1
|
Thompson AD, Hurtado KA, Janda J, Scholpa NE, Rohrer B, Schnellmann RG. MC16 promotes mitochondrial biogenesis and ameliorates acute and diabetic nephropathy. Br J Pharmacol 2025; 182:1912-1929. [PMID: 39887970 DOI: 10.1111/bph.17440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/28/2024] [Accepted: 09/10/2024] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND AND PURPOSE Kidney disease (KD) is a leading cause of mortality worldwide, affecting 〉10% of the global population. Two of the most common causes of KD are diabetes and acute kidney injury (AKI), both of which induce mitochondrial dysfunction resulting in renal proximal tubular damage/necrosis. Thus, pharmacological induction of mitochondrial biogenesis (MB) may provide a therapeutic strategy to block the onset/progression of KD. Here, we evaluated the pharmacological and potential therapeutic effects of a novel MB-inducing oxindole agent, MC16. EXPERIMENTAL APPROACH Primary cultures of rabbit renal proximal tubule cells (RPTCs) were used to evaluate the cellular signalling and MB-inducing effects of MC16. Mice were used to determine the MB-inducing effects of MC16 in vivo, and the metabolic effects of MC16 on the renal cortical metabolome. Mouse models of AKI and diabetic kidney disease (DKD) were used to demonstrate the therapeutic potential of MC16 to ameliorate acute and diabetic nephropathy. KEY RESULTS MC16 activated the PI3K-AKT-eNOS-FOXO1 axis and induced MB in RPTCs. MC16 induced MB and altered the renal cortical metabolome of mice. MC16 accelerated renal recovery, reduced vascular permeability, and diminished mitochondrial dysfunction following AKI. MC16 decreased diabetes-induced renal swelling, improved renal and mitochondrial function, and diminished interstitial fibrosis in DKD mouse models. CONCLUSION AND IMPLICATIONS MC16 is a novel compound that induces MB and ameliorates acute and diabetic nephropathy in mice. This study underscores that targeting MB following the onset of renal/metabolic insults may provide a therapeutic strategy to mitigate the onset and/or progression of KD.
Collapse
Affiliation(s)
- Austin D Thompson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
- U.S. Department of Veterans Affairs, Southern Arizona VA Health Care System, Tucson, Arizona, USA
- Southwest Environmental Health Science Center, University of Arizona, Tucson, Arizona, USA
| | - Kevin A Hurtado
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
- Southwest Environmental Health Science Center, University of Arizona, Tucson, Arizona, USA
| | - Jaroslav Janda
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
| | - Natalie E Scholpa
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
- U.S. Department of Veterans Affairs, Southern Arizona VA Health Care System, Tucson, Arizona, USA
| | - Baerbel Rohrer
- MitoChem Therapeutics, Inc., Charleston, South Carolina, USA
- Department of Ophthalmology, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
- U.S. Department of Veterans Affairs, Ralph H Johnson VA Health Care System, Charleston, South Carolina, USA
| | - Rick G Schnellmann
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
- U.S. Department of Veterans Affairs, Southern Arizona VA Health Care System, Tucson, Arizona, USA
- Southwest Environmental Health Science Center, University of Arizona, Tucson, Arizona, USA
- MitoChem Therapeutics, Inc., Charleston, South Carolina, USA
| |
Collapse
|
2
|
Mboni-Johnston IM, Hartmann S, Kroll C, Berndt C, Adjaye J, Schupp N. Impact of nephrotoxins and oxidants on survival and transport function of hiPSC-derived renal proximal tubular cells. Arch Toxicol 2025:10.1007/s00204-025-04015-1. [PMID: 40119912 DOI: 10.1007/s00204-025-04015-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/27/2025] [Indexed: 03/25/2025]
Abstract
Due to their role in excretion, renal proximal tubular cells are susceptible to damage by toxic metabolites and xenobiotics. The regenerative capacity of the kidney allows for the replacement of damaged cells, a process involving differentiation programs. However, kidney function tends to decline, suggesting that the replacement cells may not achieve full functionality. To understand possible causes of this decline, we investigated effects of nephrotoxins and oxidants on the differentiation of induced pluripotent stem cells (iPSC) into proximal tubular epithelial-like cells (PTELC). Proliferation, apoptosis, senescence, and expression of oxidative defense genes were analyzed in iPSC, differentiating and differentiated cells treated with cisplatin (CisPt, up to 45 µM), cyclosporin A (CycA, up to 12 µM), and the oxidants menadione (Mena, up to 50 µM) and tert-butylhydroquinone (tBHQ, up to 50 µM). We found that differentiating cells were most sensitive to oxidants and showed increased sensitivity to CisPt, whereas all differentiation stages showed similar sensitivity to CycA. Both oxidative stress and CisPt triggered apoptosis in all differentiation stages, whereas CycA mainly induced senescence. Treatment during differentiation resulted in long-term effects on gene expression in differentiated cells. While oxidants had no effect on transport function of differentiated cells, CisPt and CycA impaired albumin uptake. Our data suggest a substantial sensitivity of differentiating cells to nephrotoxins and oxidants, an aspect that could potentially interfere with regenerative processes.
Collapse
Affiliation(s)
- Isaac Musong Mboni-Johnston
- Institute of Toxicology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Sören Hartmann
- Institute of Toxicology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Christian Kroll
- Department of Neurology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Carsten Berndt
- Department of Neurology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, University Hospital Düsseldorf, University of Düsseldorf, 40225, Düsseldorf, Germany
- Zayed Centre for Research into Rare Diseases in Children (ZCR), EGA Institute for Women'S Health, University College London (UCL), 20 Guilford Street, London, WC1N 1DZ, UK
| | - Nicole Schupp
- Institute of Toxicology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany.
