1
|
Cai L, Cardoso D, Tressel LG, Lee C, Shrestha B, Choi IS, de Lima HC, de Queiroz LP, Ruhlman TA, Jansen RK, Wojciechowski MF. Well-resolved phylogeny supports repeated evolution of keel flowers as a synergistic contributor to papilionoid legume diversification. THE NEW PHYTOLOGIST 2025. [PMID: 40099506 DOI: 10.1111/nph.70080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 02/15/2025] [Indexed: 03/20/2025]
Abstract
The butterfly-shaped keel flower is a highly successful floral form in angiosperms. These flowers steer the mechanical interaction with bees and thus are hypothesized to accelerate pollinator-driven diversification. The exceptionally labile evolution of keel flowers in Papilionoideae (Fabaceae) provides a suitable system to test this hypothesis. Using 1456 low-copy nuclear loci, we confidently resolve the early divergence history of Papilionoideae. Constrained by this backbone phylogeny, we generated a time tree for 3326 Fabales to evaluate the tempo and mode of diversification within a state-dependent evolutionary framework. The first keel flowers emerged c. 59.0 million years ago in Papilionoideae, predating the earliest fossil by 3-4 million years. The Miocene diversification of Papilionoideae coincided with the rapid evolution of keel flowers. At least six independent origins and 32 losses of keel flowers were identified in Papilionoideae, Cercidoideae, and Polygalaceae. However, the state-dependent diversification model was not favored. Lack of radiation associated with keel flowers suggests that diversification within Papilionoideae was not solely driven by pollinator-mediated selection, but instead an outcome of the synergistic effects of multiple innovations, including nitrogen fixation and chemical defense, as well as dispersal into subtropical and temperate regions.
Collapse
Affiliation(s)
- Liming Cai
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Domingos Cardoso
- Instituto de Biologia, Universidade Federal da Bahia, Salvador, Bahia, 40170-115, Brazil
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, 22460-030, Brazil
| | - Lydia G Tressel
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Chaehee Lee
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
- Department of Plant Sciences, University of California Davis, Davis, CA, 95616, USA
| | - Bikash Shrestha
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - In-Su Choi
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
- Department of Biological Sciences and Biotechnology, Hannam University, Daejeon, 34054, Korea
| | - Haroldo C de Lima
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, 22460-030, Brazil
| | - Luciano P de Queiroz
- Universidade Estadual de Feira de Santana, Feira de Santana, Bahia, 44036-900, Brazil
| | - Tracey A Ruhlman
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Robert K Jansen
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | | |
Collapse
|
2
|
Kobayashi Y, Kondo Y, Kohda M, Awata S. Active provisioning of food to host sea anemones by anemonefish. Sci Rep 2025; 15:4115. [PMID: 40011474 PMCID: PMC11865538 DOI: 10.1038/s41598-025-85767-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 01/06/2025] [Indexed: 02/28/2025] Open
Abstract
In mutualistic symbiosis, organisms often provide food to their partners. However, the processes and significance of food provisioning to hosts remain poorly understood. The anemonefish Amphiprion clarkii, which prefers larger hosts, has been suggested to provide food to its host the sea anemone Entacmaea quadricolor. In the present study, we investigated food provisioning by anemonefish and its effects on the symbiotic relationships. When given foods of various sizes and types in the field, anemonefish selectively consumed small animal food (krill, clams, squid, and fish) and green macroalgae of small size, while providing larger pieces of animal food to their hosts. Additionally, the anemonefish avoided either eating or providing brown macroalgae and sponges to the host anemone, which appeared to be unsuitable as food for both anemonefish and sea anemones. When repeatedly provided small pieces of animal food, the anemonefish initially consumed the food themselves, but upon satiety, increased provisioning to the host. Food provisioning positively influenced the growth of host anemones. These findings suggest that anemonefish actively provide food to host anemones based on the situation, adding to our knowledge of the mutual benefits of symbiosis among partners.
Collapse
Affiliation(s)
- Yuya Kobayashi
- Laboratory of Animal Sociology, Department of Biology, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan.
- Laboratory of Animal Sociology, Department of Biology and Geosciences, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan.
| | - Yuki Kondo
- Laboratory of Animal Sociology, Department of Biology, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan
- Laboratory of Animal Sociology, Department of Biology and Geosciences, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan
| | - Masanori Kohda
- Laboratory of Animal Sociology, Department of Biology, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan
- Laboratory of Animal Sociology, Department of Biology and Geosciences, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan
| | - Satoshi Awata
- Laboratory of Animal Sociology, Department of Biology, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan
- Laboratory of Animal Sociology, Department of Biology and Geosciences, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan
| |
Collapse
|
3
|
Hayes WK, Gren ECK, Nelsen DR, Corbit AG, Cooper AM, Fox GA, Streit MB. It's a Small World After All: The Remarkable but Overlooked Diversity of Venomous Organisms, with Candidates Among Plants, Fungi, Protists, Bacteria, and Viruses. Toxins (Basel) 2025; 17:99. [PMID: 40137872 PMCID: PMC11945383 DOI: 10.3390/toxins17030099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/15/2025] [Accepted: 02/18/2025] [Indexed: 03/29/2025] Open
Abstract
Numerous organisms, including animals, plants, fungi, protists, and bacteria, rely on toxins to meet their needs. Biological toxins have been classified into three groups: poisons transferred passively without a delivery mechanism; toxungens delivered to the body surface without an accompanying wound; and venoms conveyed to internal tissues via the creation of a wound. The distinctions highlight the evolutionary pathways by which toxins acquire specialized functions. Heretofore, the term venom has been largely restricted to animals. However, careful consideration reveals a surprising diversity of organisms that deploy toxic secretions via strategies remarkably analogous to those of venomous animals. Numerous plants inject toxins and pathogenic microorganisms into animals through stinging trichomes, thorns, spines, prickles, raphides, and silica needles. Some plants protect themselves via ants as venomous symbionts. Certain fungi deliver toxins via hyphae into infected hosts for nutritional and/or defensive purposes. Fungi can possess penetration structures, sometimes independent of the hyphae, that create a wound to facilitate toxin delivery. Some protists discharge harpoon-like extrusomes (toxicysts and nematocysts) that penetrate their prey and deliver toxins. Many bacteria possess secretion systems or contractile injection systems that can introduce toxins into targets via wounds. Viruses, though not "true" organisms according to many, include a group (the bacteriophages) which can inject nucleic acids and virion proteins into host cells that inflict damage rivaling that of conventional venoms. Collectively, these examples suggest that venom delivery systems-and even toxungen delivery systems, which we briefly address-are much more widespread than previously recognized. Thus, our understanding of venom as an evolutionary novelty has focused on only a small proportion of venomous organisms. With regard to this widespread form of toxin deployment, the words of the Sherman Brothers in Disney's iconic tune, It's a Small World, could hardly be more apt: "There's so much that we share, that it's time we're aware, it's a small world after all".
Collapse
Affiliation(s)
- William K. Hayes
- Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA 92350, USA; (A.M.C.); (G.A.F.); (M.B.S.)
| | - Eric C. K. Gren
- Bitterroot College, University of Montana, Hamilton, MT 59840, USA;
| | - David R. Nelsen
- Biology/Allied Health Department, Southern Adventist University, Collegedale, TN 37315, USA; (D.R.N.); (A.G.C.)
| | - Aaron G. Corbit
- Biology/Allied Health Department, Southern Adventist University, Collegedale, TN 37315, USA; (D.R.N.); (A.G.C.)
| | - Allen M. Cooper
- Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA 92350, USA; (A.M.C.); (G.A.F.); (M.B.S.)
| | - Gerad A. Fox
- Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA 92350, USA; (A.M.C.); (G.A.F.); (M.B.S.)
| | - M. Benjamin Streit
- Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA 92350, USA; (A.M.C.); (G.A.F.); (M.B.S.)
| |
Collapse
|
4
|
Chomicki G, Walker-Hale N, Etchells JP, Ritter EJ, Weber MG. Diversity and development of domatia: Symbiotic plant structures to host mutualistic ants or mites. CURRENT OPINION IN PLANT BIOLOGY 2024; 82:102647. [PMID: 39353261 DOI: 10.1016/j.pbi.2024.102647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/17/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024]
Abstract
Across the tree of life, specialized structures that offer nesting sites to ants or mites - known as domatia - have evolved independently hundreds of times, facilitating ecologically important defence and/or nutritional mutualisms. Domatia show remarkable diversity in morphology and developmental origin. Here we review the morpho-anatomical diversity of domatia, aiming to unveil the primary mechanisms governing their development. We propose hypotheses to explain the formation of these structures, based on anatomical studies of domatia and developmental genetic analyses in model species. While genes involved in domatium formation are so far unknown, domatia appear to originate via spatiotemporal shifts in the expression of common developmental genetic pathways. Our review paves the way to the genetic dissection of domatium development.
Collapse
Affiliation(s)
- Guillaume Chomicki
- Department of Biosciences, Durham University, South Rd, Durham, DH1 3LE, UK.
| | | | - J Peter Etchells
- Department of Biosciences, Durham University, South Rd, Durham, DH1 3LE, UK
| | - Eleanore J Ritter
- Department of Plant Biology, Michigan State University, Wilson Rd, East Lansing, MI, 48824-6406, USA
| | - Marjorie G Weber
- Department of Ecology and Evolutionary Biology, University of Michigan, 3034 Biological Sciences Building 1105 North University Ave., Ann Arbor, MI, 48109-1085, USA
| |
Collapse
|
5
|
Myers A, Martin B, Yonenaga J, Agrawal AA, Weber MG. A global assessment of plant-mite mutualism and its ecological drivers. Proc Natl Acad Sci U S A 2024; 121:e2309475121. [PMID: 39560650 PMCID: PMC11621742 DOI: 10.1073/pnas.2309475121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/26/2024] [Indexed: 11/20/2024] Open
Abstract
Mutualisms are mediated by adaptive traits of interacting organisms and play a central role in the ecology and evolution of species. Thousands of plant species possess tiny structures called "domatia" that house mites which protect plants from pests, yet these traits remain woefully understudied. Here, we release a worldwide database of species with mite domatia and provide an evaluation of the phylogenetic and geographic distribution of this mutualistic trait. With >2,500 additions based on digital herbarium scans and published reports, we increased the number of known species with domatia by 27% and, importantly, documented their absence in >4,000 species. We show that mite domatia likely evolved hundreds of times among flowering plants, occurring in an estimated ~10% of woody species representing over a quarter of all angiosperm families. Contrary to classic hypotheses about the evolutionary drivers of mutualism, we find that mite domatia evolved more frequently in temperate regions and in deciduous lineages; this pattern is concordant with a large-scale geographic transition from predominantly ant-based plant defense mutualisms in the tropics to mite-based defense mutualisms in temperate climates. Our data also reveal a pattern of evolutionary convergence in domatia morphology, with tuft-form domatia more likely to evolve in dry temperate habitats and pit domatia more likely to evolve in wet tropical environments. We have shown climate-associated drivers of mite domatia evolution, demonstrating their utility and power as an evolutionarily replicated system for the study of plant defense mutualisms.
