1
|
Khan M, Srivastava AK, Nizamani MM, Asif M, Kamran A, Luo L, Yang S, Chen S, Li Z, Xie X. The battle within: Discovering new insights into phytopathogen interactions and effector dynamics. Microbiol Res 2025; 298:128220. [PMID: 40398012 DOI: 10.1016/j.micres.2025.128220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/23/2025] [Accepted: 05/09/2025] [Indexed: 05/23/2025]
Abstract
Phytopathogen interactions are complicated and constantly evolving, driven by a never-ending war amongst the host's immune defenses and the pathogen's virulence strategies. This comprehensive review examines the intricate mechanisms of effector-triggered immunity (ETI) and how pathogen effectors use host cellular progressions to promote infection. This review article investigates the modification of Phytopathogen effectors and plant resistance proteins, highlighting the role of meta-population dynamics and rapid adaptation. Additionally, it highlights the influence of environmental impact and climate change on host-pathogen interactions, describing their significant impact on disease dynamics and pathogen evolution. Effector proteins are crucial in sabotaging plant immunity, with bacterial, fungal, oomycete, and nematode effectors targeting common host protein networks and phytohormone pathways. Additionally, the review discusses advanced approaches for classifying effector targets, such as bioinformatics and single-cell transcriptomics, highlighting their importance in developing effective disease management strategies. Further insights are described into how effectors control phytohormone pathways, shedding light on how pathogens exploit host signaling. This review covers structural studies and protein modeling that have advanced effector prediction and our understanding of their functions and evolution, while providing an overview of phytopathogen interactions and future directions for effector research.
Collapse
Affiliation(s)
- Mehran Khan
- College of Agriculture, Guizhou University, Guiyang 550025, PR China.
| | | | | | - Muhammad Asif
- College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Ali Kamran
- College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Lingfeng Luo
- College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Sanwei Yang
- College of Agriculture, Guizhou University, Guiyang 550025, PR China.
| | - Songshu Chen
- College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Zhiqiang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xin Xie
- College of Agriculture, Guizhou University, Guiyang 550025, PR China.
| |
Collapse
|
2
|
Li Z, Chen H, Yuan DP, Jiang X, Li ZM, Wang ST, Zhou TG, Zhu HY, Bian Q, Zhu XF, Xuan YH. IDD10-NAC079 transcription factor complex regulates sheath blight resistance by inhibiting ethylene signaling in rice. J Adv Res 2025; 71:93-106. [PMID: 38825317 DOI: 10.1016/j.jare.2024.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024] Open
Abstract
INTRODUCTION Rhizoctonia solani Kühn is a pathogen causing rice sheath blight (ShB). Ammonium transporter 1 (AMT1) promotes resistance of rice to ShB by activating ethylene signaling. However, how AMT1 activates ethylene signaling remains unclear. OBJECTIVE In this study, the indeterminate domain 10 (IDD10)-NAC079 interaction model was used to investigate whether ethylene signaling is modulated downstream of ammonium signaling and modulates ammonium-mediated ShB resistance. METHODS RT-qPCR assay was used to identify the relative expression levels of nitrogen and ethylene related genes. Yeast two-hybrid assays, Bimolecular fluorescence complementation (BiFC) and Co-immunoprecipitation (Co-IP) assay were conducted to verify the IDD10-NAC079-calcineurin B-like interacting protein kinase 31 (CIPK31) transcriptional complex. Yeast one-hybrid assay, Chromatin immunoprecipitation (ChIP) assay, and Electrophoretic mobility shift assay (EMSA) were used to verify whether ETR2 was activated by IDD10 and NAC079. Ethylene quantification assay was used to verify ethylene content in IDD10 transgenic plants. Genetic analysis is used to detect the response of IDD10, NAC079 and CIPK31 to ShB infestation. RESULTS IDD10-NAC079 forms a transcription complex that activates ETR2 to inhibit the ethylene signaling pathway to negatively regulating ShB resistance. CIPK31 interacts and phosphorylates NAC079 to enhance its transcriptional activation activity. In addition, AMT1-mediated ammonium absorption and subsequent N assimilation inhibit the expression of IDD10 and CIPK31 to activate the ethylene signaling pathway, which positively regulates ShB resistance. CONCLUSION The study identified the link between ammonium and ethylene signaling and improved the understanding of the rice resistance mechanism.
Collapse
Affiliation(s)
- Zhuo Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Huan Chen
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - De Peng Yuan
- State Key Laboratory of Elemento-Organic Chemistry and Department of Plant Protection, National Pesticide Engineering Research Center (Tianjin), Nankai University, Tianjin 300071, China
| | - Xu Jiang
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Zhi Min Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Si Ting Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Tian Ge Zhou
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Hong Yao Zhu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Qiang Bian
- National Pesticide Engineering Research Center (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiao Feng Zhu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China.
| | - Yuan Hu Xuan
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; State Key Laboratory of Elemento-Organic Chemistry and Department of Plant Protection, National Pesticide Engineering Research Center (Tianjin), Nankai University, Tianjin 300071, China.
| |
Collapse
|
3
|
Lei M, Wang X, Chen K, Wei Q, Zhou M, Chen G, Su S, Tai Y, Zhuang K, Li D, Liu M, Zhang S, Wang Y. Sugar transporters: mediators of carbon flow between plants and microbes. FRONTIERS IN PLANT SCIENCE 2025; 16:1536969. [PMID: 40308299 PMCID: PMC12042665 DOI: 10.3389/fpls.2025.1536969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/31/2025] [Indexed: 05/02/2025]
Abstract
Pathogens and symbiotic microorganisms significantly influence plant growth and crop productivity. Enhancing crop disease resistance and maximizing the beneficial role of symbiotic microorganisms in agriculture constitute critical areas of scientific investigation. A fundamental aspect of plant-microorganisms interactions revolves around nutritional dynamics, characterized by either "food shortage" or "food supply" scenarios. Notably, pathogenic and symbiotic microorganisms predominantly utilize photosynthetic sugars as their primary carbon source during host colonization. This phenomenon has generated substantial interest in the regulatory mechanisms governing sugar transport and redistribution at the plant-microorganism interface. Sugar transporters, which primarily mediate the allocation of sugars to various sink organs, have emerged as crucial players in plant-pathogen interactions and the establishment of beneficial symbiotic associations. This review systematically categorized plant sugar transporters and highlighted their functional significance in mediating plant interactions with pathogenic and beneficial microorganisms. Furthermore, we synthesized recent advancements in understanding the molecular regulatory mechanisms of these transporters and identified key scientific questions warranting further investigation. Elucidating the roles of sugar transporters offers novel strategies for enhancing crop health and productivity, thereby contributing to agricultural sustainability and global food security.
Collapse
Affiliation(s)
- Mengyu Lei
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaodi Wang
- State Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Kuan Chen
- State Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qianqian Wei
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, China
| | - Miaomiao Zhou
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, China
| | - Gong Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, China
| | - Shuai Su
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, China
| | - Yuying Tai
- State Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Kexin Zhuang
- State Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Dexiao Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, China
| | - Mengjuan Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, China
| | - Senlei Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, China
| | - Youning Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, China
| |
Collapse
|
4
|
Liu S, Nie X, Chen H, Shen X. Identification of the SWEET gene family and functional characterization of PsSWEET1a and PsSWEET17b in the regulation of sugar accumulation in 'Fengtang' plum (Prunus salicina Lindl.). BMC PLANT BIOLOGY 2025; 25:407. [PMID: 40165087 PMCID: PMC11959939 DOI: 10.1186/s12870-025-06407-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 03/17/2025] [Indexed: 04/02/2025]
Abstract
BACKGROUND 'Fengtang' plum is a cultivar known for its significant sugar accumulation. Although various studies have been conducted on sugar metabolism, the specific molecular mechanisms underlying the high sugar accumulation in 'Fengtang' plum remain largely unexplored. Here, we present the role of the Sugars Will Eventually be Exported Transporters (SWEETs) family in regulating sugar accumulation in 'Fengtang' plum fruits. RESULTS In this study, 18 PsSWEET genes were identified based on homology with Arabidopsis genes and the Pfam database (ID: PF03083). Alignment of multiple sequences revealed that the seven alpha-helical transmembrane regions (7-TMs) are largely conserved in the PsSWEET family. Phylogenetic analysis demonstrated that the 18 SWEET family members could be categorized into four clades. Nine predicted motifs were identified within the PsSWEET genes of plum. The PsSWEET genes were unevenly distributed across five chromosomes, and synteny analysis revealed three pairs of fragmented duplication events. PsSWEET1a and PsSWEET17b are pivotal in 'Fengtang' plum fruit development. Subcellular localization analyses indicated that PsSWEET1a is localized to the nucleus and cytoplasm, while PsSWEET17b is associated with the vacuolar membrane. Gene function was further validated through transient silencing and overexpression of the PsSWEET1a and PsSWEET17b genes in plum fruits, which significantly impacted their soluble sugar content. Heterologous expression of PsSWEET1a and PsSWEET17b in tomato resulted in an increase in soluble sugar content due to the modulation of sugar accumulation-related genes and enzyme activities. CONCLUSION The genes PsSWEET1a and PsSWEET17b, which regulate the content of soluble sugar in plum fruit, were successfully identified. This study provides a comprehensive insight into the SWEET gene family of plum, offering novel perspectives on the regulation of sugar accumulation in fruit and laying a critical foundation for further enhancement of plum fruit quality.
Collapse
Affiliation(s)
- Shan Liu
- Guizhou Engineering Research Center for Fruit Crops, Agricultural College, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Xiaoshuang Nie
- Guizhou Engineering Research Center for Fruit Crops, Agricultural College, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Hong Chen
- Guizhou Engineering Research Center for Fruit Crops, Agricultural College, Guizhou University, Guiyang, 550025, People's Republic of China.
| | - Xinjie Shen
- Guizhou Engineering Research Center for Fruit Crops, Agricultural College, Guizhou University, Guiyang, 550025, People's Republic of China.
| |
Collapse
|
5
|
Xie W, Xue X, Wang Y, Zhang G, Zhao J, Zhang H, Wang G, Li L, Wang Y, Shan W, Zhang Y, Chen Z, Chen X, Feng Z, Hu K, Sun M, Chu C, Zuo S. Natural mutation in Stay-Green (OsSGR) confers enhanced resistance to rice sheath blight through elevating cytokinin content. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:807-823. [PMID: 39630094 PMCID: PMC11869175 DOI: 10.1111/pbi.14540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/16/2024] [Accepted: 11/22/2024] [Indexed: 03/01/2025]
Abstract
Sheath blight (ShB), caused by Rhizoctonia solani, is a highly destructive disease in many crops worldwide and no major resistance genes are available. Here, we identified a sbr1 (sheath blight resistance 1) rice mutant, which shows enhanced ShB resistance and maintains wildtype agronomic traits including yield, but carries an undesired stay-green phenotype. Through map-based cloning and transgenic validation, we found that an insertion disrupting the Stay-Green (OsSGR) gene is responsible for sbr1 phenotypes. Mechanistically, the sbr1/Ossgr mutants reduce the expression of most OsCKX genes, which function in cytokinin (CK) degradation, to accumulate CK leading to ShB resistance. Importantly, knockout of OsCKX7, predominantly expressed in the leaf sheath and highly induced by R. solani, significantly enhances ShB resistance without stay-green phenotype nor yield penalty, showing high application potential. Thus, our study reveals novel insights that OsSGR and cytokinin play key roles in rice-R. solani interaction and generates a valuable ShB-resistant germplasm.
Collapse
Affiliation(s)
- Wenya Xie
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of EducationAgricultural College of Yangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and PhysiologyYangzhou UniversityYangzhouChina
| | - Xiang Xue
- Yangzhou Polytechnic CollegeYangzhouChina
| | - Yu Wang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of EducationAgricultural College of Yangzhou UniversityYangzhouChina
| | - Guiyun Zhang
- Institute of Agricultural Sciences in Coastal Region of Jiangsu ProvinceYanchengChina
| | - Jianhua Zhao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of EducationAgricultural College of Yangzhou UniversityYangzhouChina
| | - Huimin Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of EducationAgricultural College of Yangzhou UniversityYangzhouChina
| | - Guangda Wang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of EducationAgricultural College of Yangzhou UniversityYangzhouChina
| | - Lei Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of EducationAgricultural College of Yangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and PhysiologyYangzhou UniversityYangzhouChina
| | - Yiqin Wang
- State Key Laboratory of Plant Genomics, the Innovative Academy of Seed Design, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Wenfeng Shan
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of EducationAgricultural College of Yangzhou UniversityYangzhouChina
| | - Yafang Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of EducationAgricultural College of Yangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and PhysiologyYangzhou UniversityYangzhouChina
| | - Zongxiang Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of EducationAgricultural College of Yangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and PhysiologyYangzhou UniversityYangzhouChina
| | - Xijun Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of EducationAgricultural College of Yangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and PhysiologyYangzhou UniversityYangzhouChina
| | - Zhiming Feng
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of EducationAgricultural College of Yangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and PhysiologyYangzhou UniversityYangzhouChina
| | - Keming Hu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of EducationAgricultural College of Yangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and PhysiologyYangzhou UniversityYangzhouChina
| | - Mingfa Sun
- Institute of Agricultural Sciences in Coastal Region of Jiangsu ProvinceYanchengChina
| | - Chengcai Chu
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, College of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Shimin Zuo
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of EducationAgricultural College of Yangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and PhysiologyYangzhou UniversityYangzhouChina
- Joint International Research Laboratory of Agriculture and Agri‐Product Safety, Ministry of Education of China/Institutes of Agricultural Science and Technology DevelopmentYangzhou UniversityYangzhouChina
| |
Collapse
|
6
|
Liu W, Jiang H, Zeng F. The sugar transporter proteins in plants: An elaborate and widespread regulation network-A review. Int J Biol Macromol 2025; 294:139252. [PMID: 39755309 DOI: 10.1016/j.ijbiomac.2024.139252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 12/25/2024] [Accepted: 12/25/2024] [Indexed: 01/06/2025]
Abstract
In higher plants, sugars are the primary products of photosynthesis, where CO2 is converted into organic carbon within the mesophyll cells of leaves. These sugars serve as a critical source of carbon skeletons for the biosynthesis of essential cellular compounds, energy production, and as osmotic and signaling molecules. Plant sugar transporter proteins play a key role in facilitating the long-distance translocation of sugars from source to sink organs, thereby controlling their distribution and accumulation across the plant. Over the past decade, substantial progress has been achieved in identifying the functions of individual genes linked to sugar transporters; however, the diverse regulatory mechanisms influencing these transporters remain insufficiently explored. This review consolidates current and previous research on the functions of sugar transporter proteins, focusing on their involvement in phloem transport pathways their impact on crop yield, cross-talk with other signals, and plant-microbe interactions. Furthermore, we propose future directions for studying the mechanisms of sugar transporter proteins and their potential applications in agriculture, with the goal of improving sugar utilization efficiency in crops and ultimately increasing crop yield.
Collapse
Affiliation(s)
- Weigang Liu
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
| | - Hong Jiang
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
| | - Fankui Zeng
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China; Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 262306, China; Qingdao Center of Resource Chemistry & New Materials, Qingdao 266100, China.
| |
Collapse
|
7
|
Han X, Li S, Zeng Q, Sun P, Wu D, Wu J, Yu X, Lai Z, Milne RJ, Kang Z, Xie K, Li G. Genetic engineering, including genome editing, for enhancing broad-spectrum disease resistance in crops. PLANT COMMUNICATIONS 2025; 6:101195. [PMID: 39568207 PMCID: PMC11897464 DOI: 10.1016/j.xplc.2024.101195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/01/2024] [Accepted: 11/19/2024] [Indexed: 11/22/2024]
Abstract
Plant diseases, caused by a wide range of pathogens, severely reduce crop yield and quality, posing a significant threat to global food security. Developing broad-spectrum resistance (BSR) in crops is a key strategy for controlling crop diseases and ensuring sustainable crop production. Cloning disease-resistance (R) genes and understanding their underlying molecular mechanisms provide new genetic resources and strategies for crop breeding. Novel genetic engineering and genome editing tools have accelerated the study and engineering of BSR genes in crops, which is the primary focus of this review. We first summarize recent advances in understanding the plant immune system, followed by an examination of the molecular mechanisms underlying BSR in crops. Finally, we highlight diverse strategies employed to achieve BSR, including gene stacking to combine multiple R genes, multiplexed genome editing of susceptibility genes and promoter regions of executor R genes, editing cis-regulatory elements to fine-tune gene expression, RNA interference, saturation mutagenesis, and precise genomic insertions. The genetic studies and engineering of BSR are accelerating the breeding of disease-resistant cultivars, contributing to crop improvement and enhancing global food security.