| |
Collapse
|
3
|
Xiong W, Tang J, Yu H, Luo Y, Yu M, Li Y. Emodin inhibits M1 macrophage activation that related to acute and chronic kidney injury through EGFR/MAPK pathway. Funct Integr Genomics 2024; 24:131. [PMID: 39078513 DOI: 10.1007/s10142-024-01407-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/02/2024] [Accepted: 07/11/2024] [Indexed: 07/31/2024]
Abstract
BACKGROUND Macrophages are the main inflammatory cells involved in kidney injury and play a significant role in the development of acute kidney injury (AKI) and progression of chronic kidney disease (CKD). Emodin is believed to stabilize macrophage homeostasis under pathological conditions. The objective of this study aimed to explore the underlying mechanisms and effects of Emodin on M1 macrophages. METHODS Network pharmacology methods were used to predict target proteins associated with renal injury and identify the pathways affected by emodin. RAW264.7 macrophages were induced into M1 polarization using LPS and then treated with emodin at 20, 40, and 80 µM. The effects of emodin on cell viability, cytokines (IL-1β, IL-6, TNF-α), M1 macrophage markers (F4/80 + CD86+), and the EGFR/MAPK pathway were evaluated. Additionally, we transfected RAW264.7 cells with an EGFR shRNA interference lentivirus to assess its effects on RAW264.7 cells function and MAPK pathway. After RAW264.7 cells were passaged to expanded culture and transfected with EGFR-interfering plasmid, macrophages were induced to polarize towards M1 with LPS and then treated with 80 µM emodin. CKD modeling was performed to test how emodin is regulated during CKD. RESULTS There are 15 common targets between emodin and kidney injury, of which the EGFR/MAPK pathway is the pathway through which emodin affects macrophage function. Emodin significantly reduced the levels of IL-6, IL-1β and TNF-α (p < 0.05) and the ratio of M1 macrophage surface markers F4/80 + CD86+ (p < 0.01) in the supernatant of RAW264.7 cells in a dose-dependent manner. Furthermore, the inhibitory effect of emodin on RAW264.7 cells was achieved by interfering with the EGFR/MAPK pathway. Moreover, emodin also affected the mRNA and protein expression of EGFR and Ras, leading to a decrease in the rate of M1 macrophages, thus inhibiting the pro-inflammatory effect of M1 macrophages. The addition of emodin reduced the rate of M1 macrophages in CKD and inhibited the further polarization of M1 macrophages, thus maintaining the pro-inflammatory and anti-inflammatory homeostasis in CKD, and these effects were achieved by emodin through the control of the EGRF/ERK pathway. CONCLUSION Emodin attenuates M1 macrophage polarization and pro-inflammatory responses via the EGFR/MAPK signalling pathway. And the addition of emodin maintains pro- and anti-inflammatory homeostasis, which is important for maintaining organ function and tissue repair.
Collapse
Affiliation(s)
- Weijian Xiong
- Department of Nephrology, Chongqing Traditional Chinese Medicine Hospital, No.6 Panxi Road, Jiangbei District, Chongqing, 400021, China
| | - Jing Tang
- Department of Nephrology, Chongqing Traditional Chinese Medicine Hospital, No.6 Panxi Road, Jiangbei District, Chongqing, 400021, China
| | - Hangxing Yu
- Department of Nephrology, Chongqing Traditional Chinese Medicine Hospital, No.6 Panxi Road, Jiangbei District, Chongqing, 400021, China
| | - Yan Luo
- Department of Nephrology, Chongqing Traditional Chinese Medicine Hospital, No.6 Panxi Road, Jiangbei District, Chongqing, 400021, China
| | - Minghuan Yu
- Department of Nephrology, Chongqing Traditional Chinese Medicine Hospital, No.6 Panxi Road, Jiangbei District, Chongqing, 400021, China
| | - Ying Li
- Department of Nephrology, Chongqing Traditional Chinese Medicine Hospital, No.6 Panxi Road, Jiangbei District, Chongqing, 400021, China.
| |
Collapse
|
4
|
Chen Z, Wang J, Zhou J, Yu H, Zheng L, Chen Y, Wan X, Zhang W. Tripterygium drug-loaded liposome alleviates renal function by promoting vascularization and inhibiting fibrosis. Front Chem 2024; 12:1427670. [PMID: 39010937 PMCID: PMC11246911 DOI: 10.3389/fchem.2024.1427670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/07/2024] [Indexed: 07/17/2024] Open
Abstract
Introduction: Tripterygium species have been traditionally used in Chinese medicine for treating various conditions. The aim of the study was to construct a drug-modified renal infarction targeting liposome (rTor-LIP) containing Tripterygium in order to improve the therapeutic effect on renal injury. Methods: rTor-LIP was prepared using the extruder method containing Tripterygium solution. The preparation was characterized by transmission electron microscopy, Marvin laser particle size analyzer, and Western blotting. In vitro experiments were conducted to verify the biocompatibility of rTor-LIP, and in vivo experiments were conducted to verify the therapeutic effect of rTor- LIP on renal injury. Results and discussion: The surface of rTor-LIP was regular and oval. In vitro results showed that after co-incubation with rTor-LIP, endothelial cells did not show significant apoptosis, and there were no significant abnormalities in the mitochondrial metabolism. The in vivo results showed that the morphology of endothelial cells in the rTor-LIP group was uniform and the cytoplasmic striations were clear, but the local striations had disappeared. Thus, rTor-LIP nano-targeted liposomes can effectively target hypoxic kidney tissue, providing a new idea for the treatment of renal infarction.
Collapse
Affiliation(s)
- Ziwei Chen
- Department of Nephrology, Taizhou Central Hospital, Affiliated to Taizhou University, Taizhou, China
| | - Jiajia Wang
- Department of Traditional Chinese Medicine, Taizhou Hospital of Zhejiang Province, Taizhou, China
| | - Jianyu Zhou
- Department of Ultrasound, Taizhou Central Hospital, Affiliated to Taizhou University, Taizhou, China
| | - Haifeng Yu
- Department of Nephrology, Taizhou Central Hospital, Affiliated to Taizhou University, Taizhou, China
| | - Lu Zheng
- Department of Nephrology, Taizhou Central Hospital, Affiliated to Taizhou University, Taizhou, China
| | - Yuan Chen
- Department of Nephrology, Taizhou Central Hospital, Affiliated to Taizhou University, Taizhou, China
| | - Xiaoqing Wan
- Department of Nephrology, Taizhou Central Hospital, Affiliated to Taizhou University, Taizhou, China
| | - Wei Zhang
- Department of Nephrology, Taizhou Central Hospital, Affiliated to Taizhou University, Taizhou, China
| |
Collapse
|
5
|
Uzelac T, Takić M, Stevanović V, Vidović N, Pantović A, Jovanović P, Jovanović V. The Potential Benefits of Acute Aronia Juice Supplementation on Physical Activity Induced Alterations of the Serum Protein Profiles in Recreational Runners: A Pilot Study. Healthcare (Basel) 2024; 12:1276. [PMID: 38998811 PMCID: PMC11240927 DOI: 10.3390/healthcare12131276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/15/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Intensive physical activity (PA) can lead to proteinuria and, consequently, serum protein profiles in athletes. Therefore, the aim of this study was to investigate the effects of acute aronia juice consumption before a simulated half-marathon race on serum protein profiles in recreational runners. The pilot study was designed as a single-blind, placebo-controlled, crossover study, with 10 male participants who consumed aronia juice (containing 1.3 g polyphenols) or placebo before the race. The blood levels of total proteins, albumin, the non-albumin fractions gamma, beta, alpha2 and alpha1, as well as renal function parameters, were determined before and 15 min, 1 h and 24 h after the race. The significant changes in urea, creatinine and uric acid levels were noticed at selected time points in both groups. In the placebo group, a significant decrease in total proteins (p < 0.05) was observed 24 h after the race, along with an increase in gamma fraction abundance (p < 0.05). In addition, urea and uric acid levels returned to baseline only in the aronia group 24 h after the race. Thus, according to the results obtained, acute aronia juice supplementation before intensive PA could influence the transient change in renal function and PA-induced protein loss in recreational runners.
