1
|
Si M, Zhang C, Xiang C, Jiang M, Guo L, Shao J. The Role of Plant Evolutionary History in Shaping the Variation in Specific Leaf Area Across China. Ecol Evol 2025; 15:e71304. [PMID: 40256267 PMCID: PMC12008053 DOI: 10.1002/ece3.71304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 03/18/2025] [Accepted: 04/04/2025] [Indexed: 04/22/2025] Open
Abstract
Specific leaf area (SLA, leaf area per unit leaf dry mass) occupies a central position in both community assembly and ecosystem functioning. Although SLA has significant phylogenetic signals, how and to what extent the evolutionary history influences the variation in SLA remain poorly understood. In this study, based on a dataset containing 1264 plant species belonging to 549 genera and 141 families in gymnosperms, monocots, and eudicots across China, we analyzed the influences of climatic conditions and soil properties on SLA, calculated the phylogenetic signals of SLA, and quantified the relative contributions of evolutionary history (represented by interspecific relatedness and intraspecific variation) to the variation in SLA. The results showed that the interspecific relatedness accounts for 50.46% of the total variance in SLA, followed by the intraspecific variation (36.12%), climatic conditions (30.68%), and soil properties (24.74%). Along the phylogenetic tree, the split between angiosperms and gymnosperms had the largest contribution to the variation in SLA. Other detailed splits (e.g., the split between monocots and eudicots, the splits within Rosidae, and etc.) had significant but much smaller contributions. The relationship between SLA and environmental variables (climatic conditions and soil properties) was different between angiosperms and gymnosperms, with the climatic conditions having larger influences on SLA than the soil properties, implying interactive effects between environment and evolutionary history on SLA. Within the woody angiosperms, deciduous and evergreen species exhibited differential responses of SLA to climatic and soil factors, suggesting a non-negligible role of leaf longevity in explaining the variation in SLA. Our results highlighted a much more important role of evolutionary history in the variation in SLA than previous studies. Neglecting such a great contribution could lead to biased conclusions if the evolutionary rate does not keep pace with the rapidly changing environments in the future.
Collapse
Affiliation(s)
- Minyue Si
- National key Laboratory for Development and Utilization of Forest Food Resources, College of Forestry and BiotechnologyZhejiang A&F UniversityHangzhouChina
| | - Caiyi Zhang
- National key Laboratory for Development and Utilization of Forest Food Resources, College of Forestry and BiotechnologyZhejiang A&F UniversityHangzhouChina
| | - Chunzhu Xiang
- National key Laboratory for Development and Utilization of Forest Food Resources, College of Forestry and BiotechnologyZhejiang A&F UniversityHangzhouChina
| | - Mingxia Jiang
- National key Laboratory for Development and Utilization of Forest Food Resources, College of Forestry and BiotechnologyZhejiang A&F UniversityHangzhouChina
| | - Linwei Guo
- National key Laboratory for Development and Utilization of Forest Food Resources, College of Forestry and BiotechnologyZhejiang A&F UniversityHangzhouChina
| | - Junjiong Shao
- National key Laboratory for Development and Utilization of Forest Food Resources, College of Forestry and BiotechnologyZhejiang A&F UniversityHangzhouChina
- Tianmushan Forest Ecosystem National Orientation Observation and Research Station of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
2
|
Zhao R, Nuske SJ, Nuñez MA, Fajardo A, Moyano J, McIntosh ACS, Nilsson MC, Gundale MJ. Distinct foliar fungal communities in Pinus contorta across native and introduced ranges: evidence for context dependency of pathogen release. Sci Rep 2025; 15:7273. [PMID: 40025140 PMCID: PMC11873135 DOI: 10.1038/s41598-025-91639-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/21/2025] [Indexed: 03/04/2025] Open
Abstract
Inter-continental study systems are crucial for testing ecological hypotheses, such as the widely cited Enemy Release Hypothesis (ERH), which seeks to explain the superior performance of plant species when they are introduced to new regions. Pinus contorta (lodgepole pine), native to North America, has been extensively introduced to Europe and the Southern Hemisphere, making it an ideal tree species for studying invasion hypotheses from a biogeographical perspective. We compared foliar fungal communities, especially pathogens, of P. contorta across two native-introduced region pairs (NIRPs): a northern NIRP (from Canada to Sweden) and a southern NIRP (from the USA to Patagonia), while also examining the differences between source plantations and invasion fronts within Patagonia. P. contorta underwent significant fungal community shifts and experienced pathogen release during its large-scale introduction from North America to Sweden and Patagonia. The fungal richness and relative abundance changes were more pronounced for the southern NIRP pair, where no closely related tree species to P. contorta are present in Patagonia. In Sweden, the presence of the phylogenetically related P. sylvestris and its associated local fungal community appears to play a role in influencing the foliar fungal communities associated with introduced P. contorta. In Patagonia, the incomplete co-invasion of fungal taxa from the USA emerges as a principal driver of the observed variability in fungal community composition and pathogen release following the introduction of P. contorta. In Patagonia, fungal community composition differences between source plantations and invasion fronts provided insufficient evidence that pathogen release occurs at this local scale. Integrating both biogeographical and phylogenetic perspectives, our study suggests that priority effects of local fungi appear to be a dominant community assembly process when introduction is done in a phylogenetically similar community; whereas, co-invasion of fungal communities is the dominant process in phylogenetically distant communities.
Collapse
Affiliation(s)
- Ruirui Zhao
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, SE-90183, Sweden.
| | | | - Martín A Nuñez
- Grupo de Ecología de Invasiones, INIBIOMA-UNComa, CONICET, Bariloche, AR-8400, Argentina
- Department of Biology and Biochemistry, University of Houston, Houston, TX-77204, USA
| | - Alex Fajardo
- Dirección de Investigación, Vicerrectoría Académica, Universidad de Talca, Talca, 3460000, Chile
- Instituto de Ecología y Biodiversidad (IEB), Las Palmeras 3425, Ñuñoa, 7750000, Chile
| | - Jaime Moyano
- Grupo de Ecología de Invasiones, INIBIOMA-UNComa, CONICET, Bariloche, AR-8400, Argentina
| | - Anne C S McIntosh
- Science Department, Augustana Faculty, University of Alberta, Camrose, AB T4V 2R3, Canada
| | - Marie-Charlotte Nilsson
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, SE-90183, Sweden
| | - Michael J Gundale
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, SE-90183, Sweden.
