1
|
Pena R, Tibbett M. Mycorrhizal symbiosis and the nitrogen nutrition of forest trees. Appl Microbiol Biotechnol 2024; 108:461. [PMID: 39249589 PMCID: PMC11384646 DOI: 10.1007/s00253-024-13298-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/10/2024]
Abstract
Terrestrial plants form primarily mutualistic symbiosis with mycorrhizal fungi based on a compatible exchange of solutes between plant and fungal partners. A key attribute of this symbiosis is the acquisition of soil nutrients by the fungus for the benefit of the plant in exchange for a carbon supply to the fungus. The interaction can range from mutualistic to parasitic depending on environmental and physiological contexts. This review considers current knowledge of the functionality of ectomycorrhizal (EM) symbiosis in the mobilisation and acquisition of soil nitrogen (N) in northern hemisphere forest ecosystems, highlighting the functional diversity of the fungi and the variation of symbiotic benefits, including the dynamics of N transfer to the plant. It provides an overview of recent advances in understanding 'mycorrhizal decomposition' for N release from organic or mineral-organic forms. Additionally, it emphasises the taxon-specific traits of EM fungi in soil N uptake. While the effects of EM communities on tree N are likely consistent across different communities regardless of species composition, the sink activities of various fungal taxa for tree carbon and N resources drive the dynamic continuum of mutualistic interactions. We posit that ectomycorrhizas contribute in a species-specific but complementary manner to benefit tree N nutrition. Therefore, alterations in diversity may impact fungal-plant resource exchange and, ultimately, the role of ectomycorrhizas in tree N nutrition. Understanding the dynamics of EM functions along the mutualism-parasitism continuum in forest ecosystems is essential for the effective management of ecosystem restoration and resilience amidst climate change. KEY POINTS: • Mycorrhizal symbiosis spans a continuum from invested to appropriated benefits. • Ectomycorrhizal fungal communities exhibit a high functional diversity. • Tree nitrogen nutrition benefits from the diversity of ectomycorrhizal fungi.
Collapse
Affiliation(s)
- Rodica Pena
- Department of Sustainable Land Management, School of Agriculture, Policy and Development, University of Reading, Reading, UK.
- Department of Silviculture, Transilvania University of Brasov, Brasov, Romania.
| | - Mark Tibbett
- Department of Sustainable Land Management, School of Agriculture, Policy and Development, University of Reading, Reading, UK
| |
Collapse
|
2
|
Maillard F, Kohler A, Morin E, Hossann C, Miyauchi S, Ziegler-Devin I, Gérant D, Angeli N, Lipzen A, Keymanesh K, Johnson J, Barry K, Grigoriev IV, Martin FM, Buée M. Functional genomics gives new insights into the ectomycorrhizal degradation of chitin. THE NEW PHYTOLOGIST 2023; 238:845-858. [PMID: 36702619 DOI: 10.1111/nph.18773] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Ectomycorrhizal (EcM) fungi play a crucial role in the mineral nitrogen (N) nutrition of their host trees. While it has been proposed that several EcM species also mobilize organic N, studies reporting the EcM ability to degrade N-containing polymers, such as chitin, remain scarce. Here, we assessed the capacity of a representative collection of 16 EcM species to acquire 15 N from 15 N-chitin. In addition, we combined genomics and transcriptomics to identify pathways involved in exogenous chitin degradation between these fungal strains. Boletus edulis, Imleria badia, Suillus luteus, and Hebeloma cylindrosporum efficiently mobilized N from exogenous chitin. EcM genomes primarily contained genes encoding for the direct hydrolysis of chitin. Further, we found a significant relationship between the capacity of EcM fungi to assimilate organic N from chitin and their genomic and transcriptomic potentials for chitin degradation. These findings demonstrate that certain EcM fungal species depolymerize chitin using hydrolytic mechanisms and that endochitinases, but not exochitinases, represent the enzymatic bottleneck of chitin degradation. Finally, this study shows that the degradation of exogenous chitin by EcM fungi might be a key functional trait of nutrient cycling in forests dominated by EcM fungi.
Collapse
Affiliation(s)
- François Maillard
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, 54280, Champenoux, France
| | - Annegret Kohler
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, 54280, Champenoux, France
| | - Emmanuelle Morin
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, 54280, Champenoux, France
| | - Christian Hossann
- Université de Lorraine, AgroParisTech, INRAE, SILVA, Silvatech, F-54000, Nancy, France
| | - Shingo Miyauchi
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, 54280, Champenoux, France
| | | | - Dominique Gérant
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, 54000, Nancy, France
| | - Nicolas Angeli
- Université de Lorraine, AgroParisTech, INRAE, SILVA, Silvatech, F-54000, Nancy, France
| | - Anna Lipzen
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Keykhosrow Keymanesh
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Jenifer Johnson
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Kerrie Barry
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Igor V Grigoriev
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Francis M Martin
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, 54280, Champenoux, France
| | - Marc Buée
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, 54280, Champenoux, France
| |
Collapse
|
3
|
Mali T, Laine K, Hamberg L, Lundell T. Metabolic activities and ultrastructure imaging at late-stage of wood decomposition in interactive brown rot - white rot fungal combinations. FUNGAL ECOL 2023. [DOI: 10.1016/j.funeco.2022.101199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Tremble K, Hoffman JI, Dentinger BTM. Contrasting continental patterns of adaptive population divergence in the holarctic ectomycorrhizal fungus Boletus edulis. THE NEW PHYTOLOGIST 2023; 237:295-309. [PMID: 36200167 DOI: 10.1111/nph.18521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
In the hyperdiverse fungi, the process of speciation is virtually unknown, including for the > 20 000 species of ectomycorrhizal mutualists. To understand this process, we investigated patterns of genome-wide differentiation in the ectomycorrhizal porcini mushroom, Boletus edulis, a globally distributed species complex with broad ecological amplitude. By whole-genome sequencing 160 individuals from across the Northern Hemisphere, we genotyped 792 923 single nucleotide polymorphisms to characterize patterns of genome-wide differentiation and to identify the adaptive processes shaping global population structure. We show that B. edulis exhibits contrasting patterns of genomic divergence between continents, with multiple lineages present across North America, while a single lineage dominates Europe. These geographical lineages are inferred to have diverged 1.62-2.66 million years ago, during a period of climatic upheaval and the onset of glaciation in the Pliocene-Pleistocene boundary. High levels of genomic differentiation were observed among lineages despite evidence of substantial and ongoing introgression. Genome scans, demographic inference, and ecological niche models suggest that genomic differentiation is maintained by environmental adaptation, not physical isolation. Our study uncovers striking patterns of genome-wide differentiation on a global scale and emphasizes the importance of local adaptation and ecologically mediated divergence, rather than prezygotic barriers such as allopatry or genomic incompatibility, in fungal population differentiation.
Collapse
Affiliation(s)
- Keaton Tremble
- School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
- Natural History Museum of Utah, Salt Lake City, UT, 84108, USA
| | - J I Hoffman
- Department of Animal Behaviour, Bielefeld University, Bielefeld, 33501, Germany
| | - Bryn T M Dentinger
- School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
- Natural History Museum of Utah, Salt Lake City, UT, 84108, USA
| |
Collapse
|
5
|
Howard N, Pressel S, Kaye RS, Daniell TJ, Field KJ. The potential role of Mucoromycotina 'fine root endophytes' in plant nitrogen nutrition. PHYSIOLOGIA PLANTARUM 2022; 174:e13715. [PMID: 35560043 PMCID: PMC9328347 DOI: 10.1111/ppl.13715] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/19/2022] [Accepted: 05/10/2022] [Indexed: 05/29/2023]
Abstract
Mycorrhizal associations between fungi and plant roots have globally significant impacts on nutrient cycling. Mucoromycotina 'fine root endophytes' (MFRE) are a distinct and recently characterised group of mycorrhiza-forming fungi that associate with the roots of a range of host plant species. Given their previous misidentification and assignment as arbuscular mycorrhizal fungi (AMF) of the Glomeromycotina, it is now important to untangle the specific form and function of MFRE symbioses. In particular, relatively little is known about the nature of MFRE colonisation and its role in N uptake and transfer to host plants. Even less is known about the mechanisms by which MFRE access and assimilate N, and how this N is processed and subsequently exchanged with host plants for photosynthates. Here, we summarise and contrast the structures formed by MFRE and arbuscular mycorrhizal fungi in host plants as well as compare the N source preference of each mycorrhizal fungal group with what is currently known for MFRE N uptake. We compare the mechanisms of N assimilation and transfer to host plants utilised by the main groups of mycorrhizal fungi and hypothesise potential mechanisms for MFRE N assimilation and transfer, outlining directions for future research.
Collapse
Affiliation(s)
- Nathan Howard
- Plants, Photosynthesis and Soil, School of BiosciencesUniversity of SheffieldSheffieldUK
| | - Silvia Pressel
- Department of Life SciencesNatural History MuseumLondonUK
| | - Ryan S. Kaye
- Plants, Photosynthesis and Soil, School of BiosciencesUniversity of SheffieldSheffieldUK
| | - Tim J. Daniell
- Plants, Photosynthesis and Soil, School of BiosciencesUniversity of SheffieldSheffieldUK
| | - Katie J. Field
- Plants, Photosynthesis and Soil, School of BiosciencesUniversity of SheffieldSheffieldUK
| |
Collapse
|
6
|
Mayerhofer W, Schintlmeister A, Dietrich M, Gorka S, Wiesenbauer J, Martin V, Gabriel R, Reipert S, Weidinger M, Clode P, Wagner M, Woebken D, Richter A, Kaiser C. Recently photoassimilated carbon and fungus-delivered nitrogen are spatially correlated in the ectomycorrhizal tissue of Fagus sylvatica. THE NEW PHYTOLOGIST 2021; 232:2457-2474. [PMID: 34196001 PMCID: PMC9291818 DOI: 10.1111/nph.17591] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/01/2021] [Indexed: 05/04/2023]
Abstract
Ectomycorrhizal plants trade plant-assimilated carbon for soil nutrients with their fungal partners. The underlying mechanisms, however, are not fully understood. Here we investigate the exchange of carbon for nitrogen in the ectomycorrhizal symbiosis of Fagus sylvatica across different spatial scales from the root system to the cellular level. We provided 15 N-labelled nitrogen to mycorrhizal hyphae associated with one half of the root system of young beech trees, while exposing plants to a 13 CO2 atmosphere. We analysed the short-term distribution of 13 C and 15 N in the root system with isotope-ratio mass spectrometry, and at the cellular scale within a mycorrhizal root tip with nanoscale secondary ion mass spectrometry (NanoSIMS). At the root system scale, plants did not allocate more 13 C to root parts that received more 15 N. Nanoscale secondary ion mass spectrometry imaging, however, revealed a highly heterogenous, and spatially significantly correlated distribution of 13 C and 15 N at the cellular scale. Our results indicate that, on a coarse scale, plants do not allocate a larger proportion of photoassimilated C to root parts associated with N-delivering ectomycorrhizal fungi. Within the ectomycorrhizal tissue, however, recently plant-assimilated C and fungus-delivered N were spatially strongly coupled. Here, NanoSIMS visualisation provides an initial insight into the regulation of ectomycorrhizal C and N exchange at the microscale.
