1
|
Yildirir G, Sperschneider J, Malar C M, Chen ECH, Iwasaki W, Cornell C, Corradi N. Long reads and Hi-C sequencing illuminate the two-compartment genome of the model arbuscular mycorrhizal symbiont Rhizophagus irregularis. THE NEW PHYTOLOGIST 2022; 233:1097-1107. [PMID: 34747029 DOI: 10.1111/nph.17842] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Chromosome folding links genome structure with gene function by generating distinct nuclear compartments and topologically associating domains. In mammals, these undergo preferential interactions and regulate gene expression. However, their role in fungal genome biology is unclear. Here, we combine Nanopore (ONT) sequencing with chromatin conformation capture sequencing (Hi-C) to reveal chromosome and epigenetic diversity in a group of obligate plant symbionts: the arbuscular mycorrhizal fungi (AMF). We find that five phylogenetically distinct strains of the model AMF Rhizophagus irregularis carry 33 chromosomes with substantial within-species variability in size, as well as in gene and repeat content. Strain-specific Hi-C contact maps reveal a 'checkerboard' pattern that underline two dominant euchromatin (A) and heterochromatin (B) compartments. Each compartment differs in the level of gene transcription, regulation of candidate effectors and methylation frequencies. The A-compartment is more gene-dense and contains most core genes, while the B-compartment is more repeat-rich and has higher rates of chromosomal rearrangement. While the B-compartment is transcriptionally repressed, it has significantly more secreted proteins and in planta upregulated candidate effectors, suggesting a possible host-induced change in chromosome conformation. Overall, this study provides a fine-scale view into the genome biology and evolution of model plant symbionts, and opens avenues to study the epigenetic mechanisms that modify chromosome folding during host-microbe interactions.
Collapse
Affiliation(s)
- Gökalp Yildirir
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Jana Sperschneider
- Biological Data Science Institute, The Australian National University, Canberra, ACT, 260, Australia
| | - Mathu Malar C
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Eric C H Chen
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, 1113-0033, Japan
| | - Wataru Iwasaki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, 1113-0033, Japan
| | - Calvin Cornell
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Nicolas Corradi
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| |
Collapse
|
2
|
Singh PP, Srivastava D, Shukla S, Varsha. Rhizophagus proliferus genome sequence reiterates conservation of genetic traits in AM fungi, but predicts higher saprotrophic activity. Arch Microbiol 2021; 204:105. [DOI: 10.1007/s00203-021-02651-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 11/24/2022]
|
3
|
|
4
|
Malar C M, Roux C, Corradi N. Regulation of mating genes during arbuscular mycorrhizal isolate co-existence-where is the evidence? THE ISME JOURNAL 2021; 15:2173-2179. [PMID: 33654264 PMCID: PMC8319156 DOI: 10.1038/s41396-021-00924-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/23/2021] [Accepted: 02/01/2021] [Indexed: 12/31/2022]
Abstract
A recent study published by Mateus et al. [1] claimed that 18 "mating-related" genes are differentially expressed in the model arbuscular mycorrhizal fungus (AMF) Rhizophagus irregularis when genetically distinct fungal strains co-colonize a host plant. To clarify the level of evidence for this interesting conclusion, we first aimed to validate the functional annotation of these 18 R. irregularis genes using orthology predictions. These analyses revealed that, although sequence relationship exists, only 2 of the claimed 18 R. irregularis mating genes are potential orthologues to validated fungal mating genes. We also investigated the RNA-seq data from Mateus et al. [1] using classical RNA-seq methods and statistics. This analysis found that the over-expression during strain co-existence was not significant at the typical cut-off of the R. irregularis strains DAOM197198 and B1 in plants. Overall, we do not find convincing evidence that the genes involved have functions in mating, or that they are reproducibly up or down regulated during co-existence in plants.
Collapse
Affiliation(s)
- Mathu Malar C
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Christophe Roux
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UPS, CNRS 24 Chemin de Borde Rouge-Auzeville, Castanet-Tolosan, France
| | - Nicolas Corradi
- Department of Biology, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
5
|
Kokkoris V, Chagnon PL, Yildirir G, Clarke K, Goh D, MacLean AM, Dettman J, Stefani F, Corradi N. Host identity influences nuclear dynamics in arbuscular mycorrhizal fungi. Curr Biol 2021; 31:1531-1538.e6. [PMID: 33545043 DOI: 10.1016/j.cub.2021.01.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/19/2020] [Accepted: 01/12/2021] [Indexed: 02/07/2023]
Abstract
The arbuscular mycorrhizal fungi (AMF) are involved in one of the most ecologically important symbioses on the planet, occurring within the roots of most land plants.1 Knowledge of even basic elements of AM fungal biology is still poor, with the discovery that AMF may in fact have a sexual life cycle being only very recently reported.2-5 AMF produce asexual spores that contain up to several thousand individual haploid nuclei6 of either largely uniform genotypes (AMF homokaryons) or nuclei originating from two parental genotypes2-5 (AMF dikaryons or heterokaryons). In contrast to the sexual dikaryons in the phyla Ascomycota and Basidiomycota,7,8 in which pairs of nuclei coexist in single hyphal compartments, AMF dikaryons carry several thousand nuclei in a coenocytic mycelium. Here, we set out to better understand the dynamics of this unique multinucleate condition by combining molecular analyses with advanced microscopy and modeling. Herein, we report that select AMF dikaryotic strains carry the distinct nucleotypes in equal proportions to one another, whereas others show an unequal distribution of parental nucleotypes. In both cases, the relative proportions within a given strain are inherently stable. Simulation models suggest that AMF dikaryons may be maintained through nuclear cooperation dynamics. Remarkably, we report that these nuclear ratios shift dramatically in response to plant host identity, revealing a previously unknown layer of genetic complexity and dynamism within the intimate interactions that occur between the partners of a prominent terrestrial symbiosis.
Collapse
Affiliation(s)
- Vasilis Kokkoris
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada; Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON K1A 0C6, Canada.
| | - Pierre-Luc Chagnon
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke Est, Montreal, QC H1X 2B2, Canada
| | - Gökalp Yildirir
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Kelsey Clarke
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada; Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON K1A 0C6, Canada
| | - Dane Goh
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Allyson M MacLean
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Jeremy Dettman
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON K1A 0C6, Canada
| | - Franck Stefani
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON K1A 0C6, Canada
| | - Nicolas Corradi
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
| |
Collapse
|
6
|
Reinhardt D, Roux C, Corradi N, Di Pietro A. Lineage-Specific Genes and Cryptic Sex: Parallels and Differences between Arbuscular Mycorrhizal Fungi and Fungal Pathogens. TRENDS IN PLANT SCIENCE 2021; 26:111-123. [PMID: 33011084 DOI: 10.1016/j.tplants.2020.09.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/29/2020] [Accepted: 09/08/2020] [Indexed: 05/25/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) live as obligate root symbionts on almost all land plants. They have long been regarded as ancient asexuals that have propagated clonally for millions of years. However, genomic studies in Rhizophagus irregularis and other AMF revealed many features indicative of sex. Surprisingly, comparative genomics of conspecific isolates of R. irregularis revealed an unexpected interstrain diversity, suggesting that AMF carry a high number of lineage-specific (LS) genes. Intriguingly, cryptic sex and LS genomic regions have previously been reported in a number of fungal pathogens of plants and humans. Here, we discuss these genomic similarities and highlight their potential relevance for AMF adaptation to the environment and for symbiotic functioning.
