1
|
Cusack DF, Christoffersen B, Smith-Martin CM, Andersen KM, Cordeiro AL, Fleischer K, Wright SJ, Guerrero-Ramírez NR, Lugli LF, McCulloch LA, Sanchez-Julia M, Batterman SA, Dallstream C, Fortunel C, Toro L, Fuchslueger L, Wong MY, Yaffar D, Fisher JB, Arnaud M, Dietterich LH, Addo-Danso SD, Valverde-Barrantes OJ, Weemstra M, Ng JC, Norby RJ. Toward a coordinated understanding of hydro-biogeochemical root functions in tropical forests for application in vegetation models. THE NEW PHYTOLOGIST 2024; 242:351-371. [PMID: 38416367 DOI: 10.1111/nph.19561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 01/10/2024] [Indexed: 02/29/2024]
Abstract
Tropical forest root characteristics and resource acquisition strategies are underrepresented in vegetation and global models, hampering the prediction of forest-climate feedbacks for these carbon-rich ecosystems. Lowland tropical forests often have globally unique combinations of high taxonomic and functional biodiversity, rainfall seasonality, and strongly weathered infertile soils, giving rise to distinct patterns in root traits and functions compared with higher latitude ecosystems. We provide a roadmap for integrating recent advances in our understanding of tropical forest belowground function into vegetation models, focusing on water and nutrient acquisition. We offer comparisons of recent advances in empirical and model understanding of root characteristics that represent important functional processes in tropical forests. We focus on: (1) fine-root strategies for soil resource exploration, (2) coupling and trade-offs in fine-root water vs nutrient acquisition, and (3) aboveground-belowground linkages in plant resource acquisition and use. We suggest avenues for representing these extremely diverse plant communities in computationally manageable and ecologically meaningful groups in models for linked aboveground-belowground hydro-nutrient functions. Tropical forests are undergoing warming, shifting rainfall regimes, and exacerbation of soil nutrient scarcity caused by elevated atmospheric CO2. The accurate model representation of tropical forest functions is crucial for understanding the interactions of this biome with the climate.
Collapse
Affiliation(s)
- Daniela F Cusack
- Department of Ecosystem Science and Sustainability, Warner College of Natural Resources, Colorado State University, 1231 Libbie Coy Way, A104, Fort Collins, CO, 80523-1476, USA
- Smithsonian Tropical Research Institute, Apartado, Balboa, 0843-03092, Panama
| | - Bradley Christoffersen
- School of Integrative Biological and Chemical Sciences, The University of Texas Rio Grande Valley, Edinburg, TX, 78539, USA
| | - Chris M Smith-Martin
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, 55108, USA
| | | | - Amanda L Cordeiro
- Department of Ecosystem Science and Sustainability, Warner College of Natural Resources, Colorado State University, 1231 Libbie Coy Way, A104, Fort Collins, CO, 80523-1476, USA
- Smithsonian Tropical Research Institute, Apartado, Balboa, 0843-03092, Panama
| | - Katrin Fleischer
- Department Biogeochemical Signals, Max-Planck-Institute for Biogeochemistry, Hans-Knöll-Straße 10, Jena, 07745, Germany
| | - S Joseph Wright
- Smithsonian Tropical Research Institute, Apartado, Balboa, 0843-03092, Panama
| | - Nathaly R Guerrero-Ramírez
- Silviculture and Forest Ecology of Temperate Zones, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Gottingen, 37077, Germany
- Centre of Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Gottingen, 37077, Germany
| | - Laynara F Lugli
- School of Life Sciences, Technical University of Munich, Freising, 85354, Germany
| | - Lindsay A McCulloch
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St., Cambridge, MA, 02138, USA
- National Center for Atmospheric Research, National Oceanographic and Atmospheric Agency, 1850 Table Mesa Dr., Boulder, CO, 80305, USA
| | - Mareli Sanchez-Julia
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, 70118, USA
| | - Sarah A Batterman
- Smithsonian Tropical Research Institute, Apartado, Balboa, 0843-03092, Panama