Collapse
Affiliation(s)
- Werner Mayerhofer
- Centre for Microbiology and Environmental Systems ScienceUniversity of ViennaViennaA‐1030Austria
| | - Arno Schintlmeister
- Centre for Microbiology and Environmental Systems ScienceUniversity of ViennaViennaA‐1030Austria
- Large‐Instrument Facility for Environmental and Isotope Mass SpectrometryUniversity of ViennaViennaA‐1030Austria
| | - Marlies Dietrich
- Centre for Microbiology and Environmental Systems ScienceUniversity of ViennaViennaA‐1030Austria
| | - Stefan Gorka
- Centre for Microbiology and Environmental Systems ScienceUniversity of ViennaViennaA‐1030Austria
| | - Julia Wiesenbauer
- Centre for Microbiology and Environmental Systems ScienceUniversity of ViennaViennaA‐1030Austria
| | - Victoria Martin
- Centre for Microbiology and Environmental Systems ScienceUniversity of ViennaViennaA‐1030Austria
| | - Raphael Gabriel
- Centre for Microbiology and Environmental Systems ScienceUniversity of ViennaViennaA‐1030Austria
| | - Siegfried Reipert
- Core Facility Cell Imaging and Ultrastructure ResearchUniversity of ViennaViennaA‐1030Austria
| | - Marieluise Weidinger
- Core Facility Cell Imaging and Ultrastructure ResearchUniversity of ViennaViennaA‐1030Austria
| | - Peta Clode
- Centre for Microscopy, Characterisation & AnalysisUniversity of Western AustraliaPerthWA6009Australia
| | - Michael Wagner
- Centre for Microbiology and Environmental Systems ScienceUniversity of ViennaViennaA‐1030Austria
- Large‐Instrument Facility for Environmental and Isotope Mass SpectrometryUniversity of ViennaViennaA‐1030Austria
- Department of Chemistry and BioscienceAalborg UniversityAalborgDK‐9220Denmark
| | - Dagmar Woebken
- Centre for Microbiology and Environmental Systems ScienceUniversity of ViennaViennaA‐1030Austria
| | - Andreas Richter
- Centre for Microbiology and Environmental Systems ScienceUniversity of ViennaViennaA‐1030Austria
| | - Christina Kaiser
- Centre for Microbiology and Environmental Systems ScienceUniversity of ViennaViennaA‐1030Austria
| |
Collapse
|
7
|
Mayerhofer W, Schintlmeister A, Dietrich M, Gorka S, Wiesenbauer J, Martin V, Gabriel R, Reipert S, Weidinger M, Clode P, Wagner M, Woebken D, Richter A, Kaiser C. Recently photoassimilated carbon and fungus-delivered nitrogen are spatially correlated in the ectomycorrhizal tissue of Fagus sylvatica. THE NEW PHYTOLOGIST 2021; 232:2457-2474. [PMID: 34196001 DOI: 10.5281/zenodo.5035482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/01/2021] [Indexed: 05/21/2023]
Abstract
Ectomycorrhizal plants trade plant-assimilated carbon for soil nutrients with their fungal partners. The underlying mechanisms, however, are not fully understood. Here we investigate the exchange of carbon for nitrogen in the ectomycorrhizal symbiosis of Fagus sylvatica across different spatial scales from the root system to the cellular level. We provided 15 N-labelled nitrogen to mycorrhizal hyphae associated with one half of the root system of young beech trees, while exposing plants to a 13 CO2 atmosphere. We analysed the short-term distribution of 13 C and 15 N in the root system with isotope-ratio mass spectrometry, and at the cellular scale within a mycorrhizal root tip with nanoscale secondary ion mass spectrometry (NanoSIMS). At the root system scale, plants did not allocate more 13 C to root parts that received more 15 N. Nanoscale secondary ion mass spectrometry imaging, however, revealed a highly heterogenous, and spatially significantly correlated distribution of 13 C and 15 N at the cellular scale. Our results indicate that, on a coarse scale, plants do not allocate a larger proportion of photoassimilated C to root parts associated with N-delivering ectomycorrhizal fungi. Within the ectomycorrhizal tissue, however, recently plant-assimilated C and fungus-delivered N were spatially strongly coupled. Here, NanoSIMS visualisation provides an initial insight into the regulation of ectomycorrhizal C and N exchange at the microscale.
Collapse
Affiliation(s)
- Werner Mayerhofer
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, A-1030, Austria
| | - Arno Schintlmeister
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, A-1030, Austria
- Large-Instrument Facility for Environmental and Isotope Mass Spectrometry, University of Vienna, Vienna, A-1030, Austria
| | - Marlies Dietrich
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, A-1030, Austria
| | - Stefan Gorka
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, A-1030, Austria
| | - Julia Wiesenbauer
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, A-1030, Austria
| | - Victoria Martin
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, A-1030, Austria
| | - Raphael Gabriel
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, A-1030, Austria
| | - Siegfried Reipert
- Core Facility Cell Imaging and Ultrastructure Research, University of Vienna, Vienna, A-1030, Austria
| | - Marieluise Weidinger
- Core Facility Cell Imaging and Ultrastructure Research, University of Vienna, Vienna, A-1030, Austria
| | - Peta Clode
- Centre for Microscopy, Characterisation & Analysis, University of Western Australia, Perth, WA, 6009, Australia
| | - Michael Wagner
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, A-1030, Austria
- Large-Instrument Facility for Environmental and Isotope Mass Spectrometry, University of Vienna, Vienna, A-1030, Austria
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, DK-9220, Denmark
| | - Dagmar Woebken
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, A-1030, Austria
| | - Andreas Richter
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, A-1030, Austria
| | - Christina Kaiser
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, A-1030, Austria
| |
Collapse
|
8
|
Ray P, Guo Y, Chi MH, Krom N, Boschiero C, Watson B, Huhman D, Zhao P, Singan VR, Lindquist EA, Yan J, Adam C, Craven KD. Serendipita Fungi Modulate the Switchgrass Root Transcriptome to Circumvent Host Defenses and Establish a Symbiotic Relationship. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1128-1142. [PMID: 34260261 DOI: 10.1094/mpmi-04-21-0084-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The fungal family Serendipitaceae encompasses root-associated lineages with endophytic, ericoid, orchid, and ectomycorrhizal lifestyles. Switchgrass is an important bioenergy crop for cellulosic ethanol production owing to high biomass production on marginal soils otherwise unfit for food crop cultivation. The aim of this study was to investigate the host plant responses to Serendipita spp. colonization by characterizing the switchgrass root transcriptome during different stages of symbiosis in vitro. For this, we included a native switchgrass strain, Serendipita bescii, and a related strain, S. vermifera, isolated from Australian orchids. Serendipita colonization progresses from thin hyphae that grow between root cells to, finally, the production of large, bulbous hyphae that fill root cells during the later stages of colonization. We report that switchgrass seems to perceive both fungi prior to physical contact, leading to the activation of chemical and structural defense responses and putative host disease resistance genes. Subsequently, the host defense system appears to be quenched and carbohydrate metabolism adjusted, potentially to accommodate the fungal symbiont. In addition, prior to contact, switchgrass exhibited significant increases in root hair density and root surface area. Furthermore, genes involved in phytohormone metabolism such as gibberellin, jasmonic acid, and salicylic acid were activated during different stages of colonization. Both fungal strains induced plant gene expression in a similar manner, indicating a conserved plant response to members of this fungal order. Understanding plant responsiveness to Serendipita spp. will inform our efforts to integrate them into forages and row crops for optimal plant-microbe functioning, thus facilitating low-input, sustainable agricultural practices.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Prasun Ray
- Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
| | - Yingqing Guo
- Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
| | | | - Nick Krom
- Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
| | | | - Bonnie Watson
- Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
| | - David Huhman
- Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
| | - Patrick Zhao
- Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
| | - Vasanth R Singan
- United States Department of Energy Joint Genome Institute, Walnut Creek, CA, U.S.A
| | - Erika A Lindquist
- United States Department of Energy Joint Genome Institute, Walnut Creek, CA, U.S.A
| | - Juying Yan
- United States Department of Energy Joint Genome Institute, Walnut Creek, CA, U.S.A
| | - Catherine Adam
- United States Department of Energy Joint Genome Institute, Walnut Creek, CA, U.S.A
| | | |
Collapse
|
9
|
Quo vadis: signaling molecules and small secreted proteins from mycorrhizal fungi at the early stage of mycorrhiza formation. Symbiosis 2021. [DOI: 10.1007/s13199-021-00793-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Adamczyk B. How do boreal forest soils store carbon? Bioessays 2021; 43:e2100010. [PMID: 33956367 DOI: 10.1002/bies.202100010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 01/02/2023]
Abstract
Boreal forests store a globally significant pool of carbon (C), mainly in tree biomass and soil organic matter (SOM). Although crucial for future climate change predictions, the mechanisms underlying C stabilization are not well understood. Here, recently discovered mechanisms behind SOM stabilization, their level of understanding, interrelations, and future directions in the field are provided. A recently unraveled mechanism behind C stabilization via interaction of root-derived tannins with fungal necromass emphasizing fungal necromass chemistry is brought forth. The long-lasting dogma of the stability of SOM on minerals is challenged and the newest insights from the field of soil fauna and their influence on SOM stabilization are provided. In conclusion, mechanisms unraveled during the last decade are crucial steps forward to draw a holistic view of the main drivers of SOM stabilization.
Collapse
|
11
|
Wang T, Persson P, Tunlid A. A widespread mechanism in ectomycorrhizal fungi to access nitrogen from mineral-associated proteins. Environ Microbiol 2021; 23:5837-5849. [PMID: 33891367 DOI: 10.1111/1462-2920.15539] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 11/27/2022]
Abstract
A large fraction of nitrogen (N) in forest soils is present in mineral-associated proteinaceous compounds. The strong association between proteins and minerals limits microbial accessibility to this source, which is a relatively stable reservoir of soil N. We have shown that the ectomycorrhizal (ECM) fungus Paxillus involutus can acquire N from iron oxide-associated proteins. Using tightly controlled isotopic, spectroscopic and chromatographic experiments, we demonstrated that the capacity to access N from iron oxide-associated bovine serum albumin (BSA) is shared with the ECM fungi Hebeloma cylindrosporum and Piloderma olivaceum. Despite differences in evolutionary history, growth rates, exploration types and the decomposition mechanisms of organic matter, their N acquisition mechanisms were similar to those described for P. involutus. The fungi released N from mineral-associated BSA by direct action of extracellular aspartic proteases on the mineral-associated BSA, without initial desorption of the protein. Hydrolysis was suppressed by the adsorption of proteases to minerals, but this adverse effect was counteracted by the secretion of compounds that conditioned the mineral surface. These data suggest that the enzymatic exudate-driven mechanism to access N from mineral-associated proteins is found in ECM fungi of multiple lineages and exploration types.
Collapse
Affiliation(s)
- Tao Wang
- Department of Biology, Microbial Ecology Group, Lund University, Ecology Building, Lund, SE-223 62, Sweden.,CAS Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Per Persson
- Department of Biology, Microbial Ecology Group, Lund University, Ecology Building, Lund, SE-223 62, Sweden.,Centre for Environmental and Climate Research (CEC), Lund University, Ecology Building, Lund, SE-223 62, Sweden
| | - Anders Tunlid
- Department of Biology, Microbial Ecology Group, Lund University, Ecology Building, Lund, SE-223 62, Sweden
| |
Collapse
|
12
|
Paparokidou C, Leake JR, Beerling DJ, Rolfe SA. Phosphate availability and ectomycorrhizal symbiosis with Pinus sylvestris have independent effects on the Paxillus involutus transcriptome. MYCORRHIZA 2021; 31:69-83. [PMID: 33200348 PMCID: PMC7782400 DOI: 10.1007/s00572-020-01001-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
Many plant species form symbioses with ectomycorrhizal fungi, which help them forage for limiting nutrients in the soil such as inorganic phosphate (Pi). The transcriptional responses to symbiosis and nutrient-limiting conditions in ectomycorrhizal fungal hyphae, however, are largely unknown. An artificial system was developed to study ectomycorrhizal basidiomycete Paxillus involutus growth in symbiosis with its host tree Pinus sylvestris at different Pi concentrations. RNA-seq analysis was performed on P. involutus hyphae growing under Pi-limiting conditions, either in symbiosis or alone. We show that Pi starvation and ectomycorrhizal symbiosis have an independent effect on the P. involutus transcriptome. Notably, low Pi availability induces expression of newly identified putative high-affinity Pi transporter genes, while reducing the expression of putative organic acid transporters. Additionally, low Pi availability induces a close transcriptional interplay between P and N metabolism. GTP-related signalling was found to have a positive effect in the maintenance of ectomycorrhizal symbiosis, whereas multiple putative cytochrome P450 genes were found to be downregulated, unlike arbuscular mycorrhizal fungi. We provide the first evidence of global transcriptional changes induced by low Pi availability and ectomycorrhizal symbiosis in the hyphae of P. involutus, revealing both similarities and differences with better-characterized arbuscular mycorrhizal fungi.