Collapse
Affiliation(s)
- Andrew Myers
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI48103
- Michigan Nature Association, Okemos, MI48864
| | - Bruce Martin
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI48103
- Department of Plant Biology, Program in Ecology, Evolution, and Behavior, Michigan State University, East Lansing, MI48823
| | - Jenna Yonenaga
- Department of Evolution and Ecology, University of California, Davis, CA95616
| | - Anurag A. Agrawal
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY14853
| | - Marjorie G. Weber
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI48103
| |
Collapse
|
6
|
Wang R, Kass JM, Chaudhary C, Economo EP, Guénard B. Global biogeographic regions for ants have complex relationships with those for plants and tetrapods. Nat Commun 2024; 15:5641. [PMID: 38969636 PMCID: PMC11226674 DOI: 10.1038/s41467-024-49918-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/25/2024] [Indexed: 07/07/2024] Open
Abstract
On a global scale, biodiversity is geographically structured into regions of biotic similarity. Delineating these regions has been mostly targeted for tetrapods and plants, but those for hyperdiverse groups such as insects are relatively unknown. Insects may have higher biogeographic congruence with plants than tetrapods due to their tight ecological and evolutionary links with the former, but it remains untested. Here, we develop a global regionalization for a major and widespread insect group, ants, based on the most comprehensive distributional and phylogenetic information to date, and examine its similarity to regionalizations for tetrapods and vascular plants. Our ant regionalization supports the newly proposed Madagascan and Sino-Japanese realms based on tetrapod delineations, and it recovers clusters observed in plants but not in tetrapods, such as the Holarctic and Indo-Pacific realms. Quantitative comparison suggests strong associations among different groups-plants showed a higher congruence with ants than with tetrapods. These results underscore the wide congruence of diverse distribution patterns across the tree of life and the similarities shared by insects and plants that are not captured by tetrapod groups. Our analysis highlights the importance of developing global biogeographic maps for insect groups to obtain a more comprehensive geographic picture of life on Earth.
Collapse
Affiliation(s)
- Runxi Wang
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pok Fu Lam Road, Hong Kong SAR, China.
| | - Jamie M Kass
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
- Macroecology Laboratory, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Chhaya Chaudhary
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pok Fu Lam Road, Hong Kong SAR, China
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Evan P Economo
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Benoit Guénard
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pok Fu Lam Road, Hong Kong SAR, China
| |
Collapse
|
7
|
Dixit NM, Guicking D. Exploring the evolutionary dynamics of myrmecophytism: Perspectives from the Southeast Asian Macaranga ant-plant symbiosis. Mol Phylogenet Evol 2024; 194:108028. [PMID: 38342161 DOI: 10.1016/j.ympev.2024.108028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 02/13/2024]
Abstract
Myrmecophytic plants utilise defensive services offered by obligate ant partners nesting in their domatia in a novel means of survival in tropical habitats. Although much is known about the ecology of myrmecophytism, there aren't enough empirical examples to demonstrate whether it substantially influences evolutionary patterns in host plant lineages. In this study, we make use of the species-rich Macaranga (Euphorbiaceae) ant-plant symbiosis distributed in the Southeast Asian Sundaland to delve into the evolutionary dynamics of myrmecophytism in host plants. We generated the most comprehensive dated phylogeny of myrmecophytic Macaranga till date using genotyping-by-sequencing (GBS). With this in hand, we traced the evolutionary history of myrmecophytism in Macaranga using parametric biogeography and ancestral state reconstruction. Diversification rate analysis methods were employed to determine if myrmecophytism enhanced diversification rates in the genus. Our results demonstrate that myrmecophytism is labile and easily lost. Ancestral state reconstruction supported a single origin of myrmecophytism in Macaranga ∼18 mya on Borneo followed by multiple losses. Diversification rate analysis methods did not yield sufficient evidence to support the hypothesis that myrmecophytism enhanced diversification rates in Macaranga; we found that topographical features on Borneo may have played a more direct role in the divergence of clades instead. Our study provides evidence that while the acquisition of domatia clearly functions as a key innovation that has enabled host plants to exploit the environment in novel ways, it may not necessarily enhance diversification rates. In fact, we hypothesise that overly specialised cases of myrmecophytism may even be an evolutionary dead end.
Collapse
Affiliation(s)
- Nadi M Dixit
- Department of Botany, Institute of Biology, University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany.
| | - Daniela Guicking
- Department of Botany, Institute of Biology, University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany.
| |
Collapse
|
8
|
Jouault C, Condamine FL, Legendre F, Perrichot V. The Angiosperm Terrestrial Revolution buffered ants against extinction. Proc Natl Acad Sci U S A 2024; 121:e2317795121. [PMID: 38466878 PMCID: PMC10990090 DOI: 10.1073/pnas.2317795121] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/08/2024] [Indexed: 03/13/2024] Open
Abstract
With ~14,000 extant species, ants are ubiquitous and of tremendous ecological importance. They have undergone remarkable diversification throughout their evolutionary history. However, the drivers of their diversity dynamics are not well quantified or understood. Previous phylogenetic analyses have suggested patterns of diversity dynamics associated with the Angiosperm Terrestrial Revolution (ATR), but these studies have overlooked valuable information from the fossil record. To address this gap, we conducted a comprehensive analysis using a large dataset that includes both the ant fossil record (~24,000 individual occurrences) and neontological data (~14,000 occurrences), and tested four hypotheses proposed for ant diversification: co-diversification, competitive extinction, hyper-specialization, and buffered extinction. Taking into account biases in the fossil record, we found three distinct diversification periods (the latest Cretaceous, Eocene, and Oligo-Miocene) and one extinction period (Late Cretaceous). The competitive extinction hypothesis between stem and crown ants is not supported. Instead, we found support for the co-diversification, buffered extinction, and hyper-specialization hypotheses. The environmental changes of the ATR, mediated by the angiosperm radiation, likely played a critical role in buffering ants against extinction and favoring their diversification by providing new ecological niches, such as forest litter and arboreal nesting sites, and additional resources. We also hypothesize that the decline and extinction of stem ants during the Late Cretaceous was due to their hyper-specialized morphology, which limited their ability to expand their dietary niche in changing environments. This study highlights the importance of a holistic approach when studying the interplay between past environments and the evolutionary trajectories of organisms.
Collapse
Affiliation(s)
- Corentin Jouault
- Institut de Systématique Évolution, Biodiversité, UMR 7205, Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE-PSL, Université des Antilles, Paris75005, France
- Institut des Sciences de l’Évolution de Montpellier, Université de Montpellier, CNRS, Montpellier34095, France
- Géosciences Rennes, UMR 6118, Univ. Rennes, CNRS, Rennes35000, France
| | - Fabien L. Condamine
- Institut des Sciences de l’Évolution de Montpellier, Université de Montpellier, CNRS, Montpellier34095, France
| | - Frédéric Legendre
- Institut de Systématique Évolution, Biodiversité, UMR 7205, Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE-PSL, Université des Antilles, Paris75005, France
| | - Vincent Perrichot
- Géosciences Rennes, UMR 6118, Univ. Rennes, CNRS, Rennes35000, France
| |
Collapse
|
9
|
Mayer VE, Voglmayr H, Blatrix R, Orivel J, Leroy C. Fungi as mutualistic partners in ant-plant interactions. FRONTIERS IN FUNGAL BIOLOGY 2023; 4:1213997. [PMID: 37850069 PMCID: PMC10577302 DOI: 10.3389/ffunb.2023.1213997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/11/2023] [Indexed: 10/19/2023]
Abstract
Associations between fungi and ants living in mutualistic relationship with plants ("plant-ants") have been known for a long time. However, only in recent years has the mutualistic nature, frequency, and geographical extent of associations between tropical arboreal ants with fungi of the ascomycete order Chaetothyriales and Capnodiales (belonging to the so-called "Black Fungi") become clear. Two groups of arboreal ants displaying different nesting strategies are associated with ascomycete fungi: carton-building ants that construct nest walls and galleries on stems, branches or below leaves which are overgrown by fungal hyphae, and plant-ants that make their nests inside living plants (myrmecophytes) in plant provided cavities (domatia) where ants cultivate fungi in small delimited "patches". In this review we summarize the current knowledge about these unsuspected plant-ant-fungus interactions. The data suggest, that at least some of these ant-associated fungi seem to have coevolved with ants over a long period of time and have developed specific adaptations to this lifestyle.
Collapse
Affiliation(s)
- Veronika E. Mayer
- Department of Botany and Biodiversity Research – Division of Structural and Functional Botany, University of Vienna, Wien, Austria
| | - Hermann Voglmayr
- Department of Botany and Biodiversity Research – Mycology Research Group, University of Vienna, Wien, Austria
| | - Rumsais Blatrix
- CEFE, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Jérôme Orivel
- EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, Kourou, France
| | - Céline Leroy
- EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, Kourou, France
- AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
| |
Collapse
|
10
|
Nathan P, Economo EP, Guénard B, Simonsen AK, Frederickson ME. Generalized mutualisms promote range expansion in both plant and ant partners. Proc Biol Sci 2023; 290:20231083. [PMID: 37700642 PMCID: PMC10498038 DOI: 10.1098/rspb.2023.1083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/14/2023] [Indexed: 09/14/2023] Open
Abstract
Mutualism improves organismal fitness, but strong dependence on another species can also limit a species' ability to thrive in a new range if its partner is absent. We assembled a large, global dataset on mutualistic traits and species ranges to investigate how multiple plant-animal and plant-microbe mutualisms affect the spread of legumes and ants to novel ranges. We found that generalized mutualisms increase the likelihood that a species establishes and thrives beyond its native range, whereas specialized mutualisms either do not affect or reduce non-native spread. This pattern held in both legumes and ants, indicating that specificity between mutualistic partners is a key determinant of ecological success in a new habitat. Our global analysis shows that mutualism plays an important, if often overlooked, role in plant and insect invasions.
Collapse
Affiliation(s)
- Pooja Nathan
- Department of Ecology & Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto M5S 3B2, Ontario, Canada
| | - Evan P. Economo
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Benoit Guénard
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Anna K. Simonsen
- Department of Biological Sciences, Florida International University, 11200 SW 8th St, Miami, FL 33199, USA
| | - Megan E. Frederickson
- Department of Ecology & Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto M5S 3B2, Ontario, Canada
| |
Collapse
|
11
|
Gegenbauer C, Bellaire A, Schintlmeister A, Schmid MC, Kubicek M, Voglmayr H, Zotz G, Richter A, Mayer VE. Exo- and endophytic fungi enable rapid transfer of nutrients from ant waste to orchid tissue. THE NEW PHYTOLOGIST 2023; 238:2210-2223. [PMID: 36683444 PMCID: PMC10962571 DOI: 10.1111/nph.18761] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/05/2023] [Indexed: 05/04/2023]
Abstract
The epiphytic orchid Caularthron bilamellatum sacrifices its water storage tissue for nutrients from the waste of ants lodging inside its hollow pseudobulb. Here, we investigate whether fungi are involved in the rapid translocation of nutrients. Uptake was analysed with a 15 N labelling experiment, subsequent isotope ratio mass spectrometry (IRMS) and secondary ion mass spectrometry (ToF-SIMS and NanoSIMS). We encountered two hyphae types: a thick melanized type assigned to 'black fungi' (Chaetothyriales, Cladosporiales, and Mycosphaerellales) in ant waste, and a thin endophytic type belonging to Hypocreales. In few cell layers, both hyphae types co-occurred. 15 N accumulation in both hyphae types was conspicuous, while for translocation to the vessels only Hypocreales were involved. There is evidence that the occurrence of the two hyphae types results in a synergism in terms of nutrient uptake. Our study provides the first evidence that a pseudobulb (=stem)-born endophytic network of Hypocreales is involved in the rapid translocation of nitrogen from insect-derived waste to the vegetative and reproductive tissue of the host orchid. For C. bilamellatum that has no contact with the soil, ant waste in the hollow pseudobulbs serves as equivalent to soil in terms of nutrient sources.