- Cary Institute of Ecosystem Studies, Millbrook, NY, 12545, USA
- School of Geography, University of Leeds, Leeds, LS2 9JT, UK
| | - Caroline Dallstream
- Department of Biology, McGill University, 1205 Av. du Docteur-Penfield, Montreal, QC, H3A 1B1, Canada
| | - Claire Fortunel
- AMAP (Botanique et Modélisation de l'Architecture des Plantes et des Végétations), Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, 34398, France
| | - Laura Toro
- Yale Applied Science Synthesis Program, The Forest School at the Yale School of the Environment, Yale University, New Haven, CT, 06511, USA
| | - Lucia Fuchslueger
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, 1030, Austria
| | - Michelle Y Wong
- Cary Institute of Ecosystem Studies, Millbrook, NY, 12545, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06511, USA
| | - Daniela Yaffar
- Functional Forest Ecology, Universität Hamburg, Barsbüttel, 22885, Germany
| | - Joshua B Fisher
- Schmid College of Science and Technology, Chapman University, 1 University Drive, Orange, CA, 92866, USA
| | - Marie Arnaud
- Institute of Ecology and Environmental Sciences (IEES), UMR 7618, CNRS-Sorbonne University-INRAE-UPEC-IRD, Paris, 75005, France
- School of Geography, Earth and Environmental Sciences & BIFOR, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Lee H Dietterich
- Department of Ecosystem Science and Sustainability, Warner College of Natural Resources, Colorado State University, 1231 Libbie Coy Way, A104, Fort Collins, CO, 80523-1476, USA
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS, 39180, USA
- Department of Biology, Haverford College, Haverford, PA, 19003, USA
| | - Shalom D Addo-Danso
- Forests and Climate Change Division, CSIR-Forestry Research Institute of Ghana, P.O Box UP 63 KNUST, Kumasi, Ghana
| | - Oscar J Valverde-Barrantes
- Department of Biological Sciences, International Center for Tropical Biodiversity, Florida International University, Miami, FL, 33199, USA
| | - Monique Weemstra
- Department of Biological Sciences, International Center for Tropical Biodiversity, Florida International University, Miami, FL, 33199, USA
| | - Jing Cheng Ng
- Nanyang Technological University, Singapore, 639798, Singapore
| | - Richard J Norby
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
2
|
Solly EF, Jaeger ACH, Barthel M, Werner RA, Zürcher A, Hagedorn F, Six J, Hartmann M. Water limitation intensity shifts carbon allocation dynamics in Scots pine mesocosms. PLANT AND SOIL 2023; 490:499-519. [PMID: 37780069 PMCID: PMC10533586 DOI: 10.1007/s11104-023-06093-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/23/2023] [Indexed: 10/03/2023]
Abstract
Background and aims Tree species worldwide suffer from extended periods of water limitation. These conditions not only affect the growth and vitality of trees but also feed back on the cycling of carbon (C) at the plant-soil interface. However, the impact of progressing water loss from soils on the transfer of assimilated C belowground remains unresolved. Methods Using mesocosms, we assessed how increasing levels of water deficit affect the growth of Pinus sylvestris saplings and performed a 13C-CO2 pulse labelling experiment to trace the pathway of assimilated C into needles, fine roots, soil pore CO2, and phospholipid fatty acids of soil microbial groups. Results With increasing water limitation, trees partitioned more biomass belowground at the expense of aboveground growth. Moderate levels of water limitation barely affected the uptake of 13C label and the transit time of C from needles to the soil pore CO2. Comparatively, more severe water limitation increased the fraction of 13C label that trees allocated to fine roots and soil fungi while a lower fraction of 13CO2 was readily respired from the soil. Conclusions When soil water becomes largely unavailable, C cycling within trees becomes slower, and a fraction of C allocated belowground may accumulate in fine roots or be transferred to the soil and associated microorganisms without being metabolically used. Supplementary Information The online version contains supplementary material available at 10.1007/s11104-023-06093-5.