Collapse
Affiliation(s)
| | - Jonathan R Leake
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - David J Beerling
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Stephen A Rolfe
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK.
| |
Collapse
|
13
|
Shah F, Gressler M, Nehzati S, Op De Beeck M, Gentile L, Hoffmeister D, Persson P, Tunlid A. Secretion of Iron(III)-Reducing Metabolites during Protein Acquisition by the Ectomycorrhizal Fungus Paxillus involutus. Microorganisms 2020; 9:E35. [PMID: 33374225 PMCID: PMC7824621 DOI: 10.3390/microorganisms9010035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 11/17/2022] Open
Abstract
The ectomycorrhizal fungus Paxillus involutus decomposes proteins using a two-step mechanism, including oxidation and proteolysis. Oxidation involves the action of extracellular hydroxyl radicals (•OH) generated by the Fenton reaction. This reaction requires the presence of iron(II). Here, we monitored the speciation of extracellular iron and the secretion of iron(III)-reducing metabolites during the decomposition of proteins by P. involutus. X-ray absorption spectroscopy showed that extracellular iron was mainly present as solid iron(III) phosphates and oxides. Within 1 to 2 days, these compounds were reductively dissolved, and iron(II) complexes were formed, which remained in the medium throughout the incubation. HPLC and mass spectrometry detected five extracellular iron(III)-reducing metabolites. Four of them were also secreted when the fungus grew on a medium containing ammonium as the sole nitrogen source. NMR identified the unique iron(III)-reductant as the diarylcyclopentenone involutin. Involutin was produced from day 2, just before the elevated •OH production, preceding the oxidation of BSA. The other, not yet fully characterized iron(III)-reductants likely participate in the rapid reduction and dissolution of solid iron(III) complexes observed on day one. The production of these metabolites is induced by other environmental cues than for involutin, suggesting that they play a role beyond the Fenton chemistry associated with protein oxidation.
Collapse
Affiliation(s)
- Firoz Shah
- Microbial Ecology Group, Department of Biology, Lund University, 223 62 Lund, Sweden; (F.S.); (S.N.); (M.O.D.B.); (L.G.)
| | - Markus Gressler
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-Universität, 07747 Jena, Germany; (M.G.); (D.H.)
| | - Susan Nehzati
- Microbial Ecology Group, Department of Biology, Lund University, 223 62 Lund, Sweden; (F.S.); (S.N.); (M.O.D.B.); (L.G.)
- MAX IV Laboratory, Lund University, 221 00 Lund, Sweden
| | - Michiel Op De Beeck
- Microbial Ecology Group, Department of Biology, Lund University, 223 62 Lund, Sweden; (F.S.); (S.N.); (M.O.D.B.); (L.G.)
| | - Luigi Gentile
- Microbial Ecology Group, Department of Biology, Lund University, 223 62 Lund, Sweden; (F.S.); (S.N.); (M.O.D.B.); (L.G.)
| | - Dirk Hoffmeister
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-Universität, 07747 Jena, Germany; (M.G.); (D.H.)
| | - Per Persson
- Centre for Environmental and Climate Research (CEC), Lund University, 223 62 Lund, Sweden;
| | - Anders Tunlid
- Microbial Ecology Group, Department of Biology, Lund University, 223 62 Lund, Sweden; (F.S.); (S.N.); (M.O.D.B.); (L.G.)
| |
Collapse
|
14
|
Wang T, Tian Z, Tunlid A, Persson P. Nitrogen acquisition from mineral-associated proteins by an ectomycorrhizal fungus. THE NEW PHYTOLOGIST 2020; 228:697-711. [PMID: 32279319 DOI: 10.1111/nph.16596] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 03/29/2020] [Indexed: 05/07/2023]
Abstract
In nitrogen (N)-limited boreal forests, trees depend on the decomposing activity of their ectomycorrhizal (ECM) fungal symbionts to access soil N. A large fraction of this N exists as proteinaceous compounds associated with mineral particles. However, it is not known if ECM fungi can access these mineral-associated proteins; accordingly, possible acquisition mechanisms have not been investigated. With tightly controlled isotopic, spectroscopic, and chromatographic experiments, we quantified and analyzed the mechanisms of N acquisition from iron oxide mineral-associated proteins by Paxillus involutus, a widespread ECM fungus in boreal forests. The fungus acquired N from the mineral-associated proteins. The collective results indicated a proteolytic mechanism involving formation of the crucial enzyme-substrate complexes at the mineral surfaces. Hence, the enzymes hydrolyzed the mineral-associated proteins without initial desorption of the proteins. The proteolytic activity was suppressed by adsorption of proteases to the mineral particles. This process was counteracted by fungal secretion of mineral-surface-reactive compounds that decreased the protease-mineral interactions and thereby promoted the formation of enzyme-substrate complexes. The ability of ECM fungi to simultaneously generate extracellular proteases and surface-reactive metabolites suggests that they can play an important role in unlocking the large N pool of mineral-associated proteins to trees in boreal forests.
Collapse
Affiliation(s)
- Tao Wang
- Department of Biology, Microbial Ecology Group, Lund University, Ecology Building, SE-223 62, Lund, Sweden
| | - Zhaomo Tian
- Department of Biology, Microbial Ecology Group, Lund University, Ecology Building, SE-223 62, Lund, Sweden
- Centre for Environmental and Climate Research (CEC), Lund University, Ecology Building, SE-223 62, Lund, Sweden
| | - Anders Tunlid
- Department of Biology, Microbial Ecology Group, Lund University, Ecology Building, SE-223 62, Lund, Sweden
| | - Per Persson
- Department of Biology, Microbial Ecology Group, Lund University, Ecology Building, SE-223 62, Lund, Sweden
- Centre for Environmental and Climate Research (CEC), Lund University, Ecology Building, SE-223 62, Lund, Sweden
| |
Collapse
|
15
|
Keiluweit M, Kuyper TW. Proteins unbound - how ectomycorrhizal fungi can tap a vast reservoir of mineral-associated organic nitrogen. THE NEW PHYTOLOGIST 2020; 228:406-408. [PMID: 32735045 DOI: 10.1111/nph.16796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Marco Keiluweit
- School of Earth & Sustainability, University of Massachusetts, Amherst, MA, 01003, USA
| | - Thomas W Kuyper
- Soil Biology Group, Wageningen University & Research, PO Box 47, Wageningen, 6700 AA, the Netherlands
| |
Collapse
|
16
|
Li Q, Ren Y, Xiang D, Shi X, Zhao J, Peng L, Zhao G. Comparative mitogenome analysis of two ectomycorrhizal fungi ( Paxillus) reveals gene rearrangement, intron dynamics, and phylogeny of basidiomycetes. IMA Fungus 2020; 11:12. [PMID: 32670777 PMCID: PMC7333402 DOI: 10.1186/s43008-020-00038-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 06/23/2020] [Indexed: 02/07/2023] Open
Abstract
In this study, the mitogenomes of two Paxillus species were assembled, annotated and compared. The two mitogenomes of Paxillus involutus and P. rubicundulus comprised circular DNA molecules, with the size of 39,109 bp and 41,061 bp, respectively. Evolutionary analysis revealed that the nad4L gene had undergone strong positive selection in the two Paxillus species. In addition, 10.64 and 36.50% of the repetitive sequences were detected in the mitogenomes of P. involutus and P. rubicundulus, respectively, which might transfer between mitochondrial and nuclear genomes. Large-scale gene rearrangements and frequent intron gain/loss events were detected in 61 basidiomycete species, which revealed large variations in mitochondrial organization and size in Basidiomycota. In addition, the insertion sites of the basidiomycete introns were found to have a base preference. Phylogenetic analysis of the combined mitochondrial gene set gave identical and well-supported tree topologies, indicating that mitochondrial genes were reliable molecular markers for analyzing the phylogenetic relationships of Basidiomycota. This study is the first report on the mitogenomes of Paxillus, which will promote a better understanding of their contrasted ecological strategies, molecular evolution and phylogeny of these important ectomycorrhizal fungi and related basidiomycete species.
Collapse
Affiliation(s)
- Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106 Sichuan China
| | - Yuanhang Ren
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106 Sichuan China
| | - Dabing Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106 Sichuan China
| | - Xiaodong Shi
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106 Sichuan China
| | - Jianglin Zhao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106 Sichuan China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106 Sichuan China
- Present address: Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, 2025 # Chengluo Avenue, Chengdu, 610106 Sichuan China
| | - Gang Zhao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106 Sichuan China
| |
Collapse
|
17
|
Mohinuzzaman M, Yuan J, Yang X, Senesi N, Li SL, Ellam RM, Mostofa KMG, Liu CQ. Insights into solubility of soil humic substances and their fluorescence characterisation in three characteristic soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137395. [PMID: 32143034 DOI: 10.1016/j.scitotenv.2020.137395] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 02/16/2020] [Accepted: 02/16/2020] [Indexed: 06/10/2023]
Abstract
Soil humic substances (HS) are involved in almost all biogeochemical processes and functions in soils, thus their extraction from aiming to their characterization is very important. However, many factors that influence HS extraction from soil still need further studies. The aim of this work was to assess and quantify comparatively the solubility of soil HS as a function of extraction time, various extractants, solid to liquid ratio and sequential extraction. In this work three different soils, i.e. a forest, a maize and a paddy soil, were examined to assess the solubility of soil HS based on their fluorescence (excitation-emission matrix, EEM) features and changes in nutrient (NO3--N, PO43--P and dissolved Si) contents using multiple extraction approaches (time-dependent, various extractants, solid to liquid ratio, and sequential extraction). Three fluorescent components, i.e. humic acids-like (HA-like), fulvic acids-like (FA-like), and protein-like fluorophores (PLF), were identified by parallel factor (PARAFAC) analysis of EEM spectra of the various soil extracts. The solubility of HS, dissolved organic carbon (DOC) and nutrients were shown to increase with extraction time, except for PLF. The FA-like fraction disappeared completely in KCl extracts of all three soils, suggesting the inefficiency of salt extraction. Conversely, HS and nutrients solubility substantially increased in alkaline extracts, and dissolved Si was correlated significantly with the fluorescent intensities of HA-like and FA-like, thus confirming the well-known typical process of alkaline dissolution of HS bound to phytolith and silicate minerals. The relative solubility of HS and nutrients was higher at lower solid to liquid ratio (1:250-1:100), whereas their maximum yields was achieved at high solid to liquid ratio (1:10) for all three soils. Sequential extraction results showed that the first water extraction step contributed 42-55% of HS, which suggested that a single extraction was insufficient to recover HS. In conclusion, water and alkaline extraction could provide, respectively, the labile and insoluble complexed HS existing in soil.
Collapse
Affiliation(s)
- M Mohinuzzaman
- Institute of Surface-Earth System Science, Tianjin University, 92 Weijin Road, Tianjin 300072, China; Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, 92 Weijin Road, Tianjin 300072, China; Department of Environmental Science and Disaster Management, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Jie Yuan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beitucheng Western Road, Chaoyang District, 100029 Beijing, China
| | - Xuemei Yang
- Institute of Surface-Earth System Science, Tianjin University, 92 Weijin Road, Tianjin 300072, China; Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Nicola Senesi
- Dip.to di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari "Aldo Moro", Via G. Amendola 165/A, 70126 Bari, Italy
| | - Si-Liang Li
- Institute of Surface-Earth System Science, Tianjin University, 92 Weijin Road, Tianjin 300072, China; Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Rob M Ellam
- Scottish Universities Environmental Research Centre, Rankine Avenue, Scottish Enterprise Technology Park, East Kilbride G75 0QF, UK; Institute of Surface-Earth System Science, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Khan M G Mostofa
- Institute of Surface-Earth System Science, Tianjin University, 92 Weijin Road, Tianjin 300072, China; Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, 92 Weijin Road, Tianjin 300072, China.
| | - Cong-Qiang Liu
- Institute of Surface-Earth System Science, Tianjin University, 92 Weijin Road, Tianjin 300072, China; Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, 92 Weijin Road, Tianjin 300072, China.
| |
Collapse
|
18
|
Mali T, Mäki M, Hellén H, Heinonsalo J, Bäck J, Lundell T. Decomposition of spruce wood and release of volatile organic compounds depend on decay type, fungal interactions and enzyme production patterns. FEMS Microbiol Ecol 2020; 95:5554004. [PMID: 31494677 PMCID: PMC6736282 DOI: 10.1093/femsec/fiz135] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 08/22/2019] [Indexed: 01/18/2023] Open
Abstract
Effect of three wood-decaying fungi on decomposition of spruce wood was studied in solid-state cultivation conditions for a period of three months. Two white rot species (Trichaptum abietinum and Phlebia radiata) were challenged by a brown rot species (Fomitopsis pinicola) in varying combinations. Wood decomposition patterns as determined by mass loss, carbon to nitrogen ratio, accumulation of dissolved sugars and release of volatile organic compounds (VOCs) were observed to depend on both fungal combinations and growth time. Similar dependence of fungal species combination, either white or brown rot dominated, was observed for secreted enzyme activities on spruce wood. Fenton chemistry suggesting reduction of Fe3+ to Fe2+ was detected in the presence of F. pinicola, even in co-cultures, together with substantial degradation of wood carbohydrates and accumulation of oxalic acid. Significant correlation was perceived with two enzyme activity patterns (oxidoreductases produced by white rot fungi; hydrolytic enzymes produced by the brown rot fungus) and wood degradation efficiency. Moreover, emission of four signature VOCs clearly grouped the fungal combinations. Our results indicate that fungal decay type, either brown or white rot, determines the loss of wood mass and decomposition of polysaccharides as well as the pattern of VOCs released upon fungal growth on spruce wood.