Collapse
Affiliation(s)
- Didier Reinhardt
- Department of Biology, University of Fribourg, Fribourg, Switzerland.
| | - Christophe Roux
- Laboratoire de Recherche en Sciences Végétales, UPS, CNRS, Université de Toulouse, Castanet-Tolosan 31326, France
| | - Nicolas Corradi
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Antonio Di Pietro
- Departamento de Genética, Universidad de Cordoba, 14071 Cordoba, Spain
| |
Collapse
|
7
|
Mateus ID, Rojas EC, Savary R, Dupuis C, Masclaux FG, Aletti C, Sanders IR. Coexistence of genetically different Rhizophagus irregularis isolates induces genes involved in a putative fungal mating response. THE ISME JOURNAL 2020; 14:2381-2394. [PMID: 32514118 PMCID: PMC7490403 DOI: 10.1038/s41396-020-0694-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/16/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are of great ecological importance because of their effects on plant growth. Closely related genotypes of the same AMF species coexist in plant roots. However, almost nothing is known about the molecular interactions occurring during such coexistence. We compared in planta AMF gene transcription in single and coinoculation treatments with two genetically different isolates of Rhizophagus irregularis in symbiosis independently on three genetically different cassava genotypes. Remarkably few genes were specifically upregulated when the two fungi coexisted. Strikingly, almost all of the genes with an identifiable putative function were known to be involved in mating in other fungal species. Several genes were consistent across host plant genotypes but more upregulated genes involved in putative mating were observed in host genotype (COL2215) compared with the two other host genotypes. The AMF genes that we observed to be specifically upregulated during coexistence were either involved in the mating pheromone response, in meiosis, sexual sporulation or were homologs of MAT-locus genes known in other fungal species. We did not observe the upregulation of the expected homeodomain genes contained in a putative AMF MAT-locus, but observed upregulation of HMG-box genes similar to those known to be involved in mating in Mucoromycotina species. Finally, we demonstrated that coexistence between the two fungal genotypes in the coinoculation treatments explained the number of putative mating response genes activated in the different plant host genotypes. This study demonstrates experimentally the activation of genes involved in a putative mating response and represents an important step towards the understanding of coexistence and sexual reproduction in these important plant symbionts.
Collapse
Affiliation(s)
- Ivan D Mateus
- Department of Ecology and Evolution, University of Lausanne, Biophore building, 1015, Lausanne, Switzerland.
| | - Edward C Rojas
- Department of Ecology and Evolution, University of Lausanne, Biophore building, 1015, Lausanne, Switzerland
| | - Romain Savary
- Department of Ecology and Evolution, University of Lausanne, Biophore building, 1015, Lausanne, Switzerland
| | - Cindy Dupuis
- Department of Ecology and Evolution, University of Lausanne, Biophore building, 1015, Lausanne, Switzerland
| | - Frédéric G Masclaux
- Department of Ecology and Evolution, University of Lausanne, Biophore building, 1015, Lausanne, Switzerland
| | - Consolée Aletti
- Department of Ecology and Evolution, University of Lausanne, Biophore building, 1015, Lausanne, Switzerland
| | - Ian R Sanders
- Department of Ecology and Evolution, University of Lausanne, Biophore building, 1015, Lausanne, Switzerland.
| |
Collapse
|
8
|
Chen ECH, Mathieu S, Hoffrichter A, Ropars J, Dreissig S, Fuchs J, Brachmann A, Corradi N. More Filtering on SNP Calling Does Not Remove Evidence of Inter-Nucleus Recombination in Dikaryotic Arbuscular Mycorrhizal Fungi. FRONTIERS IN PLANT SCIENCE 2020; 11:912. [PMID: 32733503 PMCID: PMC7358544 DOI: 10.3389/fpls.2020.00912] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
Evidence for the existence of dikaryote-like strains, low nuclear sequence diversity and inter-nuclear recombination in arbuscular mycorrhizal fungi has been recently reported based on single nucleus sequencing data. Here, we aimed to support evidence of inter-nuclear recombination using an approach that filters SNP calls more conservatively, keeping only positions that are exclusively single copy and homozygous, and with at least five reads supporting a given SNP. This methodology recovers hundreds of putative inter-nucleus recombination events across publicly available sequence data from individual nuclei. Challenges related to the acquisition and analysis of sequence data from individual nuclei are highlighted and discussed, and ways to address these issues in future studies are presented.
Collapse
Affiliation(s)
- Eric C. H. Chen
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | | | | | - Jeanne Ropars
- Ecologie Systématique Evolution, CNRS, AgroParisTech, Université, Paris-Saclay, Paris, France
| | - Steven Dreissig
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Jörg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | | | - Nicolas Corradi
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
9
|
|
10
|
Chen ECH, Mathieu S, Hoffrichter A, Sedzielewska-Toro K, Peart M, Pelin A, Ndikumana S, Ropars J, Dreissig S, Fuchs J, Brachmann A, Corradi N. Single nucleus sequencing reveals evidence of inter-nucleus recombination in arbuscular mycorrhizal fungi. eLife 2018; 7:e39813. [PMID: 30516133 PMCID: PMC6281316 DOI: 10.7554/elife.39813] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 11/16/2018] [Indexed: 12/18/2022] Open
Abstract
Eukaryotes thought to have evolved clonally for millions of years are referred to as ancient asexuals. The oldest group among these are the arbuscular mycorrhizal fungi (AMF), which are plant symbionts harboring hundreds of nuclei within one continuous cytoplasm. Some AMF strains (dikaryons) harbor two co-existing nucleotypes but there is no direct evidence that such nuclei recombine in this life-stage, as is expected for sexual fungi. Here, we show that AMF nuclei with distinct genotypes can undergo recombination. Inter-nuclear genetic exchange varies in frequency among strains, and despite recombination all nuclear genomes have an average similarity of at least 99.8%. The present study demonstrates that AMF can generate genetic diversity via meiotic-like processes in the absence of observable mating. The AMF dikaryotic life-stage is a primary source of nuclear variability in these organisms, highlighting its potential for strain enhancement of these symbionts.
Collapse
Affiliation(s)
- Eric CH Chen
- Department of BiologyUniversity of OttawaOttawaCanada
| | | | - Anne Hoffrichter
- Institute of Genetics, Faculty of BiologyLudwig Maximilian University of MunichMunichGermany
| | - Kinga Sedzielewska-Toro
- Institute of Genetics, Faculty of BiologyLudwig Maximilian University of MunichMunichGermany
| | - Max Peart
- Department of BiologyUniversity of OttawaOttawaCanada
| | - Adrian Pelin
- Department of BiologyUniversity of OttawaOttawaCanada
| | | | - Jeanne Ropars
- Department of BiologyUniversity of OttawaOttawaCanada
| | - Steven Dreissig
- Leibniz Institute of Plant Genetics and Crop Plant ResearchGaterslebenGermany
| | - Jorg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant ResearchGaterslebenGermany
| | - Andreas Brachmann
- Institute of Genetics, Faculty of BiologyLudwig Maximilian University of MunichMunichGermany
| | | |
Collapse
|
11
|
Strullu-Derrien C, Selosse MA, Kenrick P, Martin FM. The origin and evolution of mycorrhizal symbioses: from palaeomycology to phylogenomics. THE NEW PHYTOLOGIST 2018; 220:1012-1030. [PMID: 29573278 DOI: 10.1111/nph.15076] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/14/2018] [Indexed: 05/05/2023]
Abstract
Contents Summary 1012 I. Introduction 1013 II. The mycorrhizal symbiosis at the dawn and rise of the land flora 1014 III. From early land plants to early trees: the origin of roots and true mycorrhizas 1016 IV. The diversification of the AM symbiosis 1019 V. The ECM symbiosis 1021 VI. The recently evolved ericoid and orchid mycorrhizas 1023 VII. Limits of paleontological vs genetic approaches and perspectives 1023 Acknowledgements 1025 References 1025 SUMMARY: The ability of fungi to form mycorrhizas with plants is one of the most remarkable and enduring adaptations to life on land. The occurrence of mycorrhizas is now well established in c. 85% of extant plants, yet the geological record of these associations is sparse. Fossils preserved under exceptional conditions provide tantalizing glimpses into the evolutionary history of mycorrhizas, showing the extent of their occurrence and aspects of their evolution in extinct plants. The fossil record has important roles to play in establishing a chronology of when key fungal associations evolved and in understanding their importance in ecosystems through time. Together with calibrated phylogenetic trees, these approaches extend our understanding of when and how groups evolved in the context of major environmental change on a global scale. Phylogenomics furthers this understanding into the evolution of different types of mycorrhizal associations, and genomic studies of both plants and fungi are shedding light on how the complex set of symbiotic traits evolved. Here we present a review of the main phases of the evolution of mycorrhizal interactions from palaeontological, phylogenetic and genomic perspectives, with the aim of highlighting the potential of fossil material and a geological perspective in a cross-disciplinary approach.
