1
|
Cobo-Simón I, Maloof JN, Li R, Amini H, Méndez-Cea B, García-García I, Gómez-Garrido J, Esteve-Codina A, Dabad M, Alioto T, Wegrzyn JL, Seco JI, Linares JC, Gallego FJ. Contrasting transcriptomic patterns reveal a genomic basis for drought resilience in the relict fir Abies pinsapo Boiss. TREE PHYSIOLOGY 2023; 43:315-334. [PMID: 36210755 DOI: 10.1093/treephys/tpac115] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Climate change challenges the adaptive capacity of several forest tree species in the face of increasing drought and rising temperatures. Therefore, understanding the mechanistic connections between genetic diversity and drought resilience is highly valuable for conserving drought-sensitive forests. Nonetheless, the post-drought recovery in trees from a transcriptomic perspective has not yet been studied by comparing contrasting phenotypes. Here, experimental drought treatments, gas-exchange dynamics and transcriptomic analysis (RNA-seq) were performed in the relict and drought-sensitive fir Abies pinsapo Boiss. to identify gene expression differences over immediate (24 h) and extended drought (20 days). Post-drought responses were investigated to define resilient and sensitive phenotypes. Single nucleotide polymorphisms (SNPs) were also studied to characterize the genomic basis of A. pinsapo drought resilience. Weighted gene co-expression network analysis showed an activation of stomatal closing and an inhibition of plant growth-related genes during the immediate drought, consistent with an isohydric dynamic. During the extended drought, transcription factors, as well as cellular damage and homeostasis protection-related genes prevailed. Resilient individuals activate photosynthesis-related genes and inhibit aerial growth-related genes, suggesting a shifting shoot/root biomass allocation to improve water uptake and whole-plant carbon balance. About, 152 fixed SNPs were found between resilient and sensitive seedlings, which were mostly located in RNA-activity-related genes, including epigenetic regulation. Contrasting gene expression and SNPs were found between different post-drought resilience phenotypes for the first time in a forest tree, suggesting a transcriptomic and genomic basis for drought resilience. The obtained drought-related transcriptomic profile and drought-resilience candidate genes may guide conservation programs for this threatened tree species.
Collapse
Affiliation(s)
- Irene Cobo-Simón
- Dpto Sistemas Físicos, Químicos y Naturales, Univ. Pablo de Olavide, 41013 Sevilla, Spain
- Dpto Genética, Fisiología y Microbiología, Unidad de Genética, Facultad de CC Biológicas, Universidad Complutense de Madrid 28040, Spain
| | - Julin N Maloof
- University of California at Davis, Department of Plant Biology, Davis, CA 95616, USA
| | - Ruijuan Li
- University of California at Davis, Department of Plant Biology, Davis, CA 95616, USA
| | - Hajar Amini
- University of California at Davis, Department of Plant Biology, Davis, CA 95616, USA
| | - Belén Méndez-Cea
- Dpto Genética, Fisiología y Microbiología, Unidad de Genética, Facultad de CC Biológicas, Universidad Complutense de Madrid 28040, Spain
| | - Isabel García-García
- Dpto Genética, Fisiología y Microbiología, Unidad de Genética, Facultad de CC Biológicas, Universidad Complutense de Madrid 28040, Spain
| | - Jèssica Gómez-Garrido
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Marc Dabad
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Tyler Alioto
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Jill L Wegrzyn
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - José Ignacio Seco
- Dpto Sistemas Físicos, Químicos y Naturales, Univ. Pablo de Olavide, 41013 Sevilla, Spain
| | - Juan Carlos Linares
- Dpto Sistemas Físicos, Químicos y Naturales, Univ. Pablo de Olavide, 41013 Sevilla, Spain
| | - Francisco Javier Gallego
- Dpto Genética, Fisiología y Microbiología, Unidad de Genética, Facultad de CC Biológicas, Universidad Complutense de Madrid 28040, Spain
| |
Collapse
|
2
|
Hämälä T, Ning W, Kuittinen H, Aryamanesh N, Savolainen O. Environmental response in gene expression and DNA methylation reveals factors influencing the adaptive potential of Arabidopsis lyrata. eLife 2022; 11:e83115. [PMID: 36306157 PMCID: PMC9616567 DOI: 10.7554/elife.83115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022] Open
Abstract
Understanding what factors influence plastic and genetic variation is valuable for predicting how organisms respond to changes in the selective environment. Here, using gene expression and DNA methylation as molecular phenotypes, we study environmentally induced variation among Arabidopsis lyrata plants grown at lowland and alpine field sites. Our results show that gene expression is highly plastic, as many more genes are differentially expressed between the field sites than between populations. These environmentally responsive genes evolve under strong selective constraint - the strength of purifying selection on the coding sequence is high, while the rate of adaptive evolution is low. We find, however, that positive selection on cis-regulatory variants has likely contributed to the maintenance of genetically variable environmental responses, but such variants segregate only between distantly related populations. In contrast to gene expression, DNA methylation at genic regions is largely insensitive to the environment, and plastic methylation changes are not associated with differential gene expression. Besides genes, we detect environmental effects at transposable elements (TEs): TEs at the high-altitude field site have higher expression and methylation levels, suggestive of a broad-scale TE activation. Compared to the lowland population, plants native to the alpine environment harbor an excess of recent TE insertions, and we observe that specific TE families are enriched within environmentally responsive genes. Our findings provide insight into selective forces shaping plastic and genetic variation. We also highlight how plastic responses at TEs can rapidly create novel heritable variation in stressful conditions.