Collapse
Affiliation(s)
- Tuulia Mali
- Department of Microbiology, University of Helsinki, Viikki Campus, P.O.Box 56, FI-00014 Helsinki, Finland
| | - Mari Mäki
- Department of Forest Sciences, University of Helsinki, Viikki Campus, P.O.Box 27, FI-00014 Helsinki, Finland.,Institute for Atmospheric and Earth System Research, University of Helsinki, FI-00014 Helsinki, Finland
| | - Heidi Hellén
- Finnish Meteorological Institute, P.O.Box 503, FI-00101 Helsinki, Finland
| | - Jussi Heinonsalo
- Department of Microbiology, University of Helsinki, Viikki Campus, P.O.Box 56, FI-00014 Helsinki, Finland.,Institute for Atmospheric and Earth System Research, University of Helsinki, FI-00014 Helsinki, Finland.,Finnish Meteorological Institute, P.O.Box 503, FI-00101 Helsinki, Finland
| | - Jaana Bäck
- Department of Forest Sciences, University of Helsinki, Viikki Campus, P.O.Box 27, FI-00014 Helsinki, Finland.,Institute for Atmospheric and Earth System Research, University of Helsinki, FI-00014 Helsinki, Finland
| | - Taina Lundell
- Department of Microbiology, University of Helsinki, Viikki Campus, P.O.Box 56, FI-00014 Helsinki, Finland
| |
Collapse
|
19
|
Aliyu H, Gorte O, Zhou X, Neumann A, Ochsenreither K. In silico Proteomic Analysis Provides Insights Into Phylogenomics and Plant Biomass Deconstruction Potentials of the Tremelalles. Front Bioeng Biotechnol 2020; 8:226. [PMID: 32318549 PMCID: PMC7147457 DOI: 10.3389/fbioe.2020.00226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/05/2020] [Indexed: 01/27/2023] Open
Abstract
Basidiomycetes populate a wide range of ecological niches but unlike ascomycetes, their capabilities to decay plant polymers and their potential for biotechnological approaches receive less attention. Particularly, identification and isolation of CAZymes is of biotechnological relevance and has the potential to improve the cache of currently available commercial enzyme cocktails toward enhanced plant biomass utilization. The order Tremellales comprises phylogenetically diverse fungi living as human pathogens, mycoparasites, saprophytes or associated with insects. Here, we have employed comparative genomics approaches to highlight the phylogenomic relationships among thirty-five Tremellales and to identify putative enzymes of biotechnological interest encoded on their genomes. Evaluation of the predicted proteomes of the thirty-five Tremellales revealed 6,918 putative carbohydrate-active enzymes (CAZYmes) and 7,066 peptidases. Two soil isolates, Saitozyma podzolica DSM 27192 and Cryptococcus sp. JCM 24511, show higher numbers harboring an average of 317 compared to a range of 267-121 CAZYmes for the rest of the strains. Similarly, the proteomes of the two soil isolates along with two plant associated strains contain higher number of peptidases sharing an average of 234 peptidases compared to a range of 226-167 for the rest of the strains. Despite these huge differences and the apparent enrichment of these enzymes among the soil isolates, the data revealed a diversity of the various enzyme families that does not reflect specific habitat type. Growth experiment on various carbohydrates to validate the predictions provides support for this view. Overall, the data indicates that the Tremellales could serve as a rich source of both CAZYmes and peptidases with wide range of potential biotechnological relevance.
Collapse
Affiliation(s)
- Habibu Aliyu
- Institute of Process Engineering in Life Science 2: Technical Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Olga Gorte
- Institute of Process Engineering in Life Science 2: Technical Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Xinhai Zhou
- Institute of Process Engineering in Life Science 2: Technical Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Anke Neumann
- Institute of Process Engineering in Life Science 2: Technical Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Katrin Ochsenreither
- Institute of Process Engineering in Life Science 2: Technical Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
20
|
Op De Beeck M, Troein C, Siregar S, Gentile L, Abbondanza G, Peterson C, Persson P, Tunlid A. Regulation of fungal decomposition at single-cell level. THE ISME JOURNAL 2020; 14:896-905. [PMID: 31896790 PMCID: PMC7082364 DOI: 10.1038/s41396-019-0583-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/11/2019] [Accepted: 12/18/2019] [Indexed: 11/13/2022]
Abstract
Filamentous fungi play a key role as decomposers in Earth's nutrient cycles. In soils, substrates are heterogeneously distributed in microenvironments. Hence, individual hyphae of a mycelium may experience very different environmental conditions simultaneously. In the current work, we investigated how fungi cope with local environmental variations at single-cell level. We developed a method based on infrared spectroscopy that allows the direct, in-situ chemical imaging of the decomposition activity of individual hyphal tips. Colonies of the ectomycorrhizal Basidiomycete Paxillus involutus were grown on liquid media, while parts of colonies were allowed to colonize lignin patches. Oxidative decomposition of lignin by individual hyphae growing under different conditions was followed for a period of seven days. We identified two sub-populations of hyphal tips: one with low decomposition activity and one with much higher activity. Active cells secreted more extracellular polymeric substances and oxidized lignin more strongly. The ratio of active to inactive hyphae strongly depended on the environmental conditions in lignin patches, but was further mediated by the decomposition activity of entire mycelia. Phenotypic heterogeneity occurring between genetically identical hyphal tips may be an important strategy for filamentous fungi to cope with heterogeneous and constantly changing soil environments.
Collapse
Affiliation(s)
- Michiel Op De Beeck
- Department of Biology, Microbial Ecology Group, Lund University, Ecology Building, SE-223 62, Lund, Sweden.
| | - Carl Troein
- Department of Astronomy and Theoretical Physics, Computational Biology and Biological Physics, Lund University, Sölvegatan 14A, SE-223 62, Lund, Sweden
| | - Syahril Siregar
- Department of Astronomy and Theoretical Physics, Computational Biology and Biological Physics, Lund University, Sölvegatan 14A, SE-223 62, Lund, Sweden
| | - Luigi Gentile
- Department of Biology, Microbial Ecology Group, Lund University, Ecology Building, SE-223 62, Lund, Sweden
- Department of Chemistry and CSGI, University of Bari Aldo Moro, IT- 701 21, Bari, Italy
| | - Giuseppe Abbondanza
- Department of Physics, Synchrotron Radiation Research, Lund University, SE- 223 62, Lund, Sweden
| | - Carsten Peterson
- Department of Astronomy and Theoretical Physics, Computational Biology and Biological Physics, Lund University, Sölvegatan 14A, SE-223 62, Lund, Sweden
| | - Per Persson
- Department of Biology, Microbial Ecology Group, Lund University, Ecology Building, SE-223 62, Lund, Sweden
- Centre for Environmental and Climate Research (CEC), Lund University, Ecology Building, SE-223 62, Lund, Sweden
| | - Anders Tunlid
- Department of Biology, Microbial Ecology Group, Lund University, Ecology Building, SE-223 62, Lund, Sweden
| |
Collapse
|
21
|
Stuart EK, Plett KL. Digging Deeper: In Search of the Mechanisms of Carbon and Nitrogen Exchange in Ectomycorrhizal Symbioses. FRONTIERS IN PLANT SCIENCE 2020; 10:1658. [PMID: 31993064 PMCID: PMC6971170 DOI: 10.3389/fpls.2019.01658] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/25/2019] [Indexed: 05/12/2023]
Abstract
Symbiosis with ectomycorrhizal (ECM) fungi is an advantageous partnership for trees in nutrient-limited environments. Ectomycorrhizal fungi colonize the roots of their hosts and improve their access to nutrients, usually nitrogen (N) and, in exchange, trees deliver a significant portion of their photosynthetic carbon (C) to the fungi. This nutrient exchange affects key soil processes and nutrient cycling, as well as plant health, and is therefore central to forest ecosystem functioning. Due to their ecological importance, there is a need to more accurately understand ECM fungal mediated C and N movement within forest ecosystems such that we can better model and predict their role in soil processes both now and under future climate scenarios. There are a number of hurdles that we must overcome, however, before this is achievable such as understanding how the evolutionary history of ECM fungi and their inter- and intra- species variability affect their function. Further, there is currently no generally accepted universal mechanism that appears to govern the flux of nutrients between fungal and plant partners. Here, we consider the current state of knowledge on N acquisition and transport by ECM fungi and how C and N exchange may be related or affected by environmental conditions such as N availability. We emphasize the role that modern genomic analysis, molecular biology techniques and more comprehensive and standardized experimental designs may have in bringing cohesion to the numerous ecological studies in this area and assist us in better understanding this important symbiosis. These approaches will help to build unified models of nutrient exchange and develop diagnostic tools to study these fungi at various scales and environments.
Collapse
Affiliation(s)
| | - Krista L. Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| |
Collapse
|
22
|
Ray P, Abraham PE, Guo Y, Giannone RJ, Engle NL, Yang ZK, Jacobson D, Hettich RL, Tschaplinski TJ, Craven KD. Scavenging organic nitrogen and remodelling lipid metabolism are key survival strategies adopted by the endophytic fungi, Serendipita vermifera and Serendipita bescii to alleviate nitrogen and phosphorous starvation in vitro. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:548-557. [PMID: 30970176 PMCID: PMC6850091 DOI: 10.1111/1758-2229.12757] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 05/02/2023]
Abstract
Serendipitaceae represents a diverse fungal group in the Basidiomycota that includes endophytes and lineages that repeatedly evolved ericoid, orchid and ectomycorrhizal lifestyle. Plants rely upon both nitrogen and phosphorous, for essential growth processes, and are often provided by mycorrhizal fungi. In this study, we investigated the cellular proteome of Serendipita vermifera MAFF305830 and closely related Serendipita vermifera subsp. bescii NFPB0129 grown in vitro under (N) ammonium and (P) phosphate starvation conditions. Mycelial growth pattern was documented under these conditions to correlate growth-specific responses to nutrient starvation. We found that N-starvation accelerated hyphal radial growth, whereas P-starvation accelerated hyphal branching. Additionally, P-starvation triggers an integrated starvation response leading to remodelling of lipid metabolism. Higher abundance of an ammonium transporter known to serve as both an ammonium sensor and stimulator of hyphal growth was detected under N-starvation. Additionally, N-starvation led to strong up-regulation of nitrate, amino acid, peptide, and urea transporters, along with several proteins predicted to have peptidase activity. Taken together, our finding suggests S. bescii and S. vermifera have the metabolic capacity for nitrogen assimilation from organic forms of N compounds. We hypothesize that the nitrogen metabolite repression is a key regulator of such organic N assimilation.