Collapse
Affiliation(s)
- Tamara Uzelac
- Department of Biochemistry and Centre of Excellence for Molecular Food Sciences, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Marija Takić
- Institute for Medical Research, National Institute of Republic of Serbia, Group for Nutrition and Metabolism, Centre of Research Excellence in Nutrition and Metabolism, University of Belgrade, Tadeuša Košćuškog 1, 11000 Belgrade, Serbia
| | - Vuk Stevanović
- Institute for Medical Research, National Institute of Republic of Serbia, Group for Nutrition and Metabolism, Centre of Research Excellence in Nutrition and Metabolism, University of Belgrade, Tadeuša Košćuškog 1, 11000 Belgrade, Serbia
| | - Nevena Vidović
- Institute for Medical Research, National Institute of Republic of Serbia, Group for Nutrition and Metabolism, Centre of Research Excellence in Nutrition and Metabolism, University of Belgrade, Tadeuša Košćuškog 1, 11000 Belgrade, Serbia
| | - Ana Pantović
- Institute for Medical Research, National Institute of Republic of Serbia, Group for Nutrition and Metabolism, Centre of Research Excellence in Nutrition and Metabolism, University of Belgrade, Tadeuša Košćuškog 1, 11000 Belgrade, Serbia
| | - Petar Jovanović
- Department of Biochemistry and Centre of Excellence for Molecular Food Sciences, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
- Institute for Medical Research, National Institute of Republic of Serbia, Group for Nutrition and Metabolism, Centre of Research Excellence in Nutrition and Metabolism, University of Belgrade, Tadeuša Košćuškog 1, 11000 Belgrade, Serbia
| | - Vesna Jovanović
- Department of Biochemistry and Centre of Excellence for Molecular Food Sciences, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| |
Collapse
|
6
|
Wang B, Wang Y, Wang J, Jin C, Zhou R, Guo J, Zhang H, Wang M. Multiparametric Magnetic Resonance Investigations on Acute and Long-Term Kidney Injury. J Magn Reson Imaging 2024; 59:43-57. [PMID: 37246343 DOI: 10.1002/jmri.28784] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/30/2023] Open
Abstract
Acute kidney injury (AKI) is a frequent complication of critical illness and carries a significant risk of short- and long-term mortality. The prediction of the progression of AKI to long-term injury has been difficult for renal disease treatment. Radiologists are keen for the early detection of transition from AKI to long-term kidney injury, which would help in the preventive measures. The lack of established methods for early detection of long-term kidney injury underscores the pressing needs of advanced imaging technology that reveals microscopic tissue alterations during the progression of AKI. Fueled by recent advances in data acquisition and post-processing methods of magnetic resonance imaging (MRI), multiparametric MRI is showing great potential as a diagnostic tool for many kidney diseases. Multiparametric MRI studies offer a precious opportunity for real-time noninvasive monitoring of pathological development and progression of AKI to long-term injury. It provides insight into renal vasculature and function (arterial spin labeling, intravoxel incoherent motion), tissue oxygenation (blood oxygen level-dependent), tissue injury and fibrosis (diffusion tensor imaging, diffusion kurtosis imaging, T1 and T2 mapping, quantitative susceptibility mapping). The multiparametric MRI approach is highly promising but the longitudinal investigation on the transition of AKI to irreversible long-term impairment is largely ignored. Further optimization and implementation of renal MR methods in clinical practice will enhance our comprehension of not only AKI but chronic kidney diseases. Novel imaging biomarkers for microscopic renal tissue alterations could be discovered and benefit the preventative interventions. This review explores recent MRI applications on acute and long-term kidney injury while addressing lingering challenges, with emphasis on the potential value of the development of multiparametric MRI for renal imaging on clinical systems. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Bin Wang
- Department of Medical Imaging, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yongfang Wang
- Department of Medical Imaging, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jing Wang
- Department of Nuclear Medicine and PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Chentao Jin
- Department of Nuclear Medicine and PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Jinxia Guo
- GE Healthcare, MR Research China, Beijing, China
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Min Wang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Mboni-Johnston IM, Kouidrat NMZ, Hirsch C, Weber AG, Meißner A, Adjaye J, Schupp N. Sensitivity of Human Induced Pluripotent Stem Cells and Thereof Differentiated Kidney Proximal Tubular Cells towards Selected Nephrotoxins. Int J Mol Sci 2023; 25:81. [PMID: 38203251 PMCID: PMC10779191 DOI: 10.3390/ijms25010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
Proximal tubular epithelial cells (PTEC) are constantly exposed to potentially toxic metabolites and xenobiotics. The regenerative potential of the kidney enables the replacement of damaged cells either via the differentiation of stem cells or the re-acquisition of proliferative properties of the PTEC. Nevertheless, it is known that renal function declines, suggesting that the deteriorated cells are not replaced by fully functional cells. To understand the possible causes of this loss of kidney cell function, it is crucial to understand the role of toxins during the regeneration process. Therefore, we investigated the sensitivity and function of human induced pluripotent stem cells (hiPSC), hiPSC differentiating, and hiPSC differentiated into proximal tubular epithelial-like cells (PTELC) to known nephrotoxins. hiPSC were differentiated into PTELC, which exhibited similar morphology to PTEC, expressed prototypical PTEC markers, and were able to undergo albumin endocytosis. When treated with two nephrotoxins, hiPSC and differentiating hiPSC were more sensitive to cisplatin than differentiated PTELC, whereas all stages were equally sensitive to cyclosporin A. Both toxins also had an inhibitory effect on albumin uptake. Our results suggest a high sensitivity of differentiating cells towards toxins, which could have an unfavorable effect on regenerative processes. To study this, our model of hiPSC differentiating into PTELC appears suitable.
Collapse
Affiliation(s)
- Isaac Musong Mboni-Johnston
- Institute of Toxicology, Medical Faculty and University Hospital, University of Düsseldorf, 40225 Düsseldorf, Germany; (I.M.M.-J.); (N.M.Z.K.); (C.H.); (A.M.)
| | - Nazih Mohamed Zakari Kouidrat
- Institute of Toxicology, Medical Faculty and University Hospital, University of Düsseldorf, 40225 Düsseldorf, Germany; (I.M.M.-J.); (N.M.Z.K.); (C.H.); (A.M.)
| | - Cornelia Hirsch
- Institute of Toxicology, Medical Faculty and University Hospital, University of Düsseldorf, 40225 Düsseldorf, Germany; (I.M.M.-J.); (N.M.Z.K.); (C.H.); (A.M.)
| | - Andreas Georg Weber
- Institute of Toxicology, Medical Faculty and University Hospital, University of Düsseldorf, 40225 Düsseldorf, Germany; (I.M.M.-J.); (N.M.Z.K.); (C.H.); (A.M.)
| | - Alexander Meißner
- Institute of Toxicology, Medical Faculty and University Hospital, University of Düsseldorf, 40225 Düsseldorf, Germany; (I.M.M.-J.); (N.M.Z.K.); (C.H.); (A.M.)