Collapse
Affiliation(s)
- Christine Strullu-Derrien
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK
- Interactions Arbres/Microorganismes, Laboratoire d'excellence ARBRE, Centre INRA-Lorraine, Institut national de la recherche agronomique (INRA), Unité Mixte de Recherche 1136 INRA-Université de Lorraine, 54280, Champenoux, France
| | - Marc-André Selosse
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, 57 rue Cuvier, CP39, 75005, Paris, France
- Department of Plant Taxonomy and Nature Conservation, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Paul Kenrick
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Francis M Martin
- Interactions Arbres/Microorganismes, Laboratoire d'excellence ARBRE, Centre INRA-Lorraine, Institut national de la recherche agronomique (INRA), Unité Mixte de Recherche 1136 INRA-Université de Lorraine, 54280, Champenoux, France
| |
Collapse
|
12
|
Chen ECH, Morin E, Beaudet D, Noel J, Yildirir G, Ndikumana S, Charron P, St-Onge C, Giorgi J, Krüger M, Marton T, Ropars J, Grigoriev IV, Hainaut M, Henrissat B, Roux C, Martin F, Corradi N. High intraspecific genome diversity in the model arbuscular mycorrhizal symbiont Rhizophagus irregularis. THE NEW PHYTOLOGIST 2018; 220:1161-1171. [PMID: 29355972 DOI: 10.1111/nph.14989] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 12/03/2017] [Indexed: 05/20/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are known to improve plant fitness through the establishment of mycorrhizal symbioses. Genetic and phenotypic variations among closely related AMF isolates can significantly affect plant growth, but the genomic changes underlying this variability are unclear. To address this issue, we improved the genome assembly and gene annotation of the model strain Rhizophagus irregularis DAOM197198, and compared its gene content with five isolates of R. irregularis sampled in the same field. All isolates harbor striking genome variations, with large numbers of isolate-specific genes, gene family expansions, and evidence of interisolate genetic exchange. The observed variability affects all gene ontology terms and PFAM protein domains, as well as putative mycorrhiza-induced small secreted effector-like proteins and other symbiosis differentially expressed genes. High variability is also found in active transposable elements. Overall, these findings indicate a substantial divergence in the functioning capacity of isolates harvested from the same field, and thus their genetic potential for adaptation to biotic and abiotic changes. Our data also provide a first glimpse into the genome diversity that resides within natural populations of these symbionts, and open avenues for future analyses of plant-AMF interactions that link AMF genome variation with plant phenotype and fitness.
Collapse
Affiliation(s)
- Eric C H Chen
- Department of Biology, University of Ottawa, Ottawa, ON, K1N9A7, Canada
| | - Emmanuelle Morin
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Laboratoire D'excellence Recherches Avancées sur la Biologie de l'Arbre et les Ecosystèmes Forestiers (ARBRE), Centre INRA-Grand Est-Nancy, Champenoux, 54280, France
| | - Denis Beaudet
- Department of Biology, University of Ottawa, Ottawa, ON, K1N9A7, Canada
| | - Jessica Noel
- Department of Biology, University of Ottawa, Ottawa, ON, K1N9A7, Canada
| | - Gokalp Yildirir
- Department of Biology, University of Ottawa, Ottawa, ON, K1N9A7, Canada
| | - Steve Ndikumana
- Department of Biology, University of Ottawa, Ottawa, ON, K1N9A7, Canada
| | - Philippe Charron
- Department of Biology, University of Ottawa, Ottawa, ON, K1N9A7, Canada
| | - Camille St-Onge
- Department of Biology, University of Ottawa, Ottawa, ON, K1N9A7, Canada
| | - John Giorgi
- Department of Biology, University of Ottawa, Ottawa, ON, K1N9A7, Canada
| | - Manuela Krüger
- Department of Biology, University of Ottawa, Ottawa, ON, K1N9A7, Canada
| | - Timea Marton
- Department of Biology, University of Ottawa, Ottawa, ON, K1N9A7, Canada
| | - Jeanne Ropars
- Department of Biology, University of Ottawa, Ottawa, ON, K1N9A7, Canada
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute (JGI), Walnut Creek, CA, 94598, USA
| | - Matthieu Hainaut
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, Marseille, 13288, France
- INRA, USC 1408 AFMB, Marseille, F-13288, France
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, Marseille, 13288, France
- INRA, USC 1408 AFMB, Marseille, F-13288, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Christophe Roux
- Laboratoire de Recherche en Sciences Végétales, UPS, CNRS 24 Chemin de Borde Rouge-Auzeville, Université de Toulouse, Castanet-Tolosan, 31326, France
| | - Francis Martin
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Laboratoire D'excellence Recherches Avancées sur la Biologie de l'Arbre et les Ecosystèmes Forestiers (ARBRE), Centre INRA-Grand Est-Nancy, Champenoux, 54280, France
| | - Nicolas Corradi
- Department of Biology, University of Ottawa, Ottawa, ON, K1N9A7, Canada
| |
Collapse
|
13
|
Mathieu S, Cusant L, Roux C, Corradi N. Arbuscular mycorrhizal fungi: intraspecific diversity and pangenomes. THE NEW PHYTOLOGIST 2018; 220:1129-1134. [PMID: 29949657 DOI: 10.1111/nph.15275] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 05/21/2018] [Indexed: 06/08/2023]
Abstract
Contents Summary 1129 I. Introduction 1129 II. Intraspecific phenotypic variation and the plant host 1130 III. High inter-isolate genetic diversity in model AMF 1130 IV. Genome diversity within the model AM fungus Rhizophagus irregularis 1131 V. Pangenomes and the future of AMF ecological genomics 1131 Acknowledgements 1133 References 1133 SUMMARY: Arbuscular mycorrhizal fungi (AMF) are ubiquitous plant symbionts with an intriguing population biology. Conspecific AMF strains can vary substantially at the genetic and phenotypic levels, leading to direct and quantifiable variation in plant growth. Recent studies have shown that high intraspecific diversity is very common in AMF, and not only found in model species. Studies have also revealed how the phenotype of conspecific isolates varies depending on the plant host, highlighting the functional relevance of intraspecific phenotypic plasticity for the AMF ecology and mycorrhizal symbiosis. Recent work has also demonstrated that conspecific isolates of the model AMF Rhizophagus irregularis harbor large and highly variable pangenomes, highlighting the potential role of intraspecific genome diversity for the ecological adaptation of these symbionts.