Collapse
Affiliation(s)
- Prasun Ray
- Noble Research Institute, LLCArdmoreOK 73401USA
| | - Paul E. Abraham
- Chemical Sciences Division, Oak Ridge National LaboratoryOak RidgeTN 37831USA
| | | | - Richard J. Giannone
- Chemical Sciences Division, Oak Ridge National LaboratoryOak RidgeTN 37831USA
| | - Nancy L. Engle
- Biosciences Division, Oak Ridge National LaboratoryOak RidgeTN 37831USA
| | - Zamin K. Yang
- Biosciences Division, Oak Ridge National LaboratoryOak RidgeTN 37831USA
| | - Daniel Jacobson
- Biosciences Division, Oak Ridge National LaboratoryOak RidgeTN 37831USA
| | - Robert L. Hettich
- Chemical Sciences Division, Oak Ridge National LaboratoryOak RidgeTN 37831USA
| | | | | |
Collapse
|
23
|
Adamczyk B, Sietiö OM, Biasi C, Heinonsalo J. Interaction between tannins and fungal necromass stabilizes fungal residues in boreal forest soils. THE NEW PHYTOLOGIST 2019; 223:16-21. [PMID: 30721536 DOI: 10.1111/nph.15729] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Affiliation(s)
- Bartosz Adamczyk
- Department of Agricultural Sciences, University of Helsinki, PO Box 66, Helsinki, Finland
- Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, PO Box 64, Helsinki, Finland
- Natural Resources Institute Finland (Luke), PO Box 2, Helsinki, Finland
| | - Outi-Maaria Sietiö
- Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, PO Box 64, Helsinki, Finland
- Department of Microbiology, University of Helsinki, PO Box 33, Helsinki, Finland
| | - Christina Biasi
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 1627, Helsinki, Finland
| | - Jussi Heinonsalo
- Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, PO Box 64, Helsinki, Finland
- Department of Forest Sciences, University of Helsinki, PO Box 33, Helsinki, Finland
- Finnish Meteorological Institute, Climate System Research, PO Box 503, Helsinki, Finland
| |
Collapse
|
24
|
Wang T, Tian Z, Tunlid A, Persson P. Influence of Ammonium on Formation of Mineral-Associated Organic Carbon by an Ectomycorrhizal Fungus. Appl Environ Microbiol 2019; 85:e03007-18. [PMID: 30877120 PMCID: PMC6498167 DOI: 10.1128/aem.03007-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/08/2019] [Indexed: 11/20/2022] Open
Abstract
The interactions between dissolved organic matter (DOM) and mineral particles are critical for the stabilization of soil organic matter (SOM) in terrestrial ecosystems. The processing of DOM by ectomycorrhizal fungi contributes to the formation of mineral-stabilized SOM by two contrasting pathways: the extracellular transformation of DOM (ex vivo pathway) and the secretion of mineral-surface-reactive metabolites (in vivo pathway). In this study, we examined how changes in nitrogen (N) availability affected the formation of mineral-associated carbon (C) from these two pathways. DOM was extracted from forest soils. The processing of this DOM by the ectomycorrhizal fungus Paxillus involutus was examined in laboratory-scale studies with different levels of ammonium. At low levels of ammonium (i.e., under N-limited conditions), the DOM components were slightly oxidized, and fungal C metabolites with iron-reducing activity were secreted. Ammonium amendments decreased the amount of C metabolites, and no additional oxidation of the organic matter was detected. In contrast, the hydrolytic activity and the secretion of N-containing compounds increased, particularly when high levels of ammonium were added. Under these conditions, C, but not N, limited fungal growth. Although the overall production of mineral-associated organic C was not affected by ammonium concentrations, the observed shifts in the activities of the ex vivo and in vivo pathways affected the composition of organic matter adsorbed onto the mineral particles. Such changes will affect the properties of organic matter-mineral associations and, thus, ultimately, the stabilization of SOM.IMPORTANCE Nitrogen (N) availability plays a critical role in the cycling and storage of soil organic matter (SOM). However, large uncertainties remain in predicting the net effect of N addition on soil organic carbon (C) storage due to the complex interactions between organic matter, microbial activity, and mineral particles that determine the formation of stable SOM. Here, we attempted to disentangle the effects of ammonium on these interactions in controlled microcosm experiments including the ectomycorrhizal fungus P.involutus and dissolved organic matter extracted from forest soils. Increased ammonium levels affected the fungal processing of the organic material as well as the secretion of extracellular metabolites. Although ammonium additions did not increase the net production of mineral-adsorbed C, changes in the decomposition and secretion pathways altered the composition of the adsorbed organic matter. These changes may influence the properties of the organic matter-mineral associations and, thus, the stabilization of SOM.
Collapse
Affiliation(s)
- Tao Wang
- Department of Biology, Microbial Ecology Group, Lund University, Lund, Sweden
| | - Zhaomo Tian
- Department of Biology, Microbial Ecology Group, Lund University, Lund, Sweden
- Centre for Environmental and Climate Research, Lund University, Lund, Sweden
| | - Anders Tunlid
- Department of Biology, Microbial Ecology Group, Lund University, Lund, Sweden
| | - Per Persson
- Department of Biology, Microbial Ecology Group, Lund University, Lund, Sweden
- Centre for Environmental and Climate Research, Lund University, Lund, Sweden
| |
Collapse
|
25
|
The soil organic matter decomposition mechanisms in ectomycorrhizal fungi are tuned for liberating soil organic nitrogen. ISME JOURNAL 2018; 13:977-988. [PMID: 30538275 PMCID: PMC6461840 DOI: 10.1038/s41396-018-0331-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/27/2018] [Accepted: 11/28/2018] [Indexed: 02/08/2023]
Abstract
Many trees form ectomycorrhizal symbiosis with fungi. During symbiosis, the tree roots supply sugar to the fungi in exchange for nitrogen, and this process is critical for the nitrogen and carbon cycles in forest ecosystems. However, the extents to which ectomycorrhizal fungi can liberate nitrogen and modify the soil organic matter and the mechanisms by which they do so remain unclear since they have lost many enzymes for litter decomposition that were present in their free-living, saprotrophic ancestors. Using time-series spectroscopy and transcriptomics, we examined the ability of two ectomycorrhizal fungi from two independently evolved ectomycorrhizal lineages to mobilize soil organic nitrogen. Both species oxidized the organic matter and accessed the organic nitrogen. The expression of those events was controlled by the availability of glucose and inorganic nitrogen. Despite those similarities, the decomposition mechanisms, including the type of genes involved as well as the patterns of their expression, differed markedly between the two species. Our results suggest that in agreement with their diverse evolutionary origins, ectomycorrhizal fungi use different decomposition mechanisms to access organic nitrogen entrapped in soil organic matter. The timing and magnitude of the expression of the decomposition activity can be controlled by the below-ground nitrogen quality and the above-ground carbon supply.
Collapse
|
26
|
Akroume E, Maillard F, Bach C, Hossann C, Brechet C, Angeli N, Zeller B, Saint-André L, Buée M. First evidences that the ectomycorrhizal fungusPaxillus involutusmobilizes nitrogen and carbon from saprotrophic fungus necromass. Environ Microbiol 2018; 21:197-208. [DOI: 10.1111/1462-2920.14440] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 10/05/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Emila Akroume
- INRA, UMR1136 Interactions Arbres-Microorganismes; F-54280, Champenoux France
- Université de Lorraine, UMR1136 Interactions Arbres-Microorganismes; F-54500, Vandœuvre-lès-Nancy France
- INRA UR 1138 Biogéochimie des Ecosystèmes Forestiers, Centre INRA de Nancy; Champenoux France
- Agroparistech, Centre de Nancy; F-54000, Nancy France
| | - François Maillard
- INRA, UMR1136 Interactions Arbres-Microorganismes; F-54280, Champenoux France
- Université de Lorraine, UMR1136 Interactions Arbres-Microorganismes; F-54500, Vandœuvre-lès-Nancy France
| | - Cyrille Bach
- INRA, UMR1136 Interactions Arbres-Microorganismes; F-54280, Champenoux France
- Université de Lorraine, UMR1136 Interactions Arbres-Microorganismes; F-54500, Vandœuvre-lès-Nancy France
| | - Christian Hossann
- INRA UMR1137 Ecologie et Ecophysiologie Forestière, Centre INRA de Nancy; Champenoux France
| | - Claude Brechet
- INRA UMR1137 Ecologie et Ecophysiologie Forestière, Centre INRA de Nancy; Champenoux France
| | - Nicolas Angeli
- INRA UMR1137 Ecologie et Ecophysiologie Forestière, Centre INRA de Nancy; Champenoux France
| | - Bernhard Zeller
- INRA UR 1138 Biogéochimie des Ecosystèmes Forestiers, Centre INRA de Nancy; Champenoux France
| | - Laurent Saint-André
- INRA UR 1138 Biogéochimie des Ecosystèmes Forestiers, Centre INRA de Nancy; Champenoux France
| | - Marc Buée
- INRA, UMR1136 Interactions Arbres-Microorganismes; F-54280, Champenoux France
- Université de Lorraine, UMR1136 Interactions Arbres-Microorganismes; F-54500, Vandœuvre-lès-Nancy France
| |
Collapse
|
27
|
Shah F, Mali T, Lundell TK. Polyporales Brown Rot Species Fomitopsis pinicola: Enzyme Activity Profiles, Oxalic Acid Production, and Fe 3+-Reducing Metabolite Secretion. Appl Environ Microbiol 2018; 84:e02662-17. [PMID: 29439983 PMCID: PMC5881074 DOI: 10.1128/aem.02662-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/01/2018] [Indexed: 02/05/2023] Open
Abstract
Basidiomycota fungi in the order Polyporales are specified to decomposition of dead wood and woody debris and thereby are crucial players in the degradation of organic matter and cycling of carbon in the forest ecosystems. Polyporales wood-decaying species comprise both white rot and brown rot fungi, based on their mode of wood decay. While the white rot fungi are able to attack and decompose all the lignocellulose biopolymers, the brown rot species mainly cause the destruction of wood polysaccharides, with minor modification of the lignin units. The biochemical mechanism of brown rot decay of wood is still unclear and has been proposed to include a combination of nonenzymatic oxidation reactions and carbohydrate-active enzymes. Therefore, a linking approach is needed to dissect the fungal brown rot processes. We studied the brown rot Polyporales species Fomitopsis pinicola by following mycelial growth and enzyme activity patterns and generating metabolites together with Fenton-promoting Fe3+-reducing activity for 3 months in submerged cultures supplemented with spruce wood. Enzyme activities to degrade hemicellulose, cellulose, proteins, and chitin were produced by three Finnish isolates of F. pinicola Substantial secretion of oxalic acid and a decrease in pH were notable. Aromatic compounds and metabolites were observed to accumulate in the fungal cultures, with some metabolites having Fe3+-reducing activity. Thus, F. pinicola demonstrates a pattern of strong mycelial growth leading to the active production of carbohydrate- and protein-active enzymes, together with the promotion of Fenton biochemistry. Our findings point to fungal species-level "fine-tuning" and variations in the biochemical reactions leading to the brown rot type of wood decay.IMPORTANCEFomitopsis pinicola is a common fungal species in boreal and temperate forests in the Northern Hemisphere encountered as a wood-colonizing saprotroph and tree pathogen, causing a severe brown rot type of wood degradation. However, its lignocellulose-decomposing mechanisms have remained undiscovered. Our approach was to explore both the enzymatic activities and nonenzymatic Fenton reaction-promoting activities (Fe3+ reduction and metabolite production) by cultivating three isolates of F. pinicola in wood-supplemented cultures. Our findings on the simultaneous production of versatile enzyme activities, including those of endoglucanase, xylanase, β-glucosidase, chitinase, and acid peptidase, together with generation of low pH, accumulation of oxalic acid, and Fe3+-reducing metabolites, increase the variations of fungal brown rot decay mechanisms. Furthermore, these findings will aid us in revealing the wood decay proteomic, transcriptomic, and metabolic activities of this ecologically important forest fungal species.