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty and University Hospital, University of Düsseldorf, 40225 Düsseldorf, Germany;
- Zayed Centre for Research into Rare Diseases in Children (ZCR), EGA Institute for Women’s Health, University College London (UCL), 20 Guilford Street, London WC1N 1DZ, UK
| | - Nicole Schupp
- Institute of Toxicology, Medical Faculty and University Hospital, University of Düsseldorf, 40225 Düsseldorf, Germany; (I.M.M.-J.); (N.M.Z.K.); (C.H.); (A.M.)
| |
Collapse
|
8
|
Obrecht F, Padevit C, Froelicher G, Rauch S, Randazzo M, Shariat SF, John H, Foerster B. The Association of Ischemia Type and Duration with Acute Kidney Injury after Robot-Assisted Partial Nephrectomy. Curr Oncol 2023; 30:9634-9646. [PMID: 37999118 PMCID: PMC10670720 DOI: 10.3390/curroncol30110698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Acute kidney injury (AKI) after robot-assisted partial nephrectomy (RAPN) is a robust surrogate for chronic kidney disease. The objective of this study was to evaluate the association of ischemia type and duration during RAPN with postoperative AKI. MATERIALS AND METHODS We reviewed all patients who underwent RAPN at our institution since 2011. The ischemia types were warm ischemia (WI), selective artery clamping (SAC), and zero ischemia (ZI). AKI was defined according to the Risk Injury Failure Loss End-Stage (RIFLE) criteria. We calculated ischemia time thresholds for WI and SAC using the Youden and Liu indices. Logistic regression and decision curve analyses were assessed to examine the association with AKI. RESULTS Overall, 154 patients met the inclusion criteria. Among all RAPNs, 90 (58.4%), 43 (28.0%), and 21 (13.6%) were performed with WI, SAC, and ZI, respectively. Thirty-three (21.4%) patients experienced postoperative AKI. We extrapolated ischemia time thresholds of 17 min for WI and 29 min for SAC associated with the occurrence of postoperative AKI. Multivariable logistic regression analyses revealed that WIT ≤ 17 min (odds ratio [OR] 0.1, p < 0.001), SAC ≤ 29 min (OR 0.12, p = 0.002), and ZI (OR 0.1, p = 0.035) significantly reduced the risk of postoperative AKI. CONCLUSIONS Our results confirm the commonly accepted 20 min threshold for WI time, suggest less than 30 min ischemia time when using SAC, and support a ZI approach if safely performable to reduce the risk of postoperative AKI. Selecting an appropriate ischemia type for patients undergoing RAPN can improve short- and long-term functional kidney outcomes.
Collapse
Affiliation(s)
- Fabian Obrecht
- Department of Urology, Kantonsspital Winterthur, 8401 Winterthur, Switzerland
| | - Christian Padevit
- Department of Urology, Kantonsspital Winterthur, 8401 Winterthur, Switzerland
| | - Gabriel Froelicher
- Department of Urology, Kantonsspital Winterthur, 8401 Winterthur, Switzerland
| | - Simon Rauch
- Department of Radiology and Nuclear Medicine, Kantonsspital Winterthur, 8401 Winterthur, Switzerland
| | - Marco Randazzo
- Department of Urology, Kantonsspital Winterthur, 8401 Winterthur, Switzerland
| | - Shahrokh F. Shariat
- Department of Urology, Medical University of Vienna, 1090 Vienna, Austria
- Departments of Urology, Weill Cornell Medical College, New York, NY 10065, USA
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Karl Landsteiner Institute of Urology and Andrology, 1090 Vienna, Austria
- Division of Urology, Department of Special Surgery, Jordan University Hospital, The University of Jordan, Amman 19328, Jordan
- Department of Urology, Second Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
- Institute for Urology and Reproductive Health, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Hubert John
- Department of Urology, Kantonsspital Winterthur, 8401 Winterthur, Switzerland
| | - Beat Foerster
- Department of Urology, Kantonsspital Winterthur, 8401 Winterthur, Switzerland
| |
Collapse
|
9
|
Trivic T, Roklicer R, Zenic N, Modric T, Milovancev A, Lukic-Sarkanovic M, Maksimovic N, Bianco A, Carraro A, Drid P. Rapid weight loss can increase the risk of acute kidney injury in wrestlers. BMJ Open Sport Exerc Med 2023; 9:e001617. [PMID: 37397266 PMCID: PMC10314685 DOI: 10.1136/bmjsem-2023-001617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2023] [Indexed: 07/04/2023] Open
Abstract
Objective Restrictive diets, forced starvation or voluntary weight loss are attracting more and more attention from scientists. Overall trends show that about 80% of combat sports athletes use specific methods of reducing body mass. Rapid weight loss could be a risk factor for kidney-related adverse outcomes. This study aimed to examine the impact of high-intensity specific training combined with rapid weight loss in the first and without rapid weight loss in the second phases on body composition and biochemical markers of kidney function. Methods The study was conducted on 12 male wrestlers. Kidney function markers were measured, including blood urea nitrogen, serum creatinine, uric acid and serum Cystatin-C. Alterations in analysed markers were noted in both phases of the research. Results According to the data, a significant increase was noted in blood urea nitrogen (p=0.002), uric acid (p=0.000) and serum creatinine (p=0.006) during the first phase in comparison with the second phase. The levels of serum Cystatin-C were slightly elevated after both phases compared with the initial measurement. Conclusion It is evident that high-intensity specific training combined with rapid weight loss significantly affects the increase in kidney function markers compared with identical training without rapid weight loss. The findings in this study suggest that rapid body mass reduction is associated with an increased risk of acute kidney injury in wrestlers.