Collapse
Affiliation(s)
- Emily F. Solly
- Department of Environmental Systems Science, Sustainable Agroecosystems Group, ETH Zürich, Universitätstrasse 2, 8092 Zurich, Switzerland
| | - Astrid C. H. Jaeger
- Department of Environmental Systems Science, Sustainable Agroecosystems Group, ETH Zürich, Universitätstrasse 2, 8092 Zurich, Switzerland
| | - Matti Barthel
- Department of Environmental Systems Science, Sustainable Agroecosystems Group, ETH Zürich, Universitätstrasse 2, 8092 Zurich, Switzerland
| | - Roland A. Werner
- Department of Environmental Systems Science, Grassland Sciences Group, ETH Zurich, Universitätstrasse 2, 8092 Zurich, Switzerland
| | - Alois Zürcher
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Biogeochemistry Group, Zürcherstrasse 111, Birmensdorf, 8903 Switzerland
| | - Frank Hagedorn
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Biogeochemistry Group, Zürcherstrasse 111, Birmensdorf, 8903 Switzerland
| | - Johan Six
- Department of Environmental Systems Science, Sustainable Agroecosystems Group, ETH Zürich, Universitätstrasse 2, 8092 Zurich, Switzerland
| | - Martin Hartmann
- Department of Environmental Systems Science, Sustainable Agroecosystems Group, ETH Zürich, Universitätstrasse 2, 8092 Zurich, Switzerland
| |
Collapse
|
3
|
Glass NT, Yun K, Dias de Oliveira EA, Zare A, Matamala R, Kim SH, Gonzalez-Meler M. Perennial grass root system specializes for multiple resource acquisitions with differential elongation and branching patterns. FRONTIERS IN PLANT SCIENCE 2023; 14:1146681. [PMID: 37008471 PMCID: PMC10064013 DOI: 10.3389/fpls.2023.1146681] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/24/2023] [Indexed: 06/19/2023]
Abstract
Roots optimize the acquisition of limited soil resources, but relationships between root forms and functions have often been assumed rather than demonstrated. Furthermore, how root systems co-specialize for multiple resource acquisitions is unclear. Theory suggests that trade-offs exist for the acquisition of different resource types, such as water and certain nutrients. Measurements used to describe the acquisition of different resources should then account for differential root responses within a single system. To demonstrate this, we grew Panicum virgatum in split-root systems that vertically partitioned high water availability from nutrient availability so that root systems must absorb the resources separately to fully meet plant demands. We evaluated root elongation, surface area, and branching, and we characterized traits using an order-based classification scheme. Plants allocated approximately 3/4th of primary root length towards water acquisition, whereas lateral branches were progressively allocated towards nutrients. However, root elongation rates, specific root length, and mass fraction were similar. Our results support the existence of differential root functioning within perennial grasses. Similar responses have been recorded in many plant functional types suggesting a fundamental relationship. Root responses to resource availability can be incorporated into root growth models via maximum root length and branching interval parameters.
Collapse
Affiliation(s)
- Nicholas T. Glass
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Kyungdahm Yun
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA, United States
| | | | - Alina Zare
- Department of Electrical & Computer Engineering, University of Florida, Gainesville, FL, United States
| | - Roser Matamala
- Environmental Science Division, Argonne National Laboratory, Lemont, IL, United States
| | - Soo-Hyung Kim
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA, United States
| | - Miquel Gonzalez-Meler
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
4
|
Spatial Variations in Fine Root Turnover, Biomass, and Necromass of Two Vegetation Types in a Karst Ecosystem, Southwestern China. FORESTS 2022. [DOI: 10.3390/f13040611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Revealing the patterns of fine root turnover traits can aid our understanding of the mechanisms of fine roots in adapting to soil nutrient changes. In a karst ecosystem of southwest China, the fine root turnover rate, production, biomass, necromass, biomass/necromass ratio, as well as the soil total and available nitrogen (N) and phosphorus (P) concentrations, and root carbon (C) and N concentrations were analyzed in upper, middle, and lower slope positions of two vegetation types (shrubland and forest). The results showed that the soil total and available N and P and fine root production, biomass, and necromass were significantly higher in upper slope positions than those in lower slope positions in both vegetation types. However, the fine root turnover rates were slightly higher in upper positions than those in lower positions. In addition, fine root necromass was significantly lower in shrubland than that in forest, while the biomass/necromass ratio was the opposite. Therefore, fine root production and biomass were significantly affected by slope position, while the fine root biomass/necromass ratio was significantly influenced by vegetation type. Additionally, fine root necromass was significantly influenced by the slope position and vegetation, but the turnover rate was slightly impacted by the two factors. It was also found that fine root production, biomass, and necromass had significant positive correlations with the soil total and available N and P and root C concentrations, and had significant negative correlations with root N concentrations. Moreover, the biomass/necromass ratio was positively and negatively related to the root N concentrations and C/N ratios, respectively. Thus, the variations in these five parameters of fine root turnover were mainly explained by fine root nutrients and the interactive effects between fine root and soil nutrients. The above results indicated that these variations in fine roots responding to soil and root nutrient changes might be an adaptive mechanism to enhance plant nutrient acquisition in nutrient-poor karst ecosystems.