Collapse
Affiliation(s)
- Firoz Shah
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Tuulia Mali
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Taina K Lundell
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| |
Collapse
|
28
|
Op De Beeck M, Troein C, Peterson C, Persson P, Tunlid A. Fenton reaction facilitates organic nitrogen acquisition by an ectomycorrhizal fungus. THE NEW PHYTOLOGIST 2018; 218:335-343. [PMID: 29297591 PMCID: PMC5873446 DOI: 10.1111/nph.14971] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/27/2017] [Indexed: 05/05/2023]
Abstract
Boreal trees rely on their ectomycorrhizal fungal symbionts to acquire growth-limiting nutrients, such as nitrogen (N), which mainly occurs as proteins complexed in soil organic matter (SOM). The mechanisms for liberating this N are unclear as ectomycorrhizal fungi have lost many genes encoding lignocellulose-degrading enzymes present in their saprotrophic ancestors. We hypothesized that hydroxyl radicals (˙ OH), produced by the ectomycorrhizal fungus Paxillus involutus during growth on SOM, are involved in liberating organic N. Paxillus involutus was grown for 7 d on N-containing or N-free substrates that represent major organic compounds of SOM. ˙ OH production, ammonium assimilation, and proteolytic activity were measured daily. ˙ OH production was strongly induced when P. involutus switched from ammonium to protein as the main N source. Extracellular proteolytic activity was initiated shortly after the oxidation. Oxidized protein substrates induced higher proteolytic activity than unmodified proteins. Dynamic modeling predicted that ˙ OH production occurs in a burst, regulated mainly by ammonium and ferric iron concentrations. We propose that the production of ˙ OH and extracellular proteolytic enzymes are regulated by similar nutritional signals. Oxidation works in concert with proteolysis, improving N liberation from proteins in SOM. Organic N mining by ectomycorrhizal fungi has, until now, only been attributed to proteolysis.
Collapse
Affiliation(s)
- Michiel Op De Beeck
- Department of BiologyMicrobial Ecology GroupLund UniversityEcology BuildingSE‐223 62LundSweden
| | - Carl Troein
- Department of Astronomy and Theoretical Physics, Computational Biology and Biological PhysicsLund UniversitySölvegatan 14ASE‐223 62LundSweden
| | - Carsten Peterson
- Department of Astronomy and Theoretical Physics, Computational Biology and Biological PhysicsLund UniversitySölvegatan 14ASE‐223 62LundSweden
| | - Per Persson
- Department of BiologyMicrobial Ecology GroupLund UniversityEcology BuildingSE‐223 62LundSweden
- Centre for Environmental and Climate Research (CEC)Lund UniversityEcology BuildingSE‐223 62LundSweden
| | - Anders Tunlid
- Department of BiologyMicrobial Ecology GroupLund UniversityEcology BuildingSE‐223 62LundSweden
| |
Collapse
|
29
|
Gonzalez E, Pitre FE, Pagé AP, Marleau J, Guidi Nissim W, St-Arnaud M, Labrecque M, Joly S, Yergeau E, Brereton NJB. Trees, fungi and bacteria: tripartite metatranscriptomics of a root microbiome responding to soil contamination. MICROBIOME 2018; 6:53. [PMID: 29562928 PMCID: PMC5863371 DOI: 10.1186/s40168-018-0432-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/02/2018] [Indexed: 05/05/2023]
Abstract
BACKGROUND One method for rejuvenating land polluted with anthropogenic contaminants is through phytoremediation, the reclamation of land through the cultivation of specific crops. The capacity for phytoremediation crops, such as Salix spp., to tolerate and even flourish in contaminated soils relies on a highly complex and predominantly cryptic interacting community of microbial life. METHODS Here, Illumina HiSeq 2500 sequencing and de novo transcriptome assembly were used to observe gene expression in washed Salix purpurea cv. 'Fish Creek' roots from trees pot grown in petroleum hydrocarbon-contaminated or non-contaminated soil. All 189,849 assembled contigs were annotated without a priori assumption as to sequence origin and differential expression was assessed. RESULTS The 839 contigs differentially expressed (DE) and annotated from S. purpurea revealed substantial increases in transcripts encoding abiotic stress response equipment, such as glutathione S-transferases, in roots of contaminated trees as well as the hallmarks of fungal interaction, such as SWEET2 (Sugars Will Eventually Be Exported Transporter). A total of 8252 DE transcripts were fungal in origin, with contamination conditions resulting in a community shift from Ascomycota to Basidiomycota genera. In response to contamination, 1745 Basidiomycota transcripts increased in abundance (the majority uniquely expressed in contaminated soil) including major monosaccharide transporter MST1, primary cell wall and lamella CAZy enzymes, and an ectomycorrhiza-upregulated exo-β-1,3-glucanase (GH5). Additionally, 639 DE polycistronic transcripts from an uncharacterised Enterobacteriaceae species were uniformly in higher abundance in contamination conditions and comprised a wide spectrum of genes cryptic under laboratory conditions but considered putatively involved in eukaryotic interaction, biofilm formation and dioxygenase hydrocarbon degradation. CONCLUSIONS Fungal gene expression, representing the majority of contigs assembled, suggests out-competition of white rot Ascomycota genera (dominated by Pyronema), a sometimes ectomycorrhizal (ECM) Ascomycota (Tuber) and ECM Basidiomycota (Hebeloma) by a poorly characterised putative ECM Basidiomycota due to contamination. Root and fungal expression involved transcripts encoding carbohydrate/amino acid (C/N) dialogue whereas bacterial gene expression included the apparatus necessary for biofilm interaction and direct reduction of contamination stress, a potential bacterial currency for a role in tripartite mutualism. Unmistakable within the metatranscriptome is the degree to which the landscape of rhizospheric biology, particularly the important but predominantly uncharacterised fungal genetics, is yet to be discovered.
Collapse
Affiliation(s)
- E Gonzalez
- Canadian Center for Computational Genomics, McGill University and Genome Quebec Innovation Center, Montréal, H3A 1A4, Canada
- Department of Human Genetics, McGill University, Montreal, H3A 1B1, Canada
| | - F E Pitre
- Institut de recherche en biologie végétale, University of Montreal, Montreal, QC, H1X 2B2, Canada
- Montreal Botanical Garden, Montreal, QC, H1X 2B2, Canada
| | - A P Pagé
- Aquatic and Crop Resource Development (ACRD), National Research Council Canada, Montréal, QC, H4P 2R2, Canada
| | - J Marleau
- Institut de recherche en biologie végétale, University of Montreal, Montreal, QC, H1X 2B2, Canada
| | - W Guidi Nissim
- Department of Agri-food and Environmental Science, University of Florence, Viale delle Idee, Sesto Fiorentino, FI, Italy
| | - M St-Arnaud
- Institut de recherche en biologie végétale, University of Montreal, Montreal, QC, H1X 2B2, Canada
- Montreal Botanical Garden, Montreal, QC, H1X 2B2, Canada
| | - M Labrecque
- Institut de recherche en biologie végétale, University of Montreal, Montreal, QC, H1X 2B2, Canada
- Montreal Botanical Garden, Montreal, QC, H1X 2B2, Canada
| | - S Joly
- Institut de recherche en biologie végétale, University of Montreal, Montreal, QC, H1X 2B2, Canada
- Montreal Botanical Garden, Montreal, QC, H1X 2B2, Canada
| | - E Yergeau
- Institut National de la Recherche Scientifique, Centre INRS-Institut Armand-Frappier, Laval, QC, Canada
| | - N J B Brereton
- Institut de recherche en biologie végétale, University of Montreal, Montreal, QC, H1X 2B2, Canada.
| |
Collapse
|
30
|
Wang T, Tian Z, Bengtson P, Tunlid A, Persson P. Mineral surface-reactive metabolites secreted during fungal decomposition contribute to the formation of soil organic matter. Environ Microbiol 2017; 19:5117-5129. [PMID: 29124857 DOI: 10.1111/1462-2920.13990] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/27/2017] [Accepted: 10/02/2017] [Indexed: 11/27/2022]
Abstract
Soil organic matter (SOM) constitutes the largest terrestrial C pool. An emerging, untested, view is that oxidation and depolymerization of SOM by microorganisms promote the formation of SOM-mineral associations that is critical for SOM stabilization. To test this hypothesis, we performed laboratory-scale experiments involving one ectomycorrhizal and one saprotrophic fungus that represent the two major functional groups of microbial decomposers in the boreal forest soils. Fungal decomposition enhanced the retention of SOM on goethite, partly because of oxidative modifications of organic matter (OM) by the fungi. Moreover, both fungi secreted substantial amounts (> 10% new biomass C) of aromatic metabolites that also contributed to an enhanced mineral retention of OM. Our study demonstrates that soil fungi can form mineral-stabilized SOM not only by oxidative conversion of the SOM but also by synthesizing mineral surface-reactive metabolites. Metabolites produced by fungal decomposers can play a yet overlooked role in the formation and stabilization of SOM.
Collapse
Affiliation(s)
- Tao Wang
- Department of Biology, Microbial Ecology Group, Lund University, Ecology Building, 223 62 Lund, Sweden
| | - Zhaomo Tian
- Department of Biology, Microbial Ecology Group, Lund University, Ecology Building, 223 62 Lund, Sweden.,Centre for Environmental and Climate Research (CEC), Lund University, Ecology Building, 223 62 Lund, Sweden
| | - Per Bengtson
- Department of Biology, Microbial Ecology Group, Lund University, Ecology Building, 223 62 Lund, Sweden
| | - Anders Tunlid
- Department of Biology, Microbial Ecology Group, Lund University, Ecology Building, 223 62 Lund, Sweden
| | - Per Persson
- Department of Biology, Microbial Ecology Group, Lund University, Ecology Building, 223 62 Lund, Sweden.,Centre for Environmental and Climate Research (CEC), Lund University, Ecology Building, 223 62 Lund, Sweden
| |
Collapse
|
31
|
Rineau F, Lmalem H, Ahren D, Shah F, Johansson T, Coninx L, Ruytinx J, Nguyen H, Grigoriev I, Kuo A, Kohler A, Morin E, Vangronsveld J, Martin F, Colpaert JV. Comparative genomics and expression levels of hydrophobins from eight mycorrhizal genomes. MYCORRHIZA 2017; 27:383-396. [PMID: 28066872 DOI: 10.1007/s00572-016-0758-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/22/2016] [Indexed: 06/06/2023]
Abstract
Hydrophobins are small secreted proteins that are present as several gene copies in most fungal genomes. Their properties are now well understood: they are amphiphilic and assemble at hydrophilic/hydrophobic interfaces. However, their physiological functions remain largely unexplored, especially within mycorrhizal fungi. In this study, we identified hydrophobin genes and analysed their distribution in eight mycorrhizal genomes. We then measured their expression levels in three different biological conditions (mycorrhizal tissue vs. free-living mycelium, organic vs. mineral growth medium and aerial vs. submerged growth). Results confirmed that the size of the hydrophobin repertoire increased in the terminal orders of the fungal evolutionary tree. Reconciliation analysis predicted that in 41% of the cases, hydrophobins evolved from duplication events. Whatever the treatment and the fungal species, the pattern of expression of hydrophobins followed a reciprocal function, with one gene much more expressed than others from the same repertoire. These most-expressed hydrophobin genes were also among the most expressed of the whole genome, which suggests that they play a role as structural proteins. The fine-tuning of the expression of hydrophobin genes in each condition appeared complex because it differed considerably between species, in a way that could not be explained by simple ecological traits. Hydrophobin gene regulation in mycorrhizal tissue as compared with free-living mycelium, however, was significantly associated with a calculated high exposure of hydrophilic residues.
