, Taiwan
| | | | - Ya-Hsu Fan
- Department of Biotechnology, Asia University, Wufeng, Taichung, Taiwan
| | - Tsung-Chi Chen
- Department of Biotechnology, Asia University, Wufeng, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
47
|
Almási A, Nemes K, Csömör Z, Tóbiás I, Palkovics L, Salánki K. A single point mutation in Tomato spotted wilt virus NSs protein is sufficient to overcome Tsw-gene-mediated resistance in pepper. J Gen Virol 2017. [PMID: 28631603 DOI: 10.1099/jgv.0.000798] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The nonstructural protein (NSs) of Tomato spotted wilt virus (TSWV) was previously identified as an avirulence determinant for Tsw-based resistance on pepper. The NSs of wild-type (WT) and resistance-breaking (RB) TSWV strains isolated in Hungary had only two amino acid substitutions (104, 461). We have analysed the ability of the NSs and their point mutant variants to trigger Tsw-mediated hypersensitive responses and RNA silencing suppressor (RSS) activity in patch assays. We identified a single amino acid change at position 104 (T-A) that was responsible for the necrosis induction or loss, while a significant difference was not detected in the RSS activity of the two parental strains. We have successfully complemented the infection of the WT strain on resistant pepper cultivar with the infectious S RNA transcript of the RB strain and the WT-T104A point mutant. Our work provides direct evidence that a single amino acid change can induce an RB phenotype.
Collapse
Affiliation(s)
- Asztéria Almási
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1022 Herman Ottó str. 15, Budapest, Hungary
| | - Katalin Nemes
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1022 Herman Ottó str. 15, Budapest, Hungary
| | - Zsófia Csömör
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1022 Herman Ottó str. 15, Budapest, Hungary.,Department of Plant Pathology, Faculty of Horticultural Science, Szent István University, H-1118 Ménesi str. 44, Budapest, Hungary
| | - István Tóbiás
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1022 Herman Ottó str. 15, Budapest, Hungary
| | - László Palkovics
- Department of Plant Pathology, Faculty of Horticultural Science, Szent István University, H-1118 Ménesi str. 44, Budapest, Hungary
| | - Katalin Salánki
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1022 Herman Ottó str. 15, Budapest, Hungary
| |
Collapse
|
48
|
Gouveia BC, Calil IP, Machado JPB, Santos AA, Fontes EPB. Immune Receptors and Co-receptors in Antiviral Innate Immunity in Plants. Front Microbiol 2017; 7:2139. [PMID: 28105028 PMCID: PMC5214455 DOI: 10.3389/fmicb.2016.02139] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/19/2016] [Indexed: 01/19/2023] Open
Abstract
Plants respond to pathogens using an innate immune system that is broadly divided into PTI (pathogen-associated molecular pattern- or PAMP-triggered immunity) and ETI (effector-triggered immunity). PTI is activated upon perception of PAMPs, conserved motifs derived from pathogens, by surface membrane-anchored pattern recognition receptors (PRRs). To overcome this first line of defense, pathogens release into plant cells effectors that inhibit PTI and activate effector-triggered susceptibility (ETS). Counteracting this virulence strategy, plant cells synthesize intracellular resistance (R) proteins, which specifically recognize pathogen effectors or avirulence (Avr) factors and activate ETI. These coevolving pathogen virulence strategies and plant resistance mechanisms illustrate evolutionary arms race between pathogen and host, which is integrated into the zigzag model of plant innate immunity. Although antiviral immune concepts have been initially excluded from the zigzag model, recent studies have provided several lines of evidence substantiating the notion that plants deploy the innate immune system to fight viruses in a manner similar to that used for non-viral pathogens. First, most R proteins against viruses so far characterized share structural similarity with antibacterial and antifungal R gene products and elicit typical ETI-based immune responses. Second, virus-derived PAMPs may activate PTI-like responses through immune co-receptors of plant PTI. Finally, and even more compelling, a viral Avr factor that triggers ETI in resistant genotypes has recently been shown to act as a suppressor of PTI, integrating plant viruses into the co-evolutionary model of host-pathogen interactions, the zigzag model. In this review, we summarize these important progresses, focusing on the potential significance of antiviral immune receptors and co-receptors in plant antiviral innate immunity. In light of the innate immune system, we also discuss a newly uncovered layer of antiviral defense that is specific to plant DNA viruses and relies on transmembrane receptor-mediated translational suppression for defense.
Collapse
Affiliation(s)
- Bianca C. Gouveia
- Department of Biochemistry and Molecular Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de ViçosaViçosa, Brazil
| | - Iara P. Calil
- Department of Biochemistry and Molecular Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de ViçosaViçosa, Brazil
| | - João Paulo B. Machado
- Department of Biochemistry and Molecular Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de ViçosaViçosa, Brazil
| | - Anésia A. Santos
- Department of General Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de ViçosaViçosa, Brazil
| | - Elizabeth P. B. Fontes
- Department of Biochemistry and Molecular Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de ViçosaViçosa, Brazil
| |
Collapse
|
49
|
Kim SB, Kang WH, Huy HN, Yeom SI, An JT, Kim S, Kang MY, Kim HJ, Jo YD, Ha Y, Choi D, Kang BC. Divergent evolution of multiple virus-resistance genes from a progenitor in Capsicum spp. THE NEW PHYTOLOGIST 2017; 213:886-899. [PMID: 27612097 DOI: 10.1111/nph.14177] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 07/31/2016] [Indexed: 05/11/2023]
Abstract
Plants have evolved hundreds of nucleotide-binding and leucine-rich domain proteins (NLRs) as potential intracellular immune receptors, but the evolutionary mechanism leading to the ability to recognize specific pathogen effectors is elusive. Here, we cloned Pvr4 (a Potyvirus resistance gene in Capsicum annuum) and Tsw (a Tomato spotted wilt virus resistance gene in Capsicum chinense) via a genome-based approach using independent segregating populations. The genes both encode typical NLRs and are located at the same locus on pepper chromosome 10. Despite the fact that these two genes recognize completely different viral effectors, the genomic structures and coding sequences of the two genes are strikingly similar. Phylogenetic studies revealed that these two immune receptors diverged from a progenitor gene of a common ancestor. Our results suggest that sequence variations caused by gene duplication and neofunctionalization may underlie the evolution of the ability to specifically recognize different effectors. These findings thereby provide insight into the divergent evolution of plant immune receptors.