Collapse
|
5
|
Iversen CM, McCormack ML. Filling gaps in our understanding of belowground plant traits across the world: an introduction to a Virtual Issue. THE NEW PHYTOLOGIST 2021; 231:2097-2103. [PMID: 34405907 DOI: 10.1111/nph.17326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Colleen M Iversen
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37830-6301, USA
| | - M Luke McCormack
- Center for Tree Science, The Morton Arboretum, Liesle, IL, 60515, USA
| |
Collapse
|
6
|
Dybzinski R, Kelvakis A, McCabe J, Panock S, Anuchitlertchon K, Vasarhelyi L, McCormack ML, McNickle GG, Poorter H, Trinder C, Farrior CE. How are nitrogen availability, fine-root mass, and nitrogen uptake related empirically? Implications for models and theory. GLOBAL CHANGE BIOLOGY 2019; 25:885-899. [PMID: 30536492 DOI: 10.1111/gcb.14541] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/22/2018] [Accepted: 11/27/2018] [Indexed: 06/09/2023]
Abstract
Understanding the effects of global change in terrestrial communities requires an understanding of how limiting resources interact with plant traits to affect productivity. Here, we focus on nitrogen and ask whether plant community nitrogen uptake rate is determined (a) by nitrogen availability alone or (b) by the product of nitrogen availability and fine-root mass. Surprisingly, this is not empirically resolved. We performed controlled microcosm experiments and reanalyzed published pot experiments and field data to determine the relationship between community-level nitrogen uptake rate, nitrogen availability, and fine-root mass for 46 unique combinations of species, nitrogen levels, and growing conditions. We found that plant community nitrogen uptake rate was unaffected by fine-root mass in 63% of cases and saturated with fine-root mass in 29% of cases (92% in total). In contrast, plant community nitrogen uptake rate was clearly affected by nitrogen availability. The results support the idea that although plants may over-proliferate fine roots for individual-level competition, it comes without an increase in community-level nitrogen uptake. The results have implications for the mechanisms included in coupled carbon-nitrogen terrestrial biosphere models (CN-TBMs) and are consistent with CN-TBMs that operate above the individual scale and omit fine-root mass in equations of nitrogen uptake rate but inconsistent with the majority of CN-TBMs, which operate above the individual scale and include fine-root mass in equations of nitrogen uptake rate. For the much smaller number of CN-TBMs that explicitly model individual-based belowground competition for nitrogen, the results suggest that the relative (not absolute) fine-root mass of competing individuals should be included in the equations that determine individual-level nitrogen uptake rates. By providing empirical data to support the assumptions used in CN-TBMs, we put their global climate change predictions on firmer ground.
Collapse
Affiliation(s)
- Ray Dybzinski
- Institute of Environmental Sustainability, Loyola University Chicago, Chicago, Illinois
| | - Angelo Kelvakis
- Institute of Environmental Sustainability, Loyola University Chicago, Chicago, Illinois
| | - John McCabe
- Institute of Environmental Sustainability, Loyola University Chicago, Chicago, Illinois
| | - Samantha Panock
- Institute of Environmental Sustainability, Loyola University Chicago, Chicago, Illinois
| | | | - Leah Vasarhelyi
- Institute of Environmental Sustainability, Loyola University Chicago, Chicago, Illinois
| | - M Luke McCormack
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, Minnesota
| | - Gordon G McNickle
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana
- Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana
| | - Hendrik Poorter
- Plant Sciences (IBG2), Forschungszentrum Jülich GmbH, Jülich, Germany
- Department of Biological Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Clare Trinder
- School of Biological Sciences, Cruickshank Building, University of Aberdeen, Aberdeen, UK
| | - Caroline E Farrior
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas
| |
Collapse
|
7
|
Solly EF, Brunner I, Helmisaari HS, Herzog C, Leppälammi-Kujansuu J, Schöning I, Schrumpf M, Schweingruber FH, Trumbore SE, Hagedorn F. Unravelling the age of fine roots of temperate and boreal forests. Nat Commun 2018; 9:3006. [PMID: 30068916 PMCID: PMC6070616 DOI: 10.1038/s41467-018-05460-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 07/04/2018] [Indexed: 11/30/2022] Open
Abstract
Fine roots support the water and nutrient demands of plants and supply carbon to soils. Quantifying turnover times of fine roots is crucial for modeling soil organic matter dynamics and constraining carbon cycle-climate feedbacks. Here we challenge widely used isotope-based estimates suggesting the turnover of fine roots of trees to be as slow as a decade. By recording annual growth rings of roots from woody plant species, we show that mean chronological ages of fine roots vary from <1 to 12 years in temperate, boreal and sub-arctic forests. Radiocarbon dating reveals the same roots to be constructed from 10 ± 1 year (mean ± 1 SE) older carbon. This dramatic difference provides evidence for a time lag between plant carbon assimilation and production of fine roots, most likely due to internal carbon storage. The high root turnover documented here implies greater carbon inputs into soils than previously thought which has wide-ranging implications for quantifying ecosystem carbon allocation.