Collapse
Affiliation(s)
- Xinyu Han
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shumin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingdong Zeng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Peng Sun
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan 430070, China
| | - Dousheng Wu
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
| | - Jianguo Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiao Yu
- National Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Plant Pathology, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhibing Lai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Ricky J Milne
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia
| | - Zhensheng Kang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Kabin Xie
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| | - Guotian Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
8
|
Wang S, Sun Q, Yang S, Chen H, Yuan D, Gan C, Chen H, Zhi Y, Zhu H, Gao Y, Zhu X, Xuan Y. WRKY36-PIL15 Transcription Factor Complex Negatively Regulates Sheath Blight Resistance and Seed Development in Rice. PLANTS (BASEL, SWITZERLAND) 2025; 14:518. [PMID: 40006783 PMCID: PMC11858971 DOI: 10.3390/plants14040518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/02/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025]
Abstract
Sheath blight (ShB) causes severe yield loss in rice. Previously, we demonstrated that the sugar will eventually be exported and the transporter 11 (SWEET11) mutation significantly improved rice resistance to ShB, but it caused severe defects in seed development. The present study found that WRKY36 and PIL15 directly activate SWEET11 to negatively regulate ShB. Interestingly, WRKY36 interacted with PIL15, WRKY36 and PIL15 directly activates miR530 to negatively regulate seed development. WRKY36 interacted with a key BR signaling transcription factor WRKY53. AOS2 is an effector protein from Rhizoctonia solani (R. solani) that interacts with WRKY53. Interestingly, AOS2 also interacts with WRKY36 and PIL15 to activate SWEET11 for sugar nutrition for R. solani. These data collectively suggest that WRKY36-PIL15 negatively regulates ShB resistance and seed development via the activation of SWEET11 and miR530, respectively. In addition, WRKY36 and PIL15 are the partners of the effector protein AOS2 by which R. solani hijacks sugar nutrition from rice.
Collapse
Affiliation(s)
- Siting Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; (S.W.); (Q.S.); (S.Y.); (H.C.); (H.Z.); (Y.G.)
| | - Qian Sun
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; (S.W.); (Q.S.); (S.Y.); (H.C.); (H.Z.); (Y.G.)
| | - Shuo Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; (S.W.); (Q.S.); (S.Y.); (H.C.); (H.Z.); (Y.G.)
| | - Huan Chen
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; (S.W.); (Q.S.); (S.Y.); (H.C.); (H.Z.); (Y.G.)
| | - Depeng Yuan
- State Key Laboratory of Elemento-Organic Chemistry and Department of Plant Protection, National Pesticide Engineering Research Center (Tianjin), Nankai University, Tianjin 300071, China;
| | - Changxi Gan
- Zhengzhou Lvyeyuan Agricultural Technology Co., Ltd., Zhengzhou 450016, China; (C.G.); (H.C.); (Y.Z.)
| | - Haixia Chen
- Zhengzhou Lvyeyuan Agricultural Technology Co., Ltd., Zhengzhou 450016, China; (C.G.); (H.C.); (Y.Z.)
| | - Yongxi Zhi
- Zhengzhou Lvyeyuan Agricultural Technology Co., Ltd., Zhengzhou 450016, China; (C.G.); (H.C.); (Y.Z.)
| | - Hongyao Zhu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; (S.W.); (Q.S.); (S.Y.); (H.C.); (H.Z.); (Y.G.)
| | - Yue Gao
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; (S.W.); (Q.S.); (S.Y.); (H.C.); (H.Z.); (Y.G.)
| | - Xiaofeng Zhu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; (S.W.); (Q.S.); (S.Y.); (H.C.); (H.Z.); (Y.G.)
| | - Yuanhu Xuan
- State Key Laboratory of Elemento-Organic Chemistry and Department of Plant Protection, National Pesticide Engineering Research Center (Tianjin), Nankai University, Tianjin 300071, China;
| |
Collapse
|
9
|
Cheng G, Li X, Fernando WGD, Bibi S, Liang C, Bi Y, Liu X, Li Y. Fatty Acid ABCG Transporter GhSTR1 Mediates Resistance to Verticillium dahliae and Fusarium oxysporum in Cotton. PLANTS (BASEL, SWITZERLAND) 2025; 14:465. [PMID: 39943030 PMCID: PMC11820032 DOI: 10.3390/plants14030465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/23/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025]
Abstract
Verticillium wilt and Fusarium wilt cause significant losses in cotton (Gossypium hirsutum) production and have a significant economic impact. This study determined the functional role of GhSTR1, a member of the ABCG subfamily of ATP-binding cassette (ABC) transporters, that mediates cotton defense responses against various plant pathogens. We identified GhSTR1 as a homolog of STR1 from Medicago truncatula and highlighted its evolutionary conservation and potential role in plant defense mechanisms. Expression profiling revealed that GhSTR1 displays tissue-specific and spatiotemporal dynamics under stress conditions caused by Verticillium dahliae and Fusarium oxysporum. Functional validation using virus-induced gene silencing (VIGS) showed that silencing GhSTR1 improved disease resistance, resulting in milder symptoms, less vascular browning, and reduced fungal growth. Furthermore, the AtSTR1 loss-of-function mutant in Arabidopsis thaliana exhibited similar resistance phenotypes, highlighting the conserved regulatory role of STR1 in pathogen defense. In addition to its role in disease resistance, the mutation of AtSTR1 in Arabidopsis also enhanced the vegetative and reproductive growth of the plant, including increased root length, rosette leaf number, and plant height without compromising drought tolerance. These findings suggest that GhSTR1 mediates a trade-off between defense and growth, offering a potential target for optimizing both traits for crop improvement. This study identifies GhSTR1 as a key regulator of plant-pathogen interactions and growth dynamics, providing a foundation for developing durable strategies to enhance cotton's resistance and yield under biotic and abiotic stress conditions.
Collapse
Affiliation(s)
- Guanfu Cheng
- Key Laboratory of Biological Ecological Adaptation and Evolution in Extreme Environments, College of Life Science, Xinjiang Agricultural University, Urumqi 830001, China; (G.C.); (X.L.); (C.L.); (Y.B.); (X.L.)
| | - Xiuqing Li
- Key Laboratory of Biological Ecological Adaptation and Evolution in Extreme Environments, College of Life Science, Xinjiang Agricultural University, Urumqi 830001, China; (G.C.); (X.L.); (C.L.); (Y.B.); (X.L.)
| | - W. G. Dilantha Fernando
- Department of Plant Science, University of Manitoba, Winnipeg, MB CAR3T2N2, Canada; (W.G.D.F.); (S.B.)
| | - Shaheen Bibi
- Department of Plant Science, University of Manitoba, Winnipeg, MB CAR3T2N2, Canada; (W.G.D.F.); (S.B.)
| | - Chunyan Liang
- Key Laboratory of Biological Ecological Adaptation and Evolution in Extreme Environments, College of Life Science, Xinjiang Agricultural University, Urumqi 830001, China; (G.C.); (X.L.); (C.L.); (Y.B.); (X.L.)
| | - Yanqing Bi
- Key Laboratory of Biological Ecological Adaptation and Evolution in Extreme Environments, College of Life Science, Xinjiang Agricultural University, Urumqi 830001, China; (G.C.); (X.L.); (C.L.); (Y.B.); (X.L.)
| | - Xiaodong Liu
- Key Laboratory of Biological Ecological Adaptation and Evolution in Extreme Environments, College of Life Science, Xinjiang Agricultural University, Urumqi 830001, China; (G.C.); (X.L.); (C.L.); (Y.B.); (X.L.)
| | - Yue Li
- Key Laboratory of Biological Ecological Adaptation and Evolution in Extreme Environments, College of Life Science, Xinjiang Agricultural University, Urumqi 830001, China; (G.C.); (X.L.); (C.L.); (Y.B.); (X.L.)
| |
Collapse
|
10
|
Liu H, Zhang JQ, Zhang RR, Chen C, Tao JP, Xiong JS, Xiong AS. SlMYB1R1-SlSWEET12c module synergistically promotes sugar accumulation in tomato fruits. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70062. [PMID: 39985809 DOI: 10.1111/tpj.70062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/05/2024] [Accepted: 02/10/2025] [Indexed: 02/24/2025]
Abstract
Tomato (Solanum lycopersium), a globally significant vegetable crop prized for its distinctive flavor, relies on efficient sugar allocation for fruit development. Despite this, the molecular module underlying the translocation of sugars from sources to sinks within the tomato remains elusive. Sugar will eventually be exported transporters (SWEETs), a class of proteins known to mediate sugar transport, have been implicated in the process. Here, we discovered that SlSWEET12c, belonged to subfamily III, which was markedly upregulated during the development of tomato fruits. The subcellular localization of SlSWEET12c-GFP to the plasma and vacuolar membrane supported its putative role in apoplasmic sucrose transport. Complementary growth in a yeast (Saccharomyces cerevisiae) mutant strain SUSY7/ura3 confirmed SlSWEET12c with sucrose transport activity. Overexpressing and CRISPR/Cas9-mediated knockdown of SlSWEET12c in tomato plants demonstrated its role in promoting sugar accumulation in fruits. Additionally, the MYB transcription factor SlMYB1R1 was obtained by screening the cDNA library of tomato, which was highly expressed during tomato fruit development with a similar pattern to SlSWEET12c. The SlMYB1R1 could bind to the SlSWEET12c promoter and regulate its activity, thereby positively promoting sugar accumulation in tomato fruits. Collectively, our findings presented a novel role for the SlMYB1R1-SlSWEET12c module in facilitating sugar accumulation and provided a basis for future efforts to breed crops with enhanced sugar content.
Collapse
Affiliation(s)
- Hui Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Jia-Qi Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Rong-Rong Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Chen Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Jian-Ping Tao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Jin-Song Xiong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| |
Collapse
|
11
|
Liu J, Jiang X, Yang L, Zhao D, Wang Y, Zhang Y, Sun H, Chen L, Li Y. Characterization of the SWEET Gene Family in Blueberry ( Vaccinium corymbosum L.) and the Role of VcSWEET6 Related to Sugar Accumulation in Fruit Development. Int J Mol Sci 2025; 26:1055. [PMID: 39940826 PMCID: PMC11817227 DOI: 10.3390/ijms26031055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/15/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Sugars will eventually be exported transporters (SWEETs) are essential transmembrane proteins involved in plant growth, stress responses, and plant-pathogen interactions. Despite their importance, systematic studies on SWEETs in blueberries (Vaccinium corymbosum L.) are limited. Blueberries are recognized for their rapid growth and the significant impact of sugar content on fruit flavor, yet the role of the SWEET gene family in sugar accumulation during fruit development remains unclear. In this study, 23 SWEET genes were identified in blueberry, and their phylogenetic relationships, duplication events, gene structures, cis-regulatory elements, and expression profiles were systematically analyzed. The VcSWEET gene family was classified into four clades. Structural and motif analysis revealed conserved exon-intron organization within each clade. RT-qPCR analysis showed widespread expression of VcSWEETs across various tissues and developmental stages, correlating with promoter cis-elements. VcSWEET6a, in particular, was specifically expressed in fruit and showed reduced expression during fruit maturation. Subcellular localization indicated that VcSWEET6a is located in the endoplasmic reticulum. Functional assays in yeast confirmed its role in glucose and fructose uptake, with transport activity inhibited at higher sugar concentrations. Overexpression of VcSWEET6a in blueberries resulted in reduced sugar accumulation. These findings offer valuable insights into the role of VcSWEETs in blueberry sugar metabolism.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Li Chen
- Engineering Center of Genetic Breeding and Innovative Utilization of Small Fruits of Jilin Province, College of Horticulture, Jilin Agricultural University, Changchun 130118, China; (J.L.); (X.J.); (L.Y.); (D.Z.); (Y.W.); (Y.Z.); (H.S.)
| | - Yadong Li
- Engineering Center of Genetic Breeding and Innovative Utilization of Small Fruits of Jilin Province, College of Horticulture, Jilin Agricultural University, Changchun 130118, China; (J.L.); (X.J.); (L.Y.); (D.Z.); (Y.W.); (Y.Z.); (H.S.)
| |
Collapse
|
12
|
Kong L, Sun J, Zhang W, Zhan Z, Piao Z. Functional analysis of the key BrSWEET genes for sugar transport involved in the Brassica rapa-Plasmodiophora brassicae interaction. Gene 2024; 927:148708. [PMID: 38885818 DOI: 10.1016/j.gene.2024.148708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/02/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Plasmodiophora brassicae, the causative agent of clubroot disease, establishes a long-lasting parasitic relationship with its host by inducing the expression of sugar transporters. Previous studies have indicated that most BrSWEET genes in Chinese cabbage are up-regulated upon infection with P. brassicae. However, the key BrSWEET genes responsive to P. brassicae have not been definitively identified. In this study, we selected five BrSWEET genes and conducted a functional analysis of them. These five BrSWEET genes showed a notable up-regulation in roots after P. brassicae inoculation. Furthermore, these BrSWEET proteins were localized to the plasma membrane. Yeast functional complementation assays confirmed transport activity for glucose, fructose, or sucrose in four BrSWEETs, with the exception of BrSWEET2a. Mutants and silenced plants of BrSWEET1a, -11a, and -12a showed lower clubroot disease severity compared to wild-type plants, while gain-of-function Arabidopsis thaliana plants overexpressing these three BrSWEET genes exhibited significantly higher disease incidence and severity. Our findings suggested that BrSWEET1a, BrSWEET11a, and BrSWEET12a play pivotal roles in P. brassicae-induced gall formation, shedding light on the role of sugar transporters in host-pathogen interactions.
Collapse
Affiliation(s)
- Liyan Kong
- Molecular Biology of Vegetable Laboratory, Department of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Jiadi Sun
- Molecular Biology of Vegetable Laboratory, Department of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Wenjun Zhang
- Molecular Biology of Vegetable Laboratory, Department of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Zongxiang Zhan
- Molecular Biology of Vegetable Laboratory, Department of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Zhongyun Piao
- Molecular Biology of Vegetable Laboratory, Department of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| |
Collapse
|
13
|
Pan Y, Niu K, Miao P, Zhao G, Zhang Y, Ju Z, Chai J, Yang J, Cui X, Zhang R. Genome-wide analysis of the SWEET gene family and its response to powdery mildew and leaf spot infection in the common oat (Avena sativa L.). BMC Genomics 2024; 25:995. [PMID: 39448896 PMCID: PMC11515518 DOI: 10.1186/s12864-024-10933-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/22/2024] [Indexed: 10/26/2024] Open
Abstract
The nutritional quality and yield of oats (Avena sativa) are often compromised by plant diseases such as red leaf, powdery mildew, and leaf spot. Sugars Will Eventually be Exported Transporters (SWEETs) are newly identified sugar transporters involved in regulating plant growth and stress responses. However, the roles of SWEET genes in biotic stress responses remain uncharacterized in oats. In this study, 13 AsSWEET genes were identified across nine chromosomes of the oat genome, all of which were predicted to contain seven transmembrane regions. Phylogenetic analysis revealed four clades of AsSWEET proteins, with high homology to SWEET proteins in the Poaceae family. Collinearity analysis demonstrated strong relationships between oat and Zea mays SWEETs. Using subcellular localization prediction tools, AsSWEET proteins were predicted to localize to the plasma membrane. Promoter analysis revealed cis-acting elements associated with light response, growth, and stress regulation. Six AsSWEET proteins were predicted to interact in a network centered on AsSWEET1a and AsSWEET11. Gene expression analysis of two oat varieties, 'ForagePlus' and 'Molasses', indicated significant expression differences in several AsSWEET genes following infection with powdery mildew or leaf spot, including AsSWEET1a, AsSWEET1b, AsSWEET2b, AsSWEET3a, AsSWEET11, and AsSWEET16. These SWEET genes are potential candidates for disease resistance in oats. This study provides a foundation for understanding the regulatory mechanisms of AsSWEET genes, particularly in response to powdery mildew and leaf spot, and offers insights for enhancing oat molecular breeding.