Collapse
Affiliation(s)
- Christian Gegenbauer
- Division of Structural and Functional Botany, Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 141030WienAustria
- Division of Terrestrial Ecosystem Research, Centre for Microbiology and Ecosystem ScienceUniversity of ViennaDjerassiplatz 11030WienAustria
| | - Anke Bellaire
- Division of Structural and Functional Botany, Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 141030WienAustria
| | - Arno Schintlmeister
- Division of Microbial Ecology and Large‐Instrument Facility of Environmental and Isotope Mass Spectrometry, Centre for Microbiology and Environmental Systems ScienceUniversity of ViennaDjerassiplatz 11030ViennaAustria
| | - Markus C. Schmid
- Division of Microbial Ecology and Large‐Instrument Facility of Environmental and Isotope Mass Spectrometry, Centre for Microbiology and Environmental Systems ScienceUniversity of ViennaDjerassiplatz 11030ViennaAustria
| | - Markus Kubicek
- Institute of Chemical Technologies and Analytics, TU WienGetreidemarkt 9/1641060ViennaAustria
| | - Hermann Voglmayr
- Mycology Research Group, Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 141030WienAustria
- Institute of Forest Entomology, Forest Pathology and Forest ProtectionUniversity of Natural Resources and Life Sciences, Vienna (BOKU)Peter‐Jordan‐Strasse 821190WienAustria
| | - Gerhard Zotz
- Institute for Biology and Environmental SciencesCarl von Ossietzky University OldenburgOldenburgGermany
- Smithsonian Tropical Research InstituteApdo 2072BalboaPanama
| | - Andreas Richter
- Division of Terrestrial Ecosystem Research, Centre for Microbiology and Ecosystem ScienceUniversity of ViennaDjerassiplatz 11030WienAustria
| | - Veronika E. Mayer
- Division of Structural and Functional Botany, Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 141030WienAustria
| |
Collapse
|
12
|
Campbell LCE, Kiers ET, Chomicki G. The evolution of plant cultivation by ants. TRENDS IN PLANT SCIENCE 2023; 28:271-282. [PMID: 36372647 DOI: 10.1016/j.tplants.2022.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 09/11/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Outside humans, true agriculture was previously thought to be restricted to social insects farming fungus. However, obligate farming of plants by ants was recently discovered in Fiji, prompting a re-examination of plant cultivation by ants. Here, we generate a database of plant cultivation by ants, identify three main types, and show that these interactions evolved primarily for shelter rather than food. We find that plant cultivation evolved at least 65 times independently for crops (~200 plant species), and 15 times in farmer lineages (~37 ant taxa) in the Neotropics and Asia/Australasia. Because of their high evolutionary replication, and variation in partner dependence, these systems are powerful models to unveil the steps in the evolution and ecology of insect agriculture.
Collapse
Affiliation(s)
| | - E Toby Kiers
- Department of Ecological Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Guillaume Chomicki
- Ecology and Evolutionary Biology, School of Biosciences, Alfred Denny Building, University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
| |
Collapse
|
13
|
Dixit NM, Zirpel M, Slik JWF, Jamsari J, Weising K, Guicking D. Biogeography of the Sunda Shelf revisited: Insights from Macaranga section Pruinosae (Euphorbiaceae). Front Ecol Evol 2023. [DOI: 10.3389/fevo.2022.1049243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The Southeast Asian region of Sundaland is among the world’s major biodiversity hotspots. The region’s biodiversity coupled with its complex and dynamic geographic and climatic histories makes it an ideal region to study the various factors that determine the diversification and distribution patterns of tropical biota. Here we investigate the biogeographic patterns in the partly myrmecophytic Macaranga section Pruinosae to reveal some of the factors that play a role in determining the distribution of biota in Sundaland. We used single nucleotide polymorphisms (SNP) data derived from GBS, a next generation sequencing technique, in maximum likelihood and cluster analyses to determine phylogenetic relationships and population structures within this taxonomic section. Bayesian inference based on secondary calibration points and ancestral area reconstruction analyses were performed to infer spatial–temporal origins of the major lineages in the section. The results from these analyses were further substantiated using nuclear microsatellite data obtained from a broader sample set of two widely distributed species within the section: Macaranga gigantea and Macaranga pruinosa. Phylogenetic and cluster analyses reveal four well-defined, discrete species groups within section Pruinosae, all of which but one originated in Borneo with the crown node dated at 3.58 mya. Biogeographic patterns within the species reveal a biogeographic barrier between east and west Sundaland besides bringing to light the role played by various geological factors, especially the Crocker Range, on Borneo. Patterns also reveal a biogeographic barrier between the Bangka/Belitung islands and Sumatra for ant-free, swamp-adapted species. This study provides evidence that geographic barriers, edaphic conditions, and ecological adaptations are tightly linked and that their mutual interaction determines the diversification and distribution of species.
Collapse
|
14
|
Dejean A, Rossi V, Azémar F, Compin A, Petitclerc F, Talaga S, Corbara B. Host-tree selection by the ant garden-initiating arboreal ponerine Neoponera goeldii. Ecology 2023; 104:e3843. [PMID: 36156795 PMCID: PMC10078305 DOI: 10.1002/ecy.3843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 02/01/2023]
Affiliation(s)
- Alain Dejean
- Laboratoire écologie fonctionnelle et environnement, Université de Toulouse, CNRS, Toulouse INP, Université Toulouse 3-Paul Sabatier (UPS), Toulouse, France.,UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, Kourou, France
| | - Vivien Rossi
- Plant Systematic and Ecology Laboratory (LaBosystE), Department of Biology, Higher Teachers' Training College, University of Yaoundé I, Yaoundé, Cameroon.,RU Forests and Societies, CIRAD Yaoundé, Cameroon
| | - Frédéric Azémar
- Laboratoire écologie fonctionnelle et environnement, Université de Toulouse, CNRS, Toulouse INP, Université Toulouse 3-Paul Sabatier (UPS), Toulouse, France
| | - Arthur Compin
- Laboratoire écologie fonctionnelle et environnement, Université de Toulouse, CNRS, Toulouse INP, Université Toulouse 3-Paul Sabatier (UPS), Toulouse, France
| | - Frédéric Petitclerc
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, Kourou, France
| | | | - Bruno Corbara
- Université Clermont-Auvergne, CNRS, LMGE, Clermont-Ferrand, France
| |
Collapse
|
15
|
Müller AT, Reichelt M, Cosio EG, Salinas N, Nina A, Wang D, Moossen H, Geilmann H, Gershenzon J, Köllner TG, Mithöfer A. Combined -omics framework reveals how ant symbionts benefit the Neotropical ant-plant Tococa quadrialata at different levels. iScience 2022; 25:105261. [PMID: 36274949 PMCID: PMC9579026 DOI: 10.1016/j.isci.2022.105261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/06/2022] [Accepted: 09/26/2022] [Indexed: 10/25/2022] Open
Abstract
Ant-plant defensive mutualism is a widely studied phenomenon, where ants protect their host plants (myrmecophytes) against herbivores in return for the provision of nesting sites and food. However, few studies addressed the influence of ant colonization and herbivory on the plant's metabolism. We chose the Amazonian plant Tococa quadrialata, living in association with Azteca cf. tonduzi ants for an ant-exclusion study to reveal the chemistry behind this symbiosis. We found that colonized plants did not only benefit from protection but also from increased amino acid and nitrogen content, enabling better performance even in an herbivore-free environment. In contrast, ant-deprived T. quadrialata plants accumulated more ellagitannins, a major class of constitutive defense compounds. Moreover, herbivory-induced jasmonate-mediated defense responses, including the upregulation of signaling and defense genes and the emission of volatiles irrespective of colonization status. Altogether, we show how ant-colonization can influence the general and defense-related metabolism and performance of myrmecophytes.
Collapse
Affiliation(s)
- Andrea T. Müller
- Max Planck Institute for Chemical Ecology, Research Group Plant Defense Physiology, 07745 Jena, Germany
- Max Planck Institute for Chemical Ecology, Department of Biochemistry, 07745 Jena, Germany
- Pontifical Catholic University of Peru, Institute for Nature Earth and Energy (INTE-PUCP), San Miguel, 15088 Lima, Peru
| | - Michael Reichelt
- Max Planck Institute for Chemical Ecology, Department of Biochemistry, 07745 Jena, Germany
| | - Eric G. Cosio
- Pontifical Catholic University of Peru, Institute for Nature Earth and Energy (INTE-PUCP), San Miguel, 15088 Lima, Peru
| | - Norma Salinas
- Pontifical Catholic University of Peru, Institute for Nature Earth and Energy (INTE-PUCP), San Miguel, 15088 Lima, Peru
| | - Alex Nina
- Pontifical Catholic University of Peru, Institute for Nature Earth and Energy (INTE-PUCP), San Miguel, 15088 Lima, Peru
| | - Ding Wang
- Max Planck Institute for Chemical Ecology, Research Group Plant Defense Physiology, 07745 Jena, Germany
| | - Heiko Moossen
- Max Planck Institute for Biogeochemistry, Stable Isotope Laboratory (BGC-IsoLab), 07745 Jena, Germany
| | - Heike Geilmann
- Max Planck Institute for Biogeochemistry, Stable Isotope Laboratory (BGC-IsoLab), 07745 Jena, Germany
| | - Jonathan Gershenzon
- Max Planck Institute for Chemical Ecology, Department of Biochemistry, 07745 Jena, Germany
| | - Tobias G. Köllner
- Max Planck Institute for Chemical Ecology, Department of Natural Product Biosynthesis, 07745 Jena, Germany
| | - Axel Mithöfer
- Max Planck Institute for Chemical Ecology, Research Group Plant Defense Physiology, 07745 Jena, Germany
| |
Collapse
|
16
|
Russo SE, Ledder G, Muller EB, Nisbet RM. Dynamic Energy Budget models: fertile ground for understanding resource allocation in plants in a changing world. CONSERVATION PHYSIOLOGY 2022; 10:coac061. [PMID: 36128259 PMCID: PMC9477497 DOI: 10.1093/conphys/coac061] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/08/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Climate change is having dramatic effects on the diversity and distribution of species. Many of these effects are mediated by how an organism's physiological patterns of resource allocation translate into fitness through effects on growth, survival and reproduction. Empirically, resource allocation is challenging to measure directly and so has often been approached using mathematical models, such as Dynamic Energy Budget (DEB) models. The fact that all plants require a very similar set of exogenous resources, namely light, water and nutrients, integrates well with the DEB framework in which a small number of variables and processes linked through pathways represent an organism's state as it changes through time. Most DEB theory has been developed in reference to animals and microorganisms. However, terrestrial vascular plants differ from these organisms in fundamental ways that make resource allocation, and the trade-offs and feedbacks arising from it, particularly fundamental to their life histories, but also challenging to represent using existing DEB theory. Here, we describe key features of the anatomy, morphology, physiology, biochemistry, and ecology of terrestrial vascular plants that should be considered in the development of a generic DEB model for plants. We then describe possible approaches to doing so using existing DEB theory and point out features that may require significant development for DEB theory to accommodate them. We end by presenting a generic DEB model for plants that accounts for many of these key features and describing gaps that would need to be addressed for DEB theory to predict the responses of plants to climate change. DEB models offer a powerful and generalizable framework for modelling resource allocation in terrestrial vascular plants, and our review contributes a framework for expansion and development of DEB theory to address how plants respond to anthropogenic change.