Collapse
Affiliation(s)
- Tuomas Hämälä
- Department of Ecology and Genetics, University of OuluOuluFinland
| | - Weixuan Ning
- Department of Ecology and Genetics, University of OuluOuluFinland
| | - Helmi Kuittinen
- Department of Ecology and Genetics, University of OuluOuluFinland
| | - Nader Aryamanesh
- Department of Ecology and Genetics, University of OuluOuluFinland
| | - Outi Savolainen
- Department of Ecology and Genetics, University of OuluOuluFinland
| |
Collapse
|
3
|
Lu M, Feau N, Vidakovic DO, Ukrainetz N, Wong B, Aitken SN, Hamelin RC, Yeaman S. Comparative Gene Expression Analysis Reveals Mechanism of Pinus contorta Response to the Fungal Pathogen Dothistroma septosporum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:397-409. [PMID: 33258711 DOI: 10.1094/mpmi-10-20-0282-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Many conifers have distributions that span wide ranges in both biotic and abiotic conditions, but the basis of response to biotic stress has received much less attention than response to abiotic stress. In this study, we investigated the gene expression response of lodgepole pine (Pinus contorta) to attack by the fungal pathogen Dothistroma septosporum, which causes Dothistroma needle blight, a disease that has caused severe climate-related outbreaks in northwestern British Columbia. We inoculated tolerant and susceptible pines with two D. septosporum isolates and analyzed the differentially expressed genes (DEGs), differential exon usage, and coexpressed gene modules using RNA-sequencing data. We found a rapid and strong transcriptomic response in tolerant lodgepole pine samples inoculated with one D. septosporum isolate, and a late and weak response in susceptible samples inoculated with another isolate. We mapped 43 of the DEG- or gene module-identified genes to the reference plant-pathogen interaction pathway deposited in the Kyoto Encyclopedia of Genes and Genomes database. These genes are present in PAMP-triggered and effector-triggered immunity pathways. Genes comprising pathways and gene modules had signatures of strong selective constraint, while the highly expressed genes in tolerant samples appear to have been favored by selection to counterattack the pathogen. We identified candidate resistance genes that may respond to D. septosporum effectors. Taken together, our results show that gene expression response to D. septosporum infection in lodgepole pine varies both among tree genotypes and pathogen strains and involves both known candidate genes and a number of genes with previously unknown functions.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Mengmeng Lu
- Department of Biological Sciences, University of Calgary, 507 Campus Drive NW, Calgary, Canada
| | - Nicolas Feau
- Department of Forest and Conservation Sciences, University of British Columbia, 3041-2424 Main Mall, Vancouver, Canada
| | - Dragana Obreht Vidakovic
- Department of Forest and Conservation Sciences, University of British Columbia, 3041-2424 Main Mall, Vancouver, Canada
| | - Nicholas Ukrainetz
- Forest Improvement and Research Management Branch, Ministry of Forests, Lands and Natural Resource Operations & Rural Development, 18793-32nd Ave., Surrey, Canada
| | - Barbara Wong
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Pavillon Charles-Eugène-Marchand 1030, avenue de la Médecine, Québec, Canada
| | - Sally N Aitken
- Department of Forest and Conservation Sciences, University of British Columbia, 3041-2424 Main Mall, Vancouver, Canada
| | - Richard C Hamelin
- Department of Forest and Conservation Sciences, University of British Columbia, 3041-2424 Main Mall, Vancouver, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Pavillon Charles-Eugène-Marchand 1030, avenue de la Médecine, Québec, Canada
| | - Sam Yeaman
- Department of Biological Sciences, University of Calgary, 507 Campus Drive NW, Calgary, Canada
| |
Collapse
|
4
|
Melo WA, Vieira LD, Novaes E, Bacon CD, Collevatti RG. Selective Sweeps Lead to Evolutionary Success in an Amazonian Hyperdominant Palm. Front Genet 2020; 11:596662. [PMID: 33424928 PMCID: PMC7786001 DOI: 10.3389/fgene.2020.596662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/18/2020] [Indexed: 01/21/2023] Open
Abstract
Despite the global importance of tropical ecosystems, few studies have identified how natural selection has shaped their megadiversity. Here, we test for the role of adaptation in the evolutionary success of the widespread, highly abundant Neotropical palm Mauritia flexuosa. We used a genome scan framework, sampling 16,262 single-nucleotide polymorphisms (SNPs) with target sequence capture in 264 individuals from 22 populations in rainforest and savanna ecosystems. We identified outlier loci as well as signal of adaptation using Bayesian correlations of allele frequency with environmental variables and detected both selective sweeps and genetic hitchhiking events. Functional annotation of SNPs with selection footprints identified loci affecting genes related to adaptation to environmental stress, plant development, and primary metabolic processes. The strong differences in climatic and soil variables between ecosystems matched the high differentiation and low admixture in population Bayesian clustering. Further, we found only small differences in allele frequency distribution in loci putatively under selection among widespread populations from different ecosystems, with fixation of a single allele in most populations. Taken together, our results indicate that adaptive selective sweeps related to environmental stress shaped the spatial pattern of genetic diversity in M. flexuosa, leading to high similarity in allele frequency among populations from different ecosystems.
Collapse
Affiliation(s)
- Warita A Melo
- Laboratório de Genética & Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Lucas D Vieira
- Laboratório de Genética & Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Evandro Novaes
- Departamento de Biologia, Universidade Federal de Lavras, Lavras, Brazil
| | - Christine D Bacon
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden.,Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Rosane G Collevatti
- Laboratório de Genética & Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| |
Collapse
|
5
|
Capblancq T, Butnor JR, Deyoung S, Thibault E, Munson H, Nelson DM, Fitzpatrick MC, Keller SR. Whole-exome sequencing reveals a long-term decline in effective population size of red spruce ( Picea rubens). Evol Appl 2020; 13:2190-2205. [PMID: 33005218 PMCID: PMC7513712 DOI: 10.1111/eva.12985] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 02/26/2020] [Accepted: 04/09/2020] [Indexed: 01/02/2023] Open
Abstract
Understanding the factors influencing the current distribution of genetic diversity across a species range is one of the main questions of evolutionary biology, especially given the increasing threat to biodiversity posed by climate change. Historical demographic processes such as population expansion or bottlenecks and decline are known to exert a predominant influence on past and current levels of genetic diversity, and revealing this demo-genetic history can have immediate conservation implications. We used a whole-exome capture sequencing approach to analyze polymorphism across the gene space of red spruce (Picea rubens Sarg.), an endemic and emblematic tree species of eastern North America high-elevation forests that are facing the combined threat of global warming and increasing human activities. We sampled a total of 340 individuals, including populations from the current core of the range in northeastern USA and southeastern Canada and from the southern portions of its range along the Appalachian Mountains, where populations occur as highly fragmented mountaintop "sky islands." Exome capture baits were designed from the closely relative white spruce (P. glauca Voss) transcriptome, and sequencing successfully captured most regions on or near our target genes, resulting in the generation of a new and expansive genomic resource for studying standing genetic variation in red spruce applicable to its conservation. Our results, based on over 2 million exome-derived variants, indicate that red spruce is structured into three distinct ancestry groups that occupy different geographic regions of its highly fragmented range. Moreover, these groups show small Ne , with a temporal history of sustained population decline that has been ongoing for thousands (or even hundreds of thousands) of years. These results demonstrate the broad potential of genomic studies for revealing details of the demographic history that can inform management and conservation efforts of nonmodel species with active restoration programs, such as red spruce.
Collapse
Affiliation(s)
| | - John R Butnor
- USDA Forest Service Southern Research Station University of Vermont Burlington VT USA
| | - Sonia Deyoung
- Department of Plant Biology University of Vermont Burlington VT USA
| | - Ethan Thibault
- Department of Plant Biology University of Vermont Burlington VT USA
| | - Helena Munson
- Department of Plant Biology University of Vermont Burlington VT USA
| | - David M Nelson
- Appalachian Laboratory University of Maryland Center for Environmental Science Frostburg MD USA
| | - Matthew C Fitzpatrick
- Appalachian Laboratory University of Maryland Center for Environmental Science Frostburg MD USA
| | - Stephen R Keller
- Department of Plant Biology University of Vermont Burlington VT USA
| |
Collapse
|
6
|
Mahony CR, MacLachlan IR, Lind BM, Yoder JB, Wang T, Aitken SN. Evaluating genomic data for management of local adaptation in a changing climate: A lodgepole pine case study. Evol Appl 2020; 13:116-131. [PMID: 31892947 PMCID: PMC6935591 DOI: 10.1111/eva.12871] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 06/29/2019] [Accepted: 07/24/2019] [Indexed: 01/03/2023] Open
Abstract
We evaluate genomic data, relative to phenotypic and climatic data, as a basis for assisted gene flow and genetic conservation. Using a seedling common garden trial of 281 lodgepole pine (Pinus contorta) populations from across western Canada, we compare genomic data to phenotypic and climatic data to assess their effectiveness in characterizing the climatic drivers and spatial scale of local adaptation in this species. We find that phenotype-associated loci are equivalent or slightly superior to climate data for describing local adaptation in seedling traits, but that climate data are superior to genomic data that have not been selected for phenotypic associations. We also find agreement between the climate variables associated with genomic variation and with 20-year heights from a long-term provenance trial, suggesting that genomic data may be a viable option for identifying climatic drivers of local adaptation where phenotypic data are unavailable. Genetic clines associated with the experimental traits occur at broad spatial scales, suggesting that standing variation of adaptive alleles for this and similar species does not require management at scales finer than those indicated by phenotypic data. This study demonstrates that genomic data are most useful when paired with phenotypic data, but can also fill some of the traditional roles of phenotypic data in management of species for which phenotypic trials are not feasible.