Collapse
Affiliation(s)
- Yuanbo Pan
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Kuiju Niu
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, 730070, Gansu, China.
| | - Peiqin Miao
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Guiqin Zhao
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Yuehua Zhang
- National Center of Pratacultural Technology Innovation (under preparation), Hohhot, 810016, Inner Mongolia, China
| | - Zeliang Ju
- Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining, 810016, Qinghai, China
| | - Jikuan Chai
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Juanjuan Yang
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Xiaoning Cui
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Ran Zhang
- Institute of Ecological Protection and Restoration, Grassland Research Center, Chinese Academy of Forestry, National Forestry and Grassland Administration, Beijing, 100091, China
| |
Collapse
|
14
|
Tyagi K, Chandan RK, Sahoo D, Ghosh S, Gupta S, Jha G. The host and pathogen myo-inositol-1-phosphate synthases are required for Rhizoctonia solani AG1-IA infection in tomato. MOLECULAR PLANT PATHOLOGY 2024; 25:e13470. [PMID: 39376048 PMCID: PMC11458890 DOI: 10.1111/mpp.13470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/29/2024] [Accepted: 05/05/2024] [Indexed: 10/09/2024]
Abstract
The myo-inositol-1-phosphate synthase (MIPS) catalyses the biosynthesis of myo-inositol, an important sugar that regulates various physiological and biochemical processes in plants. Here, we provide evidence that host (SlMIPS1) and pathogen (Rs_MIPS) myo-inositol-1-phosphate synthase (MIPS) genes are required for successful infection of Rhizoctonia solani, a devastating necrotrophic fungal pathogen, in tomato. Silencing of either SlMIPS1 or Rs_MIPS prevented disease, whereas an exogenous spray of myo-inositol enhanced disease severity. SlMIPS1 was upregulated upon R. solani infection, and potentially promoted source-to-sink transition, induced SWEET gene expression, and facilitated sugar availability in the infected tissues. In addition, salicylic acid (SA)-jasmonic acid homeostasis was altered and SA-mediated defence was suppressed; therefore, disease was promoted. On the other hand, silencing of SlMIPS1 limited sugar availability and induced SA-mediated defence to prevent R. solani infection. Virus-induced gene silencing of NPR1, a key gene in SA signalling, rendered SlMIPS1-silenced tomato lines susceptible to infection. These analyses suggest that induction of SA-mediated defence imparts disease tolerance in SlMIPS1-silenced tomato lines. In addition, we present evidence that SlMIPS1 and SA negatively regulate each other to modulate the defence response. SA treatment reduced SlMIPS1 expression and myo-inositol content in tomato, whereas myo-inositol treatment prevented SA-mediated defence. We emphasize that downregulation of host/pathogen MIPS can be an important strategy for controlling diseases caused by R. solani in agriculturally important crops.
Collapse
Affiliation(s)
- Kriti Tyagi
- Plant–Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchNew DelhiIndia
| | - Ravindra K. Chandan
- Plant–Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchNew DelhiIndia
| | - Debashis Sahoo
- Plant–Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchNew DelhiIndia
| | - Srayan Ghosh
- Plant–Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchNew DelhiIndia
| | - Santosh Kumar Gupta
- Plant–Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchNew DelhiIndia
| | - Gopaljee Jha
- Plant–Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchNew DelhiIndia
| |
Collapse
|
15
|
Sun JY, Zhou ZR, Wang YQ, Zhu DY, Ma DR. OsHRZ1 negatively regulates rice resistant to Magnaporthe oryzae infection by targeting OsVOZ2. Transgenic Res 2024; 33:489-501. [PMID: 39333318 DOI: 10.1007/s11248-024-00415-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Rice blast disease caused by Magnaporthe oryzae significantly reduces yield production. Blast resistance is closely associated with iron (Fe) status, but the mechanistic basis linking iron status to immune function in rice remains largely unknown. Here, iron-binding haemerythrin RING ubiquitin ligases OsHRZ1 was confirmed to play key roles in iron-mediated rice blast resistance. The expression of OsHRZ1 was suppressed by M. oryzae inoculation and high iron treatment. Both mutants of OsHRZ1 enhanced rice resistance to M. oryzae. OsPR1a was up-regulated in OsHRZ1 mutants. Yeast two-hybrid, bimolecular fluorescence complementation, and Co-IP assay results indicated that OsHRZ1 interacts with Vascular Plant One Zinc Finger 2 (OsVOZ2) in the nucleus. Additionally, the vitro ubiquitination assay indicated that OsHRZ1 can ubiquitinate OsVOZ2 and mediate the degradation of OsVOZ2. The mutants of OsVOZ2 showed reduced resistance to M. oryzae and down-regulated the expression of OsPR1a. Yeast one-hybrid, EMSA, and dual-luciferase reporter assay results indicated that OsVOZ2 directly binds to the promoter of OsPR1a, activating its expression. In summary, OsHRZ1 plays an important role in rice disease resistance by mediated degradation of OsVOZ2 thus shaping PR gene expression dynamics in rice cells. This highlights an important link between iron signaling and rice pathogen defenses.
Collapse
Affiliation(s)
- Jia-Ying Sun
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Zeng-Ran Zhou
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yu-Qi Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Dong-Yu Zhu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | | |
Collapse
|
16
|
Chen Y, Miller AJ, Qiu B, Huang Y, Zhang K, Fan G, Liu X. The role of sugar transporters in the battle for carbon between plants and pathogens. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2844-2858. [PMID: 38879813 PMCID: PMC11536462 DOI: 10.1111/pbi.14408] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 05/03/2024] [Accepted: 05/27/2024] [Indexed: 11/05/2024]
Abstract
In photosynthetic cells, plants convert carbon dioxide to sugars that can be moved between cellular compartments by transporters before being subsequently metabolized to support plant growth and development. Most pathogens cannot synthesize sugars directly but have evolved mechanisms to obtain plant-derived sugars as C resource for successful infection and colonization. The availability of sugars to pathogens can determine resistance or susceptibility. Here, we summarize current progress on the roles of sugar transporters in plant-pathogen interactions. We highlight how transporters are manipulated antagonistically by both host and pathogens in competing for sugars. We examine the potential application of this target in resistance breeding and discuss opportunities and challenges for the future.
Collapse
Affiliation(s)
- Yi Chen
- Biochemistry & Metabolism DepartmentJohn Innes CentreNorwichUK
| | | | - Bowen Qiu
- Jiangxi Provincial Key Laboratory of Ex Situ Plant Conservation and Utilization Lushan Botanical GardenChinese Academy of ScienceJiujiangJiangxiChina
| | - Yao Huang
- School of Life ScienceNanChang UniversityNanchangJiangxiChina
| | - Kai Zhang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of OceanographyMinistry of Natural ResourcesXiamenChina
| | - Gaili Fan
- Xiamen Greening Administration CentreXiamenChina
| | - Xiaokun Liu
- Jiangxi Provincial Key Laboratory of Ex Situ Plant Conservation and Utilization Lushan Botanical GardenChinese Academy of ScienceJiujiangJiangxiChina
| |
Collapse
|
17
|
Chen D, Liu Y, Chen Y, Li B, Chen T, Tian S. Functions of membrane proteins in regulating fruit ripening and stress responses of horticultural crops. MOLECULAR HORTICULTURE 2024; 4:35. [PMID: 39313804 PMCID: PMC11421178 DOI: 10.1186/s43897-024-00111-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/16/2024] [Indexed: 09/25/2024]
Abstract
Fruit ripening is accompanied by the development of fruit quality traits; however, this process also increases the fruit's susceptibility to various environmental stresses, including pathogen attacks and other stress factors. Therefore, modulating the fruit ripening process and defense responses is crucial for maintaining fruit quality and extending shelf life. Membrane proteins play intricate roles in mediating signal transduction, ion transport, and many other important biological processes, thus attracting extensive research interest. This review mainly focuses on the functions of membrane proteins in regulating fruit ripening and defense responses against biotic and abiotic factors, addresses their potential as targets for improving fruit quality and resistance to environmental challenges, and further highlights some open questions to be addressed.
Collapse
Affiliation(s)
- Daoguo Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian District, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhan Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian District, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian District, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Boqiang Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian District, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Tong Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian District, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
| | - Shiping Tian
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian District, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
18
|
Jesudoss D, Ponnurangan V, Kumar MPR, Kumar KK, Mannu J, Sankarasubramanian H, Duraialagaraja S, Eswaran K, Loganathan A, Shanmugam V. Advances in breeding, biotechnology, and nanotechnological approaches to combat sheath blight disease in rice. Mol Biol Rep 2024; 51:958. [PMID: 39230778 DOI: 10.1007/s11033-024-09889-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/25/2024] [Indexed: 09/05/2024]
Abstract
Sheath blight, caused by the fungus Rhizoctonia solani, is a major problem that significantly impacts rice production and can lead to substantial yield losses. The disease has become increasingly problematic in recent years due to the widespread use of high-yielding semi-dwarf rice cultivars, dense planting, and heavy application of nitrogenous fertilizers. The disease has become more challenging to manage due to its diverse host range and the lack of resistant cultivars. Despite utilizing traditional methods, the problem persists without a satisfactory solution. Therefore, modern approaches, including advanced breeding, transgenic methods, genome editing using CRISPR/Cas9 technology, and nanotechnological interventions, are being explored to develop rice plants resistant to sheath blight disease. This review primarily focuses on these recent advancements in combating the sheath blight disease.
Collapse
Affiliation(s)
- David Jesudoss
- Department of Plant Biotechnology, Centre for Plant Molecular Biology & Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Vignesh Ponnurangan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology & Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Mohana Pradeep Rangaraj Kumar
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Krish K Kumar
- Department of Plant Biotechnology, Centre for Plant Molecular Biology & Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Jayakanthan Mannu
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology & Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Harish Sankarasubramanian
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Sudhakar Duraialagaraja
- Department of Plant Biotechnology, Centre for Plant Molecular Biology & Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Kokiladevi Eswaran
- Department of Plant Biotechnology, Centre for Plant Molecular Biology & Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Arul Loganathan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology & Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Varanavasiappan Shanmugam
- Department of Plant Biotechnology, Centre for Plant Molecular Biology & Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India.
| |
Collapse
|
19
|
Li J, He C, Liu S, Guo Y, Zhang Y, Zhang L, Zhou X, Xu D, Luo X, Liu H, Yang X, Wang Y, Shi J, Yang B, Wang J, Wang P, Deng X, Sun C. Research progress and application strategies of sugar transport mechanisms in rice. FRONTIERS IN PLANT SCIENCE 2024; 15:1454615. [PMID: 39233915 PMCID: PMC11371564 DOI: 10.3389/fpls.2024.1454615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024]
Abstract
In plants, carbohydrates are central products of photosynthesis. Rice is a staple that contributes to the daily calorie intake for over half of the world's population. Hence, the primary objective of rice cultivation is to maximize carbohydrate production. The "source-sink" theory is proposed as a valuable principle for guiding crop breeding. However, the "flow" research lag, especially in sugar transport, has hindered high-yield rice breeding progress. This review concentrates on the genetic and molecular foundations of sugar transport and its regulation, enhancing the fundamental understanding of sugar transport processes in plants. We illustrate that the apoplastic pathway is predominant over the symplastic pathway during phloem loading in rice. Sugar transport proteins, such as SUTs and SWEETs, are essential carriers for sugar transportation in the apoplastic pathway. Additionally, we have summarized a regulatory pathway for sugar transport genes in rice, highlighting the roles of transcription factors (OsDOF11, OsNF-YB1, OsNF-YC12, OsbZIP72, Nhd1), OsRRM (RNA Recognition Motif containing protein), and GFD1 (Grain Filling Duration 1). Recognizing that the research shortfall in this area stems from a lack of advanced research methods, we discuss cutting-edge analytical techniques such as Mass Spectrometry Imaging and single-cell RNA sequencing, which could provide profound insights into the dynamics of sugar distribution and the associated regulatory mechanisms. In summary, this comprehensive review serves as a valuable guide, directing researchers toward a deep understanding and future study of the intricate mechanisms governing sugar transport.
Collapse
Affiliation(s)
- Jun Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Changcai He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Shihang Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuting Guo
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuxiu Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Lanjing Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xu Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Dongyu Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xu Luo
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hongying Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiaorong Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yang Wang
- College of Agricultural Science, Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Liangshan, China
| | - Jun Shi
- Mianyang Academy of Agricultural Sciences, Crop Characteristic Resources Creation and Utilization Key Laboratory of Sichuan Province, Mianyang, China
| | - Bin Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jing Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Pingrong Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiaojian Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Changhui Sun
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
20
|
Wang X, Ju Y, Wu T, Kong L, Yuan M, Liu H, Chen X, Chu Z. The clade III subfamily of OsSWEETs directly suppresses rice immunity by interacting with OsHMGB1 and OsHsp20L. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2186-2200. [PMID: 38587024 PMCID: PMC11258985 DOI: 10.1111/pbi.14338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/30/2024] [Accepted: 02/23/2024] [Indexed: 04/09/2024]
Abstract
The clade III subfamily of OsSWEETs includes transmembrane proteins necessary for susceptibility to bacterial blight (BB). These genes are targeted by the specific transcription activator-like effector (TALE) of Xanthomonas oryzae pv. oryzae and mediate sucrose efflux for bacterial proliferation. However, the mechanism through which OsSWEETs regulate rice immunity has not been fully elucidated. Here, we demonstrated that the cytosolic carboxyl terminus of OsSWEET11a/Xa13 is required for complementing susceptibility to PXO99 in IRBB13 (xa13/xa13). Interestingly, the C-terminus of ZmXa13, the maize homologue of OsSWEET11a/Xa13, could perfectly substitute for the C-terminus of OsSWEET11a/Xa13. Furthermore, OsSWEET11a/Xa13 interacted with the high-mobility group B1 (OsHMGB1) protein and the small heat shock-like protein OsHsp20L through the same regions in the C-terminus. Consistent with the physical interactions, knockdown or knockout of either OsHMGB1 or OsHsp20L caused an enhanced PXO99-resistant phenotype similar to that of OsSWEET11a/OsXa13. Surprisingly, the plants in which OsHMGB1 or OsHsp20L was repressed developed increased resistance to PXO86, PXO61 and YN24, which carry TALEs targeting OsSWEET14/Xa41 or OsSWEET11a/Xa13. Additionally, OsHsp20L can interact with all six members of clade III OsSWEETs, whereas OsHMGB1 can interact with five other members in addition to OsSWEET12. Overall, we revealed that OsHMGB1 and OsHsp20L mediate conserved BB susceptibility by interacting with clade III OsSWEETs, which are candidates for breeding broad-spectrum disease-resistant rice.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life SciencesWuhan UniversityWuhanChina
| | - Yanhu Ju
- State Key Laboratory of Wheat Breeding, College of AgronomyShandong Agricultural UniversityTai'anChina
- Present address:
College of Life SciencesLiaocheng UniversityLiaochengChina
| | - Tao Wu
- College of Plant ProtectionYangzhou UniversityYangzhouChina
| | - Lingguang Kong
- State Key Laboratory of Wheat Breeding, College of AgronomyShandong Agricultural UniversityTai'anChina
| | - Meng Yuan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Haifeng Liu
- State Key Laboratory of Wheat Breeding, College of AgronomyShandong Agricultural UniversityTai'anChina
| | - Xiangsong Chen
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life SciencesWuhan UniversityWuhanChina
| | - Zhaohui Chu
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life SciencesWuhan UniversityWuhanChina
| |
Collapse
|
21
|
Bhunjun C, Chen Y, Phukhamsakda C, Boekhout T, Groenewald J, McKenzie E, Francisco E, Frisvad J, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie C, Bai F, Błaszkowski J, Braun U, de Souza F, de Queiroz M, Dutta A, Gonkhom D, Goto B, Guarnaccia V, Hagen F, Houbraken J, Lachance M, Li J, Luo K, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe D, Wang D, Wei D, Zhao C, Aiphuk W, Ajayi-Oyetunde O, Arantes T, Araujo J, Begerow D, Bakhshi M, Barbosa R, Behrens F, Bensch K, Bezerra J, Bilański P, Bradley C, Bubner B, Burgess T, Buyck B, Čadež N, Cai L, Calaça F, Campbell L, Chaverri P, Chen Y, Chethana K, Coetzee B, Costa M, Chen Q, Custódio F, Dai Y, Damm U, Santiago A, De Miccolis Angelini R, Dijksterhuis J, Dissanayake A, Doilom M, Dong W, Álvarez-Duarte E, Fischer M, Gajanayake A, Gené J, Gomdola D, Gomes A, Hausner G, He M, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena R, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin C, Liu J, Liu X, Loizides M, Luangharn T, Maharachchikumbura S, Mkhwanazi GM, Manawasinghe I, Marin-Felix Y, McTaggart A, Moreau P, Morozova O, et alBhunjun C, Chen Y, Phukhamsakda C, Boekhout T, Groenewald J, McKenzie E, Francisco E, Frisvad J, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie C, Bai F, Błaszkowski J, Braun U, de Souza F, de Queiroz M, Dutta A, Gonkhom D, Goto B, Guarnaccia V, Hagen F, Houbraken J, Lachance M, Li J, Luo K, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe D, Wang D, Wei D, Zhao C, Aiphuk W, Ajayi-Oyetunde O, Arantes T, Araujo J, Begerow D, Bakhshi M, Barbosa R, Behrens F, Bensch K, Bezerra J, Bilański P, Bradley C, Bubner B, Burgess T, Buyck B, Čadež N, Cai L, Calaça F, Campbell L, Chaverri P, Chen Y, Chethana K, Coetzee B, Costa M, Chen Q, Custódio F, Dai Y, Damm U, Santiago A, De Miccolis Angelini R, Dijksterhuis J, Dissanayake A, Doilom M, Dong W, Álvarez-Duarte E, Fischer M, Gajanayake A, Gené J, Gomdola D, Gomes A, Hausner G, He M, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena R, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin C, Liu J, Liu X, Loizides M, Luangharn T, Maharachchikumbura S, Mkhwanazi GM, Manawasinghe I, Marin-Felix Y, McTaggart A, Moreau P, Morozova O, Mostert L, Osiewacz H, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips A, Phonemany M, Promputtha I, Rathnayaka A, Rodrigues A, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe S, Scholler M, Scott P, Shivas R, Silar P, Silva-Filho A, Souza-Motta C, Spies C, Stchigel A, Sterflinger K, Summerbell R, Svetasheva T, Takamatsu S, Theelen B, Theodoro R, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang X, Wartchow F, Welti S, Wijesinghe S, Wu F, Xu R, Yang Z, Yilmaz N, Yurkov A, Zhao L, Zhao R, Zhou N, Hyde K, Crous P. What are the 100 most cited fungal genera? Stud Mycol 2024; 108:1-411. [PMID: 39100921 PMCID: PMC11293126 DOI: 10.3114/sim.2024.108.01] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/17/2024] [Indexed: 08/06/2024] Open