Collapse
Affiliation(s)
- Tatjana Trivic
- Faculty of Sport and Physical Education, University of Novi Sad, Novi Sad, Serbia
| | - Roberto Roklicer
- Faculty of Sport and Physical Education, University of Novi Sad, Novi Sad, Serbia
- Faculty of Education, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Natasa Zenic
- Faculty of Kinesiology, University of Split, Split, Croatia
| | - Toni Modric
- Faculty of Kinesiology, University of Split, Split, Croatia
| | - Aleksandra Milovancev
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
- Institute of Cardiovascular Diseases of Vojvodina, Sremska Kamenica, Serbia
| | - Mirka Lukic-Sarkanovic
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
- Intensive Therapy and Pain Therapy, Clinical Center of Vojvodina, Novi Sad, Serbia
| | - Nemanja Maksimovic
- Sport and Exercise Sciences Research Unit, University of Palermo, Palermo, Italy
| | - Antonino Bianco
- Sport and Exercise Sciences Research Unit, University of Palermo, Palermo, Italy
| | - Attilio Carraro
- Faculty of Education, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Patrik Drid
- Faculty of Sport and Physical Education, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
10
|
Zhang J, Shen R, Lin H, Pan J, Feng X, Lin L, Niu D, Hou Y, Su X, Wang C, Wang L, Qiao X. Effects of contralateral nephrectomy timing and ischemic conditions on kidney fibrosis after unilateral kidney ischemia-reperfusion injury. Ren Fail 2022; 44:1568-1584. [PMID: 36154902 PMCID: PMC9543178 DOI: 10.1080/0886022x.2022.2126790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Acute kidney injury (AKI) is an important cause of chronic kidney disease (CKD), but the underlying mechanisms are unclear. Animal models are tools for studying the AKI-CKD progression. Kidney ischemia-reperfusion injury (IRI) models, especially the unilateral IRI (uIRI) model with delayed contralateral kidney resection, are commonly used to induce fibrotic progression to CKD after AKI. However, in previous studies, we found that details of the operation had a significant impact on the long-term outcomes of the kidney in this uIRI model. In this study, we investigated the effects of resection timing of the contralateral intact kidney, core body temperatures during ischemia, and time length of kidney ischemia on kidney function, histological injury and kidney fibrosis after AKI, using a mouse uIRI model with delayed contralateral nephrectomy. The results showed that all these parameters significantly affected the AKI-CKD transition. The post-AKI fibrosis worsened and the survival rate declined with a longer interval between contralateral nephrectomy and uIRI, higher ischemic body temperature, or longer ischemic duration when the other two variables were fixed. In conclusion, in the uIRI model with delayed contralateral nephrectomy, kidney fibrosis after AKI is influenced by many factors. Strictly controlling the experimental conditions is very important for the stability and consistency of the model.
Collapse
Affiliation(s)
- Junhua Zhang
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China.,Shanxi Kidney Disease Institute, Taiyuan, People's Republic of China.,Institute of Nephrology, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Ruihua Shen
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China.,Shanxi Kidney Disease Institute, Taiyuan, People's Republic of China.,Institute of Nephrology, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Hui Lin
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China.,Shanxi Kidney Disease Institute, Taiyuan, People's Republic of China.,Institute of Nephrology, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Juan Pan
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China.,Shanxi Kidney Disease Institute, Taiyuan, People's Republic of China.,Institute of Nephrology, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Xinyuan Feng
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China.,Shanxi Kidney Disease Institute, Taiyuan, People's Republic of China.,Institute of Nephrology, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Ling Lin
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China.,Shanxi Kidney Disease Institute, Taiyuan, People's Republic of China.,Institute of Nephrology, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Dan Niu
- Shanxi Kidney Disease Institute, Taiyuan, People's Republic of China.,Department of Pathology, Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Yanjuan Hou
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China.,Shanxi Kidney Disease Institute, Taiyuan, People's Republic of China.,Institute of Nephrology, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Xiaole Su
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China.,Shanxi Kidney Disease Institute, Taiyuan, People's Republic of China.,Institute of Nephrology, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Chen Wang
- Shanxi Kidney Disease Institute, Taiyuan, People's Republic of China.,Department of Pathology, Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Lihua Wang
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China.,Shanxi Kidney Disease Institute, Taiyuan, People's Republic of China.,Institute of Nephrology, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Xi Qiao
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China.,Shanxi Kidney Disease Institute, Taiyuan, People's Republic of China.,Institute of Nephrology, Shanxi Medical University, Taiyuan, People's Republic of China
| |
Collapse
|
11
|
Extracellular DNA concentrations in various aetiologies of acute kidney injury. Sci Rep 2022; 12:16812. [PMID: 36207374 PMCID: PMC9546839 DOI: 10.1038/s41598-022-21248-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/26/2022] [Indexed: 11/09/2022] Open
Abstract
Extracellular DNA (ecDNA) in plasma is a non-specific biomarker of tissue damage. Urinary ecDNA, especially of mitochondrial origin, is a potential non-invasive biomarker of kidney damage. Despite prominent tissue damage, ecDNA has not yet been comprehensively analysed in acute kidney injury (AKI). We analysed different fractions of ecDNA, i.e. total, nuclear and mitochondrial, in plasma and urine of children, and different animal models of AKI. We also analysed the activity of the deoxyribonuclease (DNase), which is contributes to the degradation of ecDNA. Patients with AKI had higher total and nuclear ecDNA in both, plasma and urine (sixfold and 12-fold in plasma, and 800-fold in urine, respectively), with no difference in mitochondrial ecDNA. This was mainly found for patients with AKI due to tubulointerstitial nephritis and atypical haemolytic uremic syndrome. Increased plasma ecDNA was also found in animal models of AKI, including adenine nephropathy (fivefold), haemolytic uremic syndrome (fourfold), and ischemia–reperfusion injury (1.5-fold). Total urinary ecDNA was higher in adenine nephropathy and ischemia–reperfusion injury (1300-fold and twofold, respectively). DNase activity in urine was significantly lower in all animal models of AKI in comparison to controls. In conclusion, plasma total and nuclear ecDNA and urinary total ecDNA is increased in patients and animals with particular entities of AKI, suggesting a mechanism-dependent release of ecDNA during AKI. Further studies should focus on the dynamics of ecDNA and its potential role in the pathogenesis of AKI.
Collapse
|
12
|
Biomarkers of persistent renal vulnerability after acute kidney injury recovery. Sci Rep 2021; 11:21183. [PMID: 34707157 PMCID: PMC8551194 DOI: 10.1038/s41598-021-00710-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/18/2021] [Indexed: 02/01/2023] Open
Abstract
Acute kidney injury (AKI) is a risk factor for new AKI episodes, chronic kidney disease, cardiovascular events and death, as renal repair may be deficient and maladaptive, and activate proinflammatory and profibrotic signals. AKI and AKI recovery definitions are based on changes in plasma creatinine, a parameter mostly associated to glomerular filtration, but largely uncoupled from renal tissue damage. The evolution of structural and functional repair has been incompletely described. We thus aimed at identifying subclinical sequelae persisting after recovery from cisplatin-induced AKI in rats. Compared to controls, after plasma creatinine recovery, post-AKI kidneys showed histological alterations and attendant susceptibility to new AKI episodes. Tubular function (assessed by the furosemide stress test, FST) also remained affected. Lingering parenchymal and functional subclinical alterations were paralleled by tapering, but abnormally high levels of urinary albumin, transferrin, insulin-like growth factor-binding protein 7 (IGFBP7), tissue inhibitor of metalloproteinases-2 (TIMP-2) and, especially, the [TIMP-2]*[IGFBP7] product. As subclinical surrogates of incomplete renal recovery, the FST and the urinary [TIMP-2]*[IGFBP7] product provide two potential diagnostic tools to monitor the sequelae and kidney vulnerability after the apparent recovery from AKI.
