1
|
Khan M, Srivastava AK, Nizamani MM, Asif M, Kamran A, Luo L, Yang S, Chen S, Li Z, Xie X. The battle within: Discovering new insights into phytopathogen interactions and effector dynamics. Microbiol Res 2025; 298:128220. [PMID: 40398012 DOI: 10.1016/j.micres.2025.128220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/23/2025] [Accepted: 05/09/2025] [Indexed: 05/23/2025]
Abstract
Phytopathogen interactions are complicated and constantly evolving, driven by a never-ending war amongst the host's immune defenses and the pathogen's virulence strategies. This comprehensive review examines the intricate mechanisms of effector-triggered immunity (ETI) and how pathogen effectors use host cellular progressions to promote infection. This review article investigates the modification of Phytopathogen effectors and plant resistance proteins, highlighting the role of meta-population dynamics and rapid adaptation. Additionally, it highlights the influence of environmental impact and climate change on host-pathogen interactions, describing their significant impact on disease dynamics and pathogen evolution. Effector proteins are crucial in sabotaging plant immunity, with bacterial, fungal, oomycete, and nematode effectors targeting common host protein networks and phytohormone pathways. Additionally, the review discusses advanced approaches for classifying effector targets, such as bioinformatics and single-cell transcriptomics, highlighting their importance in developing effective disease management strategies. Further insights are described into how effectors control phytohormone pathways, shedding light on how pathogens exploit host signaling. This review covers structural studies and protein modeling that have advanced effector prediction and our understanding of their functions and evolution, while providing an overview of phytopathogen interactions and future directions for effector research.
Collapse
Affiliation(s)
- Mehran Khan
- College of Agriculture, Guizhou University, Guiyang 550025, PR China.
| | | | | | - Muhammad Asif
- College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Ali Kamran
- College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Lingfeng Luo
- College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Sanwei Yang
- College of Agriculture, Guizhou University, Guiyang 550025, PR China.
| | - Songshu Chen
- College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Zhiqiang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xin Xie
- College of Agriculture, Guizhou University, Guiyang 550025, PR China.
| |
Collapse
|
2
|
Kalicharan RE, Fernandez J. Triple Threat: How Global Fungal Rice and Wheat Pathogens Utilize Comparable Pathogenicity Mechanisms to Drive Host Colonization. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2025; 38:173-186. [PMID: 39807944 DOI: 10.1094/mpmi-09-24-0106-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Plant pathogens pose significant threats to global cereal crop production, particularly for essential crops such as rice and wheat, which are fundamental to global food security and provide nearly 40% of the global caloric intake. As the global population continues to rise, increasing agricultural production to meet food demands becomes even more critical. However, the production of these vital crops is constantly threatened by phytopathological diseases, especially those caused by fungal pathogens such as Magnaporthe oryzae, the causative agent of rice blast disease; Fusarium graminearum, responsible for Fusarium head blight in wheat; and Zymoseptoria tritici, the source of Septoria tritici blotch. All three pathogens are hemibiotrophic, initially colonizing the host through a biotrophic, symptomless lifestyle, followed by causing cell death through the necrotrophic phase. Additionally, they deploy a diverse range of effectors, including proteinaceous and non-proteinaceous molecules, to manipulate fundamental host cellular processes, evade immune responses, and promote disease progression. This review discusses recent advances in understanding the effector biology of these three pathogens, highlighting both the shared functionalities and unique molecular mechanisms they employ to regulate conserved elements of host pathways, such as directly manipulating gene transcription in host nuclei, disrupting reactive oxygen species signaling, interfering with protein stability, and undermining host structural integrity. By detailing these complex interactions, the review explores potential targets for innovative control measures and emphasizes the need for further research to develop effective strategies against these destructive pathogens in the face of evolving environmental and agricultural challenges. [Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Rachel E Kalicharan
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, U.S.A
| | - Jessie Fernandez
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, U.S.A
| |
Collapse
|
3
|
Martín-Cardoso H, San Segundo B. Impact of Nutrient Stress on Plant Disease Resistance. Int J Mol Sci 2025; 26:1780. [PMID: 40004243 PMCID: PMC11855198 DOI: 10.3390/ijms26041780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/09/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
Plants are constantly exposed to abiotic and biotic stresses that seriously affect crop yield and quality. A coordinated regulation of plant responses to combined abiotic/biotic stresses requires crosstalk between signaling pathways initiated by each stressor. Interconnected signaling pathways further finetune plant stress responses and allow the plant to respond to such stresses effectively. The plant nutritional status might influence disease resistance by strengthening or weakening plant immune responses, as well as through modulation of the pathogenicity program in the pathogen. Here, we discuss advances in our understanding of interactions between nutrient stress, deficiency or excess, and immune signaling pathways in the context of current agricultural practices. The introduction of chemical fertilizers and pesticides was a major component of the Green Revolution initiated in the 1960s that greatly boosted crop production. However, the massive application of agrochemicals also has adverse consequences on the environment and animal/human health. Therefore, an in-depth understanding of the connections between stress caused by overfertilization (or low bioavailability of nutrients) and immune responses is a timely and novel field of research with important implications for disease control in crop species. Optimizing nutrient management practices tailored to specific environmental conditions will be crucial in maximizing crop production using environmentally friendly systems.
Collapse
Affiliation(s)
- Héctor Martín-Cardoso
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Spain;
| | - Blanca San Segundo
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Spain;
- Consejo Superior de Investigaciones Científicas (CSIC), 08193 Barcelona, Spain
| |
Collapse
|
4
|
Lai Y, Wang S. Epigenetic Regulation in Insect-Microbe Interactions. ANNUAL REVIEW OF ENTOMOLOGY 2025; 70:293-311. [PMID: 39374433 DOI: 10.1146/annurev-ento-022724-010640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Insects have evolved diverse interactions with a variety of microbes, such as pathogenic fungi, bacteria, and viruses. The immune responses of insect hosts, along with the dynamic infection process of microbes in response to the changing host environment and defenses, require rapid and fine-tuned regulation of gene expression programs. Epigenetic mechanisms, including DNA methylation, histone modifications, and noncoding RNA regulation, play important roles in regulating the expression of genes involved in insect immunity and microbial pathogenicity. This review highlights recent discoveries and insights into epigenetic regulatory mechanisms that modulate insect-microbe interactions. A deeper understanding of these regulatory mechanisms underlying insect-microbe interactions holds promise for the development of novel strategies for biological control of insect pests and mitigation of vector-borne diseases.