Abstract
The global diversity of fungi has been estimated between 2 to 11 million species, of which only about 155 000 have been named. Most fungi are invisible to the unaided eye, but they represent a major component of biodiversity on our planet, and play essential ecological roles, supporting life as we know it. Although approximately 20 000 fungal genera are presently recognised, the ecology of most remains undetermined. Despite all this diversity, the mycological community actively researches some fungal genera more commonly than others. This poses an interesting question: why have some fungal genera impacted mycology and related fields more than others? To address this issue, we conducted a bibliometric analysis to identify the top 100 most cited fungal genera. A thorough database search of the Web of Science, Google Scholar, and PubMed was performed to establish which genera are most cited. The most cited 10 genera are Saccharomyces, Candida, Aspergillus, Fusarium, Penicillium, Trichoderma, Botrytis, Pichia, Cryptococcus and Alternaria. Case studies are presented for the 100 most cited genera with general background, notes on their ecology and economic significance and important research advances. This paper provides a historic overview of scientific research of these genera and the prospect for further research. Citation: Bhunjun CS, Chen YJ, Phukhamsakda C, Boekhout T, Groenewald JZ, McKenzie EHC, Francisco EC, Frisvad JC, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie CM, Bai FY, Błaszkowski J, Braun U, de Souza FA, de Queiroz MB, Dutta AK, Gonkhom D, Goto BT, Guarnaccia V, Hagen F, Houbraken J, Lachance MA, Li JJ, Luo KY, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe DN, Wang DQ, Wei DP, Zhao CL, Aiphuk W, Ajayi-Oyetunde O, Arantes TD, Araujo JC, Begerow D, Bakhshi M, Barbosa RN, Behrens FH, Bensch K, Bezerra JDP, Bilański P, Bradley CA, Bubner B, Burgess TI, Buyck B, Čadež N, Cai L, Calaça FJS, Campbell LJ, Chaverri P, Chen YY, Chethana KWT, Coetzee B, Costa MM, Chen Q, Custódio FA, Dai YC, Damm U, de Azevedo Santiago ALCM, De Miccolis Angelini RM, Dijksterhuis J, Dissanayake AJ, Doilom M, Dong W, Alvarez-Duarte E, Fischer M, Gajanayake AJ, Gené J, Gomdola D, Gomes AAM, Hausner G, He MQ, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena RS, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin CG, Liu JK, Liu XB, Loizides M, Luangharn T, Maharachchikumbura SSN, Makhathini Mkhwanazi GJ, Manawasinghe IS, Marin-Felix Y, McTaggart AR, Moreau PA, Morozova OV, Mostert L, Osiewacz HD, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips AJL, Phonemany M, Promputtha I, Rathnayaka AR, Rodrigues AM, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe SJ, Scholler M, Scott P, Shivas RG, Silar P, Souza-Motta CM, Silva-Filho AGS, Spies CFJ, Stchigel AM, Sterflinger K, Summerbell RC, Svetasheva TY, Takamatsu S, Theelen B, Theodoro RC, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang XW, Wartchow F, Welti S, Wijesinghe SN, Wu F, Xu R, Yang ZL, Yilmaz N, Yurkov A, Zhao L, Zhao RL, Zhou N, Hyde KD, Crous PW (2024). What are the 100 most cited fungal genera? Studies in Mycology 108: 1-411. doi: 10.3114/sim.2024.108.01.
Collapse
Affiliation(s)
- C.S. Bhunjun
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Y.J. Chen
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - C. Phukhamsakda
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - T. Boekhout
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- The Yeasts Foundation, Amsterdam, the Netherlands
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - E.H.C. McKenzie
- Landcare Research Manaaki Whenua, Private Bag 92170, Auckland, New Zealand
| | - E.C. Francisco
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Laboratório Especial de Micologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - J.C. Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - V. G. Hurdeal
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - J. Luangsa-ard
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - G. Perrone
- Institute of Sciences of Food Production, National Research Council (CNR-ISPA), Via G. Amendola 122/O, 70126 Bari, Italy
| | - C.M. Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - F.Y. Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - J. Błaszkowski
- Laboratory of Plant Protection, Department of Shaping of Environment, West Pomeranian University of Technology in Szczecin, Słowackiego 17, PL-71434 Szczecin, Poland
| | - U. Braun
- Martin Luther University, Institute of Biology, Department of Geobotany and Botanical Garden, Neuwerk 21, 06099 Halle (Saale), Germany
| | - F.A. de Souza
- Núcleo de Biologia Aplicada, Embrapa Milho e Sorgo, Empresa Brasileira de Pesquisa Agropecuária, Rodovia MG 424 km 45, 35701–970, Sete Lagoas, MG, Brazil
| | - M.B. de Queiroz
- Programa de Pós-graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal-RN, 59078-970, Brazil
| | - A.K. Dutta
- Molecular & Applied Mycology Laboratory, Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati - 781014, Assam, India
| | - D. Gonkhom
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - B.T. Goto
- Programa de Pós-graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal-RN, 59078-970, Brazil
| | - V. Guarnaccia
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Braccini 2, 10095 Grugliasco, TO, Italy
| | - F. Hagen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - M.A. Lachance
- Department of Biology, University of Western Ontario London, Ontario, Canada N6A 5B7
| | - J.J. Li
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - K.Y. Luo
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - F. Magurno
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - S. Mongkolsamrit
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - V. Robert
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - N. Roy
- Molecular & Applied Mycology Laboratory, Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati - 781014, Assam, India
| | - S. Tibpromma
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, P.R. China
| | - D.N. Wanasinghe
- Center for Mountain Futures, Kunming Institute of Botany, Honghe 654400, Yunnan, China
| | - D.Q. Wang
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - D.P. Wei
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
| | - C.L. Zhao
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - W. Aiphuk
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - O. Ajayi-Oyetunde
- Syngenta Crop Protection, 410 S Swing Rd, Greensboro, NC. 27409, USA
| | - T.D. Arantes
- Laboratório de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, GO, Brazil
| | - J.C. Araujo
- Mykocosmos - Mycology and Science Communication, Rua JP 11 Qd. 18 Lote 13, Jd. Primavera 1ª etapa, Post Code 75.090-260, Anápolis, Goiás, Brazil
- Secretaria de Estado da Educação de Goiás (SEDUC/ GO), Quinta Avenida, Quadra 71, número 212, Setor Leste Vila Nova, Goiânia, Goiás, 74643-030, Brazil
| | - D. Begerow
- Organismic Botany and Mycology, Institute of Plant Sciences and Microbiology, Ohnhorststraße 18, 22609 Hamburg, Germany
| | - M. Bakhshi
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - R.N. Barbosa
- Micoteca URM-Department of Mycology Prof. Chaves Batista, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, Center for Biosciences, University City, Recife, Pernambuco, Zip Code: 50670-901, Brazil
| | - F.H. Behrens
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany
| | - K. Bensch
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - J.D.P. Bezerra
- Laboratório de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, GO, Brazil
| | - P. Bilański
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - C.A. Bradley
- Department of Plant Pathology, University of Kentucky, Princeton, KY 42445, USA
| | - B. Bubner
- Johan Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei, Institut für Forstgenetik, Eberswalder Chaussee 3a, 15377 Waldsieversdorf, Germany
| | - T.I. Burgess
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Australia
| | - B. Buyck
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 39, 75231, Paris cedex 05, France
| | - N. Čadež
- University of Ljubljana, Biotechnical Faculty, Food Science and Technology Department Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - L. Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F.J.S. Calaça
- Mykocosmos - Mycology and Science Communication, Rua JP 11 Qd. 18 Lote 13, Jd. Primavera 1ª etapa, Post Code 75.090-260, Anápolis, Goiás, Brazil
- Secretaria de Estado da Educação de Goiás (SEDUC/ GO), Quinta Avenida, Quadra 71, número 212, Setor Leste Vila Nova, Goiânia, Goiás, 74643-030, Brazil
- Laboratório de Pesquisa em Ensino de Ciências (LabPEC), Centro de Pesquisas e Educação Científica, Universidade Estadual de Goiás, Campus Central (CEPEC/UEG), Anápolis, GO, 75132-903, Brazil
| | - L.J. Campbell
- School of Veterinary Medicine, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - P. Chaverri
- Centro de Investigaciones en Productos Naturales (CIPRONA) and Escuela de Biología, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
- Department of Natural Sciences, Bowie State University, Bowie, Maryland, U.S.A
| | - Y.Y. Chen
- Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - K.W.T. Chethana
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - B. Coetzee
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
- School for Data Sciences and Computational Thinking, University of Stellenbosch, South Africa
| | - M.M. Costa
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Q. Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F.A. Custódio
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa-MG, Brazil
| | - Y.C. Dai
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - U. Damm
- Senckenberg Museum of Natural History Görlitz, PF 300 154, 02806 Görlitz, Germany
| | - A.L.C.M.A. Santiago
- Post-graduate course in the Biology of Fungi, Department of Mycology, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, 50740-465, Recife, PE, Brazil
| | | | - J. Dijksterhuis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - A.J. Dissanayake
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - M. Doilom
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - W. Dong
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - E. Álvarez-Duarte
- Mycology Unit, Microbiology and Mycology Program, Biomedical Sciences Institute, University of Chile, Chile
| | - M. Fischer
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany
| | - A.J. Gajanayake
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - J. Gené
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
| | - D. Gomdola
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - A.A.M. Gomes
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife-PE, Brazil
| | - G. Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 5N6
| | - M.Q. He
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - L. Hou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Space Nutrition and Food Engineering, China Astronaut Research and Training Center, Beijing, 100094, China
| | - I. Iturrieta-González
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
- Department of Preclinic Sciences, Medicine Faculty, Laboratory of Infectology and Clinical Immunology, Center of Excellence in Translational Medicine-Scientific and Technological Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile
| | - F. Jami
- Plant Health and Protection, Agricultural Research Council, Pretoria, South Africa
| | - R. Jankowiak
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - R.S. Jayawardena
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, South Korea
| | - H. Kandemir
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - L. Kiss
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, QLD 4350 Toowoomba, Australia
- Centre for Research and Development, Eszterházy Károly Catholic University, H-3300 Eger, Hungary
| | - N. Kobmoo
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - T. Kowalski
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - L. Landi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - C.G. Lin
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - J.K. Liu
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - X.B. Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Temesvári krt. 62, Szeged H-6726, Hungary
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | | | - T. Luangharn
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - S.S.N. Maharachchikumbura
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - G.J. Makhathini Mkhwanazi
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - I.S. Manawasinghe
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - Y. Marin-Felix
- Department Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - A.R. McTaggart
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park 4102, Queensland, Australia
| | - P.A. Moreau
- Univ. Lille, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France
| | - O.V. Morozova
- Komarov Botanical Institute of the Russian Academy of Sciences, 2, Prof. Popov Str., 197376 Saint Petersburg, Russia
- Tula State Lev Tolstoy Pedagogical University, 125, Lenin av., 300026 Tula, Russia
| | - L. Mostert
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - H.D. Osiewacz
- Faculty for Biosciences, Institute for Molecular Biosciences, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | - D. Pem
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - R. Phookamsak
- Center for Mountain Futures, Kunming Institute of Botany, Honghe 654400, Yunnan, China
| | - S. Pollastro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - A. Pordel
- Plant Protection Research Department, Baluchestan Agricultural and Natural Resources Research and Education Center, AREEO, Iranshahr, Iran
| | - C. Poyntner
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - A.J.L. Phillips
- Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - M. Phonemany
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - I. Promputtha
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - A.R. Rathnayaka
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - A.M. Rodrigues
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo, 04023062, Brazil
| | - G. Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - L. Rothmann
- Plant Pathology, Department of Plant Sciences, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
| | - C. Salgado-Salazar
- Mycology and Nematology Genetic Diversity and Biology Laboratory, U.S. Department of Agriculture, Agriculture Research Service (USDA-ARS), 10300 Baltimore Avenue, Beltsville MD, 20705, USA
| | - M. Sandoval-Denis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - S.J. Saupe
- Institut de Biochimie et de Génétique Cellulaire, UMR 5095 CNRS Université de Bordeaux, 1 rue Camille Saint Saëns, 33077 Bordeaux cedex, France
| | - M. Scholler
- Staatliches Museum für Naturkunde Karlsruhe, Erbprinzenstraße 13, 76133 Karlsruhe, Germany
| | - P. Scott
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Australia
- Sustainability and Biosecurity, Department of Primary Industries and Regional Development, Perth WA 6000, Australia
| | - R.G. Shivas
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, QLD 4350 Toowoomba, Australia
| | - P. Silar
- Laboratoire Interdisciplinaire des Energies de Demain, Université de Paris Cité, 75205 Paris Cedex, France
| | - A.G.S. Silva-Filho
- IFungiLab, Departamento de Ciências e Matemática (DCM), Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP), São Paulo, BraziI
| | - C.M. Souza-Motta
- Micoteca URM-Department of Mycology Prof. Chaves Batista, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, Center for Biosciences, University City, Recife, Pernambuco, Zip Code: 50670-901, Brazil
| | - C.F.J. Spies
- Agricultural Research Council - Plant Health and Protection, Private Bag X5017, Stellenbosch, 7599, South Africa
| | - A.M. Stchigel
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
| | - K. Sterflinger
- Institute of Natural Sciences and Technology in the Arts (INTK), Academy of Fine Arts Vienna, Augasse 2–6, 1090, Vienna, Austria
| | - R.C. Summerbell
- Sporometrics, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - T.Y. Svetasheva
- Tula State Lev Tolstoy Pedagogical University, 125, Lenin av., 300026 Tula, Russia
| | - S. Takamatsu
- Mie University, Graduate School, Department of Bioresources, 1577 Kurima-Machiya, Tsu 514-8507, Japan
| | - B. Theelen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - R.C. Theodoro
- Laboratório de Micologia Médica, Instituto de Medicina Tropical do RN, Universidade Federal do Rio Grande do Norte, 59078-900, Natal, RN, Brazil
| | - M. Thines
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325 Frankfurt Am Main, Germany
| | - N. Thongklang
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - R. Torres
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Agrobiotech de Lleida, Parc de Gardeny, 25003, Lleida, Catalonia, Spain
| | - B. Turchetti
- Department of Agricultural, Food and Environmental Sciences and DBVPG Industrial Yeasts Collection, University of Perugia, Italy
| | - T. van den Brule
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- TIFN, P.O. Box 557, 6700 AN Wageningen, the Netherlands
| | - X.W. Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F. Wartchow
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, Paraiba, João Pessoa, Brazil
| | - S. Welti
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - S.N. Wijesinghe
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - F. Wu
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - R. Xu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, China
| | - Z.L. Yang
- Syngenta Crop Protection, 410 S Swing Rd, Greensboro, NC. 27409, USA
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - N. Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - A. Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - L. Zhao
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - R.L. Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - N. Zhou
- Department of Biological Sciences and Biotechnology, Botswana University of Science and Technology, Private Bag, 16, Palapye, Botswana
| | - K.D. Hyde
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht
| |
Collapse
|
22
|
Singh J, James D, Das S, Patel MK, Sutar RR, Achary VMM, Goel N, Gupta KJ, Reddy MK, Jha G, Sonti RV, Foyer CH, Thakur JK, Tripathy BC. Co-overexpression of SWEET sucrose transporters modulates sucrose synthesis and defence responses to enhance immunity against bacterial blight in rice. PLANT, CELL & ENVIRONMENT 2024; 47:2578-2596. [PMID: 38533652 DOI: 10.1111/pce.14901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 02/21/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024]
Abstract
Enhancing carbohydrate export from source to sink tissues is considered to be a realistic approach for improving photosynthetic efficiency and crop yield. The rice sucrose transporters OsSUT1, OsSWEET11a and OsSWEET14 contribute to sucrose phloem loading and seed filling. Crucially, Xanthomonas oryzae pv. oryzae (Xoo) infection in rice enhances the expression of OsSWEET11a and OsSWEET14 genes, and causes leaf blight. Here we show that co-overexpression of OsSUT1, OsSWEET11a and OsSWEET14 in rice reduced sucrose synthesis and transport leading to lower growth and yield but reduced susceptibility to Xoo relative to controls. The immunity-related hypersensitive response (HR) was enhanced in the transformed lines as indicated by the increased expression of defence genes, higher salicylic acid content and presence of HR lesions on the leaves. The results suggest that the increased expression of OsSWEET11a and OsSWEET14 in rice is perceived as a pathogen (Xoo) attack that triggers HR and results in constitutive activation of plant defences that are related to the signalling pathways of pathogen starvation. These findings provide a mechanistic basis for the trade-off between plant growth and immunity because decreased susceptibility against Xoo compromised plant growth and yield.