Collapse
Affiliation(s)
- F Rineau
- Centre for Environmental Sciences, Environmental Biology group, UHasselt, Hasselt, Belgium.
| | - H Lmalem
- Centre for Environmental Sciences, Environmental Biology group, UHasselt, Hasselt, Belgium
| | - D Ahren
- Department of Biology, Microbial Ecology Group, Lund University, Ecology Building, 223 62, Lund, SE, Sweden
| | - F Shah
- Department of food and environmental sciences, University of Helsinki, Helsinki, Finland
| | - T Johansson
- Department of Biology, Microbial Ecology Group, Lund University, Ecology Building, 223 62, Lund, SE, Sweden
| | - L Coninx
- Centre for Environmental Sciences, Environmental Biology group, UHasselt, Hasselt, Belgium
| | - J Ruytinx
- Centre for Environmental Sciences, Environmental Biology group, UHasselt, Hasselt, Belgium
| | - H Nguyen
- Centre for Environmental Sciences, Environmental Biology group, UHasselt, Hasselt, Belgium
| | - I Grigoriev
- US Department of Energy Joint Genome Institute (JGI), Walnut Creek, CA, USA
| | - A Kuo
- US Department of Energy Joint Genome Institute (JGI), Walnut Creek, CA, USA
| | - A Kohler
- Laboratory of Excellence Advanced Research on the Biology of Tree and Forest Ecosystems (ARBRE), Institut National de la Recherche Agronomique (INRA), UMR 1136, Champenoux, France
- Laboratory of Excellence ARBRE, University of Lorraine, UMR 1136, Champenoux, France
| | - E Morin
- Laboratory of Excellence Advanced Research on the Biology of Tree and Forest Ecosystems (ARBRE), Institut National de la Recherche Agronomique (INRA), UMR 1136, Champenoux, France
- Laboratory of Excellence ARBRE, University of Lorraine, UMR 1136, Champenoux, France
| | - J Vangronsveld
- Centre for Environmental Sciences, Environmental Biology group, UHasselt, Hasselt, Belgium
| | - F Martin
- Laboratory of Excellence Advanced Research on the Biology of Tree and Forest Ecosystems (ARBRE), Institut National de la Recherche Agronomique (INRA), UMR 1136, Champenoux, France
- Laboratory of Excellence ARBRE, University of Lorraine, UMR 1136, Champenoux, France
| | - J V Colpaert
- Centre for Environmental Sciences, Environmental Biology group, UHasselt, Hasselt, Belgium
| |
Collapse
|
32
|
Fochi V, Chitarra W, Kohler A, Voyron S, Singan VR, Lindquist EA, Barry KW, Girlanda M, Grigoriev IV, Martin F, Balestrini R, Perotto S. Fungal and plant gene expression in the Tulasnella calospora-Serapias vomeracea symbiosis provides clues about nitrogen pathways in orchid mycorrhizas. THE NEW PHYTOLOGIST 2017; 213:365-379. [PMID: 27859287 DOI: 10.1111/nph.14279] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/19/2016] [Indexed: 05/03/2023]
Abstract
Orchids are highly dependent on their mycorrhizal fungal partners for nutrient supply, especially during early developmental stages. In addition to organic carbon, nitrogen (N) is probably a major nutrient transferred to the plant because orchid tissues are highly N-enriched. We know almost nothing about the N form preferentially transferred to the plant or about the key molecular determinants required for N uptake and transfer. We identified, in the genome of the orchid mycorrhizal fungus Tulasnella calospora, two functional ammonium transporters and several amino acid transporters but found no evidence of a nitrate assimilation system, in agreement with the N preference of the free-living mycelium grown on different N sources. Differential expression in symbiosis of a repertoire of fungal and plant genes involved in the transport and metabolism of N compounds suggested that organic N may be the main form transferred to the orchid host and that ammonium is taken up by the intracellular fungus from the apoplatic symbiotic interface. This is the first study addressing the genetic determinants of N uptake and transport in orchid mycorrhizas, and provides a model for nutrient exchanges at the symbiotic interface, which may guide future experiments.
Collapse
Affiliation(s)
- Valeria Fochi
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Turin, Italy
- Institute for Sustainable Plant Protection (IPSP)-CNR, 10125, Turin, Italy
| | - Walter Chitarra
- Institute for Sustainable Plant Protection (IPSP)-CNR, 10125, Turin, Italy
| | - Annegret Kohler
- Lab of Excellence ARBRE, INRA-Nancy and Lorraine University, Unité Mixte de Recherche 1136, 54280, Champenoux, France
| | - Samuele Voyron
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Turin, Italy
| | - Vasanth R Singan
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Erika A Lindquist
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Kerrie W Barry
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Mariangela Girlanda
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Turin, Italy
- Institute for Sustainable Plant Protection (IPSP)-CNR, 10125, Turin, Italy
| | - Igor V Grigoriev
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Francis Martin
- Lab of Excellence ARBRE, INRA-Nancy and Lorraine University, Unité Mixte de Recherche 1136, 54280, Champenoux, France
| | | | - Silvia Perotto
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Turin, Italy
- Institute for Sustainable Plant Protection (IPSP)-CNR, 10125, Turin, Italy
| |
Collapse
|
33
|
Pathway and sink activity for translocation of 14C absorbed as amino acids in the Pisolithus extraradical mycelium of ectomycorrhizal Pinus thunbergii seedlings. MYCOSCIENCE 2016. [DOI: 10.1016/j.myc.2016.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
Shah F, Nicolás C, Bentzer J, Ellström M, Smits M, Rineau F, Canbäck B, Floudas D, Carleer R, Lackner G, Braesel J, Hoffmeister D, Henrissat B, Ahrén D, Johansson T, Hibbett DS, Martin F, Persson P, Tunlid A. Ectomycorrhizal fungi decompose soil organic matter using oxidative mechanisms adapted from saprotrophic ancestors. THE NEW PHYTOLOGIST 2016; 209:1705-19. [PMID: 26527297 PMCID: PMC5061094 DOI: 10.1111/nph.13722] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 09/22/2015] [Indexed: 05/21/2023]
Abstract
Ectomycorrhizal fungi are thought to have a key role in mobilizing organic nitrogen that is trapped in soil organic matter (SOM). However, the extent to which ectomycorrhizal fungi decompose SOM and the mechanism by which they do so remain unclear, considering that they have lost many genes encoding lignocellulose-degrading enzymes that are present in their saprotrophic ancestors. Spectroscopic analyses and transcriptome profiling were used to examine the mechanisms by which five species of ectomycorrhizal fungi, representing at least four origins of symbiosis, decompose SOM extracted from forest soils. In the presence of glucose and when acquiring nitrogen, all species converted the organic matter in the SOM extract using oxidative mechanisms. The transcriptome expressed during oxidative decomposition has diverged over evolutionary time. Each species expressed a different set of transcripts encoding proteins associated with oxidation of lignocellulose by saprotrophic fungi. The decomposition 'toolbox' has diverged through differences in the regulation of orthologous genes, the formation of new genes by gene duplications, and the recruitment of genes from diverse but functionally similar enzyme families. The capacity to oxidize SOM appears to be common among ectomycorrhizal fungi. We propose that the ancestral decay mechanisms used primarily to obtain carbon have been adapted in symbiosis to scavenge nutrients instead.
Collapse
Affiliation(s)
- Firoz Shah
- Department of BiologyMicrobial Ecology GroupLund UniversityEcology BuildingSE‐223 62LundSweden
| | - César Nicolás
- Department of BiologyMicrobial Ecology GroupLund UniversityEcology BuildingSE‐223 62LundSweden
| | - Johan Bentzer
- Department of BiologyMicrobial Ecology GroupLund UniversityEcology BuildingSE‐223 62LundSweden
| | - Magnus Ellström
- Department of BiologyMicrobial Ecology GroupLund UniversityEcology BuildingSE‐223 62LundSweden
| | - Mark Smits
- Centre for Environmental SciencesHasselt UniversityBuilding DAgoralaan3590DiepenbeekLimburgBelgium
| | - Francois Rineau
- Centre for Environmental SciencesHasselt UniversityBuilding DAgoralaan3590DiepenbeekLimburgBelgium
| | - Björn Canbäck
- Department of BiologyMicrobial Ecology GroupLund UniversityEcology BuildingSE‐223 62LundSweden
| | - Dimitrios Floudas
- Department of BiologyMicrobial Ecology GroupLund UniversityEcology BuildingSE‐223 62LundSweden
- Biology DepartmentLasry Center for BioscienceClark University950 Main StreetWorcesterMA01610‐1477USA
| | - Robert Carleer
- Centre for Environmental SciencesHasselt UniversityBuilding DAgoralaan3590DiepenbeekLimburgBelgium
| | - Gerald Lackner
- Department of Pharmaceutical Microbiology at the Hans Knöll InstituteFriedrich‐Schiller‐UniversitätBeutenbergstrasse 11a07745JenaGermany
| | - Jana Braesel
- Department of Pharmaceutical Microbiology at the Hans Knöll InstituteFriedrich‐Schiller‐UniversitätBeutenbergstrasse 11a07745JenaGermany
| | - Dirk Hoffmeister
- Department of Pharmaceutical Microbiology at the Hans Knöll InstituteFriedrich‐Schiller‐UniversitätBeutenbergstrasse 11a07745JenaGermany
| | - Bernard Henrissat
- Centre National de la Recherche Scientifique (CNRS)UMR7257Université Aix‐MarseilleMarseille13288France
- Department of Biological SciencesKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Dag Ahrén
- Department of BiologyMicrobial Ecology GroupLund UniversityEcology BuildingSE‐223 62LundSweden
- Bioinformatics Infrastructures for Life Sciences (BILS)Department of BiologyLund UniversityEcology BuildingSE‐223 62LundSweden
| | - Tomas Johansson
- Department of BiologyMicrobial Ecology GroupLund UniversityEcology BuildingSE‐223 62LundSweden
| | - David S. Hibbett
- Biology DepartmentLasry Center for BioscienceClark University950 Main StreetWorcesterMA01610‐1477USA
| | - Francis Martin
- Institut de la Recherche Agronomique (INRA)Laboratory of Excellence ARBREUMR INRA‐Université de Lorraine ‘Interactions Arbres/Micro‐organismes’INRA‐Nancy54280ChampenouxFrance
| | - Per Persson
- Department of BiologyMicrobial Ecology GroupLund UniversityEcology BuildingSE‐223 62LundSweden
- Centre for Environmental and Climate Research (CEC)Lund UniversityEcology BuildingSE‐223 62LundSweden
| | - Anders Tunlid
- Department of BiologyMicrobial Ecology GroupLund UniversityEcology BuildingSE‐223 62LundSweden
| |
Collapse
|
35
|
Rineau F, Stas J, Nguyen NH, Kuyper TW, Carleer R, Vangronsveld J, Colpaert JV, Kennedy PG. Ectomycorrhizal Fungal Protein Degradation Ability Predicted by Soil Organic Nitrogen Availability. Appl Environ Microbiol 2015; 82:1391-1400. [PMID: 26682855 PMCID: PMC4771325 DOI: 10.1128/aem.03191-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/04/2015] [Indexed: 11/20/2022] Open
Abstract
In temperate and boreal forest ecosystems, nitrogen (N) limitation of tree metabolism is alleviated by ectomycorrhizal (ECM) fungi. As forest soils age, the primary source of N in soil switches from inorganic (NH4 (+) and NO3 (-)) to organic (mostly proteins). It has been hypothesized that ECM fungi adapt to the most common N source in their environment, which implies that fungi growing in older forests would have greater protein degradation abilities. Moreover, recent results for a model ECM fungal species suggest that organic N uptake requires a glucose supply. To test the generality of these hypotheses, we screened 55 strains of 13 Suillus species with different ecological preferences for their in vitro protein degradation abilities. Suillus species preferentially occurring in mature forests, where soil contains more organic matter, had significantly higher protease activity than those from young forests with low-organic-matter soils or species indifferent to forest age. Within species, the protease activities of ecotypes from soils with high or low soil organic N content did not differ significantly, suggesting resource partitioning between mineral and organic soil layers. The secreted protease mixtures were strongly dominated by aspartic peptidases. Glucose addition had variable effects on secreted protease activity; in some species, it triggered activity, but in others, activity was repressed at high concentrations. Collectively, our results indicate that protease activity, a key ectomycorrhizal functional trait, is positively related to environmental N source availability but is also influenced by additional factors, such as carbon availability.