Collapse
Affiliation(s)
- Colin R. Mahony
- Centre for Forest Conservation Genetics and Department of Forest and Conservation SciencesUniversity of British ColumbiaVancouverBCCanada
- Department of Ecology and Evolutionary BiologyYale UniversityNew HavenCTUSA
| | - Ian R. MacLachlan
- Centre for Forest Conservation Genetics and Department of Forest and Conservation SciencesUniversity of British ColumbiaVancouverBCCanada
| | - Brandon M. Lind
- Centre for Forest Conservation Genetics and Department of Forest and Conservation SciencesUniversity of British ColumbiaVancouverBCCanada
| | - Jeremy B. Yoder
- Centre for Forest Conservation Genetics and Department of Forest and Conservation SciencesUniversity of British ColumbiaVancouverBCCanada
- Department of BiologyCalifornia State University NorthridgeNorthridgeCAUSA
| | - Tongli Wang
- Centre for Forest Conservation Genetics and Department of Forest and Conservation SciencesUniversity of British ColumbiaVancouverBCCanada
| | - Sally N. Aitken
- Centre for Forest Conservation Genetics and Department of Forest and Conservation SciencesUniversity of British ColumbiaVancouverBCCanada
| |
Collapse
|
7
|
Mead A, Peñaloza Ramirez J, Bartlett MK, Wright JW, Sack L, Sork VL. Seedling response to water stress in valley oak (Quercus lobata) is shaped by different gene networks across populations. Mol Ecol 2019; 28:5248-5264. [PMID: 31652373 DOI: 10.1111/mec.15289] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 12/16/2022]
Abstract
Drought is a major stress for plants, creating a strong selection pressure for traits that enable plant growth and survival in dry environments. Many drought responses are conserved species-wide responses, while others vary among populations distributed across heterogeneous environments. We tested how six populations of the widely distributed California valley oak (Quercus lobata) sampled from contrasting climates would differ in their response to soil drying relative to well-watered controls in a common environment by measuring ecophysiological traits in 93 individuals and gene expression (RNA-seq) in 42 individuals. Populations did not differ in their adjustment of turgor loss point during soil drying, suggesting a generalized species-wide response. Differential expression analysis identified 689 genes with a common response to treatment across populations and 470 genes with population-specific responses. Weighted gene co-expression network analysis (WGCNA) identified groups of genes with similar expression patterns that may be regulated together (gene modules). Several gene modules responded differently to water stress among populations, suggesting regional differences in gene network regulation. Populations from sites with a high mean annual temperature responded to the imposed water stress with significantly greater changes in gene module expression, indicating that these populations may be locally adapted to respond to drought. We propose that this variation among valley oak populations provides a mechanism for differential tolerance to the increasingly frequent and severe droughts in California.
Collapse
Affiliation(s)
- Alayna Mead
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Juan Peñaloza Ramirez
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Megan K Bartlett
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Jessica W Wright
- USDA Forest Service, Pacific Southwest Research Station, Davis, CA, USA
| | - Lawren Sack
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA.,Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, CA, USA
| | - Victoria L Sork
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA.,Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
8
|
Hanlon VCT, Otto SP, Aitken SN. Somatic mutations substantially increase the per-generation mutation rate in the conifer Picea sitchensis. Evol Lett 2019; 3:348-358. [PMID: 31388445 PMCID: PMC6675141 DOI: 10.1002/evl3.121] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/14/2019] [Accepted: 05/21/2019] [Indexed: 12/11/2022] Open
Abstract
The rates and biological significance of somatic mutations have long been a subject of debate. Somatic mutations in plants are expected to accumulate with vegetative growth and time, yet rates of somatic mutations are unknown for conifers, which can reach exceptional sizes and ages. We investigated somatic mutation rates in the conifer Sitka spruce (Picea sitchensis (Bong.) Carr.) by analyzing a total of 276 Gb of nuclear DNA from the tops and bottoms of 20 old‐growth trees averaging 76 m in height. We estimate a somatic base substitution rate of 2.7 × 10−8 per base pair within a generation. To date, this is one of the highest estimated per‐generation rates of mutation among eukaryotes, indicating that somatic mutations contribute substantially to the total per‐generation mutation rate in conifers. Nevertheless, as the sampled trees are centuries old, the per‐year rate is low in comparison with nontree taxa. We argue that although somatic mutations raise genetic load in conifers, they generate important genetic variation and enable selection both among cell lineages within individual trees and among offspring.
Collapse
Affiliation(s)
- Vincent C T Hanlon
- Faculty of Forestry Department of Forest and Conservation Sciences University of British Columbia Vancouver BC V6T 1Z4 Canada
| | - Sarah P Otto
- Department of Zoology & Biodiversity Research Centre University of British Columbia Vancouver BC V6T 1Z4 Canada
| | - Sally N Aitken
- Faculty of Forestry Department of Forest and Conservation Sciences University of British Columbia Vancouver BC V6T 1Z4 Canada
| |
Collapse
|
9
|
Zhong Z, Lin L, Chen M, Lin L, Chen X, Lin Y, Chen X, Wang Z, Norvienyeku J, Zheng H. Expression Divergence as an Evolutionary Alternative Mechanism Adopted by Two Rice Subspecies Against Rice Blast Infection. RICE (NEW YORK, N.Y.) 2019; 12:12. [PMID: 30825020 PMCID: PMC6397267 DOI: 10.1186/s12284-019-0270-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/18/2019] [Indexed: 05/30/2023]
Abstract
BACKGROUND Rice (Oryza sativa L.) is one of the most important crops that serves as staple food for ~ 50% of the human population worldwide. Some important agronomic traits that allow rice to cope with numerous abiotic and biotic stresses have been selected and fixed during domestication. Knowledge on how expression divergence of genes gradually contributes to phenotypic differentiation in response to biotic stress and their contribution to rice population speciation is still limited. RESULTS Here, we explored gene expression divergence between a japonica rice cultivar Nipponbare and an indica rice cultivar 93-11 in response to invasion by the filamentous ascomycete fungus Magnaporthe oryzae (Pyricularia oryzae), a plant pathogen that causes significant loss to rice production worldwide. We investigated differentially expressed genes in the two cultivars and observed that evolutionarily conserved orthologous genes showed highly variable expression patterns under rice blast infection. Analysis of promoter region of these differentially expressed orthologous genes revealed the existence of cis-regulatory elements associated with the differentiated expression pattern of these genes in the two rice cultivars. Further comparison of these regions in global rice population indicated their fixation and close relationship with rice population divergence. CONCLUSION We proposed that variation in the expression patterns of these orthologous genes mediated by cis-regulatory elements in the two rice cultivars, may constitute an alternative evolutionary mechanism that distinguishes these two genetically and ecologically divergent rice cultivars in response to M. oryzae infection.