Collapse
Affiliation(s)
- Sabrina E Russo
- School of Biological Sciences, University of Nebraska, 1104 T Street Lincoln, Nebraska 68588-0118, USA
- Center for Plant Science Innovation, University of Nebraska, 1901 Vine Street, N300 Beadle Center, Lincoln, Nebraska 68588-0660, USA
| | - Glenn Ledder
- Department of Mathematics, University of Nebraska, 203 Avery Hall, Lincoln, Nebraska 68588-0130, USA
| | - Erik B Muller
- Marine Science Institute, University of California, Santa Barbara, California 93106, USA
- Institut für Biologische Analytik und Consulting IBACON GmbH, Arheilger Weg 17 Roß dorf, Hesse D-64380, Germany
| | - Roger M Nisbet
- Marine Science Institute, University of California, Santa Barbara, California 93106, USA
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
17
|
Nepel M, Pfeifer J, Oberhauser FB, Richter A, Woebken D, Mayer VE. Nitrogen fixation by diverse diazotrophic communities can support population growth of arboreal ants. BMC Biol 2022; 20:135. [PMID: 35681192 PMCID: PMC9185989 DOI: 10.1186/s12915-022-01289-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/31/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Symbiotic ant-plant associations, in which ants live on plants, feed on plant-provided food, and protect host trees against threats, are ubiquitous across the tropics, with the Azteca-Cecropia associations being amongst the most widespread interactions in the Neotropics. Upon colonization of Cecropia's hollow internodes, Azteca queens form small patches with plant parenchyma, which are then used as waste piles when the colony grows. Patches-found in many ant-plant mutualisms-are present throughout the colony life cycle and may supplement larval food. Despite their initial nitrogen (N)-poor substrate, patches in Cecropia accommodate fungi, nematodes, and bacteria. In this study, we investigated the atmospheric N2 fixation as an N source in patches of early and established ant colonies. RESULTS Via 15N2 tracer assays, N2 fixation was frequently detected in all investigated patch types formed by three Azteca ant species. Quantified fixation rates were similar in early and established ant colonies and higher than in various tropical habitats. Based on amplicon sequencing, the identified microbial functional guild-the diazotrophs-harboring and transcribing the dinitrogenase reductase (nifH) gene was highly diverse and heterogeneous across Azteca colonies. The community composition differed between early and established ant colonies and partly between the ant species. CONCLUSIONS Our data show that N2 fixation can result in reasonable amounts of N in ant colonies, which might not only enable bacterial, fungal, and nematode growth in the patch ecosystems but according to our calculations can even support the growth of ant populations. The diverse and heterogeneous diazotrophic community implies a functional redundancy, which could provide the ant-plant-patch system with a higher resilience towards changing environmental conditions. Hence, we propose that N2 fixation represents a previously unknown potential to overcome N limitations in arboreal ant colonies.
Collapse
Affiliation(s)
- Maximilian Nepel
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria.
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
| | - Josephine Pfeifer
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Felix B Oberhauser
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| | - Andreas Richter
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Dagmar Woebken
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
| | - Veronika E Mayer
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| |
Collapse
|
18
|
Quan Y, da Silva NM, de Souza Lima BJF, de Hoog S, Vicente VA, Mayer V, Kang Y, Shi D. Black fungi and ants: a genomic comparison of species inhabiting carton nests versus domatia. IMA Fungus 2022; 13:4. [PMID: 35256015 PMCID: PMC8900376 DOI: 10.1186/s43008-022-00091-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/23/2022] [Indexed: 11/10/2022] Open
Abstract
Some members of Chaetothyriales, an order containing potential agents of opportunistic infections in humans, have a natural habitat in nests of tropical arboreal ants. In these black fungi, two types of ant symbiosis are known, i.e. occurrence in domatia inside living plants, or as components of carton constructions made of ant-chewed plant tissue. In order to explain differences between strains from these types of association, we sequenced and annotated genomes of two newly described carton species, Incumbomyces lentus and Incumbomyces delicatus, and compared these with genomes of four domatia species and related Chaetothyriales. General genomic characteristics, CYP genes, carbohydrate-active enzymes (CAZymes), secondary metabolism, and sex-related genes were included in the study.
Collapse
|
19
|
Short-term plasticity and variation in acacia ant-rewards under different conditions of ant occupancy and herbivory. Naturwissenschaften 2021; 108:31. [PMID: 34196845 DOI: 10.1007/s00114-021-01738-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/05/2021] [Accepted: 05/19/2021] [Indexed: 10/21/2022]
Abstract
In ant-plant defense mutualisms, plants known as myrmecophytes provide food and shelter to ant partners in exchange for defense against herbivores and pathogens. To ensure interaction pay-off, myrmecophytes must regulate their investment in ant-rewards depending on local conditions and herbivore pressure. We investigated how myrmecophyte investment in multiple ant-rewards relates to herbivory, ant defense, and ant occupancy over time. Specifically, we examined the plasticity of ant-rewards produced by swollen-thorn acacias (Vachellia collinsii) under different ant occupancy and herbivory conditions. We compared food rewards (number of extrafloral nectaries and pinnules as a proxy for food bodies) and housing rewards (domatia dimensions) of V. collinsii for three conditions: (1) occupied (defended by the obligate mutualist Pseudomyrmex spinicola) versus unoccupied trees, (2) occupied trees subject to an experimental herbivory manipulation versus control trees, and (3) trees occupied by different ant species varying in their level of defense (P. spinicola, P. simulans, Crematogaster crinosa). We found that food rewards were more likely to vary in time depending on ant occupancy and resident species. Conversely, housing rewards varied with the condition (occupancy or species of partner) and less through time. A one-time herbivory manipulation did not cause any changes to the ant-rewards produced. Our results reveal short-term plasticity in V. collinsii ant-rewards and demonstrate that myrmecophytes with constitutive rewards can adjust their investment in ant-rewards depending on the presence and identity of ant partners.
Collapse
|
20
|
Greenfield MJ, Lach L, Congdon BC, Anslan S, Tedersoo L, Field M, Abell SE. Consistent patterns of fungal communities within ant-plants across a large geographic range strongly suggest a multipartite mutualism. Mycol Prog 2021. [DOI: 10.1007/s11557-021-01690-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractIn recent decades, multipartite mutualisms involving microorganisms such as fungi have been discovered in associations traditionally thought of as bipartite. Ant-plant mutualisms were long thought to be bipartite despite fungi being noticed in an epiphytic ant-plant over 100 years ago. We sequenced fungal DNA from the three distinct domatium chambers of the epiphytic ant-plant Myrmecodia beccarii to establish if fungal communities differ by chamber type across five geographic locations spanning 675 km. The three chamber types serve different ant-associated functions including ‘waste’ chambers, where ant workers deposit waste; ‘nursery’ chambers, where the brood is kept; and ‘ventilation’ chambers, that allow air into the domatium. Overall, fungi from the order Chaetothyriales dominated the chambers in terms of the proportion of operational taxonomic units (OTUs; 13.4%) and sequence abundances of OTUs (28% of the total); however a large portion of OTUs (28%) were unidentified at the order level. Notably, the fungal community in the waste chambers differed consistently from the nursery and ventilation chambers across all five locations. We identified 13 fungal OTUs as ‘common’ in the waste chambers that were rare or in very low sequence abundance in the other two chambers. Fungal communities in the nursery and ventilation chambers overlapped more than either did with the waste chambers but were also distinct from each other. Differences in dominance of the common OTUs drove the observed patterns in the fungal communities for each of the chamber types. This suggests a multipartite mutualism involving fungi exists in this ant-plant and that the role of fungi differs among chamber types.
Collapse
|
21
|
The symbiosis between Philidris ants and the ant-plant Dischidia major includes fungal and algal associates. Symbiosis 2021. [DOI: 10.1007/s13199-021-00751-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
Chomicki G, Kiers ET, Renner SS. The Evolution of Mutualistic Dependence. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2020. [DOI: 10.1146/annurev-ecolsys-110218-024629] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
While the importance of mutualisms across the tree of life is recognized, it is not understood why some organisms evolve high levels of dependence on mutualistic partnerships, while other species remain autonomous or retain or regain minimal dependence on partners. We identify four main pathways leading to the evolution of mutualistic dependence. Then, we evaluate current evidence for three predictions: ( a) Mutualisms with different levels of dependence have distinct stabilizing mechanisms against exploitation and cheating, ( b) less dependent mutualists will return to autonomy more often than those that are highly dependent, and ( c) obligate mutualisms should be less context dependent than facultative ones. Although we find evidence supporting all three predictions, we stress that mutualistic partners follow diverse paths toward—and away from—dependence. We also highlight the need to better examine asymmetry in partner dependence. Recognizing how variation in dependence influences the stability, breakdown, and context dependence of mutualisms generates new hypotheses regarding how and why the benefits of mutualistic partnerships differ over time and space.