Collapse
Affiliation(s)
- Yiling Lai
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- New Cornerstone Science Laboratory, CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai, China;
| | - Sibao Wang
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- New Cornerstone Science Laboratory, CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai, China;
| |
Collapse
|
5
|
Xie L, Bi Y, He C, Situ J, Wang M, Kong G, Xi P, Jiang Z, Li M. Unveiling microRNA-like small RNAs implicated in the initial infection of Fusarium oxysporum f. sp. cubense through small RNA sequencing. Mycology 2024; 16:293-308. [PMID: 40083400 PMCID: PMC11899247 DOI: 10.1080/21501203.2024.2345917] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/16/2024] [Indexed: 03/16/2025] Open
Abstract
Banana Fusarium wilt (BFW), caused by Fusarium oxysporum f. sp. cubense (Foc), poses a major challenge to the worldwide banana industry. Fungal microRNA-like small RNAs (milRNAs) play crucial roles in regulating fungal growth, conidiation, development, and pathogenicity. However, the milRNAs and their functions in the pathogenesis of Foc remain poorly understood. In this study, we employed high-throughput sequencing and bioinformatics to profile Foc sRNAs during both pure culture and early infection stages. Our analysis identified six milRNAs exhibiting significantly upregulated expression at the initial Foc infection. Of these, milR106's biogenesis was found to be Dicer-dependent, whereas milR87, milR133, milR138, and milR148 were associated with Dicer and Argonaute proteins. Genetic manipulation and phenotype analysis confirmed that milR106 is crucial for Foc virulence by regulating conidiation, hydrogen peroxide sensitivity, and infective growth. Gene Ontology analysis of milRNA targets in the banana genome revealed enrichment in defence response to fungus and cellular response to hypoxia, implying the importance of these target genes in response to pathogen infection. In conclusion, our sRNA profiling of Foc identified several infection-induced milRNAs. The corresponding results provide valuable molecular targets for the development of an efficient strategy to control BFW.
Collapse
Affiliation(s)
- Lifei Xie
- Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Yuntian Bi
- Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Chengcheng He
- Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Junjian Situ
- Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Meng Wang
- Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Guanghui Kong
- Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Pinggen Xi
- Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Zide Jiang
- Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Minhui Li
- Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| |
Collapse
|
6
|
Molloy B, Baum T, Eves-van den Akker S. Unlocking the development- and physiology-altering 'effector toolbox' of plant-parasitic nematodes. Trends Parasitol 2023; 39:732-738. [PMID: 37438213 DOI: 10.1016/j.pt.2023.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/14/2023]
Abstract
Plant parasites take advantage of host developmental plasticity to elicit profound developmental and physiological changes. In the case of plant-parasitic nematodes (PPNs), these changes can result in the development of new plant organs. Despite the importance of the development- and physiology-altering abilities of these parasites in pathology, research has historically focused on their abilities to suppress immunity. We argue that, given the dramatic changes involved in feeding site establishment, it is entirely possible that development- and physiology-altering abilities of PPNs may, in fact, dominate effector repertoires - highlighting the need for novel high-throughput screens for development- and physiology-altering 'tools'. Uncovering this portion of the nematode 'toolbox' can enable biotechnology, enhance crop protection, and shed light on fundamental host biology itself.
Collapse
Affiliation(s)
- Beth Molloy
- Department of Plant Sciences - Crop Science Centre, University of Cambridge, Cambridge, Cambridgeshire, UK
| | - Thomas Baum
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, USA
| | | |
Collapse
|
7
|
Wu R, Wu G, Huang Y, Zhang H, Tang J, Li M, Qing L. vsiRNA18 derived from tobacco curly shoot virus can regulate virus infection in Nicotiana benthamiana. MOLECULAR PLANT PATHOLOGY 2023; 24:466-473. [PMID: 36797647 PMCID: PMC10098052 DOI: 10.1111/mpp.13310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 05/03/2023]
Abstract
Virus-derived small interfering RNAs (vsiRNAs) play important roles in regulating host endogenous gene expression to promote virus infection and induce RNA silencing to suppress virus infection. However, to date, how vsiRNAs affect geminivirus infection in host plants has been less studied. In this study, we found that tobacco curly shoot virus (TbCSV)-derived vsiRNA18 (TvsiRNA18) can regulate TbCSV infection in Nicotiana benthamiana plants. The virus-mediated small RNA expression system and stable transformation technique were used to clarify the molecular role of TvsiRNA18 in TbCSV infection. The results indicate that TvsiRNA18 can aggravate disease symptoms in these plants and enhance viral DNA accumulation. ATP-dependent RNA helicase (ATP-dRH) was proven to be a target of TvsiRNA18, and down-regulation of ATP-dRH in plants was shown to induce virus-like leaf curling symptoms and increase TbCSV infection. These results suggest that TvsiRNA18 is an important regulator of TbCSV infection by suppressing ATP-dRH expression. This is the first report to demonstrate that TbCSV-derived vsiRNA can target host endogenous genes to affect symptom development, which helps to reveal the molecular mechanism of symptom occurrence after the virus infects the host.
Collapse
Affiliation(s)
- Rui Wu
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant ProtectionSouthwest UniversityChongqingChina
| | - Gentu Wu
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant ProtectionSouthwest UniversityChongqingChina
| | - Yongjie Huang
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant ProtectionSouthwest UniversityChongqingChina
| | - Haolan Zhang
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant ProtectionSouthwest UniversityChongqingChina
| | - Jiaxin Tang
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant ProtectionSouthwest UniversityChongqingChina
| | - Mingjun Li
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant ProtectionSouthwest UniversityChongqingChina
| | - Ling Qing
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant ProtectionSouthwest UniversityChongqingChina
- National Citrus Engineering Research CenterSouthwest UniversityChongqingChina
| |
Collapse
|
8
|
Mapuranga J, Chang J, Zhang L, Zhang N, Yang W. Fungal Secondary Metabolites and Small RNAs Enhance Pathogenicity during Plant-Fungal Pathogen Interactions. J Fungi (Basel) 2022; 9:4. [PMID: 36675825 PMCID: PMC9862911 DOI: 10.3390/jof9010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Fungal plant pathogens use proteinaceous effectors as well as newly identified secondary metabolites (SMs) and small non-coding RNA (sRNA) effectors to manipulate the host plant's defense system via diverse plant cell compartments, distinct organelles, and many host genes. However, most molecular studies of plant-fungal interactions have focused on secreted effector proteins without exploring the possibly equivalent functions performed by fungal (SMs) and sRNAs, which are collectively known as "non-proteinaceous effectors". Fungal SMs have been shown to be generated throughout the plant colonization process, particularly in the early biotrophic stages of infection. The fungal repertoire of non-proteinaceous effectors has been broadened by the discovery of fungal sRNAs that specifically target plant genes involved in resistance and defense responses. Many RNAs, particularly sRNAs involved in gene silencing, have been shown to transmit bidirectionally between fungal pathogens and their hosts. However, there are no clear functional approaches to study the role of these SM and sRNA effectors. Undoubtedly, fungal SM and sRNA effectors are now a treasured land to seek. Therefore, understanding the role of fungal SM and sRNA effectors may provide insights into the infection process and identification of the interacting host genes that are targeted by these effectors. This review discusses the role of fungal SMs and sRNAs during plant-fungal interactions. It will also focus on the translocation of sRNA effectors across kingdoms, the application of cross-kingdom RNA interference in managing plant diseases and the tools that can be used to predict and study these non-proteinaceous effectors.