| |
Collapse
|
3
|
Ren Y, Gao G, Ding G, Zhang Y, Zhao P, Wang J. Temporal approach to identifying ectomycorrhizal community associated with Mongolian pine in a desert environment, northern China. Microbiol Spectr 2023; 11:e0202623. [PMID: 37707453 PMCID: PMC10580992 DOI: 10.1128/spectrum.02026-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/12/2023] [Indexed: 09/15/2023] Open
Abstract
To date, the ectomycorrhizal (EM) fungi community has been widely investigated with aging plantations affected by the pedologic factors. However, knowledge on the effects of phenology induced by climatic factors across the age range remains poorly understood on an intra-annual scale. Here, we sampled the fine roots of Mongolian pine (Pinus sylvestris var. mongolica) plantations at different stages of the growing season (from April to September) across three stand ages (27, 34, and 44 yr) in the Mu Us Desert, Northwest China. We aim to disentangle the community composition and structure of EM fungi, as well as the impact of climate on EM fungi. We observed that the 173 distinct EM fungal operational taxonomic units (OTUs) were identified. Geopora, Inocybe, Tomentella, and Tuber were the most frequent, and their dominance was maintained as stand aging. The richness and community composition were not significantly different with stand aging (P > 0.05). Host phenology and stand age are two important factors that have shaped the EM fungal community. The growing stage affected the beta diversity of the EM fungal community more than stand age, and this variation of the EM fungal community was closely related to seasonal climate, particularly precipitation. This improved information will provide a theoretical basis for the reforestation and rehabilitation of the Mongolian pine plantations using mycorrhizal techniques. IMPORTANCE Ectomycorrhizal (EM) fungi are particularly important for host plants in a desert ecosystem. With a high degree of plasticity, EM fungi are largely influenced by host plant and environmental variables and fundamentally contribute to the ability of individuals to adapt to environmental changes. Therefore, the EM fungi are important for Mongolian pine (Pinus sylvestris var. mongolica) plantation in a desert ecosystem. Although previous studies have concluded that multiple endogenous and exogenous processes ultimately lead to species-specific temporal patterns in EM fungal populations. We still neglect the effect of host phenology on EM fungal activity. The significance of our study is the interplay between climate-driven EM fungi and plant phenology.
Collapse
Affiliation(s)
- Yue Ren
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, China
- Key Laboratory of State Forestry and Grassland Administration on Soil and Water Conservation, Beijing Forestry University, Beijing, China
| | - Guanglei Gao
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, China
- Key Laboratory of State Forestry and Grassland Administration on Soil and Water Conservation, Beijing Forestry University, Beijing, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
- Engineering Research Center of Forestry Ecological Engineering, Ministry of Education, Beijing Forestry University, Beijing, China
| | - Guodong Ding
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, China
- Key Laboratory of State Forestry and Grassland Administration on Soil and Water Conservation, Beijing Forestry University, Beijing, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
- Engineering Research Center of Forestry Ecological Engineering, Ministry of Education, Beijing Forestry University, Beijing, China
| | - Ying Zhang
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, China
- Key Laboratory of State Forestry and Grassland Administration on Soil and Water Conservation, Beijing Forestry University, Beijing, China
- Engineering Research Center of Forestry Ecological Engineering, Ministry of Education, Beijing Forestry University, Beijing, China
| | - Peishan Zhao
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, China
- Key Laboratory of State Forestry and Grassland Administration on Soil and Water Conservation, Beijing Forestry University, Beijing, China
| | - Jiayuan Wang
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, China
- Key Laboratory of State Forestry and Grassland Administration on Soil and Water Conservation, Beijing Forestry University, Beijing, China
| |
Collapse
|
4
|
Liu H, Zhang Y, Liu Y, Xiao J, Huang Z, Li Y, Li H, Li P. Virome analysis of an ectomycorrhizal fungus Suillus luteus revealing potential evolutionary implications. Front Cell Infect Microbiol 2023; 13:1229859. [PMID: 37662006 PMCID: PMC10470027 DOI: 10.3389/fcimb.2023.1229859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Suillus luteus is a widespread edible ectomycorrhizal fungus that holds significant importance in both ecological and economic value. Mycoviruses are ubiquitous infectious agents hosted in different fungi, with some known to exert beneficial or detrimental effects on their hosts. However, mycoviruses hosted in ectomycorrhizal fungi remain poorly studied. To address this gap in knowledge, we employed next-generation sequencing (NGS) to investigate the virome of S. luteus. Using BLASTp analysis and phylogenetic tree construction, we identified 33 mycovirus species, with over half of them belonging to the phylum Lenarviricota, and 29 of these viruses were novel. These mycoviruses were further grouped into 11 lineages, with the discovery of a new negative-sense single-stranded RNA viral family in the order Bunyavirales. In addition, our findings suggest the occurrence of cross-species transmission (CST) between the fungus and ticks, shedding light on potential evolutionary events that have shaped the viral community in different hosts. This study is not only the first study to characterize mycoviruses in S. luteus but highlights the enormous diversity of mycoviruses and their implications for virus evolution.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Huaping Li
- Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| | - Pengfei Li
- Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Behnke-Borowczyk J, Korzeniewicz R, Łukowski A, Baranowska M, Jagiełło R, Bułaj B, Hauke-Kowalska M, Szmyt J, Behnke JM, Robakowski P, Kowalkowski W. Variability of Functional Groups of Rhizosphere Fungi of Norway Spruce ( Picea abies (L.) H.Karst.) in the Boreal Range: The Wigry National Park, Poland. Int J Mol Sci 2023; 24:12628. [PMID: 37628809 PMCID: PMC10454689 DOI: 10.3390/ijms241612628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Rhizosphere microbial communities can influence plant growth and development. Natural regeneration processes take place in the tree stands of protected areas, which makes it possible to observe the natural changes taking place in the rhizosphere along with the development of the plants. This study aimed to determine the diversity (taxonomic and functional) of the rhizosphere fungal communities of Norway spruce growing in one of four developmental stages. Our research was based on the ITS region using Illumina system sequencing. Saprotrophs dominated in the studied rhizospheres, but their percentage share decreased with the age of the development group (for 51.91 from 43.13%). However, in the case of mycorrhizal fungi, an opposite trend was observed (16.96-26.75%). The most numerous genera were: saprotrophic Aspergillus (2.54-3.83%), Penicillium (6.47-12.86%), Pyrenochaeta (1.39-11.78%), pathogenic Curvularia (0.53-4.39%), and mycorrhizal Cortinarius (1.80-5.46%), Pseudotomentella (2.94-5.64%) and Tomentella (4.54-15.94%). The species composition of rhizosphere fungal communities was favorable for the regeneration of natural spruce and the development of multi-generational Norway spruce stands. The ratio of the abundance of saprotrophic and mycorrhizal fungi to the abundance of pathogens was high and promising for the durability of the large proportion of spruce in the Wigry National Park and for forest ecosystems in general.
Collapse
Affiliation(s)
- Jolanta Behnke-Borowczyk
- Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 71C, 60-625 Poznań, Poland; (R.K.); (A.Ł.); (M.B.); (R.J.); (B.B.); (M.H.-K.); (J.S.); (P.R.); (W.K.)
| | - Robert Korzeniewicz
- Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 71C, 60-625 Poznań, Poland; (R.K.); (A.Ł.); (M.B.); (R.J.); (B.B.); (M.H.-K.); (J.S.); (P.R.); (W.K.)
| | - Adrian Łukowski
- Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 71C, 60-625 Poznań, Poland; (R.K.); (A.Ł.); (M.B.); (R.J.); (B.B.); (M.H.-K.); (J.S.); (P.R.); (W.K.)
| | - Marlena Baranowska
- Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 71C, 60-625 Poznań, Poland; (R.K.); (A.Ł.); (M.B.); (R.J.); (B.B.); (M.H.-K.); (J.S.); (P.R.); (W.K.)
| | - Radosław Jagiełło
- Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 71C, 60-625 Poznań, Poland; (R.K.); (A.Ł.); (M.B.); (R.J.); (B.B.); (M.H.-K.); (J.S.); (P.R.); (W.K.)
| | - Bartosz Bułaj
- Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 71C, 60-625 Poznań, Poland; (R.K.); (A.Ł.); (M.B.); (R.J.); (B.B.); (M.H.-K.); (J.S.); (P.R.); (W.K.)