Collapse
Affiliation(s)
- Stephanie Mathieu
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Loïc Cusant
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UPS, CNRS 24 Chemin de Borde Rouge-Auzeville, Castanet-Tolosan, France
| | - Christophe Roux
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UPS, CNRS 24 Chemin de Borde Rouge-Auzeville, Castanet-Tolosan, France
| | - Nicolas Corradi
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| |
Collapse
|
14
|
Lee SJ, Kong M, Harrison P, Hijri M. Conserved Proteins of the RNA Interference System in the Arbuscular Mycorrhizal Fungus Rhizoglomus irregulare Provide New Insight into the Evolutionary History of Glomeromycota. Genome Biol Evol 2018; 10:328-343. [PMID: 29329439 PMCID: PMC5786227 DOI: 10.1093/gbe/evy002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2018] [Indexed: 11/26/2022] Open
Abstract
Horizontal gene transfer (HGT) is an important mechanism in the evolution of many living organisms particularly in Prokaryotes where genes are frequently dispersed between taxa. Although, HGT has been reported in Eukaryotes, its accumulative effect and its frequency has been questioned. Arbuscular mycorrhizal fungi (AMF) are an early diverged fungal lineage belonging to phylum Glomeromycota, whose phylogenetic position is still under debate. The history of AMF and land plant symbiosis dates back to at least 460 Ma. However, Glomeromycota are estimated to have emerged much earlier than land plants. In this study, we surveyed genomic and transcriptomic data of the model arbuscular mycorrhizal fungus Rhizoglomus irregulare (synonym Rhizophagus irregularis) and its relatives to search for evidence of HGT that occurred during AMF evolution. Surprisingly, we found a signature of putative HGT of class I ribonuclease III protein-coding genes that occurred from autotrophic cyanobacteria genomes to R. irregulare. At least one of two HGTs was conserved among AMF species with high levels of sequence similarity. Previously, an example of intimate symbiosis between AM fungus and cyanobacteria was reported in the literature. Ribonuclease III family enzymes are important in small RNA regulation in Fungi together with two additional core proteins (Argonaute/piwi and RdRP). The eukaryotic RNA interference system found in AMF was conserved and showed homology with high sequence similarity in Mucoromycotina, a group of fungi closely related to Glomeromycota. Prior to this analysis, class I ribonuclease III has not been identified in any eukaryotes. Our results indicate that a unique acquisition of class I ribonuclease III in AMF is due to a HGT event that occurred from cyanobacteria to Glomeromycota, at the latest before the divergence of the two Glomeromycota orders Diversisporales and Glomerales.
Collapse
Affiliation(s)
- Soon-Jae Lee
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, QC, H1X 2B2, Canada
| | - Mengxuan Kong
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, QC, H1X 2B2, Canada
| | - Paul Harrison
- Department of Biology, McGill University, Montréal, Quebec, Canada
| | - Mohamed Hijri
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, QC, H1X 2B2, Canada
| |
Collapse
|
15
|
Sbrana C, Strani P, Pepe A, de Novais CB, Giovannetti M. Divergence of Funneliformis mosseae populations over 20 years of laboratory cultivation, as revealed by vegetative incompatibility and molecular analysis. MYCORRHIZA 2018; 28:329-341. [PMID: 29574495 DOI: 10.1007/s00572-018-0830-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/13/2018] [Indexed: 06/08/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are widespread, important plant symbionts. They absorb and translocate mineral nutrients from the soil to host plants through an extensive extraradical mycelium, consisting of indefinitely large networks of nonseptate, multinucleated hyphae which may be interconnected by hyphal fusions (anastomoses). This work investigated whether different lineages of the same isolate may lose the ability to establish successful anastomoses, becoming vegetatively incompatible, when grown separately. The occurrence of hyphal incompatibility among five lineages of Funneliformis mosseae, originated from the same ancestor isolate and grown in vivo for more than 20 years in different European locations, was assessed by systematic detection of anastomosis frequency and cytological studies. Anastomosis frequencies ranged from 60 to 80% within the same lineage and from 17 to 44% among different lineages. The consistent detection of protoplasm continuity and nuclei in perfect fusions showed active protoplasm flow both within and between lineages. In pairings between different lineages, post-fusion incompatible reactions occurred in 6-48% of hyphal contacts and pre-fusion incompatibility in 2-17%. Molecular fingerprinting profiles showed genetic divergence among lineages, with overall Jaccard similarity indices ranging from 0.85 to 0.95. Here, phenotypic divergence among the five F. mosseae lineages was demonstrated by the reduction of their ability to form anastomosis and the detection of high levels of vegetative incompatibility. Our data suggest that potential genetic divergence may occur in AMF over only 20 years and represent the basis for detailed studies on the relationship between genes regulating anastomosis formation and hyphal compatibility in AMF.
Collapse
Affiliation(s)
- Cristiana Sbrana
- CNR-Institute of Agricultural Biology and Biotechnology, UOS Pisa, Pisa, Italy.
| | - Patrizia Strani
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Alessandra Pepe
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Candido Barreto de Novais
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
- Forestry Institute, Federal Rural University of Rio de Janeiro, Seropédica, Brazil
| | - Manuela Giovannetti
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| |
Collapse
|
16
|
Spatafora JW, Chang Y, Benny GL, Lazarus K, Smith ME, Berbee ML, Bonito G, Corradi N, Grigoriev I, Gryganskyi A, James TY, O'Donnell K, Roberson RW, Taylor TN, Uehling J, Vilgalys R, White MM, Stajich JE. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 2018; 108:1028-1046. [PMID: 27738200 DOI: 10.3852/16-042] [Citation(s) in RCA: 667] [Impact Index Per Article: 95.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 07/04/2016] [Indexed: 12/12/2022]
Abstract
Zygomycete fungi were classified as a single phylum, Zygomycota, based on sexual reproduction by zygospores, frequent asexual reproduction by sporangia, absence of multicellular sporocarps, and production of coenocytic hyphae, all with some exceptions. Molecular phylogenies based on one or a few genes did not support the monophyly of the phylum, however, and the phylum was subsequently abandoned. Here we present phylogenetic analyses of a genome-scale data set for 46 taxa, including 25 zygomycetes and 192 proteins, and we demonstrate that zygomycetes comprise two major clades that form a paraphyletic grade. A formal phylogenetic classification is proposed herein and includes two phyla, six subphyla, four classes and 16 orders. On the basis of these results, the phyla Mucoromycota and Zoopagomycota are circumscribed. Zoopagomycota comprises Entomophtoromycotina, Kickxellomycotina and Zoopagomycotina; it constitutes the earliest diverging lineage of zygomycetes and contains species that are primarily parasites and pathogens of small animals (e.g. amoeba, insects, etc.) and other fungi, i.e. mycoparasites. Mucoromycota comprises Glomeromycotina, Mortierellomycotina, and Mucoromycotina and is sister to Dikarya. It is the more derived clade of zygomycetes and mainly consists of mycorrhizal fungi, root endophytes, and decomposers of plant material. Evolution of trophic modes, morphology, and analysis of genome-scale data are discussed.