Collapse
Affiliation(s)
- Francois Rineau
- Centre for Environmental Sciences, Environmental Biology Group, Hasselt University, Hasselt, Belgium
| | - Jelle Stas
- Centre for Environmental Sciences, Environmental Biology Group, Hasselt University, Hasselt, Belgium
| | - Nhu H Nguyen
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Thomas W Kuyper
- Department of Soil Quality, Wageningen University, Wageningen, The Netherlands
| | - Robert Carleer
- Centre for Environmental Sciences, Environmental Biology Group, Hasselt University, Hasselt, Belgium
| | - Jaco Vangronsveld
- Centre for Environmental Sciences, Environmental Biology Group, Hasselt University, Hasselt, Belgium
| | - Jan V Colpaert
- Centre for Environmental Sciences, Environmental Biology Group, Hasselt University, Hasselt, Belgium
| | - Peter G Kennedy
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
36
|
Pellegrin C, Morin E, Martin FM, Veneault-Fourrey C. Comparative Analysis of Secretomes from Ectomycorrhizal Fungi with an Emphasis on Small-Secreted Proteins. Front Microbiol 2015; 6:1278. [PMID: 26635749 PMCID: PMC4649063 DOI: 10.3389/fmicb.2015.01278] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 10/31/2015] [Indexed: 12/20/2022] Open
Abstract
Fungi are major players in the carbon cycle in forest ecosystems due to the wide range of interactions they have with plants either through soil degradation processes by litter decayers or biotrophic interactions with pathogenic and ectomycorrhizal symbionts. Secretion of fungal proteins mediates these interactions by allowing the fungus to interact with its environment and/or host. Ectomycorrhizal (ECM) symbiosis independently appeared several times throughout evolution and involves approximately 80% of trees. Despite extensive physiological studies on ECM symbionts, little is known about the composition and specificities of their secretomes. In this study, we used a bioinformatics pipeline to predict and analyze the secretomes of 49 fungal species, including 11 ECM fungi, wood and soil decayers and pathogenic fungi to tackle the following questions: (1) Are there differences between the secretomes of saprophytic and ECM fungi? (2) Are small-secreted proteins (SSPs) more abundant in biotrophic fungi than in saprophytic fungi? and (3) Are there SSPs shared between ECM, saprotrophic and pathogenic fungi? We showed that the number of predicted secreted proteins is similar in the surveyed species, independently of their lifestyle. The secretome from ECM fungi is characterized by a restricted number of secreted CAZymes, but their repertoires of secreted proteases and lipases are similar to those of saprotrophic fungi. Focusing on SSPs, we showed that the secretome of ECM fungi is enriched in SSPs compared with other species. Most of the SSPs are coded by orphan genes with no known PFAM domain or similarities to known sequences in databases. Finally, based on the clustering analysis, we identified shared- and lifestyle-specific SSPs between saprotrophic and ECM fungi. The presence of SSPs is not limited to fungi interacting with living plants as the genome of saprotrophic fungi also code for numerous SSPs. ECM fungi shared lifestyle-specific SSPs likely involved in symbiosis that are good candidates for further functional analyses.
Collapse
Affiliation(s)
- Clement Pellegrin
- UMR 1136 Interactions Arbres/Microorganismes, Université de LorraineVandoeuvre-lès-Nancy, France
- UMR 1136 Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, Institut National de la Recherche Agronomique, INRA-NancyChampenoux, France
| | - Emmanuelle Morin
- UMR 1136 Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, Institut National de la Recherche Agronomique, INRA-NancyChampenoux, France
| | - Francis M. Martin
- UMR 1136 Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, Institut National de la Recherche Agronomique, INRA-NancyChampenoux, France
| | - Claire Veneault-Fourrey
- UMR 1136 Interactions Arbres/Microorganismes, Université de LorraineVandoeuvre-lès-Nancy, France
- UMR 1136 Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, Institut National de la Recherche Agronomique, INRA-NancyChampenoux, France
| |
Collapse
|
37
|
Involutin is an Fe3+ reductant secreted by the ectomycorrhizal fungus Paxillus involutus during Fenton-based decomposition of organic matter. Appl Environ Microbiol 2015; 81:8427-33. [PMID: 26431968 PMCID: PMC4644656 DOI: 10.1128/aem.02312-15] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 09/27/2015] [Indexed: 11/20/2022] Open
Abstract
Ectomycorrhizal fungi play a key role in mobilizing nutrients embedded in recalcitrant organic matter complexes, thereby increasing nutrient accessibility to the host plant. Recent studies have shown that during the assimilation of nutrients, the ectomycorrhizal fungus Paxillus involutus decomposes organic matter using an oxidative mechanism involving Fenton chemistry (Fe2+ + H2O2 + H+ → Fe3+ + ˙OH + H2O), similar to that of brown rot wood-decaying fungi. In such fungi, secreted metabolites are one of the components that drive one-electron reductions of Fe3+ and O2, generating Fenton chemistry reagents. Here we investigated whether such a mechanism is also implemented by P. involutus during organic matter decomposition. Activity-guided purification was performed to isolate the Fe3+-reducing principle secreted by P. involutus during growth on a maize compost extract. The Fe3+-reducing activity correlated with the presence of one compound. Mass spectrometry and nuclear magnetic resonance (NMR) identified this compound as the diarylcyclopentenone involutin. A major part of the involutin produced by P. involutus during organic matter decomposition was secreted into the medium, and the metabolite was not detected when the fungus was grown on a mineral nutrient medium. We also demonstrated that in the presence of H2O2, involutin has the capacity to drive an in vitro Fenton reaction via Fe3+ reduction. Our results show that the mechanism for the reduction of Fe3+ and the generation of hydroxyl radicals via Fenton chemistry by ectomycorrhizal fungi during organic matter decomposition is similar to that employed by the evolutionarily related brown rot saprotrophs during wood decay.
Collapse
|
38
|
Three Redundant Synthetases Secure Redox-Active Pigment Production in the Basidiomycete Paxillus involutus. ACTA ACUST UNITED AC 2015; 22:1325-34. [DOI: 10.1016/j.chembiol.2015.08.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 08/17/2015] [Accepted: 08/27/2015] [Indexed: 11/19/2022]
|
39
|
Panstruga R, Kuhn H. Introduction to a Virtual Special Issue on cell biology at the plant-microbe interface. THE NEW PHYTOLOGIST 2015; 207:931-8. [PMID: 26235485 DOI: 10.1111/nph.13551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Affiliation(s)
- Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany
| | - Hannah Kuhn
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany
| |
Collapse
|
40
|
Heinonsalo J, Sun H, Santalahti M, Bäcklund K, Hari P, Pumpanen J. Evidences on the Ability of Mycorrhizal Genus Piloderma to Use Organic Nitrogen and Deliver It to Scots Pine. PLoS One 2015; 10:e0131561. [PMID: 26132469 PMCID: PMC4489387 DOI: 10.1371/journal.pone.0131561] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/02/2015] [Indexed: 11/18/2022] Open
Abstract
Ectomycorrhizal (ECM) symbiosis has been proposed to link plant photosynthesis and soil organic matter (SOM) decomposition through the production of fungal enzymes which promote SOM degradation and nitrogen (N) uptake. However, laboratory and field evidence for the existence of these processes are rare. Piloderma sp., a common ECM genus in boreal forest soil, was chosen as model mycorrhiza for this study. The abundance of Piloderma sp. was studied in root tips and soil over one growing season and in winter. Protease production was measured from ectomycorrhiza and soil solution in the field and pure fungal cultures. We also tested the effect of Piloderma olivaceum on host plant organic N nutrition in the laboratory. The results showed that Piloderma sp. was highly abundant in the field and produced extracellular proteases, which correlated positively with the gross primary production, temperature and soil respiration. In the laboratory, Piloderma olivaceum could improve the ability of Pinus sylvestris L. to utilize N from extragenous proteins. We suggest that ECM fungi, although potentially retaining N in their hyphae, are important in forest C and N cycling due to their ability to access proteinaeous N. As Piloderma sp. abundance appeared to be seasonally highly variable, recycling of fungal-bound N after hyphal death may therefore be of primary importance for the N cycling in boreal ecosystems.
Collapse
Affiliation(s)
- Jussi Heinonsalo
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Hui Sun
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Minna Santalahti
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Kirsi Bäcklund
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Pertti Hari
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Jukka Pumpanen
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
41
|
Ellström M, Shah F, Johansson T, Ahrén D, Persson P, Tunlid A. The carbon starvation response of the ectomycorrhizal fungus Paxillus involutus. FEMS Microbiol Ecol 2015; 91:fiv027. [PMID: 25778509 PMCID: PMC4434801 DOI: 10.1093/femsec/fiv027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/02/2015] [Accepted: 03/10/2015] [Indexed: 11/19/2022] Open
Abstract
The amounts of carbon allocated to the fungal partner in ectomycorrhizal associations can vary substantially depending on the plant growth and the soil nutrient conditions, and the fungus may frequently be confronted with limitations in carbon. We used chemical analysis and transcriptome profiling to examine the physiological response of the ectomycorrhizal fungus Paxillus involutus to carbon starvation during axenic cultivation. Carbon starvation induced a decrease in the biomass. Concomitantly, ammonium, cell wall material (chitin) and proteolytic enzymes were released into the medium, which suggest autolysis. Compared with the transcriptome of actively growing hyphae, about 45% of the transcripts analyzed were differentially regulated during C-starvation. Induced during starvation were transcripts encoding extracellular enzymes such as peptidases, chitinases and laccases. In parallel, transcripts of N-transporters were upregulated, which suggest that some of the released nitrogen compounds were re-assimilated by the mycelium. The observed changes suggest that the carbon starvation response in P. involutus is associated with complex cellular changes that involves autolysis, recycling of intracellular compounds by autophagy and reabsorption of the extracellular released material. The study provides molecular markers that can be used to examine the role of autolysis for the turnover and survival of the ectomycorrhizal mycelium in soils.
Collapse
Affiliation(s)
- Magnus Ellström
- Microbial Ecology, Department of Biology, Lund University, Ecology Building, SE 223 62 Lund, Sweden Centre for Environmental and Climate Research (CEC), Lund University, Ecology Building, SE 223 62 Lund, Sweden
| | - Firoz Shah
- Microbial Ecology, Department of Biology, Lund University, Ecology Building, SE 223 62 Lund, Sweden
| | - Tomas Johansson
- Microbial Ecology, Department of Biology, Lund University, Ecology Building, SE 223 62 Lund, Sweden
| | - Dag Ahrén
- Microbial Ecology, Department of Biology, Lund University, Ecology Building, SE 223 62 Lund, Sweden BILS Bioinformatics Infrastructure for Life Sciences, Department of Biology, Lund University, Ecology Building, SE 223 62 Lund, Sweden
| | - Per Persson
- Microbial Ecology, Department of Biology, Lund University, Ecology Building, SE 223 62 Lund, Sweden Centre for Environmental and Climate Research (CEC), Lund University, Ecology Building, SE 223 62 Lund, Sweden
| | - Anders Tunlid
- Microbial Ecology, Department of Biology, Lund University, Ecology Building, SE 223 62 Lund, Sweden
| |
Collapse
|
42
|
Belmondo S, Fiorilli V, Pérez-Tienda J, Ferrol N, Marmeisse R, Lanfranco L. A dipeptide transporter from the arbuscular mycorrhizal fungus Rhizophagus irregularis is upregulated in the intraradical phase. FRONTIERS IN PLANT SCIENCE 2014; 5:436. [PMID: 25232358 PMCID: PMC4153046 DOI: 10.3389/fpls.2014.00436] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/15/2014] [Indexed: 05/09/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF), which form an ancient and widespread mutualistic symbiosis with plants, are a crucial but still enigmatic component of the plant micro biome. Nutrient exchange has probably been at the heart of the success of this plant-fungus interaction since the earliest days of plants on land. To characterize genes from the fungal partner involved in nutrient exchange, and presumably important for the functioning of the AM symbiosis, genome-wide transcriptomic data obtained from the AMF Rhizophagus irregularis were exploited. A gene sequence, showing amino acid sequence and transmembrane domains profile similar to members of the PTR2 family of fungal oligopeptide transporters, was identified and called RiPTR2. The functional properties of RiPTR2 were investigated by means of heterologous expression in Saccharomyces cerevisiae mutants defective in either one or both of its di/tripeptide transporter genes PTR2 and DAL5. These assays showed that RiPTR2 can transport dipeptides such as Ala-Leu, Ala-Tyr or Tyr-Ala. From the gene expression analyses it seems that RiPTR2 responds to different environmental clues when the fungus grows inside the root and in the extraradical phase.
Collapse
Affiliation(s)
- Simone Belmondo
- Department of Life Sciences and Systems Biology, University of TorinoTorino, Italy
| | - Valentina Fiorilli
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle RicercheTorino, Italy
| | - Jacob Pérez-Tienda
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Consejo Superior de Investigaciones CientificasGranada, Spain
| | - Nuria Ferrol
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Consejo Superior de Investigaciones CientificasGranada, Spain
| | - Roland Marmeisse
- Department of Life Sciences and Systems Biology, University of TorinoTorino, Italy
- Ecologie Microbienne, UMR CNRS 5557 - USC INRA 1364, Université Lyon 1, Université de LyonVilleurbanne, France
| | - Luisa Lanfranco
- Department of Life Sciences and Systems Biology, University of TorinoTorino, Italy
| |
Collapse
|