Collapse
|
13
|
Chen C, Zhang P, Bao G, Fang Y, Chen W. Discovery of potential biomarkers in acute kidney injury by ultra-high-performance liquid chromatography-tandem quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS). Int Urol Nephrol 2021; 53:2635-2643. [PMID: 33686532 DOI: 10.1007/s11255-021-02829-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/28/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The LC-MS/MS-based non-targeted metabolomics method was used to differentially screen serum and urine metabolites of acute kidney injury (AKI) patients and healthy people, to explore potential biomarkers of AKI and analyze related pathways, and explain the potential mechanism and biological significance of AKI. METHODS The serum and urine samples from 30 AKI patients and 20 healthy people were selected to conduct a non-targeted metabolomics study by ultra-high-performance liquid chromatography-tandem quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS). The differential metabolites between the two groups were searched by the human metabolome (HMDB) database ( https://hmdb.ca/ ) and the related pathways of these potential biomarkers were identified by searching the Kyoto encyclopedia of genes and genomes (KEGG) database ( https://www.kegg.jp/ ). The total metabolic pathways were analyzed by the MS Peaks to Pathways module of MetaboAnalyst ( https://www.metaboanalyst.ca/ ). RESULTS Multivariate data analysis found that serum and urine metabolism in AKI patients was significantly different from healthy people. We found three metabolites in urine (2-S-glutathionyl glutathione acetate, 5-L-Glutamyl-taurine, and L-Phosphoarginine) contributing to the separation of AKI patients from healthy people, and major metabolic pathways associated with these potential biomarkers including cytochrome P450 metabolism, arginine, and proline metabolism. CONCLUSION 2-S-glutathionyl glutathione acetate, 5-L-Glutamyl-taurine, and L-Phosphoarginine were associated with AKI patients, which could be selected as potential biomarkers to predicate AKI disease.
Collapse
Affiliation(s)
- Chaoyi Chen
- Department of Nephrology, Anhui Provincial Hospital Affiliated With Anhui Medical University, 17 Lujiang Road, Luyang, Hefei, 230001, Anhui, China
| | - Peng Zhang
- State Key Laboratory of Tea Tree Biology and Resource Utilization, Anhui Agricultural University, 130 West Changjiang Road, Shushan, Hefei, 230036, Anhui, China
| | - Guanhu Bao
- State Key Laboratory of Tea Tree Biology and Resource Utilization, Anhui Agricultural University, 130 West Changjiang Road, Shushan, Hefei, 230036, Anhui, China
| | - Yuan Fang
- Department of Nephrology, Anhui Provincial Hospital Affiliated With Anhui Medical University, 17 Lujiang Road, Luyang, Hefei, 230001, Anhui, China
| | - Wei Chen
- Department of Nephrology, Anhui Provincial Hospital Affiliated With Anhui Medical University, 17 Lujiang Road, Luyang, Hefei, 230001, Anhui, China.
| |
Collapse
|
14
|
Khodaee M, Saeedi A, Irion B, Spittler J, Hoffman MD. Proteinuria in a high-altitude 161-km (100-mile) ultramarathon. PHYSICIAN SPORTSMED 2021; 49:92-99. [PMID: 32529961 DOI: 10.1080/00913847.2020.1782153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE Urine dipstick analysis (UDA) is a useful tool in clinical practices. Abnormalities in UDA parameters have been observed as a result of extreme exercise. The exact incidence of UDA abnormalities, particularly proteinuria, as the result of running ultramarathons is unknown. The purpose of this study was to estimate the incidence of proteinuria and to identify the characteristics of those with proteinuria. METHODS We conducted a prospective observational study using urine samples from volunteer athletes before and immediately after the Leadville Trail 100 Run in August 2014. There were 33 runners with both pre-race and post-race samples and a total of 70 provided post-race samples. Demographic information was collected as a part of a larger study. RESULTS At least one abnormality was demonstrated in 89% of post-race urine samples. Twenty-one (30%) runners had post-race proteinuria (≥1+). Serum creatine kinase concentration (CK) was the only variable that was significantly correlated with the incidence of proteinuria in a multiple logistic regression model. CONCLUSION A majority of runners developed abnormalities in their UDA. Proteinuria was common and found to be associated with serum CK concentration.
Collapse
Affiliation(s)
- Morteza Khodaee
- Department of Family Medicine & Orthopedics, University of Colorado School of Medicine , Denver, CO, USA
| | - Anahita Saeedi
- Department of Biostatistics, Shahid Beheshti University , Tehran, Iran
| | - Bjørn Irion
- Western Orthopedics and Sports Medicine , Grand Junction, CO, USA
| | - Jack Spittler
- Department of Family Medicine & Orthopedics, University of Colorado School of Medicine , Denver, CO, USA
| | - Martin D Hoffman
- Department of Physical Medicine and Rehabilitation, University of California Davis , Sacramento, CA, USA
| |
Collapse
|
15
|
Silence of Long Noncoding RNA SNHG14 Alleviates Ischemia/Reperfusion-Induced Acute Kidney Injury by Regulating miR-124-3p/MMP2 Axis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8884438. [PMID: 33490282 PMCID: PMC7803415 DOI: 10.1155/2021/8884438] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/30/2020] [Accepted: 12/19/2020] [Indexed: 12/21/2022]
Abstract
Purpose Ample evidence has proved that lncRNAs are pivotal regulators in acute kidney injury (AKI). Here, we focus on the role and mechanism of lncRNA SNHG14 in ischemia/reperfusion- (I/R-) caused AKI. Methods I/R and hypoxia/reoxygenation (H/R) were applied to induce rats and HK-2 cells to establish AKI models in vivo and in vitro. Relative expression of SNHG14, miR-124-3p, and MMP2 was determined by qRT-PCR. HE staining was used to evaluate pathological changes in renal tissues, and acute tubular necrosis (ATN) score was calculated. Renal function was evaluated by measuring serum creatinine content and blood urea nitrogen content. Levels of IL-1β, IL-6, and TNF-α were measured by ELISA. Cell viability was examined by MTT assay. Oxidative stress was assessed by measuring SOD, MDA, and ROS levels. The target of SNHG14 or miR-124-3p was verified by DLR assay. Protein expression of MMP2 was examined by western blot. Results SNHG14 was boosted in renal tissues of I/R-stimulated rats and H/R-induced HK-2 cells, while miR-124-3p was diminished in H/R-stimulated HK-2 cells. Si-SNHG14 or miR-124-3p mimics repressed inflammation and oxidative stress and enhanced cell viability in H/R-stimulated HK-2 cells. Sh-SNHG14 mitigated I/R-induced AKI in rats. MiR-124-3p was targeted by SNHG14, and MMP2 was targeted by miR-124-3p. Inhibition of miR-124-3p or upregulation of MMP2 reversed inhibitory effects of SNHG14 silence on inflammation and oxidative stress as well as the promoting effect of SNHG14 silence on cell viability in H/R-induced HK-2 cells. Conclusion Knockdown of SNHG14 alleviated I/R-induced AKI by miR-124-3p-mediated downregulation of MMP2.