Collapse
Affiliation(s)
| | | | | | | | - Wenxiang Yang
- College of Plant Protection, Technological Innovation Center for Biological Control of Plant Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding 071001, China
| |
Collapse
|
9
|
Rabuma T, Gupta OP, Chhokar V. Recent advances and potential applications of cross-kingdom movement of miRNAs in modulating plant's disease response. RNA Biol 2022; 19:519-532. [PMID: 35442163 PMCID: PMC9037536 DOI: 10.1080/15476286.2022.2062172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In the recent past, cross-kingdom movement of miRNAs, small (20–25 bases), and endogenous regulatory RNA molecules has emerged as one of the major research areas to understand the potential implications in modulating the plant’s biotic stress response. The current review discussed the recent developments in the mechanism of cross-kingdom movement (long and short distance) and critical cross-talk between host’s miRNAs in regulating gene function in bacteria, fungi, viruses, insects, and nematodes, and vice-versa during host-pathogen interaction and their potential implications in crop protection. Moreover, cross-kingdom movement during symbiotic interaction, the emerging role of plant’s miRNAs in modulating animal’s gene function, and feasibility of spray-induced gene silencing (SIGS) in combating biotic stresses in plants are also critically evaluated. The current review article analysed the horizontal transfer of miRNAs among plants, animals, and microbes that regulates gene expression in the host or pathogenic organisms, contributing to crop protection. Further, it highlighted the challenges and opportunities to harness the full potential of this emerging approach to mitigate biotic stress efficiently.
Collapse
Affiliation(s)
- Tilahun Rabuma
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, INDIA.,Department of Biotechnology, College of Natural and Computational Science, Wolkite University, Wolkite, Ethiopia
| | - Om Prakash Gupta
- Division of Quality and Basic Sciences, ICAR-Indian Institute of Wheat and Barley Research, Karnal, INDIA
| | - Vinod Chhokar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, INDIA
| |
Collapse
|
10
|
Wang C, Jiang F, Zhu S. Complex Small RNA-mediated Regulatory Networks between Viruses/Viroids/Satellites and Host Plants. Virus Res 2022; 311:198704. [DOI: 10.1016/j.virusres.2022.198704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/16/2022] [Accepted: 01/29/2022] [Indexed: 12/26/2022]
|
11
|
Dalakouras A, Vlachostergios D. Epigenetic approaches to crop breeding: current status and perspectives. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5356-5371. [PMID: 34017985 DOI: 10.1093/jxb/erab227] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/18/2021] [Indexed: 05/10/2023]
Abstract
In order to tackle the cumulative adverse effects of global climate change, reduced farmland, and heightened needs of an ever-increasing world population, modern agriculture is in urgent search of solutions that can ensure world food security and sustainable development. Classical crop breeding is still a powerful method to obtain crops with valued agronomical traits, but its potential is gradually being compromised by the menacing decline of genetic variation. Resorting to the epigenome as a source of variation could serve as a promising alternative. Here, we discuss current status of epigenetics-mediated crop breeding (epibreeding), highlight its advances and limitations, outline currently available methodologies, and propose novel RNA-based strategies to modify the epigenome in a gene-specific and transgene-free manner.
Collapse
Affiliation(s)
- Athanasios Dalakouras
- Institute of Industrial and Forage Crops, HAO-DEMETER, 41335 Larissa, Greece
- Institute of Plant Breeding and Genetic Resources, HAO-DEMETER, 57001 Thessaloniki, Greece
| | | |
Collapse
|
12
|
Plant Extracellular Vesicles and Nanovesicles: Focus on Secondary Metabolites, Proteins and Lipids with Perspectives on Their Potential and Sources. Int J Mol Sci 2021; 22:ijms22073719. [PMID: 33918442 PMCID: PMC8038311 DOI: 10.3390/ijms22073719] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
While human extracellular vesicles (EVs) have attracted a big deal of interest and have been extensively characterized over the last years, plant-derived EVs and nanovesicles have earned less attention and have remained poorly investigated. Although a series of investigations already revealed promising beneficial health effects and drug delivery properties, adequate (pre)clinical studies are rare. This fact might be caused by a lack of sources with appropriate qualities. Our study introduces plant cell suspension culture as a new and well controllable source for plant EVs. Plant cells, cultured in vitro, release EVs into the growth medium which could be harvested for pharmaceutical applications. In this investigation we characterized EVs and nanovesicles from distinct sources. Our findings regarding secondary metabolites indicate that these might not be packaged into EVs in an active manner but enriched in the membrane when lipophilic enough, since apparently lipophilic compounds were associated with nanovesicles while more hydrophilic structures were not consistently found. In addition, protein identification revealed a possible explanation for the mechanism of EV cell wall passage in plants, since cell wall hydrolases like 1,3-β-glucosidases, pectinesterases, polygalacturonases, β-galactosidases and β-xylosidase/α-L-arabinofuranosidase 2-like are present in plant EVs and nanovesicles which might facilitate cell wall transition. Further on, the identified proteins indicate that plant cells secrete EVs using similar mechanisms as animal cells to release exosomes and microvesicles.
Collapse
|
13
|
Wu K, Wu Y, Zhang C, Fu Y, Liu Z, Zhang X. Simultaneous silencing of two different Arabidopsis genes with a novel virus-induced gene silencing vector. PLANT METHODS 2021; 17:6. [PMID: 33407679 PMCID: PMC7788715 DOI: 10.1186/s13007-020-00701-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Virus-induced gene silencing (VIGS) is a useful tool for functional characterizations of plant genes. However, the penetrance of VIGS varies depending on the genes to be silenced, and has to be evaluated by examining the transcript levels of target genes. RESULTS In this report, we report the development of a novel VIGS vector that permits a preliminary assessment of the silencing penetrance. This new vector is based on an attenuated variant of Turnip crinkle virus (TCV) known as CPB that can be readily used in Arabidopsis thaliana to interrogate genes of this model plant. A CPB derivative, designated CPB1B, was produced by inserting a 46 nucleotide section of the Arabidopsis PHYTOENE DESATURASE (PDS) gene into CPB, in antisense orientation. CPB1B induced robust PDS silencing, causing easily visible photobleaching in systemically infected Arabidopsis leaves. More importantly, CPB1B can accommodate additional inserts, derived from other Arabidopsis genes, causing the silencing of two or more genes simultaneously. With photobleaching as a visual marker, we adopted the CPB1B vector to validate the involvement of DICER-LIKE 4 (DCL4) in antiviral defense against TCV. We further revealed the involvement of ARGONAUTE 2 (AGO2) in PDS silencing and antiviral defense against TCV in dcl2drb4 double mutant plants. These results demonstrated that DOUBLE-STRANDED RNA-BINDING PROTEIN 4 (DRB4), whose protein product (DRB4) commonly partners with DCL4 in the antiviral silencing pathway, was dispensable for PDS silencing induced by CPB1B derivative in dcl2drb4 double mutant plants. CONCLUSIONS The CPB1B-based vector developed in this work is a valuable tool with visualizable indicator of the silencing penetrance for interrogating Arabidopsis genes, especially those involved in the RNA silencing pathways.