| | - Maria Hauke-Kowalska
- Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 71C, 60-625 Poznań, Poland; (R.K.); (A.Ł.); (M.B.); (R.J.); (B.B.); (M.H.-K.); (J.S.); (P.R.); (W.K.)
| | - Janusz Szmyt
- Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 71C, 60-625 Poznań, Poland; (R.K.); (A.Ł.); (M.B.); (R.J.); (B.B.); (M.H.-K.); (J.S.); (P.R.); (W.K.)
| | - Jerzy M. Behnke
- School of Life Sciences, University Park Nottingham, Nottingham NG7 2RD, UK;
| | - Piotr Robakowski
- Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 71C, 60-625 Poznań, Poland; (R.K.); (A.Ł.); (M.B.); (R.J.); (B.B.); (M.H.-K.); (J.S.); (P.R.); (W.K.)
| | - Wojciech Kowalkowski
- Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 71C, 60-625 Poznań, Poland; (R.K.); (A.Ł.); (M.B.); (R.J.); (B.B.); (M.H.-K.); (J.S.); (P.R.); (W.K.)
| |
Collapse
|
6
|
DeVan MR, Johnstone JF, Mack MC, Hollingsworth TN, Taylor DL. Host identity affects the response of mycorrhizal fungal communities to high severity fires in Alaskan boreal forests. FUNGAL ECOL 2023. [DOI: 10.1016/j.funeco.2022.101222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
7
|
Policelli N, Hoeksema JD, Moyano J, Vilgalys R, Vivelo S, Bhatnagar JM. Global pine tree invasions are linked to invasive root symbionts. THE NEW PHYTOLOGIST 2023; 237:16-21. [PMID: 36221214 DOI: 10.1111/nph.18527] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Affiliation(s)
- Nahuel Policelli
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | - Jason D Hoeksema
- Department of Biology, The University of Mississippi, Oxford, MS, 38677, USA
| | - Jaime Moyano
- Grupo de Ecología de Invasiones, Instituto de Investigaciones en Biodiversidad y Medioambiente, Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional del Comahue, San Carlos de Bariloche, 8400, Argentina
| | - Rytas Vilgalys
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Sasha Vivelo
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | | |
Collapse
|
8
|
Co-invading ectomycorrhizal fungal succession in pine-invaded mountain grasslands. FUNGAL ECOL 2022. [DOI: 10.1016/j.funeco.2022.101176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Thompson L, Swift SOI, Egan CP, Yogi D, Chapin T, Hynson NA. Traits and tradeoffs among non-native ectomycorrhizal fungal symbionts affect pine seedling establishment in a Hawaiian coinvasion landscape. Mol Ecol 2022; 31:4176-4187. [PMID: 35699341 DOI: 10.1111/mec.16564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 05/19/2022] [Accepted: 06/09/2022] [Indexed: 11/28/2022]
Abstract
Pine invasions lead to losses of native biodiversity and ecosystem function, but pine invasion success is often linked to coinvading non-native ectomycorrhizal (EM) fungi. How the community composition, traits, and distributions of these fungi vary over the landscape and how this affects pine success is understudied. A greenhouse bioassay experiment was performed to test the effects of changes in EM fungal community structure from a pine plantation, to an invasion front to currently pine-free areas on percent root colonization and seedling biomass. Soils were also analysed by qPCR to determine changes in inoculum and spore density over distance for a common coinvading EM fungus, Suillus pungens. Percent colonization increased with distance from the plantation, which corresponded with an increase in seedling biomass and stark changes in EM fungal community membership where Suillus spp. dominated currently pine-free areas. However, there was a negative relationship between S. pungens inoculum potential versus root colonization over distance. We conclude that the success of pine invasions is facilitated by specific traits of Suillus spp., but that the success of Suillus is contingent on a lack of competition with other ectomycorrhizal fungi.
Collapse
Affiliation(s)
| | | | - Cameron P Egan
- University of Hawai'i at Mānoa, Honolulu, USA.,Okanagan College, Kelowna, British Columbia, Canada
| | - Danyel Yogi
- University of Hawai'i at Mānoa, Honolulu, USA
| | | | | |
Collapse
|
10
|
Policelli N, Horton TR, Kitzberger T, Nuñez MA. Invasive ectomycorrhizal fungi can disperse in the absence of their known vectors. FUNGAL ECOL 2022. [DOI: 10.1016/j.funeco.2021.101124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
11
|
Ramírez NA, Zacarias LKE, Salvador-Montoya CA, Tasselli M, Popoff OF, Niveiro N. Russula (Russulales, Agaricomycetes) associated with Pinus spp. plantations from northeastern Argentina. RODRIGUÉSIA 2022. [DOI: 10.1590/2175-7860202273060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract Russula comprises more than 3,000 species worldwide and is a characteristic genus of the coniferous forests of the northern hemisphere. The forest plantations with non-native species in the northeastern Argentina, such as pine or eucalyptus, provide the biotic and environmental conditions for the establishment of ectomycorrhizal fungi associated with these forest plantations. Due to the complexity of identifying Russula at specific level, morpho-anatomical, scanning electron microscopy, and phylogenetic (ITS) analysis were used to identify the specimens. As result, three Russula species, R. recondita, R. sardonia, and R. sororia, are described in detail and illustrated, none previously known to Argentina. Also, two of them, R. recondita and R. sororia, represent new records for South America.
Collapse
Affiliation(s)
| | | | | | | | | | - Nicolás Niveiro
- Universidad Nacional del Nordeste, Argentina; IBONE (UNNE–CONICET), Argentina
| |
Collapse
|
12
|
Policelli N, Vietorisz C, Bhatnagar JM, Nuñez MA. Ectomycorrhizal Fungi Invasions in Southern South America. Fungal Biol 2022. [DOI: 10.1007/978-3-031-12994-0_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
13
|
Okada KH, Matsuda Y. Soil spore bank communities of ectomycorrhizal fungi in Pseudotsuga japonica forests and neighboring plantations. MYCORRHIZA 2022; 32:83-93. [PMID: 34989868 DOI: 10.1007/s00572-021-01065-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Ectomycorrhizal (EcM) fungal spores play an important role in seedling establishment and forest regeneration, especially in areas where compatible host tree species are absent. However, compared to other Pinaceae trees with a wide distribution, limited information is available for the interaction between the endangered Pseudotsuga trees and EcM fungi, especially the spore bank. The aim of this study was to investigate EcM fungal spore bank communities in soil in remnant patches of Japanese Douglas-fir (Pseudotsuga japonica) forest. We conducted a bioassay of 178 soil samples collected from three P. japonica forests and their neighboring arbuscular mycorrhizal artificial plantations, using the more readily available North American Douglas-fir (Pseudotsuga menziesii) as bait seedlings. EcM fungal species were identified by a combination of morphotyping and DNA sequencing of the ITS region. We found that EcM fungal spore banks were present not only in P. japonica forests but also in neighboring plantations. Among the 13 EcM fungal species detected, Rhizopogon togasawarius had the second highest frequency and was found in all plots, regardless of forest type. Species richness estimators differed significantly among forest types. The community structure of EcM fungal spore banks differed significantly between study sites but not between forest types. These results indicate that EcM fungal spore banks are not restricted to EcM forests and extend to surrounding forest dominated by arbuscular mycorrhizal trees, likely owing to the durability of EcM fungal spores in soils.