Collapse
|
16
|
Wynn L. An escape room simulation focused on renal-impairment for prelicensure nursing students. TEACHING AND LEARNING IN NURSING 2021. [DOI: 10.1016/j.teln.2020.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
da Veiga GL, da Costa Aguiar Alves B, Perez MM, Raimundo JR, de Araújo Encinas JF, Murad N, Fonseca FLA. Kidney Diseases: The Age of Molecular Markers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1306:13-27. [PMID: 33959903 DOI: 10.1007/978-3-030-63908-2_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Kidney diseases are conditions that increase the morbidity and mortality of those afflicted. Diagnosis of these conditions is based on parameters such as the glomerular filtration rate (GFR), measurement of serum and urinary creatinine levels and equations derived from these measurements (Wasung, Chawla, Madero. Clin Chim Acta 438:350-357, 2015). However, serum creatinine as a marker for measuring renal dysfunction has its limitations since it is altered in several other physiological situations, such as in patients with muscle loss, after intense physical exercise or in people on a high protein diet (Riley, Powers, Welch. Res Q Exerc Sport 52(3):339-347, 1981; Juraschek, Appel, Anderson, Miller. Am J Kidney Dis 61(4):547-554, 2013). Besides the fact that serum creatinine is a marker that indicates glomerular damage, it is necessary the discovery of new biomarkers that reflect not only glomerular damage but also tubular impairment. Recent advances in Molecular Biology have led to the generation or identification of new biomarkers for kidney diseases such as: Acute Kidney Failure (AKI), chronic kidney disease (CKD), nephritis or nephrotic syndrome. There are recent markers that have been used to aid in diagnosis and have been shown to be more sensitive and specific than classical markers, such as neutrophil gelatinase associated lipocalin (NGAL) or kidney injury molecule-1 (KIM-1) (Wasung, Chawla, Madero. Clin Chim Acta 438:350-357, 2015; George, Gounden. Adv Clin Chem 88:91-119, 2019; Han, Bailly, Abichandani, Thadhani, Bonventre. Kidney Int 62(1):237-244, 2002; Fontanilla, Han. Expert Opin Med Diagn 5(2):161-173, 2011). However, early diagnostic biomarkers are still necessary to assist the intervention and monitor of the progression of these conditions.
Collapse
Affiliation(s)
| | | | | | | | | | - Neif Murad
- Cardiology Department, Centro Universitário Saúde ABC, Santo André, Brazil
| | - Fernando Luiz Affonso Fonseca
- Division of Clinical Analysis, Centro Universitário Saúde ABC, Santo André, Brazil.,Pharmaceutical Science Department, Universidade Federal de São Paulo/UNIFESP - Diadema, Butantã, São Paulo, Brazil
| |
Collapse
|
18
|
Cost-benefit analysis comparing trough, two-level AUC and Bayesian AUC dosing for vancomycin. Clin Microbiol Infect 2020; 27:1346.e1-1346.e7. [PMID: 33221430 DOI: 10.1016/j.cmi.2020.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/08/2020] [Accepted: 11/14/2020] [Indexed: 01/20/2023]
Abstract
OBJECTIVES Area under the time-concentration curve (AUC) -guided dosing provides better estimates of exposure than vancomycin trough concentrations. Though clinical benefits have been reported, the costs of AUC-guided dosing are uncertain. The objective of this study was to quantify the costs of single-sample Bayesian or two-sample AUC strategies versus trough-guided dosing. METHODS A cost-benefit analysis from the institutional perspective was conducted using a decision tree to model the probabilities and costs of acute kidney injury (AKI) associated with vancomycin administered over 48 hours up to 21+ days. Costs included vancomycin concentrations, Bayesian software and AKI hospitalization costs, and probabilities were obtained from primary literature. Robustness was assessed via both one-way and probabilistic sensitivity analyses. RESULTS In the base-case model, two-sample AUC versus trough dosing saved an average of US$ 846 per patient encounter, and single-sample Bayesian AUC versus trough dosing saved an average of US$ 2065 per patient encounter. This translates into annual cost-savings of US$ 846 810 and US$ 2 065 720 for two-sample and single-sample Bayesian methods versus trough dosing, respectively, assuming 1000 vancomycin-treated patients per year. Assuming a budget of US$ 100 000 per year for Bayesian software, an institution would need to treat ≥41 patients with vancomycin for at least 48 hours to break even. CONCLUSIONS There are significant institutional cost benefits using two-sample AUC or single-sample Bayesian methods over trough dosing, even after accounting for the annual costs of Bayesian programs. The potential to decrease rates of AKI, improve clinical outcomes and reduce costs to the institution strongly warrants consideration of improved dosing methods for vancomycin.
Collapse
|
19
|
Wołyniec W, Ratkowski W, Renke J, Renke M. Changes in Novel AKI Biomarkers after Exercise. A Systematic Review. Int J Mol Sci 2020; 21:E5673. [PMID: 32784748 PMCID: PMC7461060 DOI: 10.3390/ijms21165673] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/26/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022] Open
Abstract
More than 100 substances have been identified as biomarkers of acute kidney injury. These markers can help to diagnose acute kidney injury (AKI) in its early phase, when the creatinine level is not increased. The two markers most frequently studied in plasma and serum are cystatin C and neutrophil gelatinase-associated lipocalin (NGAL). The former is a marker of kidney function and the latter is a marker of kidney damage. Some other promising serum markers, such as osteopontin and netrin-1, have also been proposed and studied. The list of promising urinary markers is much longer and includes cystatin C, NGAL, kidney injury molecule-1 (KIM-1), liver-type fatty-acid-binding protein (L-FABP), interleukin 18, insulin-like growth factor binding protein 7 (IGFBP-7), tissue inhibitor of metalloproteinases-2 (TIMP-2) and many others. Although these markers are increased in urine for no longer than a few hours after nephrotoxic agent action, they are not widely used in clinical practice. Only combined IGFBP-7/TIMP-2 measurement was approved in some countries as a marker of AKI. Several studies have shown that the levels of urinary AKI biomarkers are increased after physical exercise. This systematic review focuses on studies concerning changes in new AKI biomarkers in healthy adults after single exercise. Twenty-seven papers were identified and analyzed in this review. The interpretation of results from different studies was difficult because of the variety of study groups, designs and methodology. The most convincing data concern cystatin C. There is evidence that cystatin C is a better indicator of glomerular filtration rate (GFR) in athletes after exercise than creatinine and also at rest in athletes with a lean mass lower or higher than average. Serum and plasma NGAL are increased after prolonged exercise, but the level also depends on inflammation and hypoxia; therefore, it seems that in physical exercise, it is too sensitive for AKI diagnosis. It may, however, help to diagnose subclinical kidney injury, e.g., in rhabdomyolysis. Urinary biomarkers are increased after many types of exercise. Increases in NGAL, KIM-1, cystatin-C, L-FABP and interleukin 18 are common, but the levels of most urinary AKI biomarkers decrease rapidly after exercise. The importance of this short-term increase in AKI biomarkers after exercise is doubtful. It is not clear if it is a sign of mild kidney injury or physiological metabolic adaptation to exercise.