Collapse
Affiliation(s)
- Jitender Singh
- National Institute of Plant Genome Research, New Delhi, India
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Donald James
- Forest Biotechnology Department, Kerala Forest Research Institute, Thrissur, Kerala, India
| | - Shubhashis Das
- National Institute of Plant Genome Research, New Delhi, India
| | - Manish Kumar Patel
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion, Israel
| | | | | | - Naveen Goel
- National Institute of Plant Genome Research, New Delhi, India
| | | | - Malireddy K Reddy
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Gopaljee Jha
- National Institute of Plant Genome Research, New Delhi, India
| | - Ramesh V Sonti
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | | | - Jitendra Kumar Thakur
- National Institute of Plant Genome Research, New Delhi, India
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Baishnab C Tripathy
- Department of Biotechnology, Sharda University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
23
|
Prathi NB, Durga Rani CV, Prakasam V, Mohan YC, Mahendranath G, Sri Vidya GK, Neeraja CN, Sundaram RM, Mangrauthia SK. Oschib1 gene encoding a GH18 chitinase confers resistance against sheath blight disease of rice caused by Rhizoctonia solani AG1-IA. PLANT MOLECULAR BIOLOGY 2024; 114:41. [PMID: 38625509 DOI: 10.1007/s11103-024-01442-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 03/11/2024] [Indexed: 04/17/2024]
Abstract
Sheath blight disease of rice caused by Rhizoctonia solani AG1-IA, is a major fungal disease responsible for huge loss to grain yield and quality. The major limitation of achieving persistent and reliable resistance against R. solani is the governance of disease resistance trait by many genes. Therefore, functional characterization of new genes involved in sheath blight resistance is necessary to understand the mechanism of resistance as well as evolving effective strategies to manage the disease through host-plant resistance. In this study, we performed RNA sequencing of six diverse rice genotypes (TN1, BPT5204, Vandana, N22, Tetep, and Pankaj) from sheath and leaf tissue of control and fungal infected samples. The approach for identification of candidate resistant genes led to identification of 352 differentially expressed genes commonly present in all the six genotypes. 23 genes were analyzed for RT-qPCR expression which helped identification of Oschib1 showing differences in expression level in a time-course manner between susceptible and resistant genotypes. The Oschib1 encoding classIII chitinase was cloned from resistant variety Tetep and over-expressed in susceptible variety Taipei 309. The over-expression lines showed resistance against R. solani, as analyzed by detached leaf and whole plant assays. Interestingly, the resistance response was correlated with the level of transgene expression suggesting that the enzyme functions in a dose dependent manner. We report here the classIIIb chitinase from chromosome10 of rice showing anti-R. solani activity to combat the dreaded sheath blight disease.
Collapse
Affiliation(s)
- Naresh Babu Prathi
- Institute of Biotechnology, Professor Jayashankar Telangana State Agricultural University (PJTSAU), Rajendranagar, Hyderabad, 500030, India
- ICAR-Indian Council of Agricultural Research (ICAR)- Indian Institute of Rice Research, Hyderabad, 500030, India
| | - Chagamreddy Venkata Durga Rani
- Institute of Biotechnology, Professor Jayashankar Telangana State Agricultural University (PJTSAU), Rajendranagar, Hyderabad, 500030, India.
| | - Vellaisamy Prakasam
- ICAR-Indian Council of Agricultural Research (ICAR)- Indian Institute of Rice Research, Hyderabad, 500030, India
| | | | - Gandikota Mahendranath
- ICAR-Indian Council of Agricultural Research (ICAR)- Indian Institute of Rice Research, Hyderabad, 500030, India
| | - G K Sri Vidya
- Department of Molecular Biology and Biotechnology, SV Agriculture College, Tirupati, 517502, India
| | - C N Neeraja
- ICAR-Indian Council of Agricultural Research (ICAR)- Indian Institute of Rice Research, Hyderabad, 500030, India
| | - Raman Meenakshi Sundaram
- ICAR-Indian Council of Agricultural Research (ICAR)- Indian Institute of Rice Research, Hyderabad, 500030, India.
| | - Satendra K Mangrauthia
- ICAR-Indian Council of Agricultural Research (ICAR)- Indian Institute of Rice Research, Hyderabad, 500030, India.
| |
Collapse
|
24
|
Zhu Y, Tian Y, Han S, Wang J, Liu Y, Yin J. Structure, evolution, and roles of SWEET proteins in growth and stress responses in plants. Int J Biol Macromol 2024; 263:130441. [PMID: 38417760 DOI: 10.1016/j.ijbiomac.2024.130441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/23/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024]
Abstract
Carbohydrates are exported by the SWEET family of transporters, which is a novel class of carriers that can transport sugars across cell membranes and facilitate sugar's long-distance transport from source to sink organs in plants. SWEETs play crucial roles in a wide range of physiologically important processes by regulating apoplastic and symplastic sugar concentrations. These processes include host-pathogen interactions, abiotic stress responses, and plant growth and development. In the present review, we (i) describe the structure and organization of SWEETs in the cell membrane, (ii) discuss the roles of SWEETs in sugar loading and unloading processes, (iii) identify the distinct functions of SWEETs in regulating plant growth and development including flower, fruit, and seed development, (iv) shed light on the importance of SWEETs in modulating abiotic stress resistance, and (v) describe the role of SWEET genes during plant-pathogen interaction. Finally, several perspectives regarding future investigations for improving the understanding of sugar-mediated plant defenses are proposed.
Collapse
Affiliation(s)
- Yongxing Zhu
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Agriculture, Yangtze University, Jingzhou 434000, Hubei, China; Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou 434000, Hubei, China.
| | - Ye Tian
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou 434000, Hubei, China
| | - Shuo Han
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Agriculture, Yangtze University, Jingzhou 434000, Hubei, China.
| | - Jie Wang
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou 434000, Hubei, China.
| | - Yiqing Liu
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou 434000, Hubei, China
| | - Junliang Yin
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Agriculture, Yangtze University, Jingzhou 434000, Hubei, China.
| |
Collapse
|
25
|
Li Z, Guo Y, Jin S, Wu H. Genome-Wide Identification and Expression Profile Analysis of Sugars Will Eventually Be Exported Transporter ( SWEET) Genes in Zantedeschia elliottiana and Their Responsiveness to Pectobacterium carotovora subspecies Carotovora ( Pcc) Infection. Int J Mol Sci 2024; 25:2004. [PMID: 38396683 PMCID: PMC10888187 DOI: 10.3390/ijms25042004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
SWEET, sugars will eventually be exported transporter, is a novel class of sugar transporter proteins that can transport sugars across membranes down a concentration gradient. It plays a key role in plant photosynthetic assimilates, phloem loading, nectar secretion from nectar glands, seed grouting, pollen development, pathogen interactions, and adversity regulation, and has received widespread attention in recent years. To date, systematic analysis of the SWEET family in Zantedeschia has not been documented, although the genome has been reported in Zantedeschia elliottiana. In this study, 19 ZeSWEET genes were genome-wide identified in Z. elliottiana, and unevenly located in 10 chromosomes. They were further clustered into four clades by a phylogenetic tree, and almost every clade has its own unique motifs. Synthetic analysis confirmed two pairs of segmental duplication events of ZeSWEET genes. Heatmaps of tissue-specific and Pectobacterium carotovora subsp. Carotovora (Pcc) infection showed that ZeSWEET genes had different expression patterns, so SWEETs may play widely varying roles in development and stress tolerance in Zantedeschia. Moreover, quantitative reverse transcription-PCR (qRT-PCR) analysis revealed that some of the ZeSWEETs responded to Pcc infection, among which eight genes were significantly upregulated and six genes were significantly downregulated, revealing their potential functions in response to Pcc infection. The promoter sequences of ZeSWEETs contained 51 different types of the 1380 cis-regulatory elements, and each ZeSWEET gene contained at least two phytohormone responsive elements and one stress response element. In addition, a subcellular localization study indicated that ZeSWEET07 and ZeSWEET18 were found to be localized to the plasma membrane. These findings provide insights into the characteristics of SWEET genes and contribute to future studies on the functional characteristics of ZeSWEET genes, and then improve Pcc infection tolerance in Zantedeschia through molecular breeding.
Collapse
Affiliation(s)
- Ziwei Li
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China;
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China;
| | - Yanbing Guo
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China;
| | - Shoulin Jin
- College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming 650201, China;
| | - Hongzhi Wu
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China;
| |
Collapse
|
26
|
Zhang Q, Chen C, Guo R, Zhu X, Tao X, He M, Li Z, Shen L, Li Q, Ren D, Hu J, Zhu L, Zhang G, Qian Q. Plasma membrane-localized hexose transporter OsSWEET1b, affects sugar metabolism and leaf senescence. PLANT CELL REPORTS 2024; 43:29. [PMID: 38183427 DOI: 10.1007/s00299-023-03125-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/04/2023] [Indexed: 01/08/2024]
Abstract
KEY MESSAGE OsSWEET1b is a hexose transporter protein, which localized in cell membranes and interacting with itself to form homodimer and knockout of OsSWEET1b resulted in reduced leaves sugar content and accelerating leaf senescence. In the rice genome, the SWEET gene family contains 21 homologous members, but the role of some of them in rice growth and development is still unknown. The function of the sugar transporter OsSWEET1b protein in rice was identified in this research. Expression analysis showed that the expression levels of OsSWEET1b in leaves were higher than that in other tissues. The hexose transport experiment confirmed that OsSWEET1b has glucose and galactose transporter activity in yeast. Subcellular localization indicates that OsSWEET1b protein was targeted to the plasma membrane and BiFC analysis showed that OsSWEET1b interacts with itself to form homodimers. Functional analysis demonstrated that the ossweet1b mutant plants were have reduced the sucrose, glucose, fructose, starch and galactose contents, and induced carbon starvation-related gene expression, which might lead to carbon starvation in leaves at filling stage. The ossweet1b knockout plants showed decreased chlorophyll content and antioxidant enzyme activity, and increased ROS accumulation in leaves, leading to leaf cell death and premature senescence phenotype at filling stage. In ossweet1b mutants, the leaf senescence-related gene expression levels were increased and the abundance of photosynthesis-related proteins was decreased. Loss of OsSWEET1b were affected the starch, sucrose metabolism and carbon fixation in photosynthetic organelles pathway by RNA-seq analysis. The destruction of OsSWEET1b function will cause sugar starvation, decreased photosynthesis and leaf senescence, which leading to reduced rice yield. Collectively, our results suggest that the OsSWEET1b plays a key role in rice leaves carbohydrate metabolism and leaf senescence.
Collapse
Affiliation(s)
- Qiang Zhang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572000, China
| | - Changzhao Chen
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Rui Guo
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Xiaofang Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing, 210008, China
| | - Xinyu Tao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310006, Zhejiang, China
| | - Mengxing He
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, China
| | - Zhiwen Li
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing, 210008, China
| | - Lan Shen
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Qing Li
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Deyong Ren
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Jiang Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Li Zhu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Guangheng Zhang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Qian Qian
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China.
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572000, China.
| |
Collapse
|
27
|
Jian Y, Gong D, Wang Z, Liu L, He J, Han X, Tsuda K. How plants manage pathogen infection. EMBO Rep 2024; 25:31-44. [PMID: 38177909 PMCID: PMC10897293 DOI: 10.1038/s44319-023-00023-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/27/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024] Open
Abstract
To combat microbial pathogens, plants have evolved specific immune responses that can be divided into three essential steps: microbial recognition by immune receptors, signal transduction within plant cells, and immune execution directly suppressing pathogens. During the past three decades, many plant immune receptors and signaling components and their mode of action have been revealed, markedly advancing our understanding of the first two steps. Activation of immune signaling results in physical and chemical actions that actually stop pathogen infection. Nevertheless, this third step of plant immunity is under explored. In addition to immune execution by plants, recent evidence suggests that the plant microbiota, which is considered an additional layer of the plant immune system, also plays a critical role in direct pathogen suppression. In this review, we summarize the current understanding of how plant immunity as well as microbiota control pathogen growth and behavior and highlight outstanding questions that need to be answered.
Collapse
Affiliation(s)
- Yinan Jian
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Dianming Gong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070, Wuhan, China
| | - Zhe Wang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Lijun Liu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Jingjing He
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Xiaowei Han
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Kenichi Tsuda
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China.
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, 430070, Wuhan, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China.
| |
Collapse
|
28
|
Han X, Han S, Zhu Y, Liu Y, Gao S, Yin J, Wang F, Yao M. Genome-Wide Identification and Expression Analysis of the SWEET Gene Family in Capsicum annuum L. Int J Mol Sci 2023; 24:17408. [PMID: 38139237 PMCID: PMC10744294 DOI: 10.3390/ijms242417408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Sugars will eventually be exported transporters (SWEETs) are a novel class of sugar transport proteins that play a crucial role in plant growth, development, and response to stress. However, there is a lack of systematic research on SWEETs in Capsicum annuum L. In this study, 33 CaSWEET genes were identified through bioinformatics analysis. The Ka/Ks analysis indicated that SWEET genes are highly conserved not only among peppers but also among Solanaceae species and have experienced strong purifying selection during evolution. The Cis-elements analysis showed that the light-responsive element, abscisic-acid-responsive element, jasmonic-acid-responsive element, and anaerobic-induction-responsive element are widely distributed in the promoter regions of CaSWEETs. The expression pattern analysis revealed that CaSWEETs exhibit tissue specificity and are widely involved in pepper growth, development, and stress responses. The post-transcription regulation analysis revealed that 20 pepper miRNAs target and regulate 16 CaSWEETs through cleavage and translation inhibition mechanisms. The pathogen inoculation assay showed that CaSWEET16 and CaSWEET22 function as susceptibility genes, as the overexpression of these genes promotes the colonization of pathogens, whereas CaSWEET31 functions as a resistance gene. In conclusion, through systematic identification and characteristic analysis, a comprehensive understanding of CaSWEET was obtained, which lays the foundation for further studies on the biological functions of SWEET genes.
Collapse
Affiliation(s)
- Xiaowen Han
- Institute of Cash Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (X.H.); (S.G.); (F.W.); (M.Y.)
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou 434025, China; (S.H.); (Y.Z.); (Y.L.)
| | - Shuo Han
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou 434025, China; (S.H.); (Y.Z.); (Y.L.)
| | - Yongxing Zhu
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou 434025, China; (S.H.); (Y.Z.); (Y.L.)
| | - Yiqing Liu
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou 434025, China; (S.H.); (Y.Z.); (Y.L.)
| | - Shenghua Gao
- Institute of Cash Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (X.H.); (S.G.); (F.W.); (M.Y.)
| | - Junliang Yin
- Institute of Cash Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (X.H.); (S.G.); (F.W.); (M.Y.)