Collapse
Affiliation(s)
- Keita Henry Okada
- Graduate School of Bioresources, Mie University, 1577 Kurimamachiya, Tsu, Mie, 514-8507, Japan.
| | - Yosuke Matsuda
- Graduate School of Bioresources, Mie University, 1577 Kurimamachiya, Tsu, Mie, 514-8507, Japan
| |
Collapse
|
14
|
Native and Exotic Woodland from Patagonian Andes: Anthropic Impacts and Mycorrhizas. Fungal Biol 2022. [DOI: 10.1007/978-3-031-12994-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Nuske SJ, Fajardo A, Nuñez MA, Pauchard A, Wardle DA, Nilsson MC, Kardol P, Smith JE, Peltzer DA, Moyano J, Gundale MJ. Soil biotic and abiotic effects on seedling growth exhibit context-dependent interactions: evidence from a multi-country experiment on Pinus contorta invasion. THE NEW PHYTOLOGIST 2021; 232:303-317. [PMID: 33966267 DOI: 10.1111/nph.17449] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
The success of invasive plants is influenced by many interacting factors, but evaluating multiple possible mechanisms of invasion success and elucidating the relative importance of abiotic and biotic drivers is challenging, and therefore rarely achieved. We used live, sterile or inoculated soil from different soil origins (native range and introduced range plantation; and invaded plots spanning three different countries) in a fully factorial design to simultaneously examine the influence of soil origin and soil abiotic and biotic factors on the growth of invasive Pinus contorta. Our results displayed significant context dependency in that certain soil abiotic conditions in the introduced ranges (soil nitrogen, phosphorus or carbon content) influenced responses to inoculation treatments. Our findings do not support the enemy release hypothesis or the enhanced mutualism hypothesis, as biota from native and plantation ranges promoted growth similarly. Instead, our results support the missed mutualism hypothesis, as biota from invasive ranges were the least beneficial for seedling growth. Our study provides a novel perspective on how variation in soil abiotic factors can influence plant-soil feedbacks for an invasive tree across broad biogeographical contexts.
Collapse
Affiliation(s)
- Susan J Nuske
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, 90183, Sweden
| | - Alex Fajardo
- Instituto de Investigación Interdisciplinario (I3), Universidad de Talca, Campus Lircay, Talca, 3460000, Chile
| | - Martin A Nuñez
- Grupo de Ecología de Invasiones, INIBIOMA-UNComa, CONICET, Bariloche, 8400, Argentina
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA
| | - Aníbal Pauchard
- Laboratorio de Invasiones Biológicas (LIB), Facultad de Ciencias Forestales, Universidad de Concepción, Concepción, Chile
- Institute of Ecology and Biodiversity (IEB), Santiago, Chile
| | - David A Wardle
- Asian School of the Environment, College of Science, Nanyong Technological University, Singapore, 639798, Singapore
| | - Marie-Charlotte Nilsson
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, 90183, Sweden
| | - Paul Kardol
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, 90183, Sweden
| | - Jane E Smith
- US Department of Agriculture, Forest Service, Pacific Northwest Research Station, Corvallis, OR, 97331, USA
| | - Duane A Peltzer
- Manaaki Whenua Landcare Research, Lincoln, 7608, New Zealand
| | - Jaime Moyano
- Grupo de Ecología de Invasiones, INIBIOMA-UNComa, CONICET, Bariloche, 8400, Argentina
| | - Michael J Gundale
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, 90183, Sweden
| |
Collapse
|
16
|
Pildain MB, Marchelli P, Azpilicueta MM, Starik C, Barroetaveña C. Understanding introduction history: Genetic structure and diversity of the edible ectomycorrhizal fungus, Suillus luteus, in Patagonia (Argentina). Mycologia 2021; 113:715-724. [PMID: 34106819 DOI: 10.1080/00275514.2021.1909449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Suillus luteus is a common ectomycorrhizal (EM) fungus associated with several Pinus species. It is distributed throughout the Northern Hemisphere and has been introduced into South America and New Zealand. We examined the genetic structure and population biology of S. luteus, which was introduced into Patagonian plantations with Pinus species in Argentina. Overall, 106 samples were collected at 11 geographically separated sites (i.e., Pinus plantations) along a latitudinal gradient in Patagonia (ca. 38°-46° south latitude). Phylogenetic analyses confirmed placement in S. luteus. Genetic analysis demonstrated moderate within-site genetic diversity, but low differentiation between sites. No clear clusters were detected geographically or in relation to host species of Pinus. Our results suggest that the weak genetic structure of the species reflects the short time that has elapsed since the introduction of S. luteus into Patagonia, and its expansion with exotic afforestation there. Moreover, the lack of structure is consistent with a founder effect, suggesting the introduction of a small number of genets that spread throughout all the plantations. Therefore, the high level of gene flow and weak genetic structure observed are probably related to the anthropogenic movement of inoculum associated with forestry practices.
Collapse
Affiliation(s)
- María Belén Pildain
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.,Centro de Investigación y Extensión Forestal Andino Patagónico (CIEFAP), CC 14, Esquel, 9200, Chubut, Argentina
| | - Paula Marchelli
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.,Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB), Instituto Nacional de Investigaciones Agropecuarias (INTA)-CONICET, Bariloche, Río Negro, Argentina
| | - María Marta Azpilicueta
- Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB), Instituto Nacional de Investigaciones Agropecuarias (INTA)-CONICET, Bariloche, Río Negro, Argentina
| | - Cristian Starik
- Centro de la Pequeña y Mediana Empresa - Agencia de Desarrollo Económico del Neuquén (Centro PyME-ADENEU), Neuquén, Neuquén, Argentina
| | - Carolina Barroetaveña
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.,Centro de Investigación y Extensión Forestal Andino Patagónico (CIEFAP), CC 14, Esquel, 9200, Chubut, Argentina
| |
Collapse
|
17
|
Aguirre F, Nouhra E, Urcelay C. Native and non-native mammals disperse exotic ectomycorrhizal fungi at long distances from pine plantations. FUNGAL ECOL 2021. [DOI: 10.1016/j.funeco.2020.101012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
18
|
Meeds JA, Marty Kranabetter J, Zigg I, Dunn D, Miros F, Shipley P, Jones MD. Phosphorus deficiencies invoke optimal allocation of exoenzymes by ectomycorrhizas. ISME JOURNAL 2021; 15:1478-1489. [PMID: 33420298 PMCID: PMC8114911 DOI: 10.1038/s41396-020-00864-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 11/20/2020] [Accepted: 11/30/2020] [Indexed: 11/09/2022]
Abstract
Ectomycorrhizal (EM) fungi can acquire phosphorus (P) through the production of extracellular hydrolytic enzymes (exoenzymes), but it is unclear as to the manner and extent native EM fungal communities respond to declining soil P availability. We examined the activity of six exoenzymes (xylosidase, N-acetyl glucosaminidase, β-glucosidase, acid phosphomonoesterase, acid phosphodiesterase [APD], laccase) from EM roots of Pseudotsuga menzesii across a soil podzolization gradient of coastal British Columbia. We found that APD activity increased fourfold in a curvilinear association with declining inorganic P. Exoenzyme activity was not related to organic P content, but at a finer resolution using 31P-NMR, there was a strong positive relationship between APD activity and the ratio of phosphodiesters to orthophosphate of surface organic horizons (forest floors). Substantial increases (two- to fivefold) in most exoenzymes were aligned with declining foliar P concentrations of P. menzesii, but responses were statistically better in relation to foliar nitrogen (N):P ratios. EM fungal species with consistently high production of key exoenzymes were exclusive to Podzol plots. Phosphorus deficiencies in relation to N limitations may provide the best predictor of exoenzyme investment, reflecting an optimal allocation strategy for EM fungi. Resource constraints contribute to species turnover and the assembly of distinct, well-adapted EM fungal communities.