Collapse
Affiliation(s)
- Kunxin Wu
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, 571101, China
| | - Yadan Wu
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, 571101, China
| | - Chunwei Zhang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, 571101, China
| | - Yan Fu
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, 571101, China
| | - Zhixin Liu
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, 571101, China.
| | - Xiuchun Zhang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, 571101, China.
| |
Collapse
|
14
|
Fungal Extracellular Vesicles in Interkingdom Communication. Curr Top Microbiol Immunol 2021; 432:81-88. [DOI: 10.1007/978-3-030-83391-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Zhang T, Chang H, Zhang B, Liu S, Zhao T, Zhao E, Zhao H, Zhang H. Transboundary Pathogenic microRNA Analysis Framework for Crop Fungi Driven by Biological Big Data and Artificial Intelligence Model. Comput Biol Chem 2020; 89:107401. [PMID: 33068919 DOI: 10.1016/j.compbiolchem.2020.107401] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/19/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022]
Abstract
Plant fungal diseases have been affecting the world's agricultural production and economic levels for a long time, such as rice blast, gray tomato mold, potato late blight etc. Recent studies have shown that fungal pathogens transmit microRNA as an effector to host plants for infection. However, bioassay-based verification analysis is time-consuming and challenging, and it is difficult to analyze from a global perspective. With the accumulation of fungal and plant-related data, data analysis methods can be used to analyze pathogenic fungal microRNA further. Based on the microRNA expression data of fungal pathogens infecting plants before and after, this paper discusses the selection strategy of sample data, the extraction strategy of pathogenic fungal microRNA, the prediction strategy of a fungal pathogenic microRNA target gene, the bicluster-based fungal pathogenic microRNA functional analysis strategy and experimental verification methods. A general analysis pipeline based on machine learning and bicluster-based function module was proposed for plant-fungal pathogenic microRNA.The pipeline proposed in this paper is applied to the infection process of Magnaporthe oryzae and the infection process of potato late blight. It has been verified to prove the feasibility of the pipeline. It can be extended to other relevant crop pathogen research, providing a new idea for fungal research on plant diseases. It can be used as a reference for understanding the interaction between fungi and plants.
Collapse
Affiliation(s)
- Tianyue Zhang
- College of Computer Science and Technology, Jilin University, China
| | - Haowu Chang
- College of Computer Science and Technology, Jilin University, China
| | - Borui Zhang
- Columbia Independent School, Columbia, MO, USA
| | - Sifei Liu
- College of Computer Science and Technology, Jilin University, China
| | - Tianheng Zhao
- College of Computer Science and Technology, Jilin University, China
| | - Enshuang Zhao
- College of Computer Science and Technology, Jilin University, China
| | - Hengyi Zhao
- College of Computer Science and Technology, Jilin University, China
| | - Hao Zhang
- College of Computer Science and Technology, Jilin University, China.
| |
Collapse
|
16
|
Hill EH, Solomon PS. Extracellular vesicles from the apoplastic fungal wheat pathogen Zymoseptoria tritici. Fungal Biol Biotechnol 2020; 7:13. [PMID: 32968488 PMCID: PMC7501697 DOI: 10.1186/s40694-020-00103-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/11/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The fungal pathogen Zymoseptoria tritici is a significant constraint to wheat production in temperate cropping regions around the world. Despite its agronomic impacts, the mechanisms allowing the pathogen to asymptomatically invade and grow in the apoplast of wheat leaves before causing extensive host cell death remain elusive. Given recent evidence of extracellular vesicles (EVs)-secreted, membrane-bound nanoparticles containing molecular cargo-being implicated in extracellular communication between plants and fungal pathogen, we have initiated an in vitro investigation of EVs from this apoplastic fungal wheat pathogen. We aimed to isolate EVs from Z. tritici broth cultures and examine their protein composition in relation to the soluble protein in the culture filtrate and to existing fungal EV proteomes. RESULTS Zymoseptoria tritici EVs were isolated from broth culture filtrates using differential ultracentrifugation (DUC) and examined with transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). Z. tritici EVs were observed as a heterogeneous population of particles, with most between 50 and 250 nm. These particles were found in abundance in the culture filtrates of viable Z. tritici cultures, but not heat-killed cultures incubated for an equivalent time and of comparable biomass. Bottom-up proteomic analysis using LC-MS/MS, followed by stringent filtering revealed 240 Z. tritici EV proteins. These proteins were distinct from soluble proteins identified in Z. tritici culture filtrates, but were similar to proteins identified in EVs from other fungi, based on sequence similarity analyses. Notably, a putative marker protein recently identified in Candida albicans EVs was also consistently detected in Z. tritici EVs. CONCLUSION We have shown EVs can be isolated from the devastating fungal wheat pathogen Z. tritici and are similar to protein composition to previously characterised fungal EVs. EVs from human pathogenic fungi are implicated in virulence, but the role of EVs in the interaction of phytopathogenic fungi and their hosts is unknown. These in vitro analyses provide a basis for expanding investigations of Z. tritici EVs in planta, to examine their involvement in the infection process of this apoplastic wheat pathogen and more broadly, advance understanding of noncanonical secretion in filamentous plant pathogens.
Collapse
Affiliation(s)
- Erin H. Hill
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, 2601 Australia
| | - Peter S. Solomon
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, 2601 Australia
| |
Collapse
|
17
|
Li B, Chen Y, Zhang Z, Qin G, Chen T, Tian S. Molecular basis and regulation of pathogenicity and patulin biosynthesis in
Penicillium expansum. Compr Rev Food Sci Food Saf 2020; 19:3416-3438. [DOI: 10.1111/1541-4337.12612] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/26/2020] [Accepted: 07/19/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design Chinese Academy of Sciences Beijing China
- Key Laboratory of Post‐Harvest Handing of Fruits Ministry of Agriculture Beijing China
| | - Yong Chen
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design Chinese Academy of Sciences Beijing China
| | - Zhanquan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design Chinese Academy of Sciences Beijing China
| | - Guozheng Qin
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design Chinese Academy of Sciences Beijing China
- Key Laboratory of Post‐Harvest Handing of Fruits Ministry of Agriculture Beijing China
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design Chinese Academy of Sciences Beijing China
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design Chinese Academy of Sciences Beijing China
- Key Laboratory of Post‐Harvest Handing of Fruits Ministry of Agriculture Beijing China
- University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
18
|
Gualtieri C, Leonetti P, Macovei A. Plant miRNA Cross-Kingdom Transfer Targeting Parasitic and Mutualistic Organisms as a Tool to Advance Modern Agriculture. FRONTIERS IN PLANT SCIENCE 2020; 11:930. [PMID: 32655608 PMCID: PMC7325723 DOI: 10.3389/fpls.2020.00930] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/08/2020] [Indexed: 05/13/2023]
Abstract
MicroRNAs (miRNAs), defined as small non-coding RNA molecules, are fine regulators of gene expression. In plants, miRNAs are well-known for regulating processes spanning from cell development to biotic and abiotic stress responses. Recently, miRNAs have been investigated for their potential transfer to distantly related organisms where they may exert regulatory functions in a cross-kingdom fashion. Cross-kingdom miRNA transfer has been observed in host-pathogen relations as well as symbiotic or mutualistic relations. All these can have important implications as plant miRNAs can be exploited to inhibit pathogen development or aid mutualistic relations. Similarly, miRNAs from eukaryotic organisms can be transferred to plants, thus suppressing host immunity. This two-way lane could have a significant impact on understanding inter-species relations and, more importantly, could leverage miRNA-based technologies for agricultural practices. Additionally, artificial miRNAs (amiRNAs) produced by engineered plants can be transferred to plant-feeding organisms in order to specifically regulate their cross-kingdom target genes. This minireview provides a brief overview of cross-kingdom plant miRNA transfer, focusing on parasitic and mutualistic relations that can have an impact on agricultural practices and discusses some opportunities related to miRNA-based technologies. Although promising, miRNA cross-kingdom transfer remains a debated argument. Several mechanistic aspects, such as the availability, transfer, and uptake of miRNAs, as well as their potential to alter gene expression in a cross-kingdom manner, remain to be addressed.