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou 434025, China; (S.H.); (Y.Z.); (Y.L.)
| | - Fei Wang
- Institute of Cash Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (X.H.); (S.G.); (F.W.); (M.Y.)
| | - Minghua Yao
- Institute of Cash Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (X.H.); (S.G.); (F.W.); (M.Y.)
| |
Collapse
|
29
|
Wang Y, Li W, Qu J, Li F, Du W, Weng J. Genome-Wide Characterization of the Maize ( Zea mays L.) WRKY Transcription Factor Family and Their Responses to Ustilago maydis. Int J Mol Sci 2023; 24:14916. [PMID: 37834371 PMCID: PMC10573107 DOI: 10.3390/ijms241914916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/18/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Members of the WRKY transcription factor (TF) family are unique to plants and serve as important regulators of diverse physiological processes, including the ability of plants to manage biotic and abiotic stressors. However, the functions of specific WRKY family members in the context of maize responses to fungal pathogens remain poorly understood, particularly in response to Ustilago maydis (DC.) Corda (U. maydis), which is responsible for the devastating disease known as corn smut. A systematic bioinformatic approach was herein employed for the characterization of the maize WRKY TF family, leading to the identification of 120 ZmWRKY genes encoded on 10 chromosomes. Further structural and phylogenetic analyses of these TFs enabled their classification into seven different subgroups. Segmental duplication was established as a major driver of ZmWRKY family expansion in gene duplication analyses, while the Ka/Ks ratio suggested that these ZmWRKY genes had experienced strong purifying selection. When the transcriptional responses of these genes to pathogen inoculation were evaluated, seven U. maydis-inducible ZmWRKY genes were identified, as validated using a quantitative real-time PCR approach. All seven of these WKRY proteins were subsequently tested using a yeast one-hybrid assay approach, which revealed their ability to directly bind the ZmSWEET4b W-box element, thereby controlling the U. maydis-inducible upregulation of ZmSWEET4b. These results suggest that these WRKY TFs can control sugar transport in the context of fungal infection. Overall, these data offer novel insight into the evolution, transcriptional regulation, and functional characteristics of the maize WRKY family, providing a basis for future research aimed at exploring the mechanisms through which these TFs control host plant responses to common smut and other fungal pathogens.
Collapse
Affiliation(s)
- Yang Wang
- Specialty Corn Institute, College of Agronomy, Shenyang Agricultural University, Dongling Street, Shenhe District, Shenyang 110866, China; (Y.W.); (J.Q.); (F.L.)
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Zhongguancun South Street, Haidian District, Beijing 100081, China;
| | - Wangshu Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Zhongguancun South Street, Haidian District, Beijing 100081, China;
| | - Jianzhou Qu
- Specialty Corn Institute, College of Agronomy, Shenyang Agricultural University, Dongling Street, Shenhe District, Shenyang 110866, China; (Y.W.); (J.Q.); (F.L.)
| | - Fenghai Li
- Specialty Corn Institute, College of Agronomy, Shenyang Agricultural University, Dongling Street, Shenhe District, Shenyang 110866, China; (Y.W.); (J.Q.); (F.L.)
| | - Wanli Du
- Specialty Corn Institute, College of Agronomy, Shenyang Agricultural University, Dongling Street, Shenhe District, Shenyang 110866, China; (Y.W.); (J.Q.); (F.L.)
| | - Jianfeng Weng
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Zhongguancun South Street, Haidian District, Beijing 100081, China;
| |
Collapse
|
30
|
Liang XG, Gao Z, Fu XX, Chen XM, Shen S, Zhou SL. Coordination of carbon assimilation, allocation, and utilization for systemic improvement of cereal yield. FRONTIERS IN PLANT SCIENCE 2023; 14:1206829. [PMID: 37731984 PMCID: PMC10508850 DOI: 10.3389/fpls.2023.1206829] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 08/14/2023] [Indexed: 09/22/2023]
Abstract
The growth of yield outputs is dwindling after the first green revolution, which cannot meet the demand for the projected population increase by the mid-century, especially with the constant threat from extreme climates. Cereal yield requires carbon (C) assimilation in the source for subsequent allocation and utilization in the sink. However, whether the source or sink limits yield improvement, a crucial question for strategic orientation in future breeding and cultivation, is still under debate. To narrow the knowledge gap and capture the progress, we focus on maize, rice, and wheat by briefly reviewing recent advances in yield improvement by modulation of i) leaf photosynthesis; ii) primary C allocation, phloem loading, and unloading; iii) C utilization and grain storage; and iv) systemic sugar signals (e.g., trehalose 6-phosphate). We highlight strategies for optimizing C allocation and utilization to coordinate the source-sink relationships and promote yields. Finally, based on the understanding of these physiological mechanisms, we envisage a future scenery of "smart crop" consisting of flexible coordination of plant C economy, with the goal of yield improvement and resilience in the field population of cereals crops.
Collapse
Affiliation(s)
- Xiao-Gui Liang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education and Jiangxi Province/The Laboratory for Phytochemistry and Botanical Pesticides, College of Agriculture, Jiangxi Agricultural University, Nanchang, China
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, Hebei, China
| | - Zhen Gao
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, Hebei, China
| | - Xiao-Xiang Fu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education and Jiangxi Province/The Laboratory for Phytochemistry and Botanical Pesticides, College of Agriculture, Jiangxi Agricultural University, Nanchang, China
| | - Xian-Min Chen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Si Shen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Shun-Li Zhou
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
31
|
Liu T, Cui Q, Ban Q, Zhou L, Yuan Y, Zhang A, Wang Q, Wang C. Identification and expression analysis of the SWEET genes in radish reveal their potential functions in reproductive organ development. Mol Biol Rep 2023; 50:7535-7546. [PMID: 37501046 DOI: 10.1007/s11033-023-08701-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND Sugars produced by photosynthesis provide energy for biological activities and the skeletons for macromolecules; they also perform multiple physiological functions in plants. Sugar transport across plasma membranes mediated by the Sugar Will Eventually be Exported Transporter (SWEET) genes substantially affects these processes. However, the evolutionary dynamics and function of the SWEET genes are largely unknown in radish, an important Brassicaceae species. METHODS AND RESULTS Genome-wide identification and analysis of the RsSWEET genes from the recently updated radish reference genome was conducted using bioinformatics methods. The tissue-specific expression was analyzed using public RNA-seq data, and the expression levels in the bud, stamens, pistils, pericarps and seeds at 15 and 30 days after flowering (DAF) were determined by RT‒qPCR. Thirty-seven RsSWEET genes were identified and named according to their Arabidopsis homologous. They are unevenly distributed across the nine radish chromosomes and were further divided into four clades by phylogenetic analysis. There are 5-7 transmembrane domains and at least one MtN3_slv domain in the RsSWEETs. RNA-seq and RT‒qPCR revealed that the RsSWEETs exhibit higher expression levels in the reproductive organs, indicating that these genes might play vital roles in reproductive organ development. RsSWEET15.1 was found to be especially expressed in siliques according to the RNA-seq data, and the RT‒qPCR results further confirmed that it was most highly expressed levels in the seeds at 30 DAF, followed by the pericarp at 15 DAF, indicating that it is involved in seed growth and development. CONCLUSIONS This study suggests that the RsSWEET genes play vital roles in reproductive organ development and provides a theoretical basis for the future functional analysis of RsSWEETs in radish.
Collapse
Affiliation(s)
- Tongjin Liu
- College of Horticulture, Jinling Institute of Technology, Nanjing, 210038, China.
| | - Qunxiang Cui
- College of Horticulture, Jinling Institute of Technology, Nanjing, 210038, China
| | - Qiuyan Ban
- College of Horticulture, Jinling Institute of Technology, Nanjing, 210038, China
| | - Lu Zhou
- College of Horticulture, Jinling Institute of Technology, Nanjing, 210038, China
| | - Yinghui Yuan
- College of Horticulture, Jinling Institute of Technology, Nanjing, 210038, China
| | - Aihui Zhang
- College of Horticulture, Jinling Institute of Technology, Nanjing, 210038, China
| | - Qian Wang
- College of Horticulture, Jinling Institute of Technology, Nanjing, 210038, China
| | - Changyi Wang
- College of Horticulture, Jinling Institute of Technology, Nanjing, 210038, China.
| |
Collapse
|
32
|
Chen J, Sun M, Xiao G, Shi R, Zhao C, Zhang Q, Yang S, Xuan Y. Starving the enemy: how plant and microbe compete for sugar on the border. FRONTIERS IN PLANT SCIENCE 2023; 14:1230254. [PMID: 37600180 PMCID: PMC10433384 DOI: 10.3389/fpls.2023.1230254] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023]
Abstract
As the primary energy source for a plant host and microbe to sustain life, sugar is generally exported by Sugars Will Eventually be Exported Transporters (SWEETs) to the host extracellular spaces or the apoplast. There, the host and microbes compete for hexose, sucrose, and other important nutrients. The host and microbial monosaccharide transporters (MSTs) and sucrose transporters (SUTs) play a key role in the "evolutionary arms race". The result of this competition hinges on the proportion of sugar distribution between the host and microbes. In some plants (such as Arabidopsis, corn, and rice) and their interacting pathogens, the key transporters responsible for sugar competition have been identified. However, the regulatory mechanisms of sugar transporters, especially in the microbes require further investigation. Here, the key transporters that are responsible for the sugar competition in the host and pathogen have been identified and the regulatory mechanisms of the sugar transport have been briefly analyzed. These data are of great significance to the increase of the sugar distribution in plants for improvement in the yield.
Collapse
Affiliation(s)
- Jingsheng Chen
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, China
| | - Miao Sun
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, China
| | - Guosheng Xiao
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, China
| | - Rujie Shi
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, China
| | - Chanjuan Zhao
- Chongqing Three Gorges Vocational College, Wanzhou, China
| | - Qianqian Zhang
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, China
| | - Shuo Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yuanhu Xuan
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
33
|
Zhang S, Wang H, Wang T, Zhang J, Liu W, Fang H, Zhang Z, Peng F, Chen X, Wang N. Abscisic acid and regulation of the sugar transporter gene MdSWEET9b promote apple sugar accumulation. PLANT PHYSIOLOGY 2023; 192:2081-2101. [PMID: 36815241 PMCID: PMC10315282 DOI: 10.1093/plphys/kiad119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/02/2022] [Accepted: 12/16/2022] [Indexed: 06/18/2023]
Abstract
Enhancing fruit sugar contents, especially for high-flavonoid apples with a sour taste, is one of the main goals of horticultural crop breeders. This study analyzed sugar accumulation and the underlying mechanisms in the F2 progenies of a hybridization between the high-sugar apple (Malus × domestica) variety "Gala" and high-flavonoid apple germplasm "CSR6R6". We revealed that MdSWEET9b (sugars will eventually be exported transporter) helps mediate sugar accumulation in fruits. Functional characterization of MdSWEET9b in yeast mutants lacking sugar transport as well as in overexpressing and CRISPR/Cas9 knockdown apple calli revealed MdSWEET9b could transport sucrose specifically, ultimately promoting normal yeast growth and accumulation of total sugar contents. Moreover, MdWRKY9 bound to the MdSWEET9b promoter and regulated its activity, which responded to abscisic acid (ABA) signaling. Furthermore, MdWRKY9 interacted with MdbZIP23 (basic leucine zipper) and MdbZIP46, key ABA signal transducers, at the protein and DNA levels to enhance its regulatory effect on MdSWEET9b expression, thereby influencing sugar accumulation. Based on the contents of ABA in lines with differing sugar contents and the effects of ABA treatments on fruits and calli, we revealed ABA as one of the main factors responsible for the diversity in apple fruit sugar content. The results of this study have clarified how MdSWEET9b influences fruit sugar accumulation, while also further elucidating the regulatory effects of the ABA-signaling network on fruit sugar accumulation. This work provides a basis for future explorations of the crosstalk between hormone and sugar metabolism pathways.
Collapse
Affiliation(s)
- Shuhui Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Sciences and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
| | - Hui Wang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shanxi, China
| | - Tong Wang
- State Key Laboratory of Crop Biology, College of Horticulture Sciences and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
| | - Jing Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Sciences and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
| | - Wenjun Liu
- State Key Laboratory of Crop Biology, College of Horticulture Sciences and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
| | - Hongcheng Fang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai’an 271018, Shandong, China
| | - Zongying Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Sciences and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
| | | | - Xuesen Chen
- State Key Laboratory of Crop Biology, College of Horticulture Sciences and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
| | - Nan Wang
- State Key Laboratory of Crop Biology, College of Horticulture Sciences and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
| |
Collapse
|
34
|
Lata C, Manjul AS, Prasad P, Gangwar OP, Adhikari S, Sonu, Kumar S, Bhardwaj SC, Singh G, Samota MK, Choudhary M, Bohra A, Varshney RK. Unraveling the diversity and functions of sugar transporters for sustainable management of wheat rust. Funct Integr Genomics 2023; 23:213. [PMID: 37378707 DOI: 10.1007/s10142-023-01150-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/03/2023] [Accepted: 06/21/2023] [Indexed: 06/29/2023]
Abstract
Plant diseases threaten global food security by reducing the production and quality of produce. Identification of disease resistance sources and their utilization in crop improvement is of paramount significance. However, constant evolution and occurrence of new, more aggressive and highly virulent pathotypes disintegrates the resistance of cultivars and hence demanding the steady stream of disease resistance cultivars as the most sustainable way of disease management. In this context, molecular tools and technologies facilitate an efficient and rational engineering of crops to develop cultivars having resistance to multiple pathogens and pathotypes. Puccinia spp. is biotrophic fungi that interrupt crucial junctions for causing infection, thus risking nutrient access of wheat plants and their subsequent growth. Sugar is a major carbon source taken from host cells by pathogens. Sugar transporters (STPs) are key players during wheat-rust interactions that regulate the transport, exchange, and allocation of sugar at plant-pathogen interfaces. Intense competition for accessing sugars decides fate of incompatibility or compatibility between host and the pathogen. The mechanism of transport, allocation, and signaling of sugar molecules and role of STPs and their regulatory switches in determining resistance/susceptibility to rusts in wheat is poorly understood. This review discusses the molecular mechanisms involving STPs in distribution of sugar molecules for determination of rust resistance/susceptibility in wheat. We also present perspective on how detailed insights on the STP's role in wheat-rust interaction will be helpful in devising efficient strategies for wheat rust management.
Collapse
Affiliation(s)
- Charu Lata
- ICAR-IIWBR, Regional Station, Flowerdale, Shimla, (HP), India.
| | | | - Pramod Prasad
- ICAR-IIWBR, Regional Station, Flowerdale, Shimla, (HP), India
| | - O P Gangwar
- ICAR-IIWBR, Regional Station, Flowerdale, Shimla, (HP), India
| | - Sneha Adhikari
- ICAR-IIWBR, Regional Station, Flowerdale, Shimla, (HP), India
| | - Sonu
- ICAR-IIWBR, Regional Station, Flowerdale, Shimla, (HP), India
| | - Subodh Kumar
- ICAR-IIWBR, Regional Station, Flowerdale, Shimla, (HP), India
| | - S C Bhardwaj
- ICAR-IIWBR, Regional Station, Flowerdale, Shimla, (HP), India
| | - Gyanendra Singh
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| | | | - Mukesh Choudhary
- ICAR-Indian Institute of Maize Research, Ludhiana, Punjab, 141004, India
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6009, Australia
| | - Abhishek Bohra
- Centre for Crop and Food Innovation, Food Futures Institute, WA State Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
| | - Rajeev K Varshney
- Centre for Crop and Food Innovation, Food Futures Institute, WA State Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
| |
Collapse
|
35
|
Aparicio Chacón MV, Van Dingenen J, Goormachtig S. Characterization of Arbuscular Mycorrhizal Effector Proteins. Int J Mol Sci 2023; 24:9125. [PMID: 37298075 PMCID: PMC10252856 DOI: 10.3390/ijms24119125] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/17/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023] Open
Abstract
Plants are colonized by various fungi with both pathogenic and beneficial lifestyles. One type of colonization strategy is through the secretion of effector proteins that alter the plant's physiology to accommodate the fungus. The oldest plant symbionts, the arbuscular mycorrhizal fungi (AMF), may exploit effectors to their benefit. Genome analysis coupled with transcriptomic studies in different AMFs has intensified research on the effector function, evolution, and diversification of AMF. However, of the current 338 predicted effector proteins from the AM fungus Rhizophagus irregularis, only five have been characterized, of which merely two have been studied in detail to understand which plant proteins they associate with to affect the host physiology. Here, we review the most recent findings in AMF effector research and discuss the techniques used for the functional characterization of effector proteins, from their in silico prediction to their mode of action, with an emphasis on high-throughput approaches for the identification of plant targets of the effectors through which they manipulate their hosts.