Collapse
Affiliation(s)
- Justin A Meeds
- Biology Department, University of British Columbia, Okanagan Campus 1177 Research Road, Kelowna, BC, V4V 1V7, Canada
| | - J Marty Kranabetter
- British Columbia Ministry of Forests, Lands and Natural Resource Operations, P.O. Box 9536, Stn Prov Govt, Victoria, BC, V8W 9C4, Canada.
| | - Ieva Zigg
- Biology Department, University of British Columbia, Okanagan Campus 1177 Research Road, Kelowna, BC, V4V 1V7, Canada.,Chemistry Department, University of British Columbia, Okanagan Campus 3187 University Way, Kelowna, BC, V4V 1V7, Canada
| | - Dave Dunn
- Natural Resources Canada, Pacific Forestry Centre, 506 Burnside Road West, Victoria, BC, V8Z 1M5, Canada
| | - François Miros
- Chemistry Department, University of British Columbia, Okanagan Campus 3187 University Way, Kelowna, BC, V4V 1V7, Canada
| | - Paul Shipley
- Chemistry Department, University of British Columbia, Okanagan Campus 3187 University Way, Kelowna, BC, V4V 1V7, Canada
| | - Melanie D Jones
- Biology Department, University of British Columbia, Okanagan Campus 1177 Research Road, Kelowna, BC, V4V 1V7, Canada
| |
Collapse
|
19
|
Rudgers JA, Afkhami ME, Bell-Dereske L, Chung YA, Crawford KM, Kivlin SN, Mann MA, Nuñez MA. Climate Disruption of Plant-Microbe Interactions. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2020. [DOI: 10.1146/annurev-ecolsys-011720-090819] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Interactions between plants and microbes have important influences on evolutionary processes, population dynamics, community structure, and ecosystem function. We review the literature to document how climate change may disrupt these ecological interactions and develop a conceptual framework to integrate the pathways of plant-microbe responses to climate over different scales in space and time. We then create a blueprint to aid generalization that categorizes climate effects into changes in the context dependency of plant-microbe pairs, temporal mismatches and altered feedbacks over time, or spatial mismatches that accompany species range shifts. We pair a new graphical model of how plant-microbe interactions influence resistance to climate change with a statistical approach to predictthe consequences of increasing variability in climate. Finally, we suggest pathways through which plant-microbe interactions can affect resilience during recovery from climate disruption. Throughout, we take a forward-looking perspective, highlighting knowledge gaps and directions for future research.
Collapse
Affiliation(s)
- Jennifer A. Rudgers
- Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA;,
| | - Michelle E. Afkhami
- Department of Biology, University of Miami, Coral Gables, Florida 33157, USA
| | - Lukas Bell-Dereske
- Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan 49060, USA
| | - Y. Anny Chung
- Departments of Plant Biology and Plant Pathology, University of Georgia, Athens, Georgia 30602, USA
| | - Kerri M. Crawford
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204, USA
| | - Stephanie N. Kivlin
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Michael A. Mann
- Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA;,
| | - Martin A. Nuñez
- Grupo de Ecología de Invasiones, Instituto de Investigaciones en Biodiversidad y Medioambiente, CONICET/Universidad Nacional del Comahue, Bariloche 8400, Argentina
| |
Collapse
|
20
|
Milani T, Jobbágy EG, Nuñez MA, Ferrero ME, Baldi G, Teste FP. Stealth invasions on the rise: rapid long-distance establishment of exotic pines in mountain grasslands of Argentina. Biol Invasions 2020. [DOI: 10.1007/s10530-020-02303-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
Park KH, Oh SY, Yoo S, Park MS, Fong JJ, Lim YW. Successional Change of the Fungal Microbiome Pine Seedling Roots Inoculated With Tricholoma matsutake. Front Microbiol 2020; 11:574146. [PMID: 33101248 PMCID: PMC7545793 DOI: 10.3389/fmicb.2020.574146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/09/2020] [Indexed: 01/07/2023] Open
Abstract
The pine mushroom (Tricholoma matsutake; Agaricales, Tricholomataceae) is an ectomycorrhizal fungus that produces a commercially valuable, edible mushrooms. Attempts to artificially cultivate T. matsutake has so far been unsuccessful. One method used to induce T. matsutake to produce fruiting bodies of in the wild is shiro (mycelial aggregations of T. matsutake) transplantation. In vitro ectomycorrhization of T. matsutake with seedlings of Pinus densiflora has been successful, but field trials showed limited production of fruiting bodies. Few studies have been done to test what happens after transplantation in the wild, whether T. matsutake persists on the pine seedling roots or gets replaced by other fungi. Here, we investigated the composition and the interaction of the root fungal microbiome of P. densiflora seedlings inoculated with T. matsutake over a 3 year period after field transplantation, using high-throughput sequencing. We found a decline of T. matsutake colonization on pine roots and succession of mycorrhizal fungi as P. densiflora seedlings grew. Early on, roots were colonized by fast-growing, saprotrophic Ascomycota, then later replaced by early stage ectomycorrhiza such as Wilcoxina. At the end, more competitive Suillus species dominated the host roots. Most of the major OTUs had negative or neutral correlation with T. matsutake, but several saprotrophic/plant pathogenic/mycoparasitic species in genera Fusarium, Oidiodendron, and Trichoderma had positive correlation with T. matsutake. Four keystone species were identified during succession; two species (Fusarium oxysporum, and F. trincintum) had a positive correlation with T. matsutake, while the other two had a negative correlation (Suillus granulatus, Cylindrocarpon pauciseptatum). These findings have important implications for further studies on the artificial cultivation of T. matsutake.
Collapse
Affiliation(s)
- Ki Hyeong Park
- School of Biological Sciences, Institute of Microbiology, Seoul National University, Seoul, South Korea
| | - Seung-Yoon Oh
- Department of Biology and Chemistry, Changwon National University, Changwon, South Korea
| | - Shinnam Yoo
- School of Biological Sciences, Institute of Microbiology, Seoul National University, Seoul, South Korea
| | - Myung Soo Park
- School of Biological Sciences, Institute of Microbiology, Seoul National University, Seoul, South Korea
| | | | - Young Woon Lim
- School of Biological Sciences, Institute of Microbiology, Seoul National University, Seoul, South Korea
| |
Collapse
|
22
|
Vlk L, Tedersoo L, Antl T, Větrovský T, Abarenkov K, Pergl J, Albrechtová J, Vosátka M, Baldrian P, Pyšek P, Kohout P. Alien ectomycorrhizal plants differ in their ability to interact with co-introduced and native ectomycorrhizal fungi in novel sites. THE ISME JOURNAL 2020; 14:2336-2346. [PMID: 32499492 PMCID: PMC7608243 DOI: 10.1038/s41396-020-0692-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 05/07/2020] [Accepted: 05/27/2020] [Indexed: 11/29/2022]
Abstract
Alien plants represent a potential threat to environment and society. Understanding the process of alien plants naturalization is therefore of primary importance. In alien plants, successful establishment can be constrained by the absence of suitable fungal partners. Here, we used 42 independent datasets of ectomycorrhizal fungal (EcMF) communities associated with alien Pinaceae and Eucalyptus spp., as the most commonly introduced tree species worldwide, to explore the strategies these plant groups utilize to establish symbioses with EcMF in the areas of introduction. We have also determined the differences in composition of EcMF communities associated with alien ectomycorrhizal plants in different regions. While alien Pinaceae introduced to new regions rely upon association with co-introduced EcMF, alien Eucalyptus often form novel interactions with EcMF species native to the region where the plant was introduced. The region of origin primarily determines species composition of EcMF communities associated with alien Pinaceae in new areas, which may largely affect invasion potential of the alien plants. Our study shows that alien ectomycorrhizal plants largely differ in their ability to interact with co-introduced and native ectomycorrhizal fungi in sites of introduction, which may potentially affect their invasive potential.