Collapse
Affiliation(s)
- Carla Gualtieri
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Paola Leonetti
- Institute for Sustainable Plant Protection, National Council of Research, Research Unit of Bari, Bari, Italy
| | - Anca Macovei
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
- *Correspondence: Anca Macovei,
| |
Collapse
|
19
|
Wong JWH, Plett JM. Root renovation: how an improved understanding of basic root biology could inform the development of elite crops that foster sustainable soil health. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:597-612. [PMID: 31029179 DOI: 10.1071/fp18200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 03/08/2019] [Indexed: 05/24/2023]
Abstract
A major goal in agricultural research is to develop 'elite' crops with stronger, resilient root systems. Within this context, breeding practices have focussed on developing plant varieties that are, primarily, able to withstand pathogen attack and, secondarily, able to maximise plant productivity. Although great strides towards breeding disease-tolerant or -resistant root stocks have been made, this has come at a cost. Emerging studies in certain crop species suggest that domestication of crops, together with soil management practices aimed at improving plant yield, may hinder beneficial soil microbial association or reduce microbial diversity in soil. To achieve more sustainable management of agricultural lands, we must not only shift our soil management practices but also our breeding strategy to include contributions from beneficial microbes. For this latter point, we need to advance our understanding of how plants communicate with, and are able to differentiate between, microbes of different lifestyles. Here, we present a review of the key findings on belowground plant-microbial interactions that have been made over the past decade, with a specific focus on how plants and microbes communicate. We also discuss the currently unresolved questions in this area, and propose plausible ways to use currently available research and integrate fast-emerging '-omics' technologies to tackle these questions. Combining past and developing research will enable the development of new crop varieties that will have new, value-added phenotypes belowground.
Collapse
Affiliation(s)
- Johanna W-H Wong
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW 2753, Australia
| | - Jonathan M Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW 2753, Australia; and Corresponding author.
| |
Collapse
|
20
|
Zhang S, Hong Z. Mobile RNAs—the magical elf traveling between plant and the associated organisms. ACTA ACUST UNITED AC 2019. [DOI: 10.1186/s41544-019-0007-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
21
|
Yang Y, Liu T, Shen D, Wang J, Ling X, Hu Z, Chen T, Hu J, Huang J, Yu W, Dou D, Wang MB, Zhang B. Tomato yellow leaf curl virus intergenic siRNAs target a host long noncoding RNA to modulate disease symptoms. PLoS Pathog 2019; 15:e1007534. [PMID: 30668603 PMCID: PMC6366713 DOI: 10.1371/journal.ppat.1007534] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 02/07/2019] [Accepted: 12/16/2018] [Indexed: 11/19/2022] Open
Abstract
Tomato yellow leaf curl virus (TYLCV) and its related begomoviruses cause fast-spreading diseases in tomato worldwide. How this virus induces diseases remains largely unclear. Here we report a noncoding RNA-mediated model to elucidate the molecular mechanisms of TYLCV-tomato interaction and disease development. The circular ssDNA genome of TYLCV contains a noncoding intergenic region (IR), which is known to mediate viral DNA replication and transcription in host cells, but has not been reported to contribute directly to viral disease development. We demonstrate that the IR is transcribed in dual orientations during plant infection and confers abnormal phenotypes in tomato independently of protein-coding regions of the viral genome. We show that the IR sequence has a 25-nt segment that is almost perfectly complementary to a long noncoding RNA (lncRNA, designated as SlLNR1) in TYLCV-susceptible tomato cultivars but not in resistant cultivars which contains a 14-nt deletion in the 25-nt region. Consequently, we show that viral small-interfering RNAs (vsRNAs) derived from the 25-nt IR sequence induces silencing of SlLNR1 in susceptible tomato plants but not resistant plants, and this SlLNR1 downregulation is associated with stunted and curled leaf phenotypes reminiscent of TYLCV symptoms. These results suggest that the lncRNA interacts with the IR-derived vsRNAs to control disease development during TYLCV infection. Consistent with its possible function in virus disease development, over-expression of SlLNR1 in tomato reduces the accumulation of TYLCV. Furthermore, gene silencing of the SlLNR1 in the tomato plants induced TYLCV-like leaf phenotypes without viral infection. Our results uncover a previously unknown interaction between vsRNAs and host lncRNA, and provide a plausible model for TYLCV-induced diseases and host antiviral immunity, which would help to develop effective strategies for the control of this important viral pathogen.
Collapse
Affiliation(s)
- Yuwen Yang
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Tingli Liu
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Danyu Shen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Jinyan Wang
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xitie Ling
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhongze Hu
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Tianzi Chen
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jieli Hu
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Junyu Huang
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Wengui Yu
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Daolong Dou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- * E-mail: (DD); (MBW); (BZ)
| | - Ming-Bo Wang
- CSIRO Plant Industry, Canberra, Australia
- * E-mail: (DD); (MBW); (BZ)
| | - Baolong Zhang
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- * E-mail: (DD); (MBW); (BZ)
| |
Collapse
|
22
|
Jin Y, Zhao P, Fang YY, Gao F, Guo HS, Zhao JH. Genome-wide profiling of sRNAs in the Verticillium dahliae-infected Arabidopsis roots. Mycology 2018; 9:155-165. [PMID: 30181922 PMCID: PMC6115885 DOI: 10.1080/21501203.2018.1426062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/05/2018] [Indexed: 11/23/2022] Open
Abstract
Small RNAs (sRNAs, including small interfering RNAs [siRNAs] and micro RNAs [miRNAs]) are key mediators of RNA silencing (or RNA interference), which play important roles in plant development and response to biotic and abiotic stimulation. Verticillium wilt is a plant vascular disease caused by the soil-borne fungal pathogens, such as Verticillium dahliae. We previously reported that V. dahliae infection increased two plant endogenous miRNAs that were exported to fungal cell to silence virulence genes. To investigate plant sRNAs in genome-wide response to V. dahliae infection, in this study, we constructed two sRNA libraries from Arabidopsis roots with and without V. dahliae infection, respectively. In total, 31 conserved miRNAs were found to be differentially expressed during the early stage of infection with V. dahliae using sRNA sequencing. Among these, the expression levels of miR160, miR164, miR166, miR167, miR390 and miR156h were confirmed by northern blot. Reverse transcription quantitative real time polymerase chain reaction results showed that the induction of miRNAs (miR160, miR164, miR166 and miR167) upon V. dahliae infection downregulated the expression of their targeted genes (ARF10, NAC1, PHV and ARF6), respectively. In addition, we identified specific phased siRNAs generated from distinct regions of two libraries. Profiling of these miRNAs and sRNAs lay the foundation for further understanding and utilising the host-induced gene silencing strategy to control plant vascular pathogens.