Collapse
Affiliation(s)
- Emily F Solly
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland.
- Department of Geography, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| | - Ivano Brunner
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| | - Heljä-Sisko Helmisaari
- Department of Forest Sciences, University of Helsinki, P.O. Box 27, 00014, Helsinki, Finland
| | - Claude Herzog
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| | | | - Ingo Schöning
- Max Planck Institute for Biogeochemistry, Hans Knöll Strasse 10, 07745, Jena, Germany
| | - Marion Schrumpf
- Max Planck Institute for Biogeochemistry, Hans Knöll Strasse 10, 07745, Jena, Germany
| | - Fritz H Schweingruber
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| | - Susan E Trumbore
- Max Planck Institute for Biogeochemistry, Hans Knöll Strasse 10, 07745, Jena, Germany
| | - Frank Hagedorn
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| |
Collapse
|
8
|
Iversen CM, McCormack ML, Powell AS, Blackwood CB, Freschet GT, Kattge J, Roumet C, Stover DB, Soudzilovskaia NA, Valverde-Barrantes OJ, van Bodegom PM, Violle C. A global Fine-Root Ecology Database to address below-ground challenges in plant ecology. THE NEW PHYTOLOGIST 2017; 215:15-26. [PMID: 28245064 DOI: 10.1111/nph.14486] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Variation and tradeoffs within and among plant traits are increasingly being harnessed by empiricists and modelers to understand and predict ecosystem processes under changing environmental conditions. While fine roots play an important role in ecosystem functioning, fine-root traits are underrepresented in global trait databases. This has hindered efforts to analyze fine-root trait variation and link it with plant function and environmental conditions at a global scale. This Viewpoint addresses the need for a centralized fine-root trait database, and introduces the Fine-Root Ecology Database (FRED, http://roots.ornl.gov) which so far includes > 70 000 observations encompassing a broad range of root traits and also includes associated environmental data. FRED represents a critical step toward improving our understanding of below-ground plant ecology. For example, FRED facilitates the quantification of variation in fine-root traits across root orders, species, biomes, and environmental gradients while also providing a platform for assessments of covariation among root, leaf, and wood traits, the role of fine roots in ecosystem functioning, and the representation of fine roots in terrestrial biosphere models. Continued input of observations into FRED to fill gaps in trait coverage will improve our understanding of changes in fine-root traits across space and time.
Collapse
Affiliation(s)
- Colleen M Iversen
- Climate Change Science Institute and Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - M Luke McCormack
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, MN, 55108, USA
| | - A Shafer Powell
- Climate Change Science Institute and Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | | | - Grégoire T Freschet
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175 (CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE), Montpellier, 34293, France
| | - Jens Kattge
- Max Planck Institute for Biogeochemistry, Jena, 07701, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Leipzig, 04103, Germany
| | - Catherine Roumet
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175 (CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE), Montpellier, 34293, France
| | - Daniel B Stover
- Office of Biological and Environmental Research, Office of Science, US Department of Energy, Washington, DC, 20585, USA
| | - Nadejda A Soudzilovskaia
- Conservation Biology Department, Institute of Environmental Sciences, Leiden University, Leiden, RA 2300, the Netherlands
| | - Oscar J Valverde-Barrantes
- Department of Biological Sciences, Kent State University, Kent, OH, 44242, USA
- International Center of Tropical Botany (ICTB), Florida International University, Miami, FL, 33181, USA
| | - Peter M van Bodegom
- Conservation Biology Department, Institute of Environmental Sciences, Leiden University, Leiden, RA 2300, the Netherlands
| | - Cyrille Violle
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175 (CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE), Montpellier, 34293, France
| |
Collapse
|
9
|
Norby RJ, Iversen CM. Introduction to a Virtual Issue on root traits. THE NEW PHYTOLOGIST 2017; 215:5-8. [PMID: 28560788 DOI: 10.1111/nph.14522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Affiliation(s)
- Richard J Norby
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37830-6301, USA
| | - Colleen M Iversen
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37830-6301, USA
| |
Collapse
|
10
|