Collapse
Affiliation(s)
- Zhenhui Zhong
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Lianyu Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Meilian Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Lili Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Xiaofeng Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Yahong Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Xi Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Institute of Oceanography, Minjiang University, Fuzhou, 350108 China
| | - Justice Norvienyeku
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Huakun Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| |
Collapse
|
10
|
Collevatti RG, Novaes E, Silva-Junior OB, Vieira LD, Lima-Ribeiro MS, Grattapaglia D. A genome-wide scan shows evidence for local adaptation in a widespread keystone Neotropical forest tree. Heredity (Edinb) 2019; 123:117-137. [PMID: 30755734 PMCID: PMC6781148 DOI: 10.1038/s41437-019-0188-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/03/2019] [Accepted: 01/04/2019] [Indexed: 01/13/2023] Open
Abstract
The role of natural selection in shaping patterns of diversity is still poorly understood in the Neotropics. We carried out the first genome-wide population genomics study in a Neotropical tree, Handroanthus impetiginosus (Bignoniaceae), sampling 75,838 SNPs by sequence capture in 128 individuals across 13 populations. We found evidences for local adaptation using Bayesian correlations of allele frequency and environmental variables (32 loci in 27 genes) complemented by an analysis of selective sweeps and genetic hitchhiking events using SweepFinder2 (81 loci in 47 genes). Fifteen genes were identified by both approaches. By accounting for population genetic structure, we also found 14 loci with selection signal in a STRUCTURE-defined lineage comprising individuals from five populations, using Outflank. All approaches pinpointed highly diverse and structurally conserved genes affecting plant development and primary metabolic processes. Spatial interpolation forecasted differences in the expected allele frequencies at loci under selection over time, suggesting that H. impetiginosus may track its habitat during climate changes. However, local adaptation through natural selection may also take place, allowing species persistence due to niche evolution. A high genetic differentiation was seen among the H. impetiginosus populations, which, together with the limited power of the experiment, constrains the improved detection of other types of soft selective forces, such as background, balanced, and purifying selection. Small differences in allele frequency distribution among widespread populations and the low number of loci with detectable adaptive sweeps advocate for a polygenic model of adaptation involving a potentially large number of small genome-wide effects.
Collapse
Affiliation(s)
- Rosane G Collevatti
- Laboratório de Genética & Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, 74001-970, Brazil.
| | - Evandro Novaes
- Departamento de Biologia, Universidade Federal de Lavras, Lavras, MG, 37200-000, Brazil
| | - Orzenil B Silva-Junior
- EMBRAPA Recursos Genéticos e Biotecnologia, EPqB, Brasília, DF, 70770-910, Brazil.,Programa de Ciências Genômicas e Biotecnologia-Universidade Católica de Brasília, SGAN 916 Modulo B, Brasilia, DF, 70790-160, Brazil
| | - Lucas D Vieira
- Laboratório de Genética & Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, 74001-970, Brazil
| | - Matheus S Lima-Ribeiro
- Laboratório de Macroecologia, Universidade Federal de Goiás (UFG), Campus Jataí, Jataí, GO, 75801-615, Brazil
| | - Dario Grattapaglia
- EMBRAPA Recursos Genéticos e Biotecnologia, EPqB, Brasília, DF, 70770-910, Brazil.,Programa de Ciências Genômicas e Biotecnologia-Universidade Católica de Brasília, SGAN 916 Modulo B, Brasilia, DF, 70790-160, Brazil
| |
Collapse
|
11
|
Lotterhos KE, Yeaman S, Degner J, Aitken S, Hodgins KA. Modularity of genes involved in local adaptation to climate despite physical linkage. Genome Biol 2018; 19:157. [PMID: 30290843 PMCID: PMC6173883 DOI: 10.1186/s13059-018-1545-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 09/18/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Linkage among genes experiencing different selection pressures can make natural selection less efficient. Theory predicts that when local adaptation is driven by complex and non-covarying stresses, increased linkage is favored for alleles with similar pleiotropic effects, with increased recombination favored among alleles with contrasting pleiotropic effects. Here, we introduce a framework to test these predictions with a co-association network analysis, which clusters loci based on differing associations. We use this framework to study the genetic architecture of local adaptation to climate in lodgepole pine, Pinus contorta, based on associations with environments. RESULTS We identify many clusters of candidate genes and SNPs associated with distinct environments, including aspects of aridity and freezing, and discover low recombination rates among some candidate genes in different clusters. Only a few genes contain SNPs with effects on more than one distinct aspect of climate. There is limited correspondence between co-association networks and gene regulatory networks. We further show how associations with environmental principal components can lead to misinterpretation. Finally, simulations illustrate both benefits and caveats of co-association networks. CONCLUSIONS Our results support the prediction that different selection pressures favor the evolution of distinct groups of genes, each associating with a different aspect of climate. But our results went against the prediction that loci experiencing different sources of selection would have high recombination among them. These results give new insight into evolutionary debates about the extent of modularity, pleiotropy, and linkage in the evolution of genetic architectures.
Collapse
Affiliation(s)
- Katie E Lotterhos
- Department of Marine and Environmental Sciences, Northeastern Marine Science Center, 430 Nahant Rd, Nahant, MA, 01908, USA.
| | - Sam Yeaman
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N1N4, Canada
| | - Jon Degner
- Department of Forest and Conservation Sciences, Faculty of Forestry, Vancouver, BC, V6T 1Z4, Canada
| | - Sally Aitken
- Department of Forest and Conservation Sciences, Faculty of Forestry, Vancouver, BC, V6T 1Z4, Canada
| | - Kathryn A Hodgins
- School of Biological Sciences, Monash University, Wellington Rd, Clayton, Melbourne, VIC, 3800, Australia
| |
Collapse
|
12
|
Conte GL, Hodgins KA, Yeaman S, Degner JC, Aitken SN, Rieseberg LH, Whitlock MC. Bioinformatically predicted deleterious mutations reveal complementation in the interior spruce hybrid complex. BMC Genomics 2017; 18:970. [PMID: 29246191 PMCID: PMC5731209 DOI: 10.1186/s12864-017-4344-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 11/21/2017] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Mutation load is expected to be reduced in hybrids via complementation of deleterious alleles. While local adaptation of hybrids confounds phenotypic tests for reduced mutation load, it may be possible to assess variation in load by analyzing the distribution of putatively deleterious alleles. Here, we use this approach in the interior spruce (Picea glauca x P. engelmannii) hybrid complex, a group likely to suffer from high mutation load and in which hybrids exhibit local adaptation to intermediate conditions. We used PROVEAN to bioinformatically predict whether non-synonymous alleles are deleterious, based on conservation of the position and abnormality of the amino acid change. RESULTS As expected, we found that predicted deleterious alleles were at lower average allele frequencies than alleles not predicted to be deleterious. We were unable to detect a phenotypic effect on juvenile growth rate of the many rare alleles predicted to be deleterious. Both the proportion of alleles predicted to be deleterious and the proportion of loci homozygous for predicted deleterious alleles were higher in P. engelmannii (Engelmann spruce) than in P. glauca (white spruce), due to higher diversity and frequencies of rare alleles in Engelmann. Relative to parental species, the proportion of alleles predicted to be deleterious was intermediate in hybrids, and the proportion of loci homozygous for predicted deleterious alleles was lowest. CONCLUSION Given that most deleterious alleles are recessive, this suggests that mutation load is reduced in hybrids due to complementation of deleterious alleles. This effect may enhance the fitness of hybrids.