Collapse
Affiliation(s)
- Joseph W Spatafora
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
| | - Ying Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
| | - Gerald L Benny
- Department of Plant Pathology, University of Florida, Gainesville, Florida 32611
| | - Katy Lazarus
- Department of Plant Pathology, University of Florida, Gainesville, Florida 32611
| | - Matthew E Smith
- Department of Plant Pathology, University of Florida, Gainesville, Florida 32611
| | - Mary L Berbee
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4 Canada
| | - Gregory Bonito
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824
| | - Nicolas Corradi
- Department of Biology, University of Ottawa, Ottawa, Ontario, K1N 6N5 Canada
| | - Igor Grigoriev
- US Department of Energy (DOE) Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, California 94598
| | | | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48103
| | - Kerry O'Donnell
- Mycotoxin Prevention and Applied Microbiology Research Unit, NCAUR-ARS-USDA, 1815 N. University Street, Peoria, Illinois 61604
| | - Robert W Roberson
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287
| | - Thomas N Taylor
- Department of Ecology and Evolutionary Biology, and Natural History Museum and Biodiversity Research Center, University of Kansas, Lawrence, Kansas 66045
| | - Jessie Uehling
- Biology Department, Box 90338, Duke University, Durham, North Carolina 27708
| | - Rytas Vilgalys
- Biology Department, Box 90338, Duke University, Durham, North Carolina 27708
| | - Merlin M White
- Department of Biological Sciences, Boise State University, Boise, Idaho 83725
| | - Jason E Stajich
- Department of Plant Pathology & Microbiology and Institute for Integrative Genome Biology, University of California-Riverside, Riverside, California 92521
| |
Collapse
|
17
|
Abstract
This article provides an overview of sexual reproduction in the ascomycetes, a phylum of fungi that is named after the specialized sacs or "asci" that hold the sexual spores. They have therefore also been referred to as the Sac Fungi due to these characteristic structures that typically contain four to eight ascospores. Ascomycetes are morphologically diverse and include single-celled yeasts, filamentous fungi, and more complex cup fungi. The sexual cycles of many species, including those of the model yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe and the filamentous saprobes Neurospora crassa, Aspergillus nidulans, and Podospora anserina, have been examined in depth. In addition, sexual or parasexual cycles have been uncovered in important human pathogens such as Candida albicans and Aspergillus fumigatus, as well as in plant pathogens such as Fusarium graminearum and Cochliobolus heterostrophus. We summarize what is known about sexual fecundity in ascomycetes, examine how structural changes at the mating-type locus dictate sexual behavior, and discuss recent studies that reveal that pheromone signaling pathways can be repurposed to serve cellular roles unrelated to sex.
Collapse
|
18
|
Abstract
Although at the level of resolution of genes and molecules most information about mating in fungi is from a single lineage, the Dikarya, many fundamental discoveries about mating in fungi have been made in the earlier branches of the fungi. These are nonmonophyletic groups that were once classified into the chytrids and zygomycetes. Few species in these lineages offer the potential of genetic tractability, thereby hampering the ability to identify the genes that underlie those fundamental insights. Research performed during the past decade has now established the genes required for mating type determination and pheromone synthesis in some species in the phylum Mucoromycota, especially in the order Mucorales. These findings provide striking parallels with the evolution of mating systems in the Dikarya fungi. Other discoveries in the Mucorales provide the first examples of sex-cell type identity being driven directly by a gene that confers mating type, a trait considered more of relevance to animal sex determination but difficult to investigate in animals. Despite these discoveries, there remains much to be gleaned about mating systems from these fungi.
Collapse
Affiliation(s)
- Soo Chan Lee
- South Texas Center for Emerging Infectious Diseases (STCEID), Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249
| | - Alexander Idnurm
- School of BioSciences, University of Melbourne, Parkville 3010 VIC, Australia
| |
Collapse
|
19
|
Corradi N, Brachmann A. Fungal Mating in the Most Widespread Plant Symbionts? TRENDS IN PLANT SCIENCE 2017; 22:175-183. [PMID: 27876487 DOI: 10.1016/j.tplants.2016.10.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/26/2016] [Accepted: 10/28/2016] [Indexed: 06/06/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are relevant plant symbionts whose hyphae and spores carry hundreds of coexisting nuclei with supposedly divergent genomes but no sign of sexual reproduction. This unusual biology suggested that conventional fungal mating is not amendable to optimize strains for plant growth, but recent evidence of sexual-related nuclear inheritance in these organisms is now challenging this widespread notion. Here, we outline our knowledge of AMF genetics within a historical context, and discuss how past and new information in this area changed our understanding of AMF biology. We also highlight the mating-related processes in AMF, and propose new research avenues and approaches that could lead to a better application of these organisms for agricultural and environmental practices.
Collapse
Affiliation(s)
- Nicolas Corradi
- Canadian Institute for Advanced Research, Department of Biology, University of Ottawa, Ottawa, ON, Canada.
| | - Andreas Brachmann
- LMU Munich, Faculty of Biology, Genetics, D-82152 Planegg-Martinsried, Germany
| |
Collapse
|
20
|
Mitochondrial DNA Based Molecular Markers in Arbuscular Mycorrhizal Fungi (AMF) Research. Fungal Biol 2017. [DOI: 10.1007/978-3-319-34106-4_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Kamel L, Keller-Pearson M, Roux C, Ané JM. Biology and evolution of arbuscular mycorrhizal symbiosis in the light of genomics. THE NEW PHYTOLOGIST 2017; 213:531-536. [PMID: 27780291 DOI: 10.1111/nph.14263] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/27/2016] [Indexed: 06/06/2023]
Abstract
531 I. 531 II. 532 III. 532 IV. 534 V. 534 535 References 535 SUMMARY: Arbuscular mycorrhizal (AM) fungi associate with the vast majority of land plants, providing mutual nutritional benefits and protecting hosts against biotic and abiotic stresses. Significant progress was made recently in our understanding of the genomic organization, the obligate requirements, and the sexual nature of these fungi through the release and subsequent mining of genome sequences. Genomic and genetic approaches also improved our understanding of the signal repertoire used by AM fungi and their plant hosts to recognize each other for the initiation and maintenance of this association. Evolutionary and bioinformatic analyses of host and nonhost plant genomes represent novel ways with which to decipher host mechanisms controlling these associations and shed light on the stepwise acquisition of this genetic toolkit during plant evolution. Mining fungal and plant genomes along with evolutionary and genetic approaches will improve understanding of these symbiotic associations and, in the long term, their usefulness in agricultural settings.