Di Iorio A, Giacomuzzi V, Chiatante D. Acclimation of fine root respiration to soil warming involves starch deposition in very fine and fine roots: a case study in Fagus sylvatica saplings. PHYSIOLOGIA PLANTARUM 2016; 156:294-310. [PMID: 26263877 DOI: 10.1111/ppl.12363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 04/30/2015] [Accepted: 05/28/2015] [Indexed: 05/17/2023]
Abstract
Root activities in terms of respiration and non-structural carbohydrates (NSC) storage and mobilization have been suggested as major physiological roles in fine root lifespan. As more frequent heat waves and drought periods within the next decades are expected, to what extent does thermal acclimation in fine roots represent a mechanism to cope with such upcoming climatic conditions? In this study, the possible changes in very fine (diameter < 0.5 mm) and fine (0.5-1 mm) root morphology and physiology in terms of respiration rate and NSC [soluble sugars (SS) and starch] concentrations, were investigated on 2-year-old Fagus sylvatica saplings subjected to a simulated long-lasting heat wave event and to co-occurring soil drying. For both very fine and fine roots, soil temperature (ST) resulted inversely correlated with specific root length, respiration rates and SSs concentration, but directly correlated with root mass, root tissue density and starch concentration. In particular, starch concentration increased under 28 °C for successively decreasing under 21 °C ST. These findings showed that thermal acclimation in very fine and fine roots due to 24 days exposure to high ST (∼ 28 °C), induced starch accumulation. Such 'carbon-savings strategy' should bear the maintenance costs associated to the recovery process in case of restored favorable environmental conditions, such as those occurring at the end of a heat wave event. Drought condition seems to affect the fine root vitality much more under moderate than high temperature condition, making the temporary exposure to high ST less threatening to root vitality than expected.
Collapse
Affiliation(s)
- Antonino Di Iorio
- Department of Biotechnologies and Life Sciences (DBSV), University of Insubria, Varese, 21100, Italy
| | - Valentino Giacomuzzi
- Department of Biotechnologies and Life Sciences (DBSV), University of Insubria, Varese, 21100, Italy
| | - Donato Chiatante
- Department of Biotechnologies and Life Sciences (DBSV), University of Insubria, Varese, 21100, Italy
| |
Collapse
|
11
|
Warren JM, Hanson PJ, Iversen CM, Kumar J, Walker AP, Wullschleger SD. Root structural and functional dynamics in terrestrial biosphere models--evaluation and recommendations. THE NEW PHYTOLOGIST 2015; 205:59-78. [PMID: 25263989 DOI: 10.1111/nph.13034] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 08/07/2014] [Indexed: 05/29/2023]
Abstract
There is wide breadth of root function within ecosystems that should be considered when modeling the terrestrial biosphere. Root structure and function are closely associated with control of plant water and nutrient uptake from the soil, plant carbon (C) assimilation, partitioning and release to the soils, and control of biogeochemical cycles through interactions within the rhizosphere. Root function is extremely dynamic and dependent on internal plant signals, root traits and morphology, and the physical, chemical and biotic soil environment. While plant roots have significant structural and functional plasticity to changing environmental conditions, their dynamics are noticeably absent from the land component of process-based Earth system models used to simulate global biogeochemical cycling. Their dynamic representation in large-scale models should improve model veracity. Here, we describe current root inclusion in models across scales, ranging from mechanistic processes of single roots to parameterized root processes operating at the landscape scale. With this foundation we discuss how existing and future root functional knowledge, new data compilation efforts, and novel modeling platforms can be leveraged to enhance root functionality in large-scale terrestrial biosphere models by improving parameterization within models, and introducing new components such as dynamic root distribution and root functional traits linked to resource extraction.
Collapse
Affiliation(s)
- Jeffrey M Warren
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN, 37831-6301, USA
| | | | | | | | | | | |
Collapse
|
12
|
Iversen CM. Using root form to improve our understanding of root function. THE NEW PHYTOLOGIST 2014; 203:707-9. [PMID: 25040729 DOI: 10.1111/nph.12902] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Affiliation(s)
- Colleen M Iversen
- Climate Change Science Institute and Environmental Sciences Division, Oak Ridge National Laboratory, One Bethel Valley Road, Bldg 4500N, Oak Ridge, TN, 37831-6301, USA
| |
Collapse
|