Collapse
Affiliation(s)
- Gina L Conte
- Department of Forest and Conservation Sciences, University of British Columbia, 3041-2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada. .,Department of Botany, University of British Columbia, 3200-6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada.
| | - Kathryn A Hodgins
- Department of Forest and Conservation Sciences, University of British Columbia, 3041-2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada.,Present Address: School of Biological Sciences, Monash University, Clayton Campus, Melbourne, Victoria, 3800, Australia
| | - Sam Yeaman
- Department of Forest and Conservation Sciences, University of British Columbia, 3041-2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada.,Present Address: Department of Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary, AB, T2N 1N4, Canada
| | - Jon C Degner
- Department of Forest and Conservation Sciences, University of British Columbia, 3041-2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Sally N Aitken
- Department of Forest and Conservation Sciences, University of British Columbia, 3041-2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Loren H Rieseberg
- Department of Botany, University of British Columbia, 3200-6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
| | - Michael C Whitlock
- Department of Zoology, University of British Columbia, 4200-6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
13
|
Moran E, Lauder J, Musser C, Stathos A, Shu M. The genetics of drought tolerance in conifers. THE NEW PHYTOLOGIST 2017; 216:1034-1048. [PMID: 28895167 DOI: 10.1111/nph.14774] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/27/2017] [Indexed: 05/20/2023]
Abstract
Contents 1034 I. 1034 II. 1035 III. 1037 IV. 1038 V. 1042 VI. 1043 VII. 1045 References 1045 SUMMARY: As temperatures warm and precipitation patterns shift as a result of climate change, interest in the identification of tree genotypes that will thrive under more arid conditions has grown. In this review, we discuss the multiple definitions of 'drought tolerance' and the biological processes involved in drought responses. We describe the three major approaches taken in the study of genetic variation in drought responses, the advantages and shortcomings of each, and what each of these approaches has revealed about the genetic basis of adaptation to drought in conifers. Finally, we discuss how a greater knowledge of the genetics of drought tolerance may aid forest management, and provide recommendations for how future studies may overcome the limitations of past approaches. In particular, we urge a more direct focus on survival, growth and the traits that directly predict them (rather than on proxies, such as water use efficiency), combining research approaches with complementary strengths and weaknesses, and the inclusion of a wider range of taxa and life stages.
Collapse
Affiliation(s)
- Emily Moran
- UC Merced, 5200 N Lake Rd, Merced, CA, 95343, USA
| | | | - Cameron Musser
- Yale School of Forestry & Environmental Studies, 195 Prospect Street, New Haven, CT, 06511, USA
| | | | - Mengjun Shu
- UC Merced, 5200 N Lake Rd, Merced, CA, 95343, USA
| |
Collapse
|
14
|
Jokipii‐Lukkari S, Sundell D, Nilsson O, Hvidsten TR, Street NR, Tuominen H. NorWood: a gene expression resource for evo-devo studies of conifer wood development. THE NEW PHYTOLOGIST 2017; 216:482-494. [PMID: 28186632 PMCID: PMC6079643 DOI: 10.1111/nph.14458] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/22/2016] [Indexed: 05/04/2023]
Abstract
The secondary xylem of conifers is composed mainly of tracheids that differ anatomically and chemically from angiosperm xylem cells. There is currently no high-spatial-resolution data available profiling gene expression during wood formation for any coniferous species, which limits insight into tracheid development. RNA-sequencing data from replicated, high-spatial-resolution section series throughout the cambial and woody tissues of Picea abies were used to generate the NorWood.conGenIE.org web resource, which facilitates exploration of the associated gene expression profiles and co-expression networks. Integration within PlantGenIE.org enabled a comparative regulomics analysis, revealing divergent co-expression networks between P. abies and the two angiosperm species Arabidopsis thaliana and Populus tremula for the secondary cell wall (SCW) master regulator NAC Class IIB transcription factors. The SCW cellulose synthase genes (CesAs) were located in the neighbourhoods of the NAC factors in A. thaliana and P. tremula, but not in P. abies. The NorWood co-expression network enabled identification of potential SCW CesA regulators in P. abies. The NorWood web resource represents a powerful community tool for generating evo-devo insights into the divergence of wood formation between angiosperms and gymnosperms and for advancing understanding of the regulation of wood development in P. abies.
Collapse
Affiliation(s)
- Soile Jokipii‐Lukkari
- Umeå Plant Science CentreDepartment of Plant PhysiologyUmeå UniversitySE‐901 87UmeåSweden
- Umeå Plant Science CentreDepartment of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesSE‐901 84UmeåSweden
| | - David Sundell
- Umeå Plant Science CentreDepartment of Plant PhysiologyUmeå UniversitySE‐901 87UmeåSweden
| | - Ove Nilsson
- Umeå Plant Science CentreDepartment of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesSE‐901 84UmeåSweden
| | - Torgeir R. Hvidsten
- Umeå Plant Science CentreDepartment of Plant PhysiologyUmeå UniversitySE‐901 87UmeåSweden
- Department of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Sciences1430ÅsNorway
| | - Nathaniel R. Street
- Umeå Plant Science CentreDepartment of Plant PhysiologyUmeå UniversitySE‐901 87UmeåSweden
| | - Hannele Tuominen
- Umeå Plant Science CentreDepartment of Plant PhysiologyUmeå UniversitySE‐901 87UmeåSweden
| |
Collapse
|
15
|
MacLachlan IR, Yeaman S, Aitken SN. Growth gains from selective breeding in a spruce hybrid zone do not compromise local adaptation to climate. Evol Appl 2017; 11:166-181. [PMID: 29387153 PMCID: PMC5775489 DOI: 10.1111/eva.12525] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/20/2017] [Indexed: 01/16/2023] Open
Abstract
Hybrid zones contain extensive standing genetic variation that facilitates rapid responses to selection. The Picea glauca × Picea engelmannii hybrid zone in western Canada is the focus of tree breeding programs that annually produce ~90 million reforestation seedlings. Understanding the direct and indirect effects of selective breeding on adaptive variation is necessary to implement assisted gene flow (AGF) polices in Alberta and British Columbia that match these seedlings with future climates. We decomposed relationships among hybrid ancestry, adaptive traits, and climate to understand the implications of selective breeding for climate adaptations and AGF strategies. The effects of selection on associations among hybrid index estimated from ~6,500 SNPs, adaptive traits, and provenance climates were assessed for ~2,400 common garden seedlings. Hybrid index differences between natural and selected seedlings within breeding zones were small in Alberta (average +2%), but larger and more variable in BC (average −7%, range −24% to +1%), slightly favoring P. glauca ancestry. The average height growth gain of selected seedlings over natural seedlings within breeding zones was 36% (range 12%–86%). Clines in growth with temperature‐related variables were strong, but differed little between selected and natural populations. Seedling hybrid index and growth trait associations with evapotranspiration‐related climate variables were stronger in selected than in natural seedlings, indicating possible preadaptation to drier future climates. Associations among cold hardiness, hybrid ancestry, and cold‐related climate variables dominated signals of local adaptation and were preserved in breeding populations. Strong hybrid ancestry–phenotype–climate associations suggest that AGF will be necessary to match interior spruce breeding populations with shifting future climates. The absence of antagonistic selection responses among traits and maintenance of cold adaptation in selected seedlings suggests breeding populations can be safely redeployed using AGF prescriptions similar to those of natural populations.