Collapse
Affiliation(s)
- Laurent Kamel
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UPS, CNRS 24 Chemin de Borde Rouge-Auzeville, BP 42617, 31326, Castanet-Tolosan, France
- Agronutrition SA, rue Pierre et Marie Curie Immeuble Biostep, 31670, Labège, France
| | - Michelle Keller-Pearson
- Department of Bacteriology, University of Wisconsin - Madison, Madison, WI, 53706, USA
- Department of Plant Pathology, University of Wisconsin - Madison, Madison, WI, 53706, USA
| | - Christophe Roux
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UPS, CNRS 24 Chemin de Borde Rouge-Auzeville, BP 42617, 31326, Castanet-Tolosan, France
| | - Jean-Michel Ané
- Department of Bacteriology, University of Wisconsin - Madison, Madison, WI, 53706, USA
- Department of Agronomy, University of Wisconsin - Madison, Madison, WI, 53706, USA
| |
Collapse
|
22
|
Schulz E, Wetzel J. Morphological characterization of sex-deficient mutants of the homothallic zygomycete Zygorhynchus moelleri. MYCOSCIENCE 2016. [DOI: 10.1016/j.myc.2016.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Bonito G, Hameed K, Ventura R, Krishnan J, Schadt CW, Vilgalys R. Isolating a functionally relevant guild of fungi from the root microbiome of Populus. FUNGAL ECOL 2016. [DOI: 10.1016/j.funeco.2016.04.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Selosse MA, Vincenot L, Öpik M. Data processing can mask biology: towards better reporting of fungal barcoding data? THE NEW PHYTOLOGIST 2016; 210:1159-1164. [PMID: 26818207 DOI: 10.1111/nph.13851] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Affiliation(s)
- Marc-André Selosse
- Institut de Systématique, Évolution, Biodiversité (ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE), Muséum National d'Histoire Naturelle, Sorbonne Universités, 57 rue Cuvier, CP50, 75005, Paris, France
- Department of Plant Taxonomy and Nature Conservation, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Lucie Vincenot
- Ecodiv URA/IRSTEA/EA-1293, Normandie Université, SFR Scale 4116, UFR Sciences & Techniques, Université de Rouen, Mont-Saint-Aignan, 76821, France
| | - Maarja Öpik
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai St., Tartu, 51005, Estonia
| |
Collapse
|
25
|
Thiéry O, Vasar M, Jairus T, Davison J, Roux C, Kivistik PA, Metspalu A, Milani L, Saks Ü, Moora M, Zobel M, Öpik M. Sequence variation in nuclear ribosomal small subunit, internal transcribed spacer and large subunit regions ofRhizophagus irregularisandGigaspora margaritais high and isolate-dependent. Mol Ecol 2016; 25:2816-32. [DOI: 10.1111/mec.13655] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 03/29/2016] [Accepted: 04/14/2016] [Indexed: 01/28/2023]
Affiliation(s)
- Odile Thiéry
- Department of Botany; University of Tartu; 40 Lai St. 51005 Tartu Estonia
| | - Martti Vasar
- Department of Botany; University of Tartu; 40 Lai St. 51005 Tartu Estonia
| | - Teele Jairus
- Department of Botany; University of Tartu; 40 Lai St. 51005 Tartu Estonia
| | - John Davison
- Department of Botany; University of Tartu; 40 Lai St. 51005 Tartu Estonia
| | - Christophe Roux
- Laboratoire de Recherche en Sciences Végétales; UPS; CNRS 24 chemin de Borde Rouge-Auzeville; BP 42617; Université de Toulouse; 31326 Castanet-Tolosan France
| | - Paula-Ann Kivistik
- Estonian Genome Center; University of Tartu; 23b Riia St. 51010 Tartu Estonia
| | - Andres Metspalu
- Estonian Genome Center; University of Tartu; 23b Riia St. 51010 Tartu Estonia
| | - Lili Milani
- Estonian Genome Center; University of Tartu; 23b Riia St. 51010 Tartu Estonia
| | - Ülle Saks
- Department of Botany; University of Tartu; 40 Lai St. 51005 Tartu Estonia
| | - Mari Moora
- Department of Botany; University of Tartu; 40 Lai St. 51005 Tartu Estonia
| | - Martin Zobel
- Department of Botany; University of Tartu; 40 Lai St. 51005 Tartu Estonia
| | - Maarja Öpik
- Department of Botany; University of Tartu; 40 Lai St. 51005 Tartu Estonia
| |
Collapse
|
26
|
Tang N, San Clemente H, Roy S, Bécard G, Zhao B, Roux C. A Survey of the Gene Repertoire of Gigaspora rosea Unravels Conserved Features among Glomeromycota for Obligate Biotrophy. Front Microbiol 2016; 7:233. [PMID: 26973612 PMCID: PMC4771724 DOI: 10.3389/fmicb.2016.00233] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/15/2016] [Indexed: 01/22/2023] Open
Abstract
Arbuscular mycorrhizal (AM) fungi are a diverse group of soil fungi (Glomeromycota) that form the most ancient mutualistic association termed AM symbiosis with a majority of land plants, improving their nutrition uptake and resistance to stresses. In contrast to their great ecological implications, the knowledge of the molecular biological mechanisms involved is still scant, partly due to the limited genomic resources available. Here, we describe the gene repertoire of a new AM fungus Gigaspora rosea (Diversisporales). Among the 86332 non-redundant virtual transcripts assembled, 15346 presented similarities with proteins in the Refseq database and 10175 were assigned with GO terms. KOG and Interpro domain annotations clearly showed an enrichment of genes involved in signal transduction in G. rosea. KEGG pathway analysis indicates that most primary metabolic processes are active in G. rosea. However, as for Rhizophagus irregularis, several metabolic genes were not found, including the fatty acid synthase (FAS) gene. This finding supports the hypothesis that AM fungi depend on the lipids produced by their hosts. Furthermore, the presence of a large number of transporters and 100s of secreted proteins, together with the reduced number of plant cell wall degrading enzymes could be interpreted as an evolutionary adaptation to its mutualistic obligate biotrophy. The detection of meiosis-related genes suggests that G. rosea might use a cryptic sexual process. Lastly, a phylogeny of basal fungi clearly shows Glomeromycota as a sister clade to Mucoromycotina, not only to the Mucorales or Mortierellales. The characterization of the gene repertoire from an AM fungal species belonging to the order of Diversisporales and its comparison with the gene sets of R. irregularis (Glomerales) and Gigaspora margarita (Diversisporales), reveal that AM fungi share several features linked to mutualistic obligate biotrophy. This work contributes to lay the foundation for forthcoming studies into the genomics of Diversisporales, and also illuminates the utility of comparing gene repertoires of species from Diversisporales and other clades of Glomeromycota to gain more insights into the genetics and evolution of this fungal group.
Collapse
Affiliation(s)
- Nianwu Tang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural UniversityWuhan, China
- CNRS, Laboratoire de Recherche en Sciences Végétales, UMR, Université Paul Sabatier – Université de ToulouseCastanet Tolosan, France
| | - Hélène San Clemente
- CNRS, Laboratoire de Recherche en Sciences Végétales, UMR, Université Paul Sabatier – Université de ToulouseCastanet Tolosan, France
| | - Sébastien Roy
- AGRONUTRITION Laboratoire de BiotechnologiesToulouse, France
| | - Guillaume Bécard
- CNRS, Laboratoire de Recherche en Sciences Végétales, UMR, Université Paul Sabatier – Université de ToulouseCastanet Tolosan, France
| | - Bin Zhao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Christophe Roux
- CNRS, Laboratoire de Recherche en Sciences Végétales, UMR, Université Paul Sabatier – Université de ToulouseCastanet Tolosan, France
| |
Collapse
|
27
|
Daubois L, Beaudet D, Hijri M, de la Providencia I. Independent mitochondrial and nuclear exchanges arising in Rhizophagus irregularis crossed-isolates support the presence of a mitochondrial segregation mechanism. BMC Microbiol 2016; 16:11. [PMID: 26803293 PMCID: PMC4724407 DOI: 10.1186/s12866-016-0627-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 01/20/2016] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Arbuscular mycorrhizal fungi (AMF) are members of the phylum Glomeromycota, an early divergent fungal lineage that forms symbiotic associations with the large majority of land plants. These organisms are asexual obligate biotrophs, meaning that they cannot complete their life cycle in the absence of a suitable host. These fungi can exchange genetic information through hyphal fusions (i.e. anastomosis) with genetically compatible isolates belonging to the same species. The occurrence of transient mitochondrial length-heteroplasmy through anastomosis between geographically distant Rhizophagus irregularis isolates was previously demonstrated in single spores resulting from crossing experiments. However, (1) the persistence of this phenomenon in monosporal culture lines from crossed parental isolates, (2) its correlation with nuclear exchanges and (3) the potential mechanisms responsible for mitochondrial inheritance are still unknown. Using the AMF model organism R. irregularis, we tested whether the presence of a heteroplasmic state in progeny spores was linked to the occurrence of nuclear exchanges and whether the previously observed heteroplasmic state persisted in monosporal in vitro crossed-culture lines. We also investigated the presence of a putative mitochondrial segregation apparatus in Glomeromycota by identifying proteins similar to those found in other fungal groups. RESULTS We observed the occurrence of biparental inheritance both for mitochondrial and nuclear markers tested in single spores obtained from crossed-isolates. However, only one parental mitochondrial DNA and nuclear genotype were recovered in each monosporal crossed-cultures, with an overrepresentation of certain mitochondrial haplotypes. These results strongly support the presence of a nuclear-independent mitochondrial segregation mechanism in R. irregularis. Furthermore, a nearly complete set of genes was identified with putative orthology to those found in other fungi and known to be associated with the mitochondrial segregation in Saccharomyces cerevisiae and filamentous fungi. CONCLUSIONS Our findings suggest that mitochondrial segregation might take place either during spore formation or colony development and that it might be independent of the nuclear segregation machinery. We present the basic building blocks for a better understanding of the mitochondrial inheritance process and segregation in these important symbiotic fungi. The comprehension of these processes is of great importance since it has been shown that different segregated lines of the same isolate can have variable effects on the host plant.