Collapse
Affiliation(s)
- Saet-Byul Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| | - Won-Hee Kang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
- Department of Horticulture, Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 660-701, Korea
| | - Hoang Ngoc Huy
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| | - Seon-In Yeom
- Department of Horticulture, Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 660-701, Korea
| | - Jeong-Tak An
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| | - Seungill Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| | - Min-Young Kang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| | - Hyun Jung Kim
- Department of Eco-Friendly Horticulture, Cheonan Yonam College, Cheonan, 331-709, Korea
| | - Yeong Deuk Jo
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
- Korea Atomic Energy Research Institute, Jeongeup, 580-185, Korea
| | - Yeaseong Ha
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| | - Doil Choi
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| | - Byoung-Cheorl Kang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| |
Collapse
|
50
|
De Oliveira AS, Koolhaas I, Boiteux LS, Caldararu OF, Petrescu A, Oliveira Resende R, Kormelink R. Cell death triggering and effector recognition by Sw-5 SD-CNL proteins from resistant and susceptible tomato isolines to Tomato spotted wilt virus. MOLECULAR PLANT PATHOLOGY 2016; 17:1442-1454. [PMID: 27271212 PMCID: PMC6638320 DOI: 10.1111/mpp.12439] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/30/2016] [Accepted: 06/02/2016] [Indexed: 05/16/2023]
Abstract
Only a limited number of dominant resistance genes acting against plant viruses have been cloned, and further functional studies of these have been almost entirely limited to the resistance genes Rx against Potato virus X (PVX) and N against Tobacco mosaic virus (TMV). Recently, the cell-to-cell movement protein (NSM ) of Tomato spotted wilt virus (TSWV) has been identified as the avirulence determinant (Avr) of Sw-5b-mediated resistance, a dominant resistance gene which belongs to the class of SD-CC-NB-LRR (Solanaceae domain-coiled coil-nucleotide-binding-leucine-rich repeat, SD-CNL) resistance genes. On transient expression of the NSM protein in tomato and transgenic Nicotiana benthamiana harbouring the Sw-5b gene, a hypersensitive cell death response (HR) is triggered. Here, it is shown that high accumulation of the Sw-5b protein in N. benthamiana leaves, achieved by co-expression of the Sw-5b protein with RNA silencing suppressors (RSSs), leads to auto-activity in the absence of NSM . In a similar approach, Sw-5a, the highest conserved paralogue of Sw-5b from Solanum peruvianum, also triggered HR by auto-activation, whereas the highest conserved orthologue from susceptible S. lycopersicum, named Sw-5aS , did not. However, neither of the last two homologues was able to trigger an NSM -dependent HR. Truncated and mutated versions of these Sw-5 proteins revealed that the NB-ARC [nucleotide-binding adaptor shared by Apaf-1 (from humans), R proteins and CED-4 (from nematodes)] domain is sufficient for the triggering of HR and seems to be suppressed by the SD-CC domain. Furthermore, a single mutation was sufficient to restore auto-activity within the NB-ARC domain of Sw-5aS . When the latter domain was fused to the Sw-5b LRR domain, NSM -dependent HR triggering was regained, but not in the presence of its own Sw-5aS LRR domain. Expression analysis in planta revealed a nucleocytoplasmic localization pattern of Sw-5b, in which the SD-CC domain seems to be required for nuclear translocation. Although the Sw-5 N-terminal CC domain, in contrast with Rx, contains an additional SD, most findings from this study support a conserved role of domains within NB-LRR (NLR) proteins against plant viruses.
Collapse
Affiliation(s)
- Athos Silva De Oliveira
- Laboratory of Virology, Department of Plant SciencesWageningen UniversityDroevendaalsesteeg 1WageningenPB6708the Netherlands
- Department of Cell Biology, Institute of Biological SciencesUniversity of Brasília (UnB)Asa Norte 70910‐900BrasíliaDFBrazil
| | - Ivo Koolhaas
- Laboratory of Virology, Department of Plant SciencesWageningen UniversityDroevendaalsesteeg 1WageningenPB6708the Netherlands
| | | | - Octav F. Caldararu
- Department of Bioinformatics and Structural BiochemistryInstitute of Biochemistry of the Romanian AcademySplaiul Independentei 296Bucharest060036Romania
| | - Andrei‐Jose Petrescu
- Department of Bioinformatics and Structural BiochemistryInstitute of Biochemistry of the Romanian AcademySplaiul Independentei 296Bucharest060036Romania
| | - Renato Oliveira Resende
- Department of Cell Biology, Institute of Biological SciencesUniversity of Brasília (UnB)Asa Norte 70910‐900BrasíliaDFBrazil
| | - Richard Kormelink
- Laboratory of Virology, Department of Plant SciencesWageningen UniversityDroevendaalsesteeg 1WageningenPB6708the Netherlands
| |
Collapse
|