Collapse
Affiliation(s)
- Ian R MacLachlan
- Department of Forest and Conservation Sciences Faculty of Forestry University of British Columbia Vancouver BC Canada
| | - Sam Yeaman
- Department of Biological Sciences University of Calgary Calgary AB Canada
| | - Sally N Aitken
- Department of Forest and Conservation Sciences Faculty of Forestry University of British Columbia Vancouver BC Canada
| |
Collapse
|
16
|
Holliday JA, Aitken SN, Cooke JEK, Fady B, González-Martínez SC, Heuertz M, Jaramillo-Correa JP, Lexer C, Staton M, Whetten RW, Plomion C. Advances in ecological genomics in forest trees and applications to genetic resources conservation and breeding. Mol Ecol 2017; 26:706-717. [PMID: 27997049 DOI: 10.1111/mec.13963] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/07/2016] [Accepted: 12/14/2016] [Indexed: 12/25/2022]
Abstract
Forest trees are an unparalleled group of organisms in their combined ecological, economic and societal importance. With widespread distributions, predominantly random mating systems and large population sizes, most tree species harbour extensive genetic variation both within and among populations. At the same time, demographic processes associated with Pleistocene climate oscillations and land-use change have affected contemporary range-wide diversity and may impinge on the potential for future adaptation. Understanding how these adaptive and neutral processes have shaped the genomes of trees species is therefore central to their management and conservation. As for many other taxa, the advent of high-throughput sequencing methods is expected to yield an understanding of the interplay between the genome and environment at a level of detail and depth not possible only a few years ago. An international conference entitled 'Genomics and Forest Tree Genetics' was held in May 2016, in Arcachon (France), and brought together forest geneticists with a wide range of research interests to disseminate recent efforts that leverage contemporary genomic tools to probe the population, quantitative and evolutionary genomics of trees. An important goal of the conference was to discuss how such data can be applied to both genome-enabled breeding and the conservation of forest genetic resources under land use and climate change. Here, we report discoveries presented at the meeting and discuss how the ecological genomic toolkit can be used to address both basic and applied questions in tree biology.
Collapse
Affiliation(s)
- Jason A Holliday
- Department of Forest Resources and Environmental Conservation, Virginia Tech, 304 Cheatham Hall, Blacksburg, VA 24061, USA
| | - Sally N Aitken
- Department of Forest and Conservation Sciences, University of British Columbia, 3041-2424 Main Mall, Vancouver, BC V6T1Z4, Canada
| | - Janice E K Cooke
- Department of Biological Sciences, University of Alberta, 5-108 Centennial Centre for Interdisciplinary Science, Edmonton, AB T6G2E9, Canada
| | - Bruno Fady
- Mediterranean Forest Ecology (URFM), Institut National de la Recherche Agronomique (INRA), Domaine St Paul, Site Agroparc, 84914 Avignon, France
| | | | - Myriam Heuertz
- BIOGECO, INRA, Universite de Bordeaux, 69 Route d'Arcachon, 33612 Cestas, France
| | - Juan-Pablo Jaramillo-Correa
- Institute of Ecology, Universidad Nacional Autonoma de Mexico (UNAM) Circuito Exterior s/n, Apartado Postal 70-275, 04510 Ciudad de México, Mexico City, Mexico
| | - Christian Lexer
- Department of Botany and Biodiversity Research, University of Vienna Faculty of Life SciencesRennweg 14, Room 217, A-1030, Vienna, Austria
| | - Margaret Staton
- Department of Entomology and Plant Pathology, University of Tennessee, 370 Plant Biotechnology Building, 2505 EJ Chapman Drive, Knoxville, TN 37996, USA
| | - Ross W Whetten
- Department of Forestry and Environmental Resources, North Carolina State University Jordan Hall Addition 5231, Raleigh, NC 27695, USA
| | - Christophe Plomion
- BIOGECO, INRA, Universite de Bordeaux, 69 Route d'Arcachon, 33612 Cestas, France
| |
Collapse
|
17
|
Yeaman S, Hodgins KA, Lotterhos KE, Suren H, Nadeau S, Degner JC, Nurkowski KA, Smets P, Wang T, Gray LK, Liepe KJ, Hamann A, Holliday JA, Whitlock MC, Rieseberg LH, Aitken SN. Convergent local adaptation to climate in distantly related conifers. Science 2016; 353:1431-1433. [DOI: 10.1126/science.aaf7812] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 08/11/2016] [Indexed: 01/18/2023]
|
18
|
Hess M, Wildhagen H, Junker LV, Ensminger I. Transcriptome responses to temperature, water availability and photoperiod are conserved among mature trees of two divergent Douglas-fir provenances from a coastal and an interior habitat. BMC Genomics 2016; 17:682. [PMID: 27565139 PMCID: PMC5002200 DOI: 10.1186/s12864-016-3022-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 08/16/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Local adaptation and phenotypic plasticity are important components of plant responses to variations in environmental conditions. While local adaptation has been widely studied in trees, little is known about plasticity of gene expression in adult trees in response to ever changing environmental conditions in natural habitats. Here we investigate plasticity of gene expression in needle tissue between two Douglas-fir provenances represented by 25 adult trees using deep RNA sequencing (RNA-Seq). RESULTS Using linear mixed models we investigated the effect of temperature, soil water availability and photoperiod on the abundance of 59189 detected transcripts. Expression of more than 80 % of all identified transcripts revealed a response to variations in environmental conditions in the field. GO term overrepresentation analysis revealed gene expression responses to temperature, soil water availability and photoperiod that are highly conserved among many plant taxa. However, expression differences between the two Douglas-fir provenances were rather small compared to the expression differences observed between individual trees. Although the effect of environment on global transcript expression was high, the observed genotype by environment (GxE) interaction of gene expression was surprisingly low, since only 21 of all detected transcripts showed a GxE interaction. CONCLUSIONS The majority of the transcriptome responses in plant leaf tissue is driven by variations in environmental conditions. The small variation between individuals and populations suggests strong conservation of this response within Douglas-fir. Therefore we conclude that plastic transcriptome responses to variations in environmental conditions are only weakly affected by local adaptation in Douglas-fir.