Collapse
Affiliation(s)
- Yun Jin
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, BeijingChina
| | - Pan Zhao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, BeijingChina
| | - Yuan-Yuan Fang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, BeijingChina
| | - Feng Gao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, BeijingChina.,College of Agriculture, Shihezi University and Key Laboratory at Universities of Xinjiang Uygur Autonomous Region for Oasis Agricultural Pest Management and Plant Protection Resource Utilization, Shihezi, China
| | - Hui-Shan Guo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, BeijingChina.,College of Life Science, University of the Chinese Academy of Sciences, Beijing, China
| | - Jian-Hua Zhao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, BeijingChina
| |
Collapse
|
23
|
Chen Y, Halterman D. Determination of virulence contribution from Phytophthora infestans effector IPI-O4 in a resistant potato host containing the RB gene. PHYSIOLOGICAL AND MOLECULAR PLANT PATHOLOGY 2017; 100:30-34. [PMID: 0 DOI: 10.1016/j.pmpp.2017.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
|
24
|
Gervais J, Plissonneau C, Linglin J, Meyer M, Labadie K, Cruaud C, Fudal I, Rouxel T, Balesdent M. Different waves of effector genes with contrasted genomic location are expressed by Leptosphaeria maculans during cotyledon and stem colonization of oilseed rape. MOLECULAR PLANT PATHOLOGY 2017; 18:1113-1126. [PMID: 27474899 PMCID: PMC6638281 DOI: 10.1111/mpp.12464] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Leptosphaeria maculans, the causal agent of stem canker disease, colonizes oilseed rape (Brassica napus) in two stages: a short and early colonization stage corresponding to cotyledon or leaf colonization, and a late colonization stage during which the fungus colonizes systemically and symptomlessly the plant during several months before stem canker appears. To date, the determinants of the late colonization stage are poorly understood; L. maculans may either successfully escape plant defences, leading to stem canker development, or the plant may develop an 'adult-stage' resistance reducing canker incidence. To obtain an insight into these determinants, we performed an RNA-sequencing (RNA-seq) pilot project comparing fungal gene expression in infected cotyledons and in symptomless or necrotic stems. Despite the low fraction of fungal material in infected stems, sufficient fungal transcripts were detected and a large number of fungal genes were expressed, thus validating the feasibility of the approach. Our analysis showed that all avirulence genes previously identified are under-expressed during stem colonization compared with cotyledon colonization. A validation RNA-seq experiment was then performed to investigate the expression of candidate effector genes during systemic colonization. Three hundred and seven 'late' effector candidates, under-expressed in the early colonization stage and over-expressed in the infected stems, were identified. Finally, our analysis revealed a link between the regulation of expression of effectors and their genomic location: the 'late' effector candidates, putatively involved in systemic colonization, are located in gene-rich genomic regions, whereas the 'early' effector genes, over-expressed in the early colonization stage, are located in gene-poor regions of the genome.
Collapse
Affiliation(s)
- Julie Gervais
- UMR BIOGER, INRA, AgroParisTech, Université Paris‐Saclay, Avenue Lucien Brétignières, BP 01Thiverval‐GrignonF‐78850France
| | - Clémence Plissonneau
- UMR BIOGER, INRA, AgroParisTech, Université Paris‐Saclay, Avenue Lucien Brétignières, BP 01Thiverval‐GrignonF‐78850France
| | - Juliette Linglin
- UMR BIOGER, INRA, AgroParisTech, Université Paris‐Saclay, Avenue Lucien Brétignières, BP 01Thiverval‐GrignonF‐78850France
| | - Michel Meyer
- UMR BIOGER, INRA, AgroParisTech, Université Paris‐Saclay, Avenue Lucien Brétignières, BP 01Thiverval‐GrignonF‐78850France
| | - Karine Labadie
- CEA‐Institut de Génomique, GENOSCOPECentre National de SéquençageEvry CedexFrance
| | - Corinne Cruaud
- CEA‐Institut de Génomique, GENOSCOPECentre National de SéquençageEvry CedexFrance
| | - Isabelle Fudal
- UMR BIOGER, INRA, AgroParisTech, Université Paris‐Saclay, Avenue Lucien Brétignières, BP 01Thiverval‐GrignonF‐78850France
| | - Thierry Rouxel
- UMR BIOGER, INRA, AgroParisTech, Université Paris‐Saclay, Avenue Lucien Brétignières, BP 01Thiverval‐GrignonF‐78850France
| | - Marie‐Hélène Balesdent
- UMR BIOGER, INRA, AgroParisTech, Université Paris‐Saclay, Avenue Lucien Brétignières, BP 01Thiverval‐GrignonF‐78850France
| |
Collapse
|
25
|
Wang M, Thomas N, Jin H. Cross-kingdom RNA trafficking and environmental RNAi for powerful innovative pre- and post-harvest plant protection. CURRENT OPINION IN PLANT BIOLOGY 2017; 38:133-141. [PMID: 28570950 PMCID: PMC5720367 DOI: 10.1016/j.pbi.2017.05.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/09/2017] [Accepted: 05/09/2017] [Indexed: 05/19/2023]
Abstract
Small RNA (sRNA) induces RNA interference (RNAi) in almost all eukaryotes. While sRNAs can move within an organism, they can also move between interacting organisms to induce gene silencing, a phenomenon called 'cross-kingdom RNAi'. Some sRNAs from pathogens or pests move into host cells and suppress host immunity in both plants and animals; whereas some host sRNAs travel into pathogen/pest cells to inhibit their virulence. Moreover, uptake of exogenous RNAs from the environment was recently discovered in certain fungal pathogens, which makes it possible to suppress fungal diseases by directly applying pathogen-targeting RNAs on crops and post-harvest products. This new-generation of RNA-based fungicides is powerful, environmentally friendly, and can be easily adapted to control multiple diseases simultaneously.
Collapse
Affiliation(s)
- Ming Wang
- Department of Plant Pathology & Microbiology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521-0122, United States
| | - Nicholas Thomas
- Department of Plant Pathology & Microbiology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521-0122, United States
| | - Hailing Jin
- Department of Plant Pathology & Microbiology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521-0122, United States.
| |
Collapse
|
26
|
Chen Y, Halterman DA. Phytophthora infestans Effectors IPI-O1 and IPI-O4 Each Contribute to Pathogen Virulence. PHYTOPATHOLOGY 2017; 107:600-606. [PMID: 28350531 DOI: 10.1094/phyto-06-16-0240-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Potato late blight, caused by the oomycete pathogen Phytophthora infestans, is one of the most destructive plant diseases. Despite decades of intensive breeding efforts, it remains a threat to potato production worldwide, because newly evolved pathogen strains have overcome major resistance genes quickly. The RB protein, from the diploid wild potato species Solanum bulbocastanum, confers partial resistance to most P. infestans strains through its recognition of members of the corresponding pathogen effector protein family IPI-O. IPI-O comprises a multigene family and while some variants are recognized by RB to elicit host resistance (e.g., IPI-O1 and IPI-O2), others are able to elude detection (e.g., IPI-O4). IPI-O1 is almost ubiquitous in global P. infestans strains while IPI-O4 is more rare. No direct experimental evidence has been shown to demonstrate the effect of IPI-O on pathogen virulence in the P. infestans-potato pathosystem. Here, our work has demonstrated that in planta expression of both IPI-O1 and IPI-O4 increases P. infestans aggressiveness resulting in enlarged lesions in potato leaflets. We have previously shown that IPI-O4 has gained the ability to suppress the hypersensitive response induced by IPI-O1 in the presence of RB. In this study, our work has shown that this gain-of-function of IPI-O4 does not compromise its virulence effect, as IPI-O4 overexpression results in larger lesions than IPI-O1. We have also found that higher expression of IPI-O effectors correlates with enlarged lesions, indicating that IPI-O can contribute to virulence quantitatively. In summary, this study has provided accurate and valuable information on IPI-O's virulence effect on the potato host.