Collapse
Affiliation(s)
- María V. Aparicio Chacón
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium;
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Judith Van Dingenen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium;
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium;
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| |
Collapse
|
36
|
Chen J, Xuan Y, Yi J, Xiao G, Yuan DP, Li D. Progress in rice sheath blight resistance research. FRONTIERS IN PLANT SCIENCE 2023; 14:1141697. [PMID: 37035075 PMCID: PMC10080073 DOI: 10.3389/fpls.2023.1141697] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Rice sheath blight (ShB) disease poses a major threat to rice yield throughout the world. However, the defense mechanisms against ShB in rice remain largely unknown. ShB resistance is a typical quantitative trait controlled by multiple genes. With the rapid development of molecular methods, many quantitative trait loci (QTLs) related to agronomic traits, biotic and abiotic stresses, and yield have been identified by genome-wide association studies. The interactions between plants and pathogens are controlled by various plant hormone signaling pathways, and the pathways synergistically or antagonistically interact with each other, regulating plant growth and development as well as the defense response. This review summarizes the regulatory effects of hormones including auxin, ethylene, salicylic acid, jasmonic acid, brassinosteroids, gibberellin, abscisic acid, strigolactone, and cytokinin on ShB and the crosstalk between the various hormones. Furthermore, the effects of sugar and nitrogen on rice ShB resistance, as well as information on genes related to ShB resistance in rice and their effects on ShB are also discussed. In summary, this review is a comprehensive description of the QTLs, hormones, nutrition, and other defense-related genes related to ShB in rice. The prospects of targeting the resistance mechanism as a strategy for controlling ShB in rice are also discussed.
Collapse
Affiliation(s)
- Jingsheng Chen
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, China
| | - Yuanhu Xuan
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Jianghui Yi
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, China
| | - Guosheng Xiao
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, China
| | - De Peng Yuan
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Dandan Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
37
|
Chang B, Zhao L, Feng Z, Wei F, Zhang Y, Zhang Y, Huo P, Cheng Y, Zhou J, Feng H. Galactosyltransferase GhRFS6 interacting with GhOPR9 involved in defense against Verticillium wilt in cotton. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 328:111582. [PMID: 36632889 DOI: 10.1016/j.plantsci.2022.111582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/23/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
The soil-borne fungus Verticillium dahliae causes Verticillium wilt (VW), one of the most devastating diseases of cotton. In a previous study showed that GhOPR9 played a positive role in resistance of cotton to VW through the regulation of the Jasmonic acid (JA) pathway. Furtherly, we also found that GhOPR9 interacted with a sucrose galactosyltransferase GhRFS6. Raffinose synthase (RFS) plays a key role in plant innate immunity, including the abiotic stress of drought, darkness. However, there were few reports on the effects of RFS on biotic stress. In this study, we verified the function of GhRFS6 to VW. The expression analysis showed that the GhRFS6 may be regulated by various stresses, and it was upregulated under Vd076 and Vd991 pressures. Inhibition of GhRFS6 expression, hydrogen peroxide (H2O2) content, lignin content, cell wall thickness and a series of defense responses were decreased, and the resistance of cotton to V. dahliae was decreased. In addition, this study showed that GhRFS6 has glycosyltransferase activity and can participate in the regulation of α-galactosidase activity and raffinose and inositol synthesis. And that galactose was accumulated in cotton roots after GhRFS6 silencing, which is beneficial for the colonization and growth of V. dahliae. Furthermore, overexpression of GhRFS6 in Arabidopsis thaliana enhanced plant resistance to V. dahliae. In GUS staining, the promoter expression position of GhRFS6 was also altered after V. dahliae infection. Meanwhile, GhRFS6 has also been shown to resist VW through the regulation of the JA pathway. These results suggest that GhRFS6 is a potential molecular target for improving cotton resistance to VW.
Collapse
Affiliation(s)
- Baiyang Chang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Lihong Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Zili Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Feng Wei
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Yalin Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Yihao Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Peng Huo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Yong Cheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Jinglong Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China.
| | - Hongjie Feng
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China.
| |
Collapse
|
38
|
Zhou Y, Zhao D, Duan Y, Chen L, Fan H, Wang Y, Liu X, Chen LQ, Xuan Y, Zhu X. AtSWEET1 negatively regulates plant susceptibility to root-knot nematode disease. FRONTIERS IN PLANT SCIENCE 2023; 14:1010348. [PMID: 36824200 PMCID: PMC9941640 DOI: 10.3389/fpls.2023.1010348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The root-knot nematode Meloidogyne incognita is a pathogenic pest that causes severe economic loss to agricultural production by forming a parasitic relationship with its hosts. During the development of M. incognita in the host plant roots, giant cells are formed as a nutrient sink. However, the roles of sugar transporters during the giant cells gain sugar from the plant cells are needed to improve. Meanwhile, the eventual function of sugars will eventually be exported transporters (SWEETs) in nematode-plant interactions remains unclear. In this study, the expression patterns of Arabidopsis thaliana SWEETs were examined by inoculation with M. incognita at 3 days post inoculation (dpi) (penetration stage) and 18 dpi (developing stage). We found that few AtSWEETs responded sensitively to M. incognita inoculation, with the highest induction of AtSWEET1 (AT1G21460), a glucose transporter gene. Histological analyses indicated that the β-glucuronidase (GUS) and green fluorescent protein (GFP) signals were observed specifically in the galls of AtSWEET1-GUS and AtSWEET1-GFP transgenic plant roots, suggesting that AtSWEET1 was induced specifically in the galls. Genetic studies have shown that parasitism of M. incognita was significantly affected in atsweet1 compared to wild-type and complementation plants. In addition, parasitism of M. incognita was significantly affected in atsweet10 but not in atsweet13 and atsweet14, expression of which was induced by inoculation with M. incognita. Taken together, these data prove that SWEETs play important roles in plant and nematode interactions.
Collapse
Affiliation(s)
- Yuan Zhou
- Nematology Institute of Northern China, College of Plant Protection, Shenyang Agriculture University, Shenyang, China
| | - Dan Zhao
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Yuxi Duan
- Nematology Institute of Northern China, College of Plant Protection, Shenyang Agriculture University, Shenyang, China
| | - Lijie Chen
- Nematology Institute of Northern China, College of Plant Protection, Shenyang Agriculture University, Shenyang, China
| | - Haiyan Fan
- Nematology Institute of Northern China, College of Plant Protection, Shenyang Agriculture University, Shenyang, China
| | - Yuanyuan Wang
- College of Biological Science and Technology, Shenyang Agriculture University, Shenyang, China
| | - Xiaoyu Liu
- College of Sciences, Shenyang Agriculture University, Shenyang, China
| | - Li-Qing Chen
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Yuanhu Xuan
- Nematology Institute of Northern China, College of Plant Protection, Shenyang Agriculture University, Shenyang, China
| | - Xiaofeng Zhu
- Nematology Institute of Northern China, College of Plant Protection, Shenyang Agriculture University, Shenyang, China
| |
Collapse
|
39
|
Tamilzharasi M, Kumaresan D, Thiruvengadam V, Souframanien J, Latha TKS, Manikanda Boopathi N, Jayamani P. Development and characterization of gamma ray and EMS induced mutants for powdery mildew resistance in blackgram. Int J Radiat Biol 2023:1-18. [PMID: 36745747 DOI: 10.1080/09553002.2023.2173820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE During post-rainy and rice fallow cropping seasons, popular blackgram varieties are severely affected by powdery mildew leading to severe yield loss. The lack of natural genetic variability for powdery mildew resistance in blackgram germplasm warrants mutation breeding. Hence, in this study, blackgram cultivar CO6 was mutagenized with gamma ray and ethyl methanesulphonate (EMS) to create variability for powdery mildew resistance. MATERIALS AND METHODS Seeds of blackgram CO6 were irradiated with three doses of gamma ray (200 Gy, 300 Gy and 400 Gy) followed by two doses of ethyl methanesulphonate (EMS; 20 and 30 mM) to achieve six combination treatments. Selected resistant mutants of M2 generation were characterized for agronomic, histological, enzyme and biochemical traits along with powdery mildew resistant LBG 17 and susceptible CO6 checks. Molecular variability was studied using 72 simple sequence repeat (SSR) markers. RESULTS In the M2 generation, 60 powdery mildew resistant mutants were identified and a total of 25 high yielding mutants were evaluated further to confirm powdery mildew resistance and yield. Nine resistant mutants (PM 13, PM 20, PM 21, PM 42, PM 53, PM 54, PM 56, PM 57 and PM 60) and the resistant check (LBG17) showed significantly higher values for leaf density, trichome density, SOD, CAT, POX, PPO, total phenols, phytic acid and silica content. SSR markers viz., CEDG154, CEDG290, CEDG139, CEDG259, CEDG191, CEDG024, CEDG 282, CEDG 166, CEDG 232 and CEDG 088 were found polymorphic between resistant mutants and the parent CO6. CONCLUSION The study has demonstrated that sufficient variability was induced in the blackgram for powdery mildew resistance. The elevated levels of SOD, CAT, POX, PPO, total phenols, phytic acid, and silica content observed in selected mutants may be attributed to powdery mildew resistance. The superior mutants identified in this study may be used as donors for the development of powdery mildew resistant lines or released as a new variety.
Collapse
Affiliation(s)
| | | | | | - Jegadeesan Souframanien
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - T K S Latha
- Department of Pulses, TNAU, Coimbatore, India
| | | | | |
Collapse
|
40
|
Xiao K, Qiao K, Cui W, Xu X, Pan H, Wang F, Wang S, Yang F, Xuan Y, Li A, Han X, Song Z, Liu J. Comparative transcriptome profiling reveals the importance of GmSWEET15 in soybean susceptibility to Sclerotinia sclerotiorum. Front Microbiol 2023; 14:1119016. [PMID: 36778863 PMCID: PMC9909833 DOI: 10.3389/fmicb.2023.1119016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/05/2023] [Indexed: 01/27/2023] Open
Abstract
Soybean sclerotinia stem rot (SSR) is a disease caused by Sclerotinia sclerotiorum that causes incalculable losses in soybean yield each year. Considering the lack of effective resistance resources and the elusive resistance mechanisms, we are urged to develop resistance genes and explore their molecular mechanisms. Here, we found that loss of GmSWEET15 enhanced the resistance to S. sclerotiorum, and we explored the molecular mechanisms by which gmsweet15 mutant exhibit enhanced resistance to S. sclerotiorum by comparing transcriptome. At the early stage of inoculation, the wild type (WT) showed moderate defense response, whereas gmsweet15 mutant exhibited more extensive and intense transcription reprogramming. The gmsweet15 mutant enriched more biological processes, including the secretory pathway and tetrapyrrole metabolism, and it showed stronger changes in defense response, protein ubiquitination, MAPK signaling pathway-plant, plant-pathogen interaction, phenylpropanoid biosynthesis, and photosynthesis. The more intense and abundant transcriptional reprogramming of gmsweet15 mutant may explain how it effectively delayed colonization by S. sclerotiorum. In addition, we identified common and specific differentially expressed genes between WT and gmsweet15 mutant after inoculation with S. sclerotiorum, and gene sets and genes related to gmsweet15_24 h were identified through Gene Set Enrichment Analysis. Moreover, we constructed the protein-protein interaction network and gene co-expression networks and identified several groups of regulatory networks of gmsweet15 mutant in response to S. sclerotiorum, which will be helpful for the discovery of candidate functional genes. Taken together, our results elucidate molecular mechanisms of delayed colonization by S. sclerotiorum after loss of GmSWEET15 in soybean, and we propose novel resources for improving resistance to SSR.
Collapse
Affiliation(s)
- Kunqin Xiao
- College of Plant Sciences, Jilin University, Changchun, China
| | - Kaibin Qiao
- College of Plant Sciences, Jilin University, Changchun, China
| | - Wenjing Cui
- College of Plant Sciences, Jilin University, Changchun, China
| | - Xun Xu
- College of Plant Sciences, Jilin University, Changchun, China
| | - Hongyu Pan
- College of Plant Sciences, Jilin University, Changchun, China
| | - Fengting Wang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Shoudong Wang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Feng Yang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Yuanhu Xuan
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Anmo Li
- College of Plant Sciences, Jilin University, Changchun, China
| | - Xiao Han
- College of Plant Sciences, Jilin University, Changchun, China
| | - Zhuojian Song
- College of Plant Sciences, Jilin University, Changchun, China
| | - Jinliang Liu
- College of Plant Sciences, Jilin University, Changchun, China,*Correspondence: Jinliang Liu,
| |
Collapse
|
41
|
Singh J, Das S, Jagadis Gupta K, Ranjan A, Foyer CH, Thakur JK. Physiological implications of SWEETs in plants and their potential applications in improving source-sink relationships for enhanced yield. PLANT BIOTECHNOLOGY JOURNAL 2022. [PMID: 36529911 PMCID: PMC10363763 DOI: 10.1111/pbi.13982] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
The sugars will eventually be exported transporters (SWEET) family of transporters in plants is identified as a novel class of sugar carriers capable of transporting sugars, sugar alcohols and hormones. Functioning in intercellular sugar transport, SWEETs influence a wide range of physiologically important processes. SWEETs regulate the development of sink organs by providing nutritional support from source leaves, responses to abiotic stresses by maintaining intracellular sugar concentrations, and host-pathogen interactions through the modulation of apoplastic sugar levels. Many bacterial and fungal pathogens activate the expression of SWEET genes in species such as rice and Arabidopsis to gain access to the nutrients that support virulence. The genetic manipulation of SWEETs has led to the generation of bacterial blight (BB)-resistant rice varieties. Similarly, while the overexpression of the SWEETs involved in sucrose export from leaves and pathogenesis led to growth retardation and yield penalties, plants overexpressing SWEETs show improved disease resistance. Such findings demonstrate the complex functions of SWEETs in growth and stress tolerance. Here, we review the importance of SWEETs in plant-pathogen and source-sink interactions and abiotic stress resistance. We highlight the possible applications of SWEETs in crop improvement programmes aimed at improving sink and source strengths important for enhancing the sustainability of yield. We discuss how the adverse effects of the overexpression of SWEETs on plant growth may be overcome.
Collapse
Affiliation(s)
- Jitender Singh
- National Institute of Plant Genome Research, New Delhi, India
| | - Shubhashis Das
- National Institute of Plant Genome Research, New Delhi, India
| | | | - Aashish Ranjan
- National Institute of Plant Genome Research, New Delhi, India
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, UK
| | - Jitendra Kumar Thakur
- National Institute of Plant Genome Research, New Delhi, India
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
42
|
Dai Z, Yan P, He S, Jia L, Wang Y, Liu Q, Zhai H, Zhao N, Gao S, Zhang H. Genome-Wide Identification and Expression Analysis of SWEET Family Genes in Sweet Potato and Its Two Diploid Relatives. Int J Mol Sci 2022; 23:ijms232415848. [PMID: 36555491 PMCID: PMC9785306 DOI: 10.3390/ijms232415848] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/02/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
Sugar Will Eventually be Exported Transporter (SWEET) proteins are key transporters in sugar transportation. They are involved in the regulation of plant growth and development, hormone crosstalk, and biotic and abiotic stress responses. However, SWEET family genes have not been explored in the sweet potato. In this study, we identified 27, 27, and 25 SWEETs in cultivated hexaploid sweet potato (Ipomoea batatas, 2n = 6x = 90) and its two diploid relatives, Ipomoea trifida (2n = 2x = 30) and Ipomoea triloba (2n = 2x = 30), respectively. These SWEETs were divided into four subgroups according to their phylogenetic relationships with Arabidopsis. The protein physiological properties, chromosome localization, phylogenetic relationships, gene structures, promoter cis-elements, protein interaction networks, and expression patterns of these 79 SWEETs were systematically investigated. The results suggested that homologous SWEETs are differentiated in sweet potato and its two diploid relatives and play various vital roles in plant growth, tuberous root development, carotenoid accumulation, hormone crosstalk, and abiotic stress response. This work provides a comprehensive comparison and furthers our understanding of the SWEET genes in the sweet potato and its two diploid relatives, thereby supplying a theoretical foundation for their functional study and further facilitating the molecular breeding of sweet potato.