Collapse
Affiliation(s)
- Lukáš Vlk
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20, Prague, Czech Republic
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic
- Faculty of Science, Charles University, Viničná 7, CZ-128 44, Prague, Czech Republic
| | - Leho Tedersoo
- Natural History Museum, University of Tartu, 14a Ravila, 50411, Tartu, Estonia
- Department of Biology, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Tomáš Antl
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic
- Faculty of Science, Charles University, Viničná 7, CZ-128 44, Prague, Czech Republic
| | - Tomáš Větrovský
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20, Prague, Czech Republic
| | - Kessy Abarenkov
- Natural History Museum, University of Tartu, 14a Ravila, 50411, Tartu, Estonia
| | - Jan Pergl
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic
| | - Jana Albrechtová
- Faculty of Science, Charles University, Viničná 7, CZ-128 44, Prague, Czech Republic
| | - Miroslav Vosátka
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic
- Faculty of Science, Charles University, Viničná 7, CZ-128 44, Prague, Czech Republic
| | - Petr Baldrian
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20, Prague, Czech Republic
| | - Petr Pyšek
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic
- Faculty of Science, Charles University, Viničná 7, CZ-128 44, Prague, Czech Republic
- Department of Botany and Zoology, Stellenbosch University, Matieland, 7602, South Africa
| | - Petr Kohout
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20, Prague, Czech Republic.
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic.
- Faculty of Science, Charles University, Viničná 7, CZ-128 44, Prague, Czech Republic.
| |
Collapse
|
23
|
Vlk L, Tedersoo L, Antl T, Větrovský T, Abarenkov K, Pergl J, Albrechtová J, Vosátka M, Baldrian P, Pyšek P, Kohout P. Early successional ectomycorrhizal fungi are more likely to naturalize outside their native range than other ectomycorrhizal fungi. THE NEW PHYTOLOGIST 2020; 227:1289-1293. [PMID: 32215923 DOI: 10.1111/nph.16557] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/13/2020] [Indexed: 06/10/2023]
Affiliation(s)
- Lukáš Vlk
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-142 20, Prague, Czech Republic
- Institute of Botany, Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic
- Faculty of Science, Charles University, Viničná 7, CZ-128 44, Prague, Czech Republic
| | - Leho Tedersoo
- Natural History Museum, University of Tartu, 14a Ravila, 50411, Tartu, Estonia
- Institute of Ecology and Earth Science, University of Tartu, 14a Ravila, 50411, Tartu, Estonia
| | - Tomáš Antl
- Institute of Botany, Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic
- Faculty of Science, Charles University, Viničná 7, CZ-128 44, Prague, Czech Republic
| | - Tomáš Větrovský
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-142 20, Prague, Czech Republic
| | - Kessy Abarenkov
- Institute of Ecology and Earth Science, University of Tartu, 14a Ravila, 50411, Tartu, Estonia
| | - Jan Pergl
- Institute of Botany, Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic
| | - Jana Albrechtová
- Faculty of Science, Charles University, Viničná 7, CZ-128 44, Prague, Czech Republic
| | - Miroslav Vosátka
- Institute of Botany, Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic
- Faculty of Science, Charles University, Viničná 7, CZ-128 44, Prague, Czech Republic
| | - Petr Baldrian
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-142 20, Prague, Czech Republic
| | - Petr Pyšek
- Institute of Botany, Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic
- Faculty of Science, Charles University, Viničná 7, CZ-128 44, Prague, Czech Republic
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Matieland, South Africa
| | - Petr Kohout
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-142 20, Prague, Czech Republic
- Institute of Botany, Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic
- Faculty of Science, Charles University, Viničná 7, CZ-128 44, Prague, Czech Republic
| |
Collapse
|
24
|
Trentini CP, Campanello PI, Villagra M, Ferreras J, Hartmann M. Thinning Partially Mitigates the Impact of Atlantic Forest Replacement by Pine Monocultures on the Soil Microbiome. Front Microbiol 2020; 11:1491. [PMID: 32719665 PMCID: PMC7350009 DOI: 10.3389/fmicb.2020.01491] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/08/2020] [Indexed: 11/28/2022] Open
Abstract
Forest replacement by exotic plantations drive important changes at the level of the overstory, understory and forest floor. In the Atlantic Forest of northern Argentina, large areas have been replaced by loblolly pine (Pinus taeda L.) monocultures. Plant and litter transformation, together with harvesting operations, change microclimatic conditions and edaphic properties. Management practices such as thinning promote the development of native understory vegetation and could counterbalance negative effects of forest replacement on soil. Here, the effects of pine plantations and thinning on physical, chemical and microbiological soil properties were assessed. Bacterial, archaeal, and fungal community structure were analyzed using a metabarcoding approach targeting ribosomal markers. Forest replacement and, to a lesser extent, thinning practices in the pine plantations induced significant changes in soil physico-chemical properties and associated shifts in bacterial and fungal communities. Most measured physical and chemical properties were altered due to forest replacement, but a few of these properties reached values similar to natural forests under the thinning operation. Fungal alpha diversity decreased in pine plantations, whereas bacterial alpha diversity tended to increase but with little statistical support. Shifts in community composition were observed for both fungal and bacterial domains, and were mostly related to changes in plant understory composition, soil carbon, organic matter, water content, pH and bulk density. Among several other changes, highly abundant phyla such as Proteobacteria (driven by many genera) and Mortierellomycota (mainly driven by Mortierella) decreased in relative abundance in the plantations, whereas Acidobacteria (mainly driven by Acidothermus and Candidatus Koribacter) and Basidiomycota (mainly driven by the ectomycorrhiza Russula) showed the opposite response. Taken together, these results provide insights into the effects of forest replacement on belowground properties and elucidate the potentially beneficial effect of thinning practices in intensive plantation systems through promoting the understory development. Although thinning did not entirely counterbalance the effects of forest replacement on physical, chemical and biological soil properties, the strategy helped mitigating the effects and might promote resilience of these properties by the end of the rotation cycle, if subsequent management practices compatible with the development of a native understory vegetation are applied.