Collapse
Affiliation(s)
- Yu Chen
- First author: Department of Horticulture, University of Wisconsin, Madison 53706; and second author: U.S. Department of Agriculture-Agricultural Research Service, Madison, WI 53726
| | - Dennis A Halterman
- First author: Department of Horticulture, University of Wisconsin, Madison 53706; and second author: U.S. Department of Agriculture-Agricultural Research Service, Madison, WI 53726
| |
Collapse
|
27
|
Abstract
Biological processes such as defense mechanisms and microbial offense strategies are regulated through RNA induced interference in eukaryotes. Genetic mutations are modulated through biogenesis of small RNAs which directly impacts upon host development. Plant defense mechanisms are regulated and supported by a diversified group of small RNAs which are involved in streamlining several RNA interference pathways leading toward the initiation of pathogen gene silencing mechanisms. In the similar context, pathogens also utilize the support of small RNAs to launch their offensive attacks. Also there are strong evidences about the active involvement of these RNAs in symbiotic associations. Interestingly, small RNAs are not limited to the individuals in whom they are produced; they also show cross kingdom influences through variable interactions with other species thus leading toward the inter-organismic gene silencing. The phenomenon is understandable in the microbes which utilize these mechanisms to overcome host defense line. Understanding the mechanism of triggering host defense strategies can be a valuable step toward the generation of disease resistant host plants. We think that the cross kingdom trafficking of small RNA is an interesting insight that is needed to be explored for its vitality.
Collapse
Affiliation(s)
- Waqar Islam
- a College of Plant Protection , Fujian Agriculture and Forestry University , Fuzhou , Fujian , China
| | - Saif Ul Islam
- a College of Plant Protection , Fujian Agriculture and Forestry University , Fuzhou , Fujian , China
| | - Muhammad Qasim
- a College of Plant Protection , Fujian Agriculture and Forestry University , Fuzhou , Fujian , China
| | - Liande Wang
- a College of Plant Protection , Fujian Agriculture and Forestry University , Fuzhou , Fujian , China
| |
Collapse
|
28
|
Wang M, Weiberg A, Dellota E, Yamane D, Jin H. Botrytis small RNA Bc-siR37 suppresses plant defense genes by cross-kingdom RNAi. RNA Biol 2017. [PMID: 28267415 DOI: 10.1080/15476286.2017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Pathogens secrete effector proteins to suppress host immune responses. Recently, we showed that an aggressive plant fungal pathogen Botrytis cinerea can also deliver small RNA effectors into host cells to suppress host immunity. B. cinerea sRNAs (Bc-sRNAs) translocate into host plants and hijack the plant RNAi machinery to induce cross-kingdom RNAi of host immune responsive genes. Here, we functionally characterized another Bc-sRNA effector Bc-siR37 that is predicted to target at least 15 Arabidopsis genes, including WRKY transcription factors, receptor-like kinases, and cell wall-modifying enzymes. Upon B. cinerea infection, the expression level of Bc-siR37 was induced, and at least eight predicted Arabidopsis target genes were downregulated. These target genes were also suppressed in the transgenic Arabidopsis plants overexpressing Bc-siR37, which exhibited enhanced disease susceptibility to B. cinerea. Furthermore, the knockout mutants of the Bc-siR37 targets, At-WRKY7, At-PMR6, and At-FEI2, also exhibited enhanced disease susceptibility to B. cinerea, giving further support that these genes indeed play a positive role in plant defense against B. cinerea. Our study demonstrates that analysis of pathogen sRNA effectors can be a useful tool to help identify host immunity genes against the corresponding pathogen.
Collapse
Affiliation(s)
- Ming Wang
- a Department of Plant Pathology and Microbiology, Center for Plant Cell Biology, Institute for Integrative Genome Biology , University of California , Riverside , CA , USA
| | - Arne Weiberg
- a Department of Plant Pathology and Microbiology, Center for Plant Cell Biology, Institute for Integrative Genome Biology , University of California , Riverside , CA , USA
| | - Exequiel Dellota
- a Department of Plant Pathology and Microbiology, Center for Plant Cell Biology, Institute for Integrative Genome Biology , University of California , Riverside , CA , USA
| | - Daniel Yamane
- a Department of Plant Pathology and Microbiology, Center for Plant Cell Biology, Institute for Integrative Genome Biology , University of California , Riverside , CA , USA
| | - Hailing Jin
- a Department of Plant Pathology and Microbiology, Center for Plant Cell Biology, Institute for Integrative Genome Biology , University of California , Riverside , CA , USA
| |
Collapse
|
29
|
Wang M, Weiberg A, Dellota E, Yamane D, Jin H. Botrytis small RNA Bc-siR37 suppresses plant defense genes by cross-kingdom RNAi. RNA Biol 2017; 14:421-428. [PMID: 28267415 DOI: 10.1080/15476286.2017.1291112] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Pathogens secrete effector proteins to suppress host immune responses. Recently, we showed that an aggressive plant fungal pathogen Botrytis cinerea can also deliver small RNA effectors into host cells to suppress host immunity. B. cinerea sRNAs (Bc-sRNAs) translocate into host plants and hijack the plant RNAi machinery to induce cross-kingdom RNAi of host immune responsive genes. Here, we functionally characterized another Bc-sRNA effector Bc-siR37 that is predicted to target at least 15 Arabidopsis genes, including WRKY transcription factors, receptor-like kinases, and cell wall-modifying enzymes. Upon B. cinerea infection, the expression level of Bc-siR37 was induced, and at least eight predicted Arabidopsis target genes were downregulated. These target genes were also suppressed in the transgenic Arabidopsis plants overexpressing Bc-siR37, which exhibited enhanced disease susceptibility to B. cinerea. Furthermore, the knockout mutants of the Bc-siR37 targets, At-WRKY7, At-PMR6, and At-FEI2, also exhibited enhanced disease susceptibility to B. cinerea, giving further support that these genes indeed play a positive role in plant defense against B. cinerea. Our study demonstrates that analysis of pathogen sRNA effectors can be a useful tool to help identify host immunity genes against the corresponding pathogen.