Collapse
Affiliation(s)
- Guillaume Chomicki
- Department of Bioscience, Durham University, Durham DH1 3LE, United Kingdom
| | - E. Toby Kiers
- Department of Ecological Science, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| | - Susanne S. Renner
- Systematic Botany and Mycology, Department of Biology, University of Munich (LMU), 80638 Munich, Germany
| |
Collapse
|
23
|
Nelsen MP, Lücking R, Boyce CK, Lumbsch HT, Ree RH. The macroevolutionary dynamics of symbiotic and phenotypic diversification in lichens. Proc Natl Acad Sci U S A 2020; 117:21495-21503. [PMID: 32796103 PMCID: PMC7474681 DOI: 10.1073/pnas.2001913117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Symbioses are evolutionarily pervasive and play fundamental roles in structuring ecosystems, yet our understanding of their macroevolutionary origins, persistence, and consequences is incomplete. We traced the macroevolutionary history of symbiotic and phenotypic diversification in an iconic symbiosis, lichens. By inferring the most comprehensive time-scaled phylogeny of lichen-forming fungi (LFF) to date (over 3,300 species), we identified shifts among symbiont classes that broadly coincided with the convergent evolution of phylogenetically or functionally similar associations in diverse lineages (plants, fungi, bacteria). While a relatively recent loss of lichenization in Lecanoromycetes was previously identified, our work instead suggests lichenization was abandoned far earlier, interrupting what had previously been considered a direct switch between trebouxiophycean and trentepohlialean algal symbionts. Consequently, some of the most diverse clades of LFF are instead derived from nonlichenized ancestors and re-evolved lichenization with Trentepohliales algae, a clade that also facilitated lichenization in unrelated lineages of LFF. Furthermore, while symbiont identity and symbiotic phenotype influence the ecology and physiology of lichens, they are not correlated with rates of lineage birth and death, suggesting more complex dynamics underly lichen diversification. Finally, diversification patterns of LFF differed from those of wood-rotting and ectomycorrhizal taxa, likely reflecting contrasts in their fundamental biological properties. Together, our work provides a timeline for the ecological contributions of lichens, and reshapes our understanding of symbiotic persistence in a classic model of symbiosis.
Collapse
Affiliation(s)
- Matthew P Nelsen
- Department of Science and Education, Negaunee Integrative Research Center, The Field Museum, Chicago, IL 60605;
| | - Robert Lücking
- Botanischer Garten und Botanisches Museum, Freie Universität Berlin, 14195 Berlin, Germany
| | - C Kevin Boyce
- Department of Geological Sciences, Stanford University, Stanford, CA 94305
| | - H Thorsten Lumbsch
- Department of Science and Education, Negaunee Integrative Research Center, The Field Museum, Chicago, IL 60605
| | - Richard H Ree
- Department of Science and Education, Negaunee Integrative Research Center, The Field Museum, Chicago, IL 60605
| |
Collapse
|
24
|
Pearse IS, LoPresti E, Schaeffer RN, Wetzel WC, Mooney KA, Ali JG, Ode PJ, Eubanks MD, Bronstein JL, Weber MG. Generalising indirect defence and resistance of plants. Ecol Lett 2020; 23:1137-1152. [DOI: 10.1111/ele.13512] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/16/2019] [Accepted: 01/23/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Ian S. Pearse
- U.S. Geological Survey Fort Collins Science Center 2150 Centre Ave #C Ft Collins CO 80526 USA
| | - Eric LoPresti
- Department of Plant Biology Evolutionary Biology & Behavior Program Michigan State University East Lansing MI USA
| | | | - William C. Wetzel
- Department of Entomology and Ecology Evolutionary Biology & Behavior Program Michigan State University East Lansing MI USA
| | - Kailen A. Mooney
- Ecology & Evolutionary Biology University of California Irvine, CA USA
| | - Jared G. Ali
- Department of Entomology Penn State University State College PA USA
| | - Paul J. Ode
- Graduate Degree Program in Ecology Department of Bioagricultural Science and Pest Management Colorado State University Fort Collins CO 80523 USA
| | - Micky D. Eubanks
- Department of Entomology Texas A&M University College Station TX USA
| | - Judith L. Bronstein
- Department of Ecology and Evolutionary Biology University of Arizona Tucson AZ 85721 USA
| | - Marjorie G. Weber
- Department of Plant Biology Evolutionary Biology & Behavior Program Michigan State University East Lansing MI USA
| |
Collapse
|
25
|
Sarath E, Ezaki K, Sasaki T, Maekawa Y, Sawada Y, Hirai MY, Soejima A, Tsukaya H. Morphological characterization of domatium development in Callicarpa saccata. ANNALS OF BOTANY 2020; 125:521-532. [PMID: 31768517 PMCID: PMC7061170 DOI: 10.1093/aob/mcz193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND AIMS Domatia are plant structures within which organisms reside. Callicarpa saccata (Lamiaceae) is the sole myrmecophyte, or 'ant plant', that develops foliar (leaf-borne) myrmeco-domatia in this genus. In this work we examined domatium development in C. saccata to understand the developmental processes behind pouch-like domatia. METHODS Scanning electron microscopy, sectioning and microcomputed tomography were carried out to compare the leaves of C. saccata with those of the closely related but domatia-less myrmecophyte Callicarpa subaequalis, both under cultivation without ants. KEY RESULTS Callicarpa saccata domatia are formed as a result of excess cell proliferation at the blade/petiole junctions of leaf primordia. Blade/petiole junctions are important meristematic sites in simple leaf organogenesis. We also found that the mesophyll tissue of domatia does not clearly differentiate into palisade and spongy layers. CONCLUSIONS Rather than curling of the leaf margins, a perturbation of the normal functioning of the blade/petiole junction results in the formation of domatium tissue. Excess cell proliferation warps the shape of the blade and disturbs the development of the proximal-distal axis. This process leads to the generation of distinct structures that facilitate interaction between C. saccata and ants.
Collapse
Affiliation(s)
- Emma Sarath
- Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kazune Ezaki
- Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takenori Sasaki
- The University Museum, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yu Maekawa
- The University Museum, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yuji Sawada
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | | | - Akiko Soejima
- Division of Biological Science, Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Hirokazu Tsukaya
- Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- ExCELLS, National Institutes of Natural Sciences, Okazaki, Japan
| |
Collapse
|
26
|
Maccracken SA, Miller IM, Labandeira CC. Late Cretaceous domatia reveal the antiquity of plant-mite mutualisms in flowering plants. Biol Lett 2019; 15:20190657. [PMID: 31744409 DOI: 10.1098/rsbl.2019.0657] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mite houses, or acarodomatia, are found on the leaves of over 2000 living species of flowering plants today. These structures facilitate tri-trophic interactions between the host plant, its fungi or herbivore adversaries, and fungivorous or predaceous mites by providing shelter for the mite consumers. Previously, the oldest acarodomatia were described on a Cenozoic Era fossil leaf dating to 49 Myr in age. Here, we report the first occurrence of Mesozoic Era acarodomatia in the fossil record from leaves discovered in the Upper Cretaceous Kaiparowits Formation (76.6-74.5 Ma) in southern UT, USA. This discovery extends the origin of acarodomatia by greater than 25 Myr, and the antiquity of this plant-mite mutualism provides important constraints for the evolutionary history of acarodomatia on angiosperms.
Collapse
Affiliation(s)
- S Augusta Maccracken
- Department of Entomology, University of Maryland, College Park, MD 20742, USA.,Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA.,Department of Earth Sciences, Denver Museum of Nature & Science, Denver, CO 80205, USA
| | - Ian M Miller
- Department of Earth Sciences, Denver Museum of Nature & Science, Denver, CO 80205, USA
| | - Conrad C Labandeira
- Department of Entomology, University of Maryland, College Park, MD 20742, USA.,BEES Program, University of Maryland, College Park, MD 20742, USA.,Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA.,Department of Earth Sciences, Denver Museum of Nature & Science, Denver, CO 80205, USA.,College of Life Sciences, Capital Normal University, Beijing 100048, People's Republic of China
| |
Collapse
|
27
|
Kaur KM, Malé PJG, Spence E, Gomez C, Frederickson ME. Using text-mined trait data to test for cooperate-and-radiate co-evolution between ants and plants. PLoS Comput Biol 2019; 15:e1007323. [PMID: 31581264 PMCID: PMC6776258 DOI: 10.1371/journal.pcbi.1007323] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 08/05/2019] [Indexed: 01/14/2023] Open
Abstract
Mutualisms may be “key innovations” that spur lineage diversification by augmenting niche breadth, geographic range, or population size, thereby increasing speciation rates or decreasing extinction rates. Whether mutualism accelerates diversification in both interacting lineages is an open question. Research suggests that plants that attract ant mutualists have higher diversification rates than non-ant associated lineages. We ask whether the reciprocal is true: does the interaction between ants and plants also accelerate diversification in ants, i.e. do ants and plants cooperate-and-radiate? We used a novel text-mining approach to determine which ant species associate with plants in defensive or seed dispersal mutualisms. We investigated patterns of lineage diversification across a recent ant phylogeny using BiSSE, BAMM, and HiSSE models. Ants that associate mutualistically with plants had elevated diversification rates compared to non-mutualistic ants in the BiSSE model, with a similar trend in BAMM, suggesting ants and plants cooperate-and-radiate. However, the best-fitting model was a HiSSE model with a hidden state, meaning that diversification models that do not account for unmeasured traits are inappropriate to assess the relationship between mutualism and ant diversification. Against a backdrop of diversification rate heterogeneity, the best-fitting HiSSE model found that mutualism actually decreases diversification: mutualism evolved much more frequently in rapidly diversifying ant lineages, but then subsequently slowed diversification. Thus, it appears that ant lineages first radiated, then cooperated with plants. Many plants and animals depend on other species for nutrition, protection, or dispersal, a type of ecological interaction known as mutualism. Mutualisms often help organisms thrive in new or harsh environments, thereby increasing their ecological success. We studied whether mutualism also increases evolutionary success by affecting lineage diversification, or the net result of the formation and loss of species over evolutionary time (i.e., speciation minus extinction). We focused on the widespread mutualism between ants and plants, in which ants act as protective ‘bodyguards’ or seed dispersers for plants and gain food or shelter in return. Previous research has found that the evolution of ant-plant mutualisms increased plant diversification. Here, we asked whether the same is true for ant diversification. We used a novel, automated approach to gather trait data from the abstracts of over 89,000 scientific articles about ants, and identified 432 mutualistic ant species and 2,909 non-mutualistic ant species. We then used this trait information to model how mutualism has evolved and influenced diversification across a recent ant phylogeny. Our analysis suggests that instead of causally enhancing diversification, mutualism evolves more often in lineages that are already diversifying quickly and then slows ant diversification.
Collapse
Affiliation(s)
- Katrina M. Kaur
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| | - Pierre-Jean G. Malé
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Erik Spence
- SciNet Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Crisanto Gomez
- Departament Ciències Ambientals, Universitat de Girona, Girona, Spain
| | - Megan E. Frederickson
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
28
|
Amador‐Vargas S. Plant killing by Neotropical acacia ants: ecology, decision‐making, and head morphology. Biotropica 2019. [DOI: 10.1111/btp.12695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sabrina Amador‐Vargas
- Escuela de Biología Universidad de Costa Rica San José Costa Rica
- Department of Ecology, Evolution and Behavior University of Texas at Austin Austin TX USA
| |
Collapse
|
29
|
Chomicki G, Renner SS. Farming by ants remodels nutrient uptake in epiphytes. THE NEW PHYTOLOGIST 2019; 223:2011-2023. [PMID: 31236967 DOI: 10.1111/nph.15855] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/30/2019] [Indexed: 06/09/2023]
Abstract
True agriculture - defined by habitual planting, cultivation, harvesting and dependence of a farmer on a crop - is known from fungi farmed by ants, termites or beetles, and plants farmed by humans or ants. Because farmers supply their crops with nutrients, they have the potential to modify crop nutrition over evolutionary time. Here we test this hypothesis in ant/plant farming symbioses. We used field experiments, phylogenetic-comparative analyses and computed-tomography scanning to investigate how the evolution of farming by ants has impacted the nutrition of locally coexisting species in the epiphytic genus Squamellaria (Rubiaceae). Using isotope-labelled mineral and organic nitrogen, we show that specialised ants actively and exclusively fertilise hyperabsorptive warts on the inner walls of plant-formed structures (domatia) where they nest, sharply contrasting with nitrogen provisioning by ants in nonfarming generalist symbioses. Similar hyperabsorptive warts have evolved repeatedly in lineages colonised by farming ants. Our study supports the idea that millions of years of ant agriculture have remodelled plant physiology, shifting from ant-derived nutrients as by-products to active and targeted fertilisation on hyperabsorptive sites. The increased efficiency of ant-derived nutrient provisioning appears to stem from a combination of farming ant behaviour and plant 'crop' traits.