Collapse
Affiliation(s)
- Laurence Daubois
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, H1X 2B2, QC, Canada.
| | - Denis Beaudet
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, H1X 2B2, QC, Canada.
| | - Mohamed Hijri
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, H1X 2B2, QC, Canada.
| | - Ivan de la Providencia
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, H1X 2B2, QC, Canada.
| |
Collapse
|
28
|
Ropars J, Corradi N. Homokaryotic vs heterokaryotic mycelium in arbuscular mycorrhizal fungi: different techniques, different results? THE NEW PHYTOLOGIST 2015; 208:638-641. [PMID: 25952991 DOI: 10.1111/nph.13448] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Affiliation(s)
- Jeanne Ropars
- Canadian Institute for Advanced Research, Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Nicolas Corradi
- Canadian Institute for Advanced Research, Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| |
Collapse
|
29
|
Kuo A, Kohler A, Martin FM, Grigoriev IV. Expanding genomics of mycorrhizal symbiosis. Front Microbiol 2014; 5:582. [PMID: 25408690 PMCID: PMC4219462 DOI: 10.3389/fmicb.2014.00582] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 10/15/2014] [Indexed: 12/11/2022] Open
Abstract
The mycorrhizal symbiosis between soil fungi and plant roots is a ubiquitous mutualism that plays key roles in plant nutrition, soil health, and carbon cycling. The symbiosis evolved repeatedly and independently as multiple morphotypes [e.g., arbuscular mycorrhizae (AM), ectomycorrhizal (ECM)] in multiple fungal clades (e.g., phyla Glomeromycota, Ascomycota, Basidiomycota). The accessibility and cultivability of many mycorrhizal partners make them ideal models for symbiosis studies. Alongside molecular, physiological, and ecological investigations, sequencing led to the first three mycorrhizal fungal genomes, representing two morphotypes and three phyla. The genome of the ECM basidiomycete Laccaria bicolor showed that the mycorrhizal lifestyle can evolve through loss of plant cell wall-degrading enzymes (PCWDEs) and expansion of lineage-specific gene families such as short secreted protein (SSP) effectors. The genome of the ECM ascomycete Tuber melanosporum showed that the ECM type can evolve without expansion of families as in Laccaria, and thus a different set of symbiosis genes. The genome of the AM glomeromycete Rhizophagus irregularis showed that despite enormous phylogenetic distance and morphological difference from the other two fungi, symbiosis can involve similar solutions as symbiosis-induced SSPs and loss of PCWDEs. The three genomes provide a solid base for addressing fundamental questions about the nature and role of a vital mutualism.
Collapse
Affiliation(s)
- Alan Kuo
- United States Department of Energy Joint Genome InstituteWalnut Creek, CA, USA
| | - Annegret Kohler
- UMR, Lab of Excellence for Advanced Research on the Biology of TRee and Forest Ecosystems, Tree-Microbe Interactions, Institut National de la Recherche Agronomique, Université de LorraineNancy, France
| | - Francis M. Martin
- UMR, Lab of Excellence for Advanced Research on the Biology of TRee and Forest Ecosystems, Tree-Microbe Interactions, Institut National de la Recherche Agronomique, Université de LorraineNancy, France
| | - Igor V. Grigoriev
- United States Department of Energy Joint Genome InstituteWalnut Creek, CA, USA
| |
Collapse
|
30
|
Ohsowski BM, Zaitsoff PD, Öpik M, Hart MM. Where the wild things are: looking for uncultured Glomeromycota. THE NEW PHYTOLOGIST 2014; 204:171-179. [PMID: 24946898 DOI: 10.1111/nph.12894] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 05/13/2014] [Indexed: 06/03/2023]
Abstract
Our knowledge of Glomeromycotan fungi rests largely on studies of cultured isolates. However, these isolates probably comprise one life-history strategy - ruderal. Consequently, our knowledge of arbuscular mycorrhizal (AM) fungi may be biased towards fungi that occur primarily in disturbed habitats and associate with disturbance-tolerant host plants. We can expect to see a signal for this in DNA-based community surveys: human-impacted habitats and cultivated plants should yield a higher proportion of AM fungal species that have been cultured compared with natural habitats and wild plants. Using the MaarjAM database (a curated open-access database of Glomeromycotan sequences), we performed a meta-analysis on studies that described AM fungal communities from a variety of habitats and host plants. We found a greater proportion of cultured AM fungal taxa in human-impacted habitats. In particular, undisturbed forests and grasslands/savannahs contained significantly fewer cultured taxa than human-impacted sites. We also found that wild plants hosted fewer cultured fungal taxa than cultivated plants. Our data show that natural communities of AM fungi are composed largely of uncultured taxa, and this is particularly pronounced in natural habitats and wild plants. We are better poised to understand the functioning of AM symbioses associated with cultivated plants and human-impacted habitats.
Collapse
Affiliation(s)
- Brian M Ohsowski
- Department of Biology, University of British Columbia, Okanagan Campus, 3333 University Way, Kelowna, BC, Canada
| | - P Dylan Zaitsoff
- Department of Biology, University of British Columbia, Okanagan Campus, 3333 University Way, Kelowna, BC, Canada
| | - Maarja Öpik
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai St, 51005, Tartu, Estonia
| | - Miranda M Hart
- Department of Biology, University of British Columbia, Okanagan Campus, 3333 University Way, Kelowna, BC, Canada
| |
Collapse
|
31
|
Karácsony Z, Gácser A, Vágvölgyi C, Scazzocchio C, Hamari Z. A dually located multi-HMG-box protein of Aspergillus nidulans has a crucial role in conidial and ascospore germination. Mol Microbiol 2014; 94:383-402. [PMID: 25156107 DOI: 10.1111/mmi.12772] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2014] [Indexed: 11/28/2022]
Abstract
Seven HMG-box proteins of Aspergillus nidulans have been identified in the genomic databases. Three of these have the characteristics of non-specific DNA-binding proteins. One of these, AN1267 (HmbB), comprises one canonical HMG-box in its C-terminus and upstream of the canonical box two structurally related boxes, to be called Shadow-HMG-boxes. This protein defines, together with the Podospora anserina mtHMG1, a clade of proteins present in the Pezizomycotina, with orthologues in some of the Taphrinomycotina. HmbB localizes primarily to the mitochondria but occasionally in nuclei. The deletion of the cognate gene results in a number of pleiotropic effects, including those on hyphal morphology, sensitivity to oxidative stress, absence of sterigmatocystin production and changes in the profile of conidial metabolites. The most striking phenotype of deletion strains is a dramatic decrease in conidial and ascospore viability. We show that this is most likely due to the protein being essential to maintain mitochondrial DNA in spores.