Collapse
Affiliation(s)
- Ming Wang
- a Department of Plant Pathology and Microbiology, Center for Plant Cell Biology, Institute for Integrative Genome Biology , University of California , Riverside , CA , USA
| | - Arne Weiberg
- a Department of Plant Pathology and Microbiology, Center for Plant Cell Biology, Institute for Integrative Genome Biology , University of California , Riverside , CA , USA
| | - Exequiel Dellota
- a Department of Plant Pathology and Microbiology, Center for Plant Cell Biology, Institute for Integrative Genome Biology , University of California , Riverside , CA , USA
| | - Daniel Yamane
- a Department of Plant Pathology and Microbiology, Center for Plant Cell Biology, Institute for Integrative Genome Biology , University of California , Riverside , CA , USA
| | - Hailing Jin
- a Department of Plant Pathology and Microbiology, Center for Plant Cell Biology, Institute for Integrative Genome Biology , University of California , Riverside , CA , USA
| |
Collapse
|
30
|
Son H, Park AR, Lim JY, Shin C, Lee YW. Genome-wide exonic small interference RNA-mediated gene silencing regulates sexual reproduction in the homothallic fungus Fusarium graminearum. PLoS Genet 2017; 13:e1006595. [PMID: 28146558 PMCID: PMC5310905 DOI: 10.1371/journal.pgen.1006595] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/15/2017] [Accepted: 01/21/2017] [Indexed: 02/07/2023] Open
Abstract
Various ascomycete fungi possess sex-specific molecular mechanisms, such as repeat-induced point mutations, meiotic silencing by unpaired DNA, and unusual adenosine-to-inosine RNA editing, for genome defense or gene regulation. Using a combined analysis of functional genetics and deep sequencing of small noncoding RNA (sRNA), mRNA, and the degradome, we found that the sex-specifically induced exonic small interference RNA (ex-siRNA)-mediated RNA interference (RNAi) mechanism has an important role in fine-tuning the transcriptome during ascospore formation in the head blight fungus Fusarium graminearum. Approximately one-third of the total sRNAs were produced from the gene region, and sRNAs with an antisense direction or 5'-U were involved in post-transcriptional gene regulation by reducing the stability of the corresponding gene transcripts. Although both Dicers and Argonautes partially share their functions, the sex-specific RNAi pathway is primarily mediated by FgDicer1 and FgAgo2, while the constitutively expressed RNAi components FgDicer2 and FgAgo1 are responsible for hairpin-induced RNAi. Based on our results, we concluded that F. graminearum primarily utilizes ex-siRNA-mediated RNAi for ascosporogenesis but not for genome defenses and other developmental stages. Each fungal species appears to have evolved RNAi-based gene regulation for specific developmental stages or stress responses. This study provides new insights into the regulatory role of sRNAs in fungi and other lower eukaryotes.
Collapse
Affiliation(s)
- Hokyoung Son
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - Ae Ran Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Jae Yun Lim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Chanseok Shin
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Yin-Won Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
31
|
Zhang X, Zhang X, Wu K, Liu Z, Li D, Qu F. Incomplete DRB4-dependence of the DCL4-mediated antiviral defense. Sci Rep 2016; 6:39244. [PMID: 27982092 PMCID: PMC5159819 DOI: 10.1038/srep39244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/21/2016] [Indexed: 11/09/2022] Open
Abstract
The double-stranded RNA-binding protein DRB4 of Arabidopsis was shown previously to contribute to the DICER-LIKE 4 (DCL4)-mediated biogenesis of viral small interfering RNAs (vsiRNAs) of 21 nucleotides (nt) in size. However, it is unclear whether all 21-nt vsiRNAs are dependent on this DRB4-DCL4 partnership. To resolve this question, we generated dcl2drb4 and dcl4drb4 double knockout mutants, and subjected them to infections with CPB-CC-PDS, a turnip crinkle virus mutant capable of inducing silencing of the PHYTOENE DESATURASE gene. The dcl2drb4 double knockouts caused a far smaller loss of antiviral silencing than dcl2dcl4. In addition, although both drb4 and dcl4 single mutants permitted a consistent (but small) increase in viral RNA levels, the drb4 mutant correlated with a less pronounced reduction of 21-nt vsiRNAs. Therefore, a substantial subset of DCL4 antiviral activity is DRB4-independent, and may involve other DRB proteins that compensate for loss of DRB4.
Collapse
Affiliation(s)
- Xiaofeng Zhang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences/ Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, P.R. China.,Department of Plant Pathology, The Ohio State University, Wooster, Ohio, USA.,Fujian Province Key Laboratory of Plant Virology/ Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, P.R. China.,State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, China
| | - Xiuchun Zhang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences/ Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, P.R. China.,Department of Plant Pathology, The Ohio State University, Wooster, Ohio, USA
| | - Kunxin Wu
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences/ Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, P.R. China
| | - Zhixin Liu
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences/ Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, P.R. China
| | - Dawei Li
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, China
| | - Feng Qu
- Department of Plant Pathology, The Ohio State University, Wooster, Ohio, USA
| |
Collapse
|
32
|
Wang M, Weiberg A, Lin FM, Thomma B, Huang HD, Jin H. Bidirectional cross-kingdom RNAi and fungal uptake of external RNAs confer plant protection. NATURE PLANTS 2016; 2:16151. [PMID: 27643635 PMCID: PMC5040644 DOI: 10.1038/nplants.2016.151] [Citation(s) in RCA: 451] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 09/01/2016] [Indexed: 05/17/2023]
Abstract
Aggressive fungal pathogens such as Botrytis and Verticillium spp. cause severe crop losses worldwide. We recently discovered that Botrytis cinerea delivers small RNAs (Bc-sRNAs) into plant cells to silence host immunity genes. Such sRNA effectors are mostly produced by Botrytis cinerea Dicer-like protein 1 (Bc-DCL1) and Bc-DCL2. Here we show that expressing sRNAs that target Bc-DCL1 and Bc-DCL2 in Arabidopsis and tomato silences Bc-DCL genes and attenuates fungal pathogenicity and growth, exemplifying bidirectional cross-kingdom RNAi and sRNA trafficking between plants and fungi. This strategy can be adapted to simultaneously control multiple fungal diseases. We also show that Botrytis can take up external sRNAs and double-stranded RNAs (dsRNAs). Applying sRNAs or dsRNAs that target Botrytis DCL1 and DCL2 genes on the surface of fruits, vegetables and flowers significantly inhibits grey mould disease. Such pathogen gene-targeting RNAs represent a new generation of environmentally friendly fungicides.
Collapse
Affiliation(s)
- Ming Wang
- Department of Plant Pathology and Microbiology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521
| | - Arne Weiberg
- Department of Plant Pathology and Microbiology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521
| | - Feng-Mao Lin
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsin-Chu 300, Taiwan
| | - Bart Thomma
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Hsien-Da Huang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsin-Chu 300, Taiwan
| | - Hailing Jin
- Department of Plant Pathology and Microbiology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521
- Correspondence to Hailing Jin.
| |
Collapse
|
33
|
Weiberg A, Jin H. Small RNAs--the secret agents in the plant-pathogen interactions. CURRENT OPINION IN PLANT BIOLOGY 2015; 26:87-94. [PMID: 26123395 PMCID: PMC4573252 DOI: 10.1016/j.pbi.2015.05.033] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/28/2015] [Accepted: 05/29/2015] [Indexed: 05/15/2023]
Abstract
Eukaryotic regulatory small RNAs (sRNAs) that induce RNA interference (RNAi) are involved in a plethora of biological processes, including host immunity and pathogen virulence. In plants, diverse classes of sRNAs contribute to the regulation of host innate immunity. These immune-regulatory sRNAs operate through distinct RNAi pathways that trigger transcriptional or post-transcriptional gene silencing. Similarly, many pathogen-derived sRNAs also regulate pathogen virulence. Remarkably, the influence of regulatory sRNAs is not limited to the individual organism in which they are generated. It can sometimes extend to interacting species from even different kingdoms. There they trigger gene silencing in the interacting organism, a phenomenon called cross-kingdom RNAi. This is exhibited in advanced pathogens and parasites that produce sRNAs to suppress host immunity. Conversely, in host-induced gene silencing (HIGS), diverse plants are engineered to trigger RNAi against pathogens and pests to confer host resistance. Cross-kingdom RNAi opens up a vastly unexplored area of research on mobile sRNAs in the battlefield between hosts and pathogens.
Collapse
Affiliation(s)
- Arne Weiberg
- Department of Plant Pathology and Microbiology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Hailing Jin
- Department of Plant Pathology and Microbiology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|