Collapse
Affiliation(s)
- Guillaume Chomicki
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
- The Queen's College, High St., Oxford, OX1 4AW, UK
| | - Susanne S Renner
- Systematic Botany and Mycology, Department of Biology, University of Munich (LMU), Menzinger Str. 67, Munich, 80638, Germany
| |
Collapse
|
30
|
Congeneric mutualist ant symbionts (Tetraponera, Pseudomyrmecinae) differ in level of protection of their myrmecophyte hosts (Barteria, Passifloraceae). JOURNAL OF TROPICAL ECOLOGY 2019. [DOI: 10.1017/s026646741900021x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractBarteria fistulosa and B. dewevrei, central African rain-forest trees, provide nesting cavities for Tetraponera aethiops and T. latifrons ants, respectively, which protect them against herbivores. To compare protection efficiency between these two symbioses, for 20 plants of each species in two sites in Gabon we measured the time elapsed before ants reached a focal leaf, for host leaves that were undisturbed, damaged (cut with scissors) or subjected to slight vibration (mimicking such damage), and for damaged leaves of the non-host Barteria species. Tetraponera aethiops displayed stronger protective behaviour than did T. latifrons. Time to reach a damaged host leaf (4.5 ± 2.6 min, mean ± SD) did not differ significantly from time to reach a leaf subjected to slight vibration (5.2 ± 3.0 min) for T. aethiops, but response to a leaf subjected to slight vibration (9.5 ± 1.9 min) was significantly slower than that to a damaged leaf (7.8 ± 1.9 min) for T. latifrons. The faster response of T. aethiops to slight vibration may have masked a response of this species to chemical signalling. Both ants reached damaged host leaves faster than damaged leaves of the non-host Barteria sp., indicating host plant specificity in ant responses.
Collapse
|
31
|
Gibert A, Tozer W, Westoby M. Plant performance response to eight different types of symbiosis. THE NEW PHYTOLOGIST 2019; 222:526-542. [PMID: 30697746 DOI: 10.1111/nph.15392] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/07/2018] [Indexed: 06/09/2023]
Abstract
Almost all plant species interact with one or more symbioses somewhere within their distribution range. Bringing together plant trait data and growth responses to symbioses spanning 552 plant species, we provide for the first time on a large scale (597 studies) a quantitative synthesis on plant performance differences between eight major types of symbiosis, including mycorrhizas, N-fixing bacteria, fungal endophytes and ant-plant interactions. Frequency distributions of plant growth responses varied considerably between different types of symbiosis, in terms of both mean effect and 'risk', defined here as percentage of experiments reporting a negative effect of symbiosis on plants. Contrary to expectation, plant traits were poor predictors of growth response across and within all eight symbiotic associations. Our analysis showed no systematic additive effect when a host plant engaged in two functionally different symbioses. This synthesis suggests that plant species' ecological strategies have little effect in determining the influence of a symbiosis on host plant growth. Reliable quantification of differences in plant performance across symbioses will prove valuable for developing general hypotheses on how species become engaged in mutualisms without a guarantee of net returns.
Collapse
Affiliation(s)
- Anais Gibert
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Wade Tozer
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Mark Westoby
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| |
Collapse
|
32
|
Fernandes GW, Aguirre-Jaimes A, Araújo-Oliveira L. Induction, engineering, and hijacking of defensive strategies of the host by a gall-inducing weevil. Ecology 2019; 100:e02693. [PMID: 30883734 DOI: 10.1002/ecy.2693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Geraldo Wilson Fernandes
- Ecologia Evolutiva and Biodiversidade, ICB/Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Biology Department, Stanford University, Stanford, California , 94305, USA
| | - Armando Aguirre-Jaimes
- Instituto de Ecología A.C., Red de Interacciones Multitróficas, Carretera Antigua a Coatepec 351, El Haya, Xalapa, Veracruz, 91070, México
| | - Lázaro Araújo-Oliveira
- Departamento de Ciências Biológicas, Faculdade de Filosofia, Ciências e Letras do Alto São Francisco, Avenida Laerton Paulinelli 153, 35595-000, Luz, Minas Gerais, Brazil
| |
Collapse
|
33
|
|
34
|
Climate and symbioses with ants modulate leaf/stem scaling in epiphytes. Sci Rep 2019; 9:2624. [PMID: 30796304 PMCID: PMC6385368 DOI: 10.1038/s41598-019-39853-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 01/31/2019] [Indexed: 01/12/2023] Open
Abstract
In most seed plants, leaf size is isometrically related to stem cross-sectional area, a relationship referred to as Corner's rule. When stems or leaves acquire a new function, for instance in ant-plant species with hollow stems occupied by ants, their scaling is expected to change. Here we use a lineage of epiphytic ant-plants to test how the evolution of ant-nesting structures in species with different levels of symbiotic dependence has impacted leaf/stem scaling. We expected that leaf size would correlate mostly with climate, while stem diameter would change with domatium evolution. Using a trait dataset from 286 herbarium specimens, field and greenhouse observations, climatic data, and a range of phylogenetic-comparative analyses, we detected significant shifts in leaf/stem scaling, mirroring the evolution of specialized symbioses. Our analyses support both predictions, namely that stem diameter change is tied to symbiosis evolution (ant-nesting structures), while leaf size is independently correlated with rainfall variables. Our study highlights how independent and divergent selective pressures can alter allometry. Because shifts in scaling relationships can impact the costs and benefits of mutualisms, studying allometry in mutualistic interactions may shed unexpected light on the stability of cooperation among species.
Collapse
|
35
|
Nelsen MP, Ree RH, Moreau CS. Ant-plant interactions evolved through increasing interdependence. Proc Natl Acad Sci U S A 2018; 115:12253-12258. [PMID: 30420513 PMCID: PMC6275543 DOI: 10.1073/pnas.1719794115] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Ant-plant interactions are diverse and abundant and include classic models in the study of mutualism and other biotic interactions. By estimating a time-scaled phylogeny of more than 1,700 ant species and a time-scaled phylogeny of more than 10,000 plant genera, we infer when and how interactions between ants and plants evolved and assess their macroevolutionary consequences. We estimate that ant-plant interactions originated in the Mesozoic, when predatory, ground-inhabiting ants first began foraging arboreally. This served as an evolutionary precursor to the use of plant-derived food sources, a dietary transition that likely preceded the evolution of extrafloral nectaries and elaiosomes. Transitions to a strict, plant-derived diet occurred in the Cenozoic, and optimal models of shifts between strict predation and herbivory include omnivory as an intermediate step. Arboreal nesting largely evolved from arboreally foraging lineages relying on a partially or entirely plant-based diet, and was initiated in the Mesozoic, preceding the evolution of domatia. Previous work has suggested enhanced diversification in plants with specialized ant-associated traits, but it appears that for ants, living and feeding on plants does not affect ant diversification. Together, the evidence suggests that ants and plants increasingly relied on one another and incrementally evolved more intricate associations with different macroevolutionary consequences as angiosperms increased their ecological dominance.
Collapse
Affiliation(s)
- Matthew P Nelsen
- Department of Science and Education, Integrative Research Center, Field Museum of Natural History, Chicago, IL 60605
| | - Richard H Ree
- Department of Science and Education, Integrative Research Center, Field Museum of Natural History, Chicago, IL 60605
| | - Corrie S Moreau
- Department of Science and Education, Integrative Research Center, Field Museum of Natural History, Chicago, IL 60605
| |
Collapse
|
36
|
Antonelli A, Ariza M, Albert J, Andermann T, Azevedo J, Bacon C, Faurby S, Guedes T, Hoorn C, Lohmann LG, Matos-Maraví P, Ritter CD, Sanmartín I, Silvestro D, Tejedor M, ter Steege H, Tuomisto H, Werneck FP, Zizka A, Edwards SV. Conceptual and empirical advances in Neotropical biodiversity research. PeerJ 2018; 6:e5644. [PMID: 30310740 PMCID: PMC6174874 DOI: 10.7717/peerj.5644] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 08/27/2018] [Indexed: 01/23/2023] Open
Abstract
The unparalleled biodiversity found in the American tropics (the Neotropics) has attracted the attention of naturalists for centuries. Despite major advances in recent years in our understanding of the origin and diversification of many Neotropical taxa and biotic regions, many questions remain to be answered. Additional biological and geological data are still needed, as well as methodological advances that are capable of bridging these research fields. In this review, aimed primarily at advanced students and early-career scientists, we introduce the concept of "trans-disciplinary biogeography," which refers to the integration of data from multiple areas of research in biology (e.g., community ecology, phylogeography, systematics, historical biogeography) and Earth and the physical sciences (e.g., geology, climatology, palaeontology), as a means to reconstruct the giant puzzle of Neotropical biodiversity and evolution in space and time. We caution against extrapolating results derived from the study of one or a few taxa to convey general scenarios of Neotropical evolution and landscape formation. We urge more coordination and integration of data and ideas among disciplines, transcending their traditional boundaries, as a basis for advancing tomorrow's ground-breaking research. Our review highlights the great opportunities for studying the Neotropical biota to understand the evolution of life.