Collapse
Affiliation(s)
- Moritz Hess
- Forest Research Institute of Baden-Württemberg (FVA), Wonnhaldestrasse 4, D-79100 Freiburg i. Brsg., Germany
- Institute for Biology III, Faculty of Biology, Albert Ludwigs University Freiburg, Schänzlestrasse 1, D-79104 Freiburg i. Brsg., Germany
- Present Address: Institute of Medical Biometry, Epidemiology and Informatics (IMBEI), University Medical Center Mainz, Obere Zahlbacher Strasse 69, 55131 Mainz, Germany
| | - Henning Wildhagen
- Forest Research Institute of Baden-Württemberg (FVA), Wonnhaldestrasse 4, D-79100 Freiburg i. Brsg., Germany
- Present Address: Department of Forest Botany and Tree Physiology, Büsgen-Institute, Georg-August-University Göttingen, Büsgenweg 2, D-37077 Göttingen, Germany
| | - Laura Verena Junker
- Forest Research Institute of Baden-Württemberg (FVA), Wonnhaldestrasse 4, D-79100 Freiburg i. Brsg., Germany
- Department of Biology, Graduate Programs in Cell & Systems Biology and Ecology & Evolutionary Biology, University of Toronto, 3359 Mississauga Road, Mississauga, ON L5L 1C6 Canada
| | - Ingo Ensminger
- Forest Research Institute of Baden-Württemberg (FVA), Wonnhaldestrasse 4, D-79100 Freiburg i. Brsg., Germany
- Department of Biology, Graduate Programs in Cell & Systems Biology and Ecology & Evolutionary Biology, University of Toronto, 3359 Mississauga Road, Mississauga, ON L5L 1C6 Canada
| |
Collapse
|
19
|
Suren H, Hodgins KA, Yeaman S, Nurkowski KA, Smets P, Rieseberg LH, Aitken SN, Holliday JA. Exome capture from the spruce and pine giga‐genomes. Mol Ecol Resour 2016; 16:1136-46. [DOI: 10.1111/1755-0998.12570] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 07/06/2016] [Accepted: 07/11/2016] [Indexed: 12/12/2022]
Affiliation(s)
- H. Suren
- Department of Forest Resources and Environmental Conservation Virginia Tech 304 Cheatham Hall Blacksburg VA 24061 USA
- Genetics Bioinformatics and Computational Biology Program Virginia Tech Blacksburg VA 24061 USA
| | - K. A. Hodgins
- School of Biological Sciences Monash University Bld 18 Clayton VIC 3800 Australia
| | - S. Yeaman
- Department of Biological Sciences University of Calgary Calgary Alberta Canada
| | - K. A. Nurkowski
- School of Biological Sciences Monash University Bld 18 Clayton VIC 3800 Australia
| | - P. Smets
- Department of Forest and Conservation Sciences University of British Columbia 3041‐2424 Main Mall Vancouver BC V6T 1Z4 Canada
| | - L. H. Rieseberg
- Department of Botany University of British Columbia 3529 ‐ 6270 University Boulevard Vancouver British Columbia V6T 1Z4 Canada
| | - S. N. Aitken
- Department of Forest and Conservation Sciences University of British Columbia 3041‐2424 Main Mall Vancouver BC V6T 1Z4 Canada
| | - J. A. Holliday
- Department of Forest Resources and Environmental Conservation Virginia Tech 304 Cheatham Hall Blacksburg VA 24061 USA
| |
Collapse
|
20
|
Daru BH, Berger DK, van Wyk AE. Opportunities for unlocking the potential of genomics for African trees. THE NEW PHYTOLOGIST 2016; 210:772-778. [PMID: 26695092 DOI: 10.1111/nph.13826] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Affiliation(s)
- Barnabas H Daru
- Department of Plant Science, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa
- Genomics Research Institute, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa
| | - Dave K Berger
- Department of Plant Science, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa
- Genomics Research Institute, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa
| | - Abraham E van Wyk
- Department of Plant Science, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa
| |
Collapse
|
21
|
Akman M, Carlson JE, Holsinger KE, Latimer AM. Transcriptome sequencing reveals population differentiation in gene expression linked to functional traits and environmental gradients in the South African shrub Protea repens. THE NEW PHYTOLOGIST 2016; 210:295-309. [PMID: 26618926 DOI: 10.1111/nph.13761] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 10/15/2015] [Indexed: 05/11/2023]
Abstract
Understanding the environmental and genetic mechanisms underlying locally adaptive trait variation across the ranges of species is a major focus of evolutionary biology. Combining transcriptome sequencing with common garden experiments on populations spanning geographical and environmental gradients holds promise for identifying such mechanisms. The South African shrub Protea repens displays diverse phenotypes in the wild along drought and temperature gradients. We grew plants from seeds collected at 19 populations spanning this species' range, and sequenced the transcriptomes of these plants to reveal gene pathways associated with adaptive trait variation. We related expression in co-expressed gene networks to trait phenotypes measured in the common garden and to source population climate. We found that expression in gene networks correlated with source-population environment and with plant traits. In particular, the activity of gene networks enriched for growth related pathways correlated strongly with source site minimum winter temperature and with leaf size, stem diameter and height in the garden. Other gene networks with enrichments for photosynthesis related genes showed associations with precipitation. Our results strongly suggest that this species displays population-level differences in gene expression that have been shaped by source population site climate, and that are reflected in trait variation along environmental gradients.
Collapse
Affiliation(s)
- Melis Akman
- Department of Plant Sciences, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Jane E Carlson
- Department of Biological Sciences, Nicholls State University, PO Box 2021, Thibodaux, LA, 70310, USA
| | - Kent E Holsinger
- Department of Ecology & Evolutionary Biology, University of Connecticut, U-3043, Storrs, CT, 06269-3043, USA
| | - Andrew M Latimer
- Department of Plant Sciences, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|
22
|
Hodgins KA, Yeaman S, Nurkowski KA, Rieseberg LH, Aitken SN. Expression Divergence Is Correlated with Sequence Evolution but Not Positive Selection in Conifers. Mol Biol Evol 2016; 33:1502-16. [PMID: 26873578 DOI: 10.1093/molbev/msw032] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The evolutionary and genomic determinants of sequence evolution in conifers are poorly understood, and previous studies have found only limited evidence for positive selection. Using RNAseq data, we compared gene expression profiles to patterns of divergence and polymorphism in 44 seedlings of lodgepole pine (Pinus contorta) and 39 seedlings of interior spruce (Picea glauca × engelmannii) to elucidate the evolutionary forces that shape their genomes and their plastic responses to abiotic stress. We found that rapidly diverging genes tend to have greater expression divergence, lower expression levels, reduced levels of synonymous site diversity, and longer proteins than slowly diverging genes. Similar patterns were identified for the untranslated regions, but with some exceptions. We found evidence that genes with low expression levels had a larger fraction of nearly neutral sites, suggesting a primary role for negative selection in determining the association between evolutionary rate and expression level. There was limited evidence for differences in the rate of positive selection among genes with divergent versus conserved expression profiles and some evidence supporting relaxed selection in genes diverging in expression between the species. Finally, we identified a small number of genes that showed evidence of site-specific positive selection using divergence data alone. However, estimates of the proportion of sites fixed by positive selection (α) were in the range of other plant species with large effective population sizes suggesting relatively high rates of adaptive divergence among conifers.