Collapse
Affiliation(s)
- Zoltán Karácsony
- University of Szeged Faculty of Sciences and Informatics, Department of Microbiology, H-6726, Szeged, Közép fasor 52, Hungary
| | | | | | | | | |
Collapse
|
32
|
Milgroom MG, Jiménez-Gasco MDM, Olivares García C, Drott MT, Jiménez-Díaz RM. Recombination between clonal lineages of the asexual fungus Verticillium dahliae detected by genotyping by sequencing. PLoS One 2014; 9:e106740. [PMID: 25181515 PMCID: PMC4152335 DOI: 10.1371/journal.pone.0106740] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 08/09/2014] [Indexed: 11/18/2022] Open
Abstract
Most asexual species of fungi have either lost sexuality recently, or they experience recombination by cryptic sexual reproduction. Verticillium dahliae is a plant-pathogenic, ascomycete fungus with no known sexual stage, even though related genera have well-described sexual reproduction. V. dahliae reproduces mitotically and its population structure is highly clonal. However, previously described discrepancies in phylogenetic relationships among clonal lineages may be explained more parsimoniously by recombination than mutation; therefore, we looked for evidence of recombination within and between clonal lineages. Genotyping by sequencing was performed on 141 V. dahliae isolates from diverse geographic and host origins, resulting in 26,748 single-nucleotide polymorphisms (SNPs). We found a strongly clonal population structure with the same lineages as described previously by vegetative compatibility groups (VCGs) and molecular markers. We detected 443 recombination events, evenly distributed throughout the genome. Most recombination events detected were between clonal lineages, with relatively few recombinant haplotypes detected within lineages. The only three isolates with mating type MAT1-1 had recombinant SNP haplotypes; all other isolates had mating type MAT1-2. We found homologs of eight meiosis-specific genes in the V. dahliae genome, all with conserved or partially conserved protein domains. The extent of recombination and molecular signs of sex in (mating-type and meiosis-specific genes) suggest that V. dahliae clonal lineages arose by recombination, even though the current population structure is markedly clonal. Moreover, the detection of new lineages may be evidence that sexual reproduction has occurred recently and may potentially occur under some circumstances. We speculate that the current clonal population structure, despite the sexual origin of lineages, has arisen, in part, as a consequence of agriculture and selection for adaptation to agricultural cropping systems.
Collapse
Affiliation(s)
- Michael G. Milgroom
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - María del Mar Jiménez-Gasco
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Concepción Olivares García
- College of Agriculture and Forestry, University of Córdoba, and Institute for Sustainable Agriculture, CSIC, Campus de Excelencia Internacional Agroalimentario, ceiA3, Córdoba, Spain
| | - Milton T. Drott
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Rafael M. Jiménez-Díaz
- College of Agriculture and Forestry, University of Córdoba, and Institute for Sustainable Agriculture, CSIC, Campus de Excelencia Internacional Agroalimentario, ceiA3, Córdoba, Spain
| |
Collapse
|
33
|
Lee SC, Heitman J. Sex in the Mucoralean fungi. Mycoses 2014; 57 Suppl 3:18-24. [PMID: 25175551 DOI: 10.1111/myc.12244] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 02/03/2014] [Accepted: 02/04/2014] [Indexed: 12/16/2022]
Abstract
Sexual development is extant in virtually all eukaryotic species, including throughout the kingdom Fungi. Positioned within the opisthokonts along with metazoans, fungi serve as model systems to elucidate the genetics and impact of sexual development. Basal fungal lineages such as the Mucoralean fungi provide a unique basis to study sexual reproduction, in which common ancestral traits found in both animal and fungal lineages may be conserved. This review discusses the sexual development, sex loci, and evolution of the sex locus in the Mucoralean fungi, which sheds light on our understanding of the evolution and functions of sex.
Collapse
Affiliation(s)
- Soo Chan Lee
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | | |
Collapse
|
34
|
Borriello R, Bianciotto V, Orgiazzi A, Lumini E, Bergero R. Sequencing and comparison of the mitochondrial COI gene from isolates of Arbuscular Mycorrhizal Fungi belonging to Gigasporaceae and Glomeraceae families. Mol Phylogenet Evol 2014; 75:1-10. [PMID: 24569015 DOI: 10.1016/j.ympev.2014.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 02/12/2014] [Accepted: 02/14/2014] [Indexed: 12/16/2022]
Abstract
Arbuscular Mycorrhizal Fungi (AMF) are well known for their ecological importance and their positive influence on plants. The genetics and phylogeny of this group of fungi have long been debated. Nuclear markers are the main tools used for phylogenetic analyses, but they have sometimes proved difficult to use because of their extreme variability. Therefore, the attention of researchers has been moving towards other genomic markers, in particular those from the mitochondrial DNA. In this study, 46 sequences of different AMF isolates belonging to two main clades Gigasporaceae and Glomeraceae have been obtained from the mitochondrial gene coding for the Cytochrome c Oxidase I (COI), representing the largest dataset to date of AMF COI sequences. A very low level of divergence was recorded in the COI sequences from the Gigasporaceae, which could reflect either a slow rate of evolution or a more recent evolutionary divergence of this group. On the other hand, the COI sequence divergence between Gigasporaceae and Glomeraceae was high, with synonymous divergence reaching saturated levels. This work also showed the difficulty in developing valuable mitochondrial markers able to effectively distinguish all Glomeromycota species, especially those belonging to Gigasporaceae, yet it represents a first step towards the development of a full mtDNA-based dataset which can be used for further phylogenetic investigations of this fungal phylum.
Collapse
Affiliation(s)
- Roberto Borriello
- Plant Protection Institute (IPP)-Turin UOS, National Research Council (CNR), c/o Department of Life Science and Systems Biology, University of Turin, Viale P.A. Mattioli 25, Turin 10125, Italy
| | - Valeria Bianciotto
- Plant Protection Institute (IPP)-Turin UOS, National Research Council (CNR), c/o Department of Life Science and Systems Biology, University of Turin, Viale P.A. Mattioli 25, Turin 10125, Italy
| | - Alberto Orgiazzi
- European Commission, Joint Research Centre, Institute for Environment and Sustainability, Via E. Fermi, 2749, Ispra, VA I-21027, Italy
| | - Erica Lumini
- Plant Protection Institute (IPP)-Turin UOS, National Research Council (CNR), c/o Department of Life Science and Systems Biology, University of Turin, Viale P.A. Mattioli 25, Turin 10125, Italy.
| | - Roberta Bergero
- Institute of Evolutionary Biology, Ashworth Laboratories, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, United Kingdom.
| |
Collapse
|
35
|
Lee SC, Sun S, Heitman J. Unseen sex in ancient virgin fungi. THE NEW PHYTOLOGIST 2014; 201:3-5. [PMID: 24274789 PMCID: PMC4110719 DOI: 10.1111/nph.12564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Affiliation(s)
| | | | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University
Medical Center, Durham, NC 27710, USA
| |
Collapse
|
36
|
Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proc Natl Acad Sci U S A 2013; 110:20117-22. [PMID: 24277808 DOI: 10.1073/pnas.1313452110] [Citation(s) in RCA: 472] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The mutualistic symbiosis involving Glomeromycota, a distinctive phylum of early diverging Fungi, is widely hypothesized to have promoted the evolution of land plants during the middle Paleozoic. These arbuscular mycorrhizal fungi (AMF) perform vital functions in the phosphorus cycle that are fundamental to sustainable crop plant productivity. The unusual biological features of AMF have long fascinated evolutionary biologists. The coenocytic hyphae host a community of hundreds of nuclei and reproduce clonally through large multinucleated spores. It has been suggested that the AMF maintain a stable assemblage of several different genomes during the life cycle, but this genomic organization has been questioned. Here we introduce the 153-Mb haploid genome of Rhizophagus irregularis and its repertoire of 28,232 genes. The observed low level of genome polymorphism (0.43 SNP per kb) is not consistent with the occurrence of multiple, highly diverged genomes. The expansion of mating-related genes suggests the existence of cryptic sex-related processes. A comparison of gene categories confirms that R. irregularis is close to the Mucoromycotina. The AMF obligate biotrophy is not explained by genome erosion or any related loss of metabolic complexity in central metabolism, but is marked by a lack of genes encoding plant cell wall-degrading enzymes and of genes involved in toxin and thiamine synthesis. A battery of mycorrhiza-induced secreted proteins is expressed in symbiotic tissues. The present comprehensive repertoire of R. irregularis genes provides a basis for future research on symbiosis-related mechanisms in Glomeromycota.
Collapse
|