Collapse
Affiliation(s)
- Alexandre Antonelli
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
- Gothenburg Botanical Garden, Gothenburg, Sweden
- Department of Organismic Biology and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - María Ariza
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
- Laboratory Ecologie et Biologie des Interactions, Team “Ecologie, Evolution, Symbiose”, Université de Poitiers, Poitiers, France
| | - James Albert
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA, USA
| | - Tobias Andermann
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Josué Azevedo
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Christine Bacon
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Søren Faurby
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Thais Guedes
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
- Federal University of São Paulo, Diadema, Brazil
- Museum of Zoology, University of São Paulo, São Paulo, Brazil
| | - Carina Hoorn
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
- Universidad Regional Amazonica IKIAM, Napo, Ecuador
| | - Lúcia G. Lohmann
- Instituto de Biociências, Departamento de Botânica, Universidade de São Paulo, São Paulo, Brazil
- Integrative Biology, University of California, Berkeley, CA, USA
| | - Pável Matos-Maraví
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Camila D. Ritter
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | | | - Daniele Silvestro
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Marcelo Tejedor
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
- Instituto Patagónico de Geología y Paleontología, Puerto Madryn, Guatemala
| | - Hans ter Steege
- Naturalis Biodiversity Center, Leiden, Netherlands
- Systems Ecology, Free University, Amsterdam, Netherlands
| | - Hanna Tuomisto
- Department of Biology, University of Turku, Turku, Finland
| | | | - Alexander Zizka
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Scott V. Edwards
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
- Department of Organismic Biology and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
- Gothenburg Centre for Advanced Studies in Science and Technology, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
37
|
Chomicki G, Renner SS. The interactions of ants with their biotic environment. Proc Biol Sci 2018; 284:rspb.2017.0013. [PMID: 28298352 DOI: 10.1098/rspb.2017.0013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/15/2017] [Indexed: 11/12/2022] Open
Abstract
This special feature results from the symposium 'Ants 2016: ant interactions with their biotic environments' held in Munich in May 2016 and deals with the interactions between ants and other insects, plants, microbes and fungi, studied at micro- and macroevolutionary levels with a wide range of approaches, from field ecology to next-generation sequencing, chemical ecology and molecular genetics. In this paper, we review key aspects of these biotic interactions to provide background information for the papers of this special feature After listing the major types of biotic interactions that ants engage in, we present a brief overview of ant/ant communication, ant/plant interactions, ant/fungus symbioses, and recent insights about ants and their endosymbionts. Using a large molecular clock-dated Formicidae phylogeny, we map the evolutionary origins of different ant clades' interactions with plants, fungi and hemiptera. Ants' biotic interactions provide ideal systems to address fundamental ecological and evolutionary questions about mutualism, coevolution, adaptation and animal communication.
Collapse
Affiliation(s)
- Guillaume Chomicki
- Systematic Botany and Mycology, University of Munich (LMU), Menzinger Strasse 67, 80638 Munich, Germany
| | - Susanne S Renner
- Systematic Botany and Mycology, University of Munich (LMU), Menzinger Strasse 67, 80638 Munich, Germany
| |
Collapse
|
38
|
Chomicki G, Janda M, Renner SS. The assembly of ant-farmed gardens: mutualism specialization following host broadening. Proc Biol Sci 2018; 284:rspb.2016.1759. [PMID: 28298344 DOI: 10.1098/rspb.2016.1759] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/19/2016] [Indexed: 11/12/2022] Open
Abstract
Ant-gardens (AGs) are ant/plant mutualisms in which ants farm epiphytes in return for nest space and food rewards. They occur in the Neotropics and Australasia, but not in Africa, and their evolutionary assembly remains unclear. We here use phylogenetic frameworks for important AG lineages in Australasia, namely the ant genus Philidris and domatium-bearing ferns (Lecanopteris) and flowering plants in the Apocynaceae (Hoya and Dischidia) and Rubiaceae (Myrmecodia, Hydnophytum, Anthorrhiza, Myrmephytum and Squamellaria). Our analyses revealed that in these clades, diaspore dispersal by ants evolved at least 13 times, five times in the Late Miocene and Pliocene in Australasia and seven times during the Pliocene in Southeast Asia, after Philidris ants had arrived there, with subsequent dispersal between these two areas. A uniquely specialized AG system evolved in Fiji at the onset of the Quaternary. The farming in the same AG of epiphytes that do not offer nest spaces suggests that a broadening of the ants' plant host spectrum drove the evolution of additional domatium-bearing AG-epiphytes by selecting on pre-adapted morphological traits. Consistent with this, we found a statistical correlation between the evolution of diaspore dispersal by ants and domatia in all three lineages. Our study highlights how host broadening by a symbiont has led to new farming mutualisms.
Collapse
Affiliation(s)
- Guillaume Chomicki
- Systematic Botany and Mycology, University of Munich (LMU), Menzinger Str. 67, 80638 Munich, Germany
| | - Milan Janda
- Biology Centre of the Czech Academy of Sciences, Branisovska 31, 37005 Ceske Budejovice, Czech Republic.,Laboratorio Nacional de Análisis y Síntesis Ecológica, ENES, UNAM, Antigua Carretera a Pátzcuaro 8701, Morelia, Mexico
| | - Susanne S Renner
- Systematic Botany and Mycology, University of Munich (LMU), Menzinger Str. 67, 80638 Munich, Germany
| |
Collapse
|
39
|
Vasse M, Voglmayr H, Mayer V, Gueidan C, Nepel M, Moreno L, de Hoog S, Selosse MA, McKey D, Blatrix R. A phylogenetic perspective on the association between ants (Hymenoptera: Formicidae) and black yeasts (Ascomycota: Chaetothyriales). Proc Biol Sci 2018; 284:rspb.2016.2519. [PMID: 28298348 DOI: 10.1098/rspb.2016.2519] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 12/14/2016] [Indexed: 11/12/2022] Open
Abstract
The frequency and the geographical extent of symbiotic associations between ants and fungi of the order Chaetothyriales have been highlighted only recently. Using a phylogenetic approach based on seven molecular markers, we showed that ant-associated Chaetothyriales are scattered through the phylogeny of this order. There was no clustering according to geographical origin or to the taxonomy of the ant host. However, strains tended to be clustered according to the type of association with ants: strains from ant-made carton and strains from plant cavities occupied by ants ('domatia') rarely clustered together. Defining molecular operational taxonomic units (MOTUs) with an internal transcribed spacer sequence similarity cut-off of 99% revealed that a single MOTU could be composed of strains collected from various ant species and from several continents. Some ant-associated MOTUs also contained strains isolated from habitats other than ant-associated structures. Altogether, our results suggest that the degree of specialization of the interactions between ants and their fungal partners is highly variable. A better knowledge of the ecology of these interactions and a more comprehensive sampling of the fungal order are needed to elucidate the evolutionary history of mutualistic symbioses between ants and Chaetothyriales.
Collapse
Affiliation(s)
- Marie Vasse
- CEFE UMR 5175, CNRS-Université de Montpellier-Université Paul Valéry Montpellier-EPHE, 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| | - Hermann Voglmayr
- Division of Systematic and Evolutionary Botany, Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Wien, Austria
| | - Veronika Mayer
- Division of Structural and Functional Botany, Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Wien, Austria
| | - Cécile Gueidan
- National Facilities and Collections, National Research Collections Australia, Australian National Herbarium, CSIRO, PO Box 1700, Canberra, Australian Capital Territory 2601, Australia
| | - Maximilian Nepel
- Division of Structural and Functional Botany, Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Wien, Austria.,Department of Microbiology and Ecosystem Science, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Leandro Moreno
- CBS Fungal Biodiversity Centre, PO Box 85167, 3508 AD Utrecht, The Netherlands
| | - Sybren de Hoog
- CBS Fungal Biodiversity Centre, PO Box 85167, 3508 AD Utrecht, The Netherlands
| | - Marc-André Selosse
- Institut de Systématique, Évolution, Biodiversité (ISYEB-UMR 7205-CNRS, MNHN, UPMC, EPHE), Muséum National d'Histoire Naturelle, Sorbonne Universités, 57 Rue Cuvier (CP50), 75005 Paris, France.,Department of Plant Taxonomy and Nature Conservation, University of Gdansk, ul. Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Doyle McKey
- CEFE UMR 5175, CNRS-Université de Montpellier-Université Paul Valéry Montpellier-EPHE, 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| | - Rumsaïs Blatrix
- CEFE UMR 5175, CNRS-Université de Montpellier-Université Paul Valéry Montpellier-EPHE, 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| |
Collapse
|
40
|
Netz C, Renner SS. Long-spurred Angraecum orchids and long-tongued sphingid moths on Madagascar: a time frame for Darwin’s predicted Xanthopan/Angraecum coevolution. Biol J Linn Soc Lond 2017. [DOI: 10.1093/biolinnean/blx086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
41
|
Mutualisms Are Not on the Verge of Breakdown. Trends Ecol Evol 2017; 32:727-734. [PMID: 28739078 DOI: 10.1016/j.tree.2017.07.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/28/2017] [Accepted: 07/03/2017] [Indexed: 11/21/2022]
Abstract
Mutualisms teeter on a knife-edge between conflict and cooperation, or so the conventional wisdom goes. The costs and benefits of mutualism often depend on the abiotic or biotic context in which an interaction occurs, and experimental manipulations can induce shifts in interaction outcomes from mutualism all the way to parasitism. Yet, research suggests that mutualisms rarely turn parasitic in nature. Similarly, despite the potential for 'cheating' to undermine mutualism evolution, empirical evidence for fitness conflicts between partners and, thus, selection for cheating in mutualisms is scant. Furthermore, mutualism seldom leads to parasitism at macroevolutionary timescales. Thus, I argue here that mutualisms do not deserve their reputation for ecological and evolutionary instability, and are not on the verge of breakdown.
Collapse
|
42
|
Gutiérrez-Valencia J, Chomicki G, Renner SS. Recurrent breakdowns of mutualisms with ants in the neotropical ant-plant genus Cecropia (Urticaceae). Mol Phylogenet Evol 2017; 111:196-205. [DOI: 10.1016/j.ympev.2017.04.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/02/2017] [Accepted: 04/03/2017] [Indexed: 10/19/2022]
|
43
|
Partner abundance controls mutualism stability and the pace of morphological change over geologic time. Proc Natl Acad Sci U S A 2017; 114:3951-3956. [PMID: 28341706 DOI: 10.1073/pnas.1616837114] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutualisms that involve symbioses among specialized partners may be more stable than mutualisms among generalists, and theoretical models predict that in many mutualisms, partners exert reciprocal stabilizing selection on traits directly involved in the interaction. A corollary is that mutualism breakdown should increase morphological rates of evolution. We here use the largest ant-plant clade (Hydnophytinae), with different levels of specialization for mutualistic ant symbionts, to study the ecological context of mutualism breakdown and the response of a key symbiosis-related trait, domatium entrance hole size, which filters symbionts by size. Our analyses support three predictions from mutualism theory. First, all 12 losses apparently only occur from a generalist symbiotic state. Second, mutualism losses occurred where symbionts are scarce, in our system at high altitudes. Third, domatium entrance hole size barely changes in specialized symbiotic species, but evolves rapidly once symbiosis with ants has broken down, with a "morphorate map" revealing that hotspots of entrance hole evolution are clustered in high-altitude areas. Our study reveals that mutualistic strategy profoundly affects the pace of morphological change in traits involved in the interaction and suggests that shifts in partners' relative abundances may frequently drive reversions of generalist mutualisms to autonomy.