Collapse
Affiliation(s)
- Kathryn A Hodgins
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| | - Sam Yeaman
- Department of Botany, University of British Columbia, Vancouver, BC, Canada Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | | | - Loren H Rieseberg
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Sally N Aitken
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
23
|
Prunier J, Verta JP, MacKay JJ. Conifer genomics and adaptation: at the crossroads of genetic diversity and genome function. THE NEW PHYTOLOGIST 2016; 209:44-62. [PMID: 26206592 DOI: 10.1111/nph.13565] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 06/14/2015] [Indexed: 05/21/2023]
Abstract
Conifers have been understudied at the genomic level despite their worldwide ecological and economic importance but the situation is rapidly changing with the development of next generation sequencing (NGS) technologies. With NGS, genomics research has simultaneously gained in speed, magnitude and scope. In just a few years, genomes of 20-24 gigabases have been sequenced for several conifers, with several others expected in the near future. Biological insights have resulted from recent sequencing initiatives as well as genetic mapping, gene expression profiling and gene discovery research over nearly two decades. We review the knowledge arising from conifer genomics research emphasizing genome evolution and the genomic basis of adaptation, and outline emerging questions and knowledge gaps. We discuss future directions in three areas with potential inputs from NGS technologies: the evolutionary impacts of adaptation in conifers based on the adaptation-by-speciation model; the contributions of genetic variability of gene expression in adaptation; and the development of a broader understanding of genetic diversity and its impacts on genome function. These research directions promise to sustain research aimed at addressing the emerging challenges of adaptation that face conifer trees.
Collapse
Affiliation(s)
- Julien Prunier
- Centre for Forest Research and Institute for Systems and Integrative Biology, Université Laval, Quebec, QC, G1V 0A6, Canada
| | - Jukka-Pekka Verta
- Friedrich Miescher Laboratory of the Max Planck Society, Spemannstrasse 39, Tübingen, 72076, Germany
| | - John J MacKay
- Centre for Forest Research and Institute for Systems and Integrative Biology, Université Laval, Quebec, QC, G1V 0A6, Canada
| |
Collapse
|
24
|
Raherison ESM, Giguère I, Caron S, Lamara M, MacKay JJ. Modular organization of the white spruce (Picea glauca) transcriptome reveals functional organization and evolutionary signatures. THE NEW PHYTOLOGIST 2015; 207:172-187. [PMID: 25728802 PMCID: PMC5024012 DOI: 10.1111/nph.13343] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 01/18/2015] [Indexed: 05/13/2023]
Abstract
Transcript profiling has shown the molecular bases of several biological processes in plants but few studies have developed an understanding of overall transcriptome variation. We investigated transcriptome structure in white spruce (Picea glauca), aiming to delineate its modular organization and associated functional and evolutionary attributes. Microarray analyses were used to: identify and functionally characterize groups of co-expressed genes; investigate expressional and functional diversity of vascular tissue preferential genes which were conserved among Picea species, and identify expression networks underlying wood formation. We classified 22 857 genes as variable (79%; 22 coexpression groups) or invariant (21%) by profiling across several vegetative tissues. Modular organization and complex transcriptome restructuring among vascular tissue preferential genes was revealed by their assignment to coexpression groups with partially overlapping profiles and partially distinct functions. Integrated analyses of tissue-based and temporally variable profiles identified secondary xylem gene networks, showed their remodelling over a growing season and identified PgNAC-7 (no apical meristerm (NAM), Arabidopsis transcription activation factor (ATAF) and cup-shaped cotyledon (CUC) transcription factor 007 in Picea glauca) as a major hub gene specific to earlywood formation. Reference profiling identified comprehensive, statistically robust coexpressed groups, revealing that modular organization underpins the evolutionary conservation of the transcriptome structure.
Collapse
Affiliation(s)
- Elie S M Raherison
- Center for Forest Research and Institute for Integrative and Systems Biology, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Isabelle Giguère
- Center for Forest Research and Institute for Integrative and Systems Biology, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Sébastien Caron
- Center for Forest Research and Institute for Integrative and Systems Biology, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Mebarek Lamara
- Center for Forest Research and Institute for Integrative and Systems Biology, Université Laval, Québec, QC, G1V 0A6, Canada
| | - John J MacKay
- Department of Plant Sciences, University of Oxford, OX1 3RB, Oxford, UK
| |
Collapse
|
25
|
Chown SL, Hodgins KA, Griffin PC, Oakeshott JG, Byrne M, Hoffmann AA. Biological invasions, climate change and genomics. Evol Appl 2015; 8:23-46. [PMID: 25667601 PMCID: PMC4310580 DOI: 10.1111/eva.12234] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 10/24/2014] [Indexed: 12/13/2022] Open
Abstract
The rate of biological invasions is expected to increase as the effects of climate change on biological communities become widespread. Climate change enhances habitat disturbance which facilitates the establishment of invasive species, which in turn provides opportunities for hybridization and introgression. These effects influence local biodiversity that can be tracked through genetic and genomic approaches. Metabarcoding and metagenomic approaches provide a way of monitoring some types of communities under climate change for the appearance of invasives. Introgression and hybridization can be followed by the analysis of entire genomes so that rapidly changing areas of the genome are identified and instances of genetic pollution monitored. Genomic markers enable accurate tracking of invasive species' geographic origin well beyond what was previously possible. New genomic tools are promoting fresh insights into classic questions about invading organisms under climate change, such as the role of genetic variation, local adaptation and climate pre-adaptation in successful invasions. These tools are providing managers with often more effective means to identify potential threats, improve surveillance and assess impacts on communities. We provide a framework for the application of genomic techniques within a management context and also indicate some important limitations in what can be achieved.
Collapse
Affiliation(s)
- Steven L Chown
- School of Biological Sciences, Monash UniversityClayton, Vic., Australia
| | - Kathryn A Hodgins
- School of Biological Sciences, Monash UniversityClayton, Vic., Australia
| | - Philippa C Griffin
- Department of Genetics, Bio21 Institute, The University of MelbourneParkville, Vic., Australia
| | - John G Oakeshott
- CSIRO Land and Water Flagship, Black Mountain LaboratoriesCanberra, ACT, Australia
| | - Margaret Byrne
- Science and Conservation Division, Department of Parks and Wildlife, Bentley Delivery CentreBentley, WA, Australia
| | - Ary A Hoffmann
- Departments of Zoology and Genetics, Bio21 Institute, The University of MelbourneParkville, Vic., Australia
| |
Collapse
|