Collapse
Affiliation(s)
- Wojciech Wołyniec
- Department of Occupational, Metabolic and Internal Diseases, Institute of Maritime and Tropical Medicine, Medical University of Gdańsk, 9b Powstania Styczniowego Street, 81-519 Gdynia, Poland;
| | - Wojciech Ratkowski
- Department of Athletics, Gdańsk University of Physical Education and Sport, 1 Górskiego Street, 80-336 Gdańsk, Poland;
| | - Joanna Renke
- Department of General and Medical Biochemistry, University of Gdansk, 59 Wita Stwosza Street, 80-308 Gdańsk, Poland;
| | - Marcin Renke
- Department of Occupational, Metabolic and Internal Diseases, Institute of Maritime and Tropical Medicine, Medical University of Gdańsk, 9b Powstania Styczniowego Street, 81-519 Gdynia, Poland;
| |
Collapse
|
20
|
Renal Tubular TRPA1 as a Risk Factor for Recovery of Renal Function from Acute Tubular Necrosis. J Clin Med 2019; 8:jcm8122187. [PMID: 31835897 PMCID: PMC6947213 DOI: 10.3390/jcm8122187] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 12/08/2019] [Accepted: 12/09/2019] [Indexed: 12/17/2022] Open
Abstract
Background: Transient receptor potential ankyrin 1 (TRPA1), a redox-sensing Ca2+-influx channel, serves as a gatekeeper for inflammation. However, the role of TRPA1 in kidney injury remains elusive. Methods: The retrospective cohort study recruited 46 adult patients with acute kidney injury (AKI) and biopsy-proven acute tubular necrosis (ATN) and followed them up for more than three months. The subjects were divided into high- and low-renal-tubular-TRPA1-expression groups for the comparison of the total recovery of renal function and mortality within three months. The significance of TRPA1 in patient prognosis was evaluated using Kaplan–Meier curves and logistic regression analysis. Results: Of the 46 adult AKI patients with ATN, 12 totally recovered renal function. The expression level of tubular TRPA1 was detected by quantitative analysis of the immunohistochemistry of biopsy specimens from ATN patients. The AKI patients with high tubular TRPA1 expression showed a high incidence of nontotal renal function recovery than those with low tubular TRPA1 expression (OR = 7.14; 95%CI 1.35–37.75; p = 0.02). High TRPA1 expression was independently associated with nontotal recovery of renal function (adjusted OR = 6.86; 95%CI 1.26–37.27; p = 0.03). Conclusion: High tubular TRPA1 expression was associated with the nontotal recovery of renal function. Further mechanistic studies are warranted.
Collapse
|
21
|
Wołyniec W, Kasprowicz K, Giebułtowicz J, Korytowska N, Zorena K, Bartoszewicz M, Rita-Tkachenko P, Renke M, Ratkowski W. Changes in Water Soluble Uremic Toxins and Urinary Acute Kidney Injury Biomarkers After 10- and 100-km Runs. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E4153. [PMID: 31661892 PMCID: PMC6862582 DOI: 10.3390/ijerph16214153] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/22/2019] [Accepted: 10/25/2019] [Indexed: 12/24/2022]
Abstract
Acute kidney injury (AKI) is described as a relatively common complication of exercise. In clinical practice the diagnosis of AKI is based on serum creatinine, the level of which is dependent not only on glomerular filtration rate but also on muscle mass and injury. Therefore, the diagnosis of AKI is overestimated after physical exercise. The aim of this study was to determine changes in uremic toxins: creatinine, urea, uric acid, asymmetric dimethylarginine (ADMA), symmetric dimethylarginine (SDMA), trimethylamine N-oxide (TMAO) and urinary makers of AKI: albumin, neutrophil gelatinase-associated lipocalin (uNGAL), kidney injury molecule-1 and cystatin-C (uCyst-C) after long runs. Sixteen runners, mean age 36.7 ± 8.2 years, (2 women, 14 men) participating in 10- and 100-km races were studied. Blood and urine were taken before and after the races to assess markers of AKI. A statistically significant increase in creatinine, urea, uric acid, SDMA and all studied urinary AKI markers was observed. TMAO and ADMA levels did not change. The changes in studied markers seem to be a physiological reaction, because they were observed almost in every runner. The diagnosis of kidney failure after exercise is challenging. The most valuable novel markers which can help in post-exercise AKI diagnosis are uCyst-C and uNGAL.
Collapse
Affiliation(s)
- Wojciech Wołyniec
- Department of Occupational, Metabolic and Internal Medicine, Institute of Maritime and Tropical Medicine, Medical University of Gdańsk, 81-519 Gdynia, Poland.
| | - Katarzyna Kasprowicz
- Department of Biology, Ecology and Sports Medicine, Gdańsk University of Physical Education and Sport, 80-336 Gdańsk, Poland.
| | - Joanna Giebułtowicz
- Department of Bioanalysis and Drug Analysis, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland.
| | - Natalia Korytowska
- Department of Bioanalysis and Drug Analysis, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland.
| | - Katarzyna Zorena
- Department of Biology Ecology and Sport Medicine, Medical University of Gdańsk, 81-519 Gdynia, Poland.
| | - Maria Bartoszewicz
- Department of Biology Ecology and Sport Medicine, Medical University of Gdańsk, 81-519 Gdynia, Poland.
| | | | - Marcin Renke
- Department of Occupational, Metabolic and Internal Medicine, Institute of Maritime and Tropical Medicine, Medical University of Gdańsk, 81-519 Gdynia, Poland.
| | - Wojciech Ratkowski
- Department of Athletics, Department of Athletics, Gdańsk University of Physical Education and Sport, 80-336 Gdańsk, Poland.
| |
Collapse
|