Collapse
Affiliation(s)
- Carolina Paola Trentini
- Laboratorio de Ecología Forestal y Ecofisiología, Instituto de Biología Subtropical, CONICET-UNaM, Puerto Iguazú, Misiones, Argentina
| | - Paula Inés Campanello
- Centro de Estudios Ambientales Integrados, Facultad de Ingeniería, Universidad Nacional de la Patagonia San Juan Bosco, CONICET, Esquel, Argentina
| | - Mariana Villagra
- Laboratorio de Ecología Forestal y Ecofisiología, Instituto de Biología Subtropical, CONICET-UNaM, Puerto Iguazú, Misiones, Argentina
| | - Julian Ferreras
- Grupo de Investigación en Genética Aplicada, Instituto de Biología Subtropical, CONICET-UNaM, Posadas, Misiones, Argentina
| | - Martin Hartmann
- Sustainable Agroecosystems, Department of Environmental Systems Science, Institute of Agricultural Sciences, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
25
|
Drivers of Ectomycorrhizal Fungal Community Structure Associated with Pinus sylvestris var. mongolica Differ at Regional vs. Local Spatial Scales in Northern China. FORESTS 2020. [DOI: 10.3390/f11030323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Pinus sylvestris var. mongolica, a widely planted tree species, is facing long-lasting, unresolved degradation in desertified Northern China. Ectomycorrhizal fungi (EMF) are closely related to the stand status, because they substantially participate in ecological processes of terrestrial forest ecosystems. EMF may be key to solving the introduction recession. Therefore, we performed DNA sequencing of P. sylvestris root samples from plantations and natural forests as control to characterize the EMF from semi-arid and dry sub-humid regions, using ITS Illumina sequencing and conventional soil physicochemical index determination. The results indicated that (1) the dominant EMF genera were Suillus, Rhizopogon, and Wilcoxina in the Hulunbuir, Mu Us, and Horqin Sandy Lands, respectively. Their dominance retained with stand ageing. (2) Plantation EM fungal diversity differs significantly among the three sandy lands and was significantly lower than in natural forest. The diversity varied with stand age, showing distinct trends at the local scale. (3) At the regional scale, the mean annual sunshine times and the soil organic carbon content affect EMF diversity. The community composition and structure were more characterized by temperature and precipitation. At the local scale, besides the soil organic carbon content, the EM fungal community composition and structure were correlated with total nitrogen and phosphorus content (Hulunbuir), the total phosphorus content (Mu Us), and the pH and total soil porosity (Horqin). The EM fungal community composition and structure have the obvious geographical distribution variation; they were strongly correlated with the meteorological elements and soil nutrients at the regional scale. At the local scale, they were jointly driven by stand age and soil properties. This improved information contributes to increasing the understanding of the interaction between EMF and forest ecosystems and guides sustainable forest management of degraded P. sylvestris plantations.
Collapse
|
26
|
Zhao PS, Guo MS, Gao GL, Zhang Y, Ding GD, Ren Y, Akhtar M. Community structure and functional group of root-associated Fungi of Pinus sylvestris var. mongolica across stand ages in the Mu Us Desert. Ecol Evol 2020; 10:3032-3042. [PMID: 32211174 PMCID: PMC7083681 DOI: 10.1002/ece3.6119] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 12/30/2022] Open
Abstract
Root-associated fungi (RAF) are an important factor affecting the host's growth, and their contribution to Pinus sylvestris var. mongolica plantation decline is substantial. Therefore, we selected three age groups of P. sylvestris plantations (26, 33, and 43 years), in the Mu Us Desert, to characterize the community structure and functional groups of RAF, identified by Illumina high-throughput sequencing and FUNGuild platform, respectively. The effects of soil properties and enzyme activities on fungal diversity and functional groups were also examined. The results indicated that (a) 805 operational taxonomic units of RAF associated with P. sylvestris belonged to six phyla and 163 genera. Diversity and richness were not significantly different in the three age groups, but community composition showed significant differences. Ascomycota and Basidiomycota dominated the fungal community, while Rhizopogon dominated in each plot. (b) The proportion of pathotrophs decreased with increasing age, while that of symbiotrophs increased sharply, which were mainly represented by ectomycorrhizal fungi. (c) Stand age and soil enzyme activity had a greater influence on fungal community composition than did soil properties, whereas environmental variables were not significantly correlated with fungal diversity and richness. Dynamics of fungal community composition and functional groups with the aging plantations reflected the growth state of P. sylvestris and were related to plantation degradation.
Collapse
Affiliation(s)
- Pei-Shan Zhao
- Yanchi Research Station School of Soil and Water Conservation Beijing Forestry University Beijing China
- Key Laboratory of State Forestry and Grassland Administration on Soil and Water Conservation Beijing China
- Engineering Research Center of Forestry Ecological Engineering Ministry of Education Beijing Forestry University Beijing China
| | - Mi-Shan Guo
- Yanchi Research Station School of Soil and Water Conservation Beijing Forestry University Beijing China
- Key Laboratory of State Forestry and Grassland Administration on Soil and Water Conservation Beijing China
- Engineering Research Center of Forestry Ecological Engineering Ministry of Education Beijing Forestry University Beijing China
| | - Guang-Lei Gao
- Yanchi Research Station School of Soil and Water Conservation Beijing Forestry University Beijing China
- Key Laboratory of State Forestry and Grassland Administration on Soil and Water Conservation Beijing China
- Engineering Research Center of Forestry Ecological Engineering Ministry of Education Beijing Forestry University Beijing China
| | - Ying Zhang
- Yanchi Research Station School of Soil and Water Conservation Beijing Forestry University Beijing China
- Key Laboratory of State Forestry and Grassland Administration on Soil and Water Conservation Beijing China
- Engineering Research Center of Forestry Ecological Engineering Ministry of Education Beijing Forestry University Beijing China
| | - Guo-Dong Ding
- Yanchi Research Station School of Soil and Water Conservation Beijing Forestry University Beijing China
- Key Laboratory of State Forestry and Grassland Administration on Soil and Water Conservation Beijing China
- Engineering Research Center of Forestry Ecological Engineering Ministry of Education Beijing Forestry University Beijing China
| | - Yue Ren
- Yanchi Research Station School of Soil and Water Conservation Beijing Forestry University Beijing China
- Key Laboratory of State Forestry and Grassland Administration on Soil and Water Conservation Beijing China
- Engineering Research Center of Forestry Ecological Engineering Ministry of Education Beijing Forestry University Beijing China
| | - Mobeen Akhtar
- Yanchi Research Station School of Soil and Water Conservation Beijing Forestry University Beijing China
- Key Laboratory of State Forestry and Grassland Administration on Soil and Water Conservation Beijing China
- Engineering Research Center of Forestry Ecological Engineering Ministry of Education Beijing Forestry University Beijing China
| |
Collapse
|
27
|
Moyano J, Rodriguez-Cabal MA, Nuñez MA. Highly invasive tree species are more dependent on mutualisms. Ecology 2020; 101:e02997. [PMID: 32002992 DOI: 10.1002/ecy.2997] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/17/2019] [Accepted: 01/03/2020] [Indexed: 11/10/2022]
Abstract
Why some species become invasive while others do not remains an elusive question. It has been proposed that invasive species should depend less on mutualisms, because their spread would then be less constrained by the availability of mutualistic partners. We tested this idea with the genus Pinus, whose degree of invasiveness is known at the species level (being highly and negatively correlated with seed size), and which forms obligate mutualistic associations with ectomycorrhizal fungi (EMF). Mycorrhizal dependence is defined as the degree to which a plant needs the mycorrhizal fungi to show the maximum growth. In this regard, we use plant growth response to mycorrhizal fungi as a proxy for mycorrhizal dependence. We assessed the responsiveness of Pinus species to EMF using 1,206 contrasts published on 34 species, and matched these data with data on Pinus species invasiveness. Surprisingly, we found that species that are more invasive depend more on mutualisms (EMF). Seedling growth of species with smaller seeds benefited more from mutualisms, indicating a higher dependence. A higher reliance on EMF could be part of a strategy in which small-seeded species produce more seeds that can disperse further, and these species are likely to establish only if facilitated by mycorrhizal fungi. On the contrary, big-seeded species showed a lower dependence on EMF, which may be explained by their tolerance to stressful conditions during establishment. However, the limited dispersal of larger seeds may limit the spread of these species. We present strong evidence against a venerable belief in ecology that species that rely more on mutualisms are less prone to invade, and suggest that in certain circumstances greater reliance on mutualists can increase spread capacity.