Collapse
|
44
|
Ward PS, Branstetter MG. The acacia ants revisited: convergent evolution and biogeographic context in an iconic ant/plant mutualism. Proc Biol Sci 2017; 284:20162569. [PMID: 28298350 PMCID: PMC5360922 DOI: 10.1098/rspb.2016.2569] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 01/03/2017] [Indexed: 11/12/2022] Open
Abstract
Phylogenetic and biogeographic analyses can enhance our understanding of multispecies interactions by placing the origin and evolution of such interactions in a temporal and geographical context. We use a phylogenomic approach-ultraconserved element sequence capture-to investigate the evolutionary history of an iconic multispecies mutualism: Neotropical acacia ants (Pseudomyrmex ferrugineus group) and their associated Vachellia hostplants. In this system, the ants receive shelter and food from the host plant, and they aggressively defend the plant against herbivores and competing plants. We confirm the existence of two separate lineages of obligate acacia ants that convergently occupied Vachellia and evolved plant-protecting behaviour, from timid ancestors inhabiting dead twigs in rainforest. The more diverse of the two clades is inferred to have arisen in the Late Miocene in northern Mesoamerica, and subsequently expanded its range throughout much of Central America. The other lineage is estimated to have originated in southern Mesoamerica about 3 Myr later, apparently piggy-backing on the pre-existing mutualism. Initiation of the Pseudomyrmex/Vachellia interaction involved a shift in the ants from closed to open habitats, into an environment with more intense plant herbivory. Comparative studies of the two lineages of mutualists should provide insight into the essential features binding this mutualism.
Collapse
Affiliation(s)
- Philip S Ward
- Department of Entomology and Nematology, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
45
|
Plowman NS, Hood ASC, Moses J, Redmond C, Novotny V, Klimes P, Fayle TM. Network reorganization and breakdown of an ant-plant protection mutualism with elevation. Proc Biol Sci 2017; 284:rspb.2016.2564. [PMID: 28298349 PMCID: PMC5360921 DOI: 10.1098/rspb.2016.2564] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 12/21/2016] [Indexed: 11/12/2022] Open
Abstract
Both the abiotic environment and the composition of animal and plant communities change with elevation. For mutualistic species, these changes are expected to result in altered partner availability, and shifts in context-dependent benefits for partners. To test these predictions, we assessed the network structure of terrestrial ant-plant mutualists and how the benefits to plants of ant inhabitation changed with elevation in tropical forest in Papua New Guinea. At higher elevations, ant-plants were rarer, species richness of both ants and plants decreased, and the average ant or plant species interacted with fewer partners. However, networks became increasingly connected and less specialized, more than could be accounted for by reductions in ant-plant abundance. On the most common ant-plant, ants recruited less and spent less time attacking a surrogate herbivore at higher elevations, and herbivory damage increased. These changes were driven by turnover of ant species rather than by within-species shifts in protective behaviour. We speculate that reduced partner availability at higher elevations results in less specialized networks, while lower temperatures mean that even for ant-inhabited plants, benefits are reduced. Under increased abiotic stress, mutualistic networks can break down, owing to a combination of lower population sizes, and a reduction in context-dependent mutualistic benefits.
Collapse
Affiliation(s)
- Nichola S Plowman
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic .,Institute of Entomology, Biology Centre of Czech Academy of Sciences, Ceske Budejovice, Czech Republic.,New Guinea Binatang Research Center, Madang, Papua New Guinea
| | - Amelia S C Hood
- New Guinea Binatang Research Center, Madang, Papua New Guinea.,Department of Zoology, University of Cambridge, Cambridge, UK
| | - Jimmy Moses
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic.,New Guinea Binatang Research Center, Madang, Papua New Guinea.,University of Papua New Guinea, Port Moresby, Papua New Guinea
| | - Conor Redmond
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic.,Institute of Entomology, Biology Centre of Czech Academy of Sciences, Ceske Budejovice, Czech Republic.,New Guinea Binatang Research Center, Madang, Papua New Guinea
| | - Vojtech Novotny
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic.,Institute of Entomology, Biology Centre of Czech Academy of Sciences, Ceske Budejovice, Czech Republic.,New Guinea Binatang Research Center, Madang, Papua New Guinea
| | - Petr Klimes
- Institute of Entomology, Biology Centre of Czech Academy of Sciences, Ceske Budejovice, Czech Republic.,New Guinea Binatang Research Center, Madang, Papua New Guinea
| | - Tom M Fayle
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic.,Institute of Entomology, Biology Centre of Czech Academy of Sciences, Ceske Budejovice, Czech Republic.,New Guinea Binatang Research Center, Madang, Papua New Guinea
| |
Collapse
|
46
|
Torres MF, Sanchez A. Neotropical ant-plant Triplaris americana attracts Pseudomyrmex mordax ant queens during seedling stages. INSECTES SOCIAUX 2017; 64:255-261. [PMID: 28479608 PMCID: PMC5397449 DOI: 10.1007/s00040-017-0542-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 12/19/2016] [Accepted: 01/07/2017] [Indexed: 06/07/2023]
Abstract
The association between the myrmecophyte Triplaris and ants of the genus Pseudomyrmex is an often-reported example of mutualism in the Neotropics. The ants colonize the hollow stems of their hosts, and in exchange, the plants benefit from a reduced degree of herbivory. The previous studies have shown that workers can discriminate their host from other plants, including a closely related species. Little is known about how queens locate their host during the colonization process, but it has been suggested that host recognition is mediated by volatiles. Since queens of Pseudomyrmex mordax colonize their hosts during the seedling stage, we hypothesized that queens would discriminate leaves of seedlings from adult plants. To evaluate our hypothesis, we used a two-sided olfactometer, to test the preference of queens towards different leaf and plant ages of Triplaris americana. Virgin queens of Pseudomyrmex mordax preferred seedlings over adult plants, as well as plant leaves over empty controls, showing no discrimination for leaf age. Our results suggest that the volatiles virgin queens recognize are either produced or are more abundant at the early growing stage of the host when colonization is crucial for the host's survival.
Collapse
Affiliation(s)
- María Fernanda Torres
- Ashworth Laboratories, Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Adriana Sanchez
- Programa de Biología, Universidad del Rosario, Carrera 24 No. 63C-69, Bogotá, Colombia
| |
Collapse
|
47
|
Chomicki G, Renner SS. Obligate plant farming by a specialized ant. NATURE PLANTS 2016; 2:16181. [PMID: 27869787 DOI: 10.1038/nplants.2016.181] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 10/24/2016] [Indexed: 06/06/2023]
Abstract
Many epiphytic plants have associated with ants to gain nutrients. Here, we report a novel type of ant-plant symbiosis in Fiji where one ant species actively and exclusively plants the seeds and fertilizes the seedlings of six species of Squamellaria (Rubiaceae). Comparison with related facultative ant plants suggests that such farming plays a key role in mutualism stability by mitigating the critical re-establishment step.
Collapse
Affiliation(s)
- Guillaume Chomicki
- Department of Biology, Systematic Botany and Mycology, University of Munich (LMU), Menzinger Str. 67, Munich 80638, Germany
| | - Susanne S Renner
- Department of Biology, Systematic Botany and Mycology, University of Munich (LMU), Menzinger Str. 67, Munich 80638, Germany
| |
Collapse
|
48
|
Nepel M, Voglmayr H, Blatrix R, Longino JT, Fiedler K, Schönenberger J, Mayer VE. Ant-cultivated Chaetothyriales in hollow stems of myrmecophytic Cecropia sp. trees – diversity and patterns. FUNGAL ECOL 2016. [DOI: 10.1016/j.funeco.2016.07.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
Chomicki G, Staedler YM, Schönenberger J, Renner SS. Partner choice through concealed floral sugar rewards evolved with the specialization of ant-plant mutualisms. THE NEW PHYTOLOGIST 2016; 211:1358-1370. [PMID: 27159681 DOI: 10.1111/nph.13990] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/25/2016] [Indexed: 06/05/2023]
Abstract
Obligate mutualisms require filtering mechanisms to prevent their exploitation by opportunists, but ecological contexts and traits facilitating the evolution of such mechanisms are largely unknown. We investigated the evolution of filtering mechanisms in an epiphytic ant-plant symbiotic system in Fiji involving Rubiaceae and dolichoderine ants, using field experiments, metabolomics, X-ray micro-computed tomography (micro-CT) scanning and phylogenetics. We discovered a novel plant reward consisting of sugary sap concealed in post-anthetic flowers only accessible to Philidris nagasau workers that bite through the thick epidermis. In five of the six species of Rubiaceae obligately inhabited by this ant, the nectar glands functioned for 10 d after a flower's sexual function was over. Sugar metabolomics and field experiments showed that ant foraging tracks sucrose levels, which only drop at the onset of fruit development. Ontogenetic analyses of our focal species and their relatives revealed a 25-fold increase in nectary size and delayed fruit development in the ant-rewarding species, and Bayesian analyses of several traits showed the correlated evolution of sugar rewards and symbiosis specialization. Concealed floral nectar forestalls exploitation by opportunists (generalist ants) and stabilizes these obligate mutualisms. Our study pinpoints the importance of partner choice mechanisms in transitions from facultative to obligate mutualisms.
Collapse
Affiliation(s)
- Guillaume Chomicki
- Systematic Botany and Mycology, Department of Biology, University of Munich, 67 Menzinger Str., 80638, Munich, Germany
| | - Yannick M Staedler
- Department of Botany and Biodiversity Research, Faculty of Life Sciences, University of Vienna, Rennweg 14, 1030, Vienna, Austria
| | - Jürg Schönenberger
- Department of Botany and Biodiversity Research, Faculty of Life Sciences, University of Vienna, Rennweg 14, 1030, Vienna, Austria
| | - Susanne S Renner
- Systematic Botany and Mycology, Department of Biology, University of Munich, 67 Menzinger Str., 80638, Munich, Germany
| |
Collapse
|
50
|
Nakashima S, Sarath E, Okada H, Ezaki K, Darnaedi D, Tsukaya H, Soejima A. Morphological and phylogenetic investigations for several cryptic ant-plants found in Callicarpa (Lamiaceae) from Borneo. JOURNAL OF PLANT RESEARCH 2016; 129:591-601. [PMID: 27059754 DOI: 10.1007/s10265-016-0820-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/31/2016] [Indexed: 06/05/2023]
Abstract
A tropical small tree, Callicarpa saccata, is known to have a symbiotic relationship with ants. It has sac-like structures at the base of the leaves that are inhabited by ants. No other species has been determined to be a myrmecophyte among the ca. 140 species of this genus. However, our recent field investigation discovered that two other species on Borneo (C. barbata and C. teneriflora) have hollow stems, which seem to be inhabited by ants. We observed the morphological features of these species in relation to their usage by ants, and became convinced that they are mymecophytic species. The molecular phylogenetic analyses using ITS and chloroplast regions suggest that C. saccata and C. teneriflora are closely related, but the differences in the myrmecophytic features of these species should be noted.
Collapse
Affiliation(s)
- Shota Nakashima
- Division of Biological Science, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto, 860-8555, Japan
| | - Emma Sarath
- Graduate School of Science, The Univesity of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroshi Okada
- Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
- Institute of Natural Environmental Sciences, Hyogo Prefectural University, Sanda, Hyogo, 669-1546, Japan
| | - Kazune Ezaki
- Graduate School of Science, The Univesity of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Dedy Darnaedi
- Herbarium Bogoriense, Research Center for Biology-LIPI, Jl. Juanda 18, PO Box 332, Bogor, 16122, Indonesia
| | - Hirokazu Tsukaya
- Graduate School of Science, The Univesity of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Bio-Next Project, Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Yamate Build. #3, 5-1, Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Akiko Soejima
- Division of Biological Science, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto, 860-8555, Japan.
| |
Collapse
|