Collapse
Affiliation(s)
- Zhuoru Dai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Pengyu Yan
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shaozhen He
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
- Sanya Institute, China Agricultural University, Sanya 572025, China
| | - Licong Jia
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai 265500, China
| | - Yannan Wang
- Cereal Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Qingchang Liu
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Hong Zhai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ning Zhao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shaopei Gao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Huan Zhang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
- Sanya Institute, China Agricultural University, Sanya 572025, China
- Correspondence: ; Tel./Fax: +86-010-6273-2559
| |
Collapse
|
43
|
Lin W, Pu Y, Liu S, Wu Q, Yao Y, Yang Y, Zhang X, Sun W. Genome-Wide Identification and Expression Patterns of AcSWEET Family in Pineapple and AcSWEET11 Mediated Sugar Accumulation. Int J Mol Sci 2022; 23:ijms232213875. [PMID: 36430356 PMCID: PMC9697096 DOI: 10.3390/ijms232213875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 11/12/2022] Open
Abstract
Pineapple (Ananas comosus L.) is an important fruit crop in tropical regions, and it requires efficient sugar allocation during fruit development. Sugars Will Eventually be Exported Transporters (SWEETs) are a group of novel sugar transporters which play critical roles in seed and fruit development. However, the function of AcSWEETs remains unknown in the sugar accumulation. Herein, 17 AcSWEETs were isolated and unevenly located in 11 chromosomes. Analysis of a phylogenetic tree indicated that 17 genes were classified into four clades, and the majority of AcSWEETs in each clade shared similar conserved motifs and gene structures. Tissue-specific gene expression showed that expression profiles of AcSWEETs displayed differences in different tissues and five AcSWEETs were strongly expressed during fruit development. AcSWEET11 was highly expressed in the stage of mature fruits in 'Tainong16' and 'Comte de paris', which indicates that AcSWEET11 was important to fruit development. Subcellular localization analysis showed that AcSWEET11 was located in the cell membrane. Notably, overexpression of AcSWEET11 could improve sugar accumulation in pineapple callus and transgenic tomato, which suggests that AcSWEET11 might positively contribute to sugar accumulation in pineapple fruit development. These results may provide insights to enhance sugar accumulation in fruit, thus improving pineapple quality in the future.
Collapse
Affiliation(s)
- Wenqiu Lin
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
- Laboratory of Tropical Fruit Biology, Ministry of Agriculture, Zhanjiang 524091, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| | - Yue Pu
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Shenghui Liu
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
- Laboratory of Tropical Fruit Biology, Ministry of Agriculture, Zhanjiang 524091, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| | - Qingsong Wu
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
- Laboratory of Tropical Fruit Biology, Ministry of Agriculture, Zhanjiang 524091, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| | - Yanli Yao
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
- Laboratory of Tropical Fruit Biology, Ministry of Agriculture, Zhanjiang 524091, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| | - Yumei Yang
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
- Laboratory of Tropical Fruit Biology, Ministry of Agriculture, Zhanjiang 524091, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| | - Xiumei Zhang
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
- Laboratory of Tropical Fruit Biology, Ministry of Agriculture, Zhanjiang 524091, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
- Correspondence: (X.Z.); (W.S.)
| | - Weisheng Sun
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
- Laboratory of Tropical Fruit Biology, Ministry of Agriculture, Zhanjiang 524091, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
- Correspondence: (X.Z.); (W.S.)
| |
Collapse
|
44
|
Liu S, Wang T, Meng G, Liu J, Lu D, Liu X, Zeng Y. Cytological observation and transcriptome analysis reveal dynamic changes of Rhizoctonia solani colonization on leaf sheath and different genes recruited between the resistant and susceptible genotypes in rice. FRONTIERS IN PLANT SCIENCE 2022; 13:1055277. [PMID: 36407598 PMCID: PMC9669801 DOI: 10.3389/fpls.2022.1055277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Sheath blight, caused by Rhizoctonia solani, is a big threat to the global rice production. To characterize the early development of R. solani on rice leaf and leaf sheath, two genotypes, GD66 (a resistant genotype) and Lemont (a susceptible genotype), were observed using four cytological techniques: the whole-mount eosin B-staining confocal laser scanning microscopy (WE-CLSM), stereoscopy, fluorescence microscopy, and plastic semi-thin sectioning after in vitro inoculation. WE-CLSM observation showed that, at 12 h post-inoculation (hpi), the amount of hyphae increased dramatically on leaf and sheath surface, the infection cushions occurred and maintained at a huge number from about 18 to 36 hpi, and then the infection cushions disappeared gradually from about 42 to 72 hpi. Interestingly, R. solani could not only colonize on the abaxial surfaces of leaf sheath but also invade the paraxial side of the leaf sheath, which shows a different behavior from that of leaf. RNA sequencing detected 6,234 differentially expressed genes (DEGs) for Lemont and 7,784 DEGs for GD66 at 24 hpi, and 2,523 DEGs for Lemont and 2,719 DEGs for GD66 at 48 hpi, suggesting that GD66 is recruiting more genes in fighting against the pathogen. Among DEGs, resistant genes, such as OsRLCK5, Xa21, and Pid2, displayed higher expression in the resistant genotype than the susceptible genotype at both 24 and 48 hpi, which were validated by quantitative reverse transcription-PCR. Our results indicated that the resistance phenotype of GD66 was the consequence of recruiting a series of resistance genes involved in different regulatory pathways. WE-CLSM is a powerful technique for uncovering the mechanism of R. solani invading rice and for detecting rice sheath blight-resistant germplasm.
Collapse
Affiliation(s)
- Sanglin Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Tianya Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Guoxian Meng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Jiahao Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Dibai Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Xiangdong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Yuxiang Zeng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| |
Collapse
|
45
|
Yang S, Fu Y, Zhang Y, Peng Yuan D, Li S, Kumar V, Mei Q, Hu Xuan Y. Rhizoctonia solani transcriptional activator interacts with rice WRKY53 and grassy tiller 1 to activate SWEET transporters for nutrition. J Adv Res 2022:S2090-1232(22)00216-8. [PMID: 36252923 PMCID: PMC10403663 DOI: 10.1016/j.jare.2022.10.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/15/2022] [Accepted: 10/01/2022] [Indexed: 11/07/2022] Open
Abstract
INTRODUCTION Rhizoctonia solani, the causative agent of the sheath blight disease (ShB), invades rice to obtain nutrients, especially sugars; however, the molecular mechanism via which R. solani hijacks sugars from rice remains unclear. OBJECTIVES In this study, rice-R. solani interaction model was used to explore whether pathogen effector proteins affect plant sugar absorption during infection. METHODS Yeast one-hybrid assay was used to identify Activator of SWEET2a (AOS2) from R. solani. Localization and invertase secretion assays showed that nuclear localization and secreted function of AOS2. Hexose transport assays verified the hexose transporter activity of SWEET2a and SWEET3a. Yeast two-hybrid assays, Bimolecular fluorescence complementation (BiFC) and transactivation assay were conducted to verify the AOS2-WRKY53-Grassy tiller 1 (GT1) transcriptional complex and its activation of SWEET2a and SWEET3a. Genetic analysis is used to detect the response of GT1, WRKY53, SWEET2a, and SWEET3a to ShB infestation. Also, the soluble sugar contents were measured in the mutants and overexpression plants before and after the inoculation of R. solani. RESULTS The present study found that R. solani protein AOS2 activates rice SWEET2a and localized in the nucleus of tobacco cells and secreted in yeast. AOS2 interacts with rice transcription factor WRKY53 and GT1 to form a complex that activates the hexose transporter gene SWEET2a and SWEET3a and negatively regulate rice resistance to ShB. CONCLUSION These data collectively suggest that AOS2 secreted by R. solani interacts with rice WRKY53 and GT1 to form a transcriptional complex that activates SWEETs to efflux sugars to apoplast; R. solani acquires more sugars and subsequently accelerates host invasion.
Collapse
|
46
|
Fleet J, Ansari M, Pittman JK. Phylogenetic analysis and structural prediction reveal the potential functional diversity between green algae SWEET transporters. FRONTIERS IN PLANT SCIENCE 2022; 13:960133. [PMID: 36186040 PMCID: PMC9520054 DOI: 10.3389/fpls.2022.960133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Sugar-Will-Eventually-be-Exported-Transporters (SWEETs) are an important family of sugar transporters that appear to be ubiquitous in all organisms. Recent research has determined the structure of SWEETs in higher plants, identified specific residues required for monosaccharide or disaccharide transport, and begun to understand the specific functions of individual plant SWEET proteins. However, in green algae (Chlorophyta) these transporters are poorly characterised. This study identified SWEET proteins from across representative Chlorophyta with the aim to characterise their phylogenetic relationships and perform protein structure modelling in order to inform functional prediction. The algal genomes analysed encoded between one and six SWEET proteins, which is much less than a typical higher plant. Phylogenetic analysis identified distinct clusters of over 70 SWEET protein sequences, taken from almost 30 algal genomes. These clusters remain separate from representative higher or non-vascular plant SWEETs, but are close to fungi SWEETs. Subcellular localisation predictions and analysis of conserved amino acid residues revealed variation between SWEET proteins of different clusters, suggesting different functionality. These findings also showed conservation of key residues at the substrate-binding site, indicating a similar mechanism of substrate selectivity and transport to previously characterised higher plant monosaccharide-transporting SWEET proteins. Future work is now required to confirm the predicted sugar transport specificity and determine the functional role of these algal SWEET proteins.
Collapse
Affiliation(s)
- Jack Fleet
- Department of Earth and Environmental Sciences, Faculty of Science and Engineering, School of Natural Sciences, The University of Manchester, Manchester, United Kingdom
| | - Mujtaba Ansari
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Jon K. Pittman
- Department of Earth and Environmental Sciences, Faculty of Science and Engineering, School of Natural Sciences, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
47
|
Abbas A, Mubeen M, Sohail MA, Solanki MK, Hussain B, Nosheen S, Kashyap BK, Zhou L, Fang X. Root rot a silent alfalfa killer in China: Distribution, fungal, and oomycete pathogens, impact of climatic factors and its management. Front Microbiol 2022; 13:961794. [PMID: 36033855 PMCID: PMC9403511 DOI: 10.3389/fmicb.2022.961794] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022] Open
Abstract
Alfalfa plays a significant role in the pasture ecosystems of China's north, northeast, and northwest regions. It is an excellent forage for livestock, improves soil structure, prevents soil erosion, and has ecological benefits. Presently root rot is a significant threat to the alfalfa productivity because of the survival of the pathogens as soil-borne and because of lack of microbial competition in the impoverished nutrient-deficient soils and resistant cultivars. Furthermore, these regions' extreme ecological and environmental conditions predispose alfalfa to root rot. Moisture and temperature, in particular, have a considerable impact on the severity of root rot. Pathogens such as Fusarium spp. and Rhizoctonia solani are predominant, frequently isolated, and of major concern. These pathogens work together as disease complexes, so finding a host genotype resistant to disease complexes is challenging. Approaches to root rot control in these regions include mostly fungicides treatments and cultural practices and very few reports on the usage of biological control agents. As seed treatment, fungicides such as carbendazim are frequently used to combat root rot; however, resistance to fungicides has arisen. However, breeding and transgenic approaches could be more efficient and sustainable long-term control strategies, especially if resistance to disease complexes may be identified. Yet, research in China is mainly limited to field investigation of root rot and disease resistance evaluation. In this review, we describe climatic conditions of pastoral regions and the role of alfalfa therein and challenges of root rot, the distribution of root rot in the world and China, and the impact of root rot pathogens on alfalfa in particular R. solani and Fusarium spp., effects of environmental factors on root rot and summarize to date disease management approach.
Collapse
Affiliation(s)
- Aqleem Abbas
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Mustansar Mubeen
- Department of Plant Pathology, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Muhammad Aamir Sohail
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Manoj Kumar Solanki
- Faculty of Natural Sciences, Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Babar Hussain
- Department of Plant Sciences, Karakoram International University, Gilgit, Gilgit Baltistan, Pakistan
| | - Shaista Nosheen
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Brijendra Kumar Kashyap
- Department of Biotechnology Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi, India
| | - Lei Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiangling Fang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
48
|
Sinha A, Singh L, Rawat N. Current understanding of atypical resistance against fungal pathogens in wheat. CURRENT OPINION IN PLANT BIOLOGY 2022; 68:102247. [PMID: 35716636 DOI: 10.1016/j.pbi.2022.102247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/05/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Pathogens and pests are a major challenge to global food security. Around one hundred different pests and pathogens challenge wheat, one of the most important food crops in the world. Traditional worldwide use of a few key resistance genes in wheat cultivars has necessitated a diversification of the toolbox of resistance genes in wheat varieties over the coming decades to meet the global production demands. Recent advances in gene discovery and functional characterization of genetic resistance mechanisms in wheat reveal great diversity in the types and effectiveness of the underlying resistance genes. This article summarizes the recent developments in the discovery of non-traditional "atypical" resistance genes in wheat against diverse fungal pathogens.
Collapse
Affiliation(s)
- Arunima Sinha
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA
| | - Lovepreet Singh
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA
| | - Nidhi Rawat
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
49
|
Wu XX, Yuan DP, Chen H, Kumar V, Kang SM, Jia B, Xuan YH. Ammonium transporter 1 increases rice resistance to sheath blight by promoting nitrogen assimilation and ethylene signalling. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1085-1097. [PMID: 35170194 PMCID: PMC9129087 DOI: 10.1111/pbi.13789] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/01/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Sheath blight (ShB) significantly threatens rice yield production. However, the underlying mechanism of ShB defence in rice remains largely unknown. Here, we identified a highly ShB-susceptible mutant Ds-m which contained a mutation at the ammonium transporter 1;1 (AMT1;1) D358 N. AMT1;1 D358 N interacts with AMT1;1, AMT1;2 and AMT1;3 to inhibit the ammonium transport activity. The AMT1 RNAi was more susceptible and similar to the AMT1;1 D358 N mutant; however, plants with higher NH4+ uptake activity were less susceptible to ShB. Glutamine synthetase 1;1 (GS1;1) mutant gs1;1 and overexpressors (GS1;1 OXs) were more and less susceptible to ShB respectively. Furthermore, AMT1;1 overexpressor (AMT1;1 OX)/gs1;1 and gs1;1 exhibited a similar response to ShB, suggesting that ammonium assimilation rather than accumulation controls the ShB defence. Genetic and physiological assays further demonstrated that plants with higher amino acid or chlorophyll content promoted rice resistance to ShB. Interestingly, the expression of ethylene-related genes was higher in AMT1;1 OX and lower in RNAi mutants than in wild-type. Also, ethylene signalling positively regulated rice resistance to ShB and NH4+ uptake, suggesting that ethylene signalling acts downstream of AMT and also NH4+ uptake is under feedback control. Taken together, our data demonstrated that the AMT1 promotes rice resistance to ShB via the regulation of diverse metabolic and signalling pathways.
Collapse
Affiliation(s)
- Xian Xin Wu
- College of Plant ProtectionShenyang Agricultural UniversityShenyangChina
| | - De Peng Yuan
- College of Plant ProtectionShenyang Agricultural UniversityShenyangChina
| | - Huan Chen
- College of Plant ProtectionShenyang Agricultural UniversityShenyangChina
| | - Vikranth Kumar
- Division of Plant SciencesUniversity of MissouriColumbiaMOUSA
| | | | - Baolei Jia
- School of BioengineeringState Key Laboratory of Biobased Material and Green PapermakingQilu University of Technology (Shandong Academy of Sciences)JinanChina
- Department of Life SciencesChung‐Ang UniversitySeoulSouth Korea
| | - Yuan Hu Xuan
- College of Plant ProtectionShenyang Agricultural UniversityShenyangChina
| |
Collapse
|
50
|
Xue X, Wang J, Shukla D, Cheung LS, Chen LQ. When SWEETs Turn Tweens: Updates and Perspectives. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:379-403. [PMID: 34910586 DOI: 10.1146/annurev-arplant-070621-093907] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Sugar translocation between cells and between subcellular compartments in plants requires either plasmodesmata or a diverse array of sugar transporters. Interactions between plants and associated microorganisms also depend on sugar transporters. The sugars will eventually be exported transporter (SWEET) family is made up of conserved and essential transporters involved in many critical biological processes. The functional significance and small size of these proteins have motivated crystallographers to successfully capture several structures of SWEETs and their bacterial homologs in different conformations. These studies together with molecular dynamics simulations have provided unprecedented insights into sugar transport mechanisms in general and into substrate recognition of glucose and sucrose in particular. This review summarizes our current understanding of the SWEET family, from the atomic to the whole-plant level. We cover methods used for their characterization, theories about their evolutionary origins, biochemical properties, physiological functions, and regulation. We also include perspectives on the future work needed to translate basic research into higher crop yields.
Collapse
Affiliation(s)
- Xueyi Xue
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
| | - Jiang Wang
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Lily S Cheung
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Li-Qing Chen
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
| |
Collapse
|