Collapse
Affiliation(s)
- Jaime Moyano
- Grupo de Ecología de Invasiones, INIBIOMA, CONICET, Universidad Nacional del Comahue, Quintral 1250, San Carlos de Bariloche, CP 8400, Argentina
| | - Mariano A Rodriguez-Cabal
- Grupo de Ecología de Invasiones, INIBIOMA, CONICET, Universidad Nacional del Comahue, Quintral 1250, San Carlos de Bariloche, CP 8400, Argentina.,Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, Vermont, 05405, USA
| | - Martin A Nuñez
- Grupo de Ecología de Invasiones, INIBIOMA, CONICET, Universidad Nacional del Comahue, Quintral 1250, San Carlos de Bariloche, CP 8400, Argentina
| |
Collapse
|
28
|
Pildain MB, Visnovsky SB, Barroetaveña C. Diversity of exotic ectomycorrhizal Rhizopogon from pine plantations in Patagonia. Mycologia 2019; 111:782-792. [PMID: 31545143 DOI: 10.1080/00275514.2019.1647395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We present an account of Rhizopogon introduced from plantings of exotic pine plantations in Argentine Patagonia. Nuc rDNA internal transcribed spacer ITS1-5.8S-ITS2 (ITS) and nuc 28S rDNA (28S) sequences were used to identify specimens from Argentina and examine their relationships with geographically different Rhizopogon species. Based on phylogenetic analyses, we confirm that four species of Rhizopogon occur in pine plantations across Patagonia. Several Rhizopogon collections from Pinus ponderosa plantations across different provinces cluster with R. arctostaphyli, a species within R. subg. Amylopogon. The majority of Patagonian Rhizopogon, however, form three different lineages in R. subg. Roseoli. The first of these, R. roseolus sensu Trappe, includes numerous collections from Pinus ponderosa, P. contorta, and P. radiata stands of North American affiliation. The second, R. roseolus sensu Martin and Garcia from P. ponderosa plantations, clusters in clade IIIa of the R. roseolus complex, which also includes the holotype collection of R. mohelnensis from the Czech Republic. The third species in R. subg. Roseoli, and fourth species overall from Patagonia, is R. granuloflavus from Pinus ponderosa plantations. Multiplex polymerase chain reaction (PCR) of numerous Roseoli samples failed to produce an amplicon indicative of either Japanese or New Zealand shoro.
Collapse
Affiliation(s)
- María Belén Pildain
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.,Centro Forestal CIEFAP , Esquel , Chubut , CC14, 9200 , Argentina
| | - Sandra B Visnovsky
- The New Zealand Institute for Plant and Food Research Limited , Private Bag 4704, Christchurch 8140 , New Zealand
| | - Carolina Barroetaveña
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.,Centro Forestal CIEFAP , Esquel , Chubut , CC14, 9200 , Argentina
| |
Collapse
|
29
|
Policelli N, Bruns TD, Vilgalys R, Nuñez MA. Suilloid fungi as global drivers of pine invasions. THE NEW PHYTOLOGIST 2019; 222:714-725. [PMID: 30586169 DOI: 10.1111/nph.15660] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 12/19/2018] [Indexed: 05/28/2023]
Abstract
Belowground biota can deeply influence plant invasion. The presence of appropriate soil mutualists can act as a driver to enable plants to colonize new ranges. We reviewed the species of ectomycorrhizal fungi (EMF) that facilitate pine establishment in both native and non-native ranges, and that are associated with their invasion into nonforest settings. We found that one particular group of EMF, suilloid fungi, uniquely drive pine invasion in the absence of other EMF. Although the association with other EMF is variable, suilloid EMF are always associated with invasive pines, particularly at early invasion, when invasive trees are most vulnerable. We identified five main ecological traits of suilloid fungi that may explain their key role at pine invasions: their long-distance dispersal capacity, the establishment of positive biotic interactions with mammals, their capacity to generate a resistant spore bank, their rapid colonization of roots and their long-distance exploration type. These results suggest that the identity of mycorrhizal fungi and their ecological interactions, rather than simply the presence of compatible fungi, are key to the understanding of plant invasion processes and their success or failure. Particularly for pines, their specific association with suilloid fungi determines their invasion success in previously uninvaded ecosystems.
Collapse
Affiliation(s)
- Nahuel Policelli
- Grupo de Ecología de Invasiones, Instituto de Investigaciones en Biodiversidad y Medioambiente INIBIOMA, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional del Comahue (UNCo), Avenida de los Pioneros 2350, San Carlos de Bariloche, 8400, Río Negro, Argentina
| | - Thomas D Bruns
- Department of Plant and Microbial Biology, University of California at Berkeley, 111 Koshland Hall, Berkeley, CA, 94720-3102, USA
| | - Rytas Vilgalys
- Biology Department, Duke University, 130 Science Drive, Durham, NC, 27708-0338, USA
| | - Martin A Nuñez
- Grupo de Ecología de Invasiones, Instituto de Investigaciones en Biodiversidad y Medioambiente INIBIOMA, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional del Comahue (UNCo), Avenida de los Pioneros 2350, San Carlos de Bariloche, 8400, Río Negro, Argentina
| |
Collapse
|
30
|
Moyano J, Chiuffo MC, Policelli N, Nuñez MA, Rodriguez-Cabal MA. The interplay between propagule pressure, seed predation and ectomycorrhizal fungi in plant invasion. NEOBIOTA 2019. [DOI: 10.3897/neobiota.42.30978] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
There are many hypotheses aiming to explain invasion success, but evaluating individual hypotheses in isolation may hinder our ability to understand why some species invade and others fail. Here we evaluate the interaction between propagule pressure, seed predation and missed mutualism in the invasion success of the pine, Pinusponderosa. We evaluated the independent and interactive effects of propagule pressure and seed predation at increasing distances from a pine plantation. Additionally, because pines are obligate mutualists with ectomycorrhizal fungi (EMF) and pine invasions fail in the absence of their EMF symbionts, we evaluated EMF availability through a growth chamber bioassay. In this bioassay we measured root colonization by EMF with soil samples collected from the different distances from the plantation. We found that propagule pressure overwhelms seed predation only at the edge of the pine plantation, while seed predation overcomes propagule pressure at 25 m and further distances from the plantation. We also found that EMF root colonization decreases with distance from the plantation. However, pine roots were colonized up to 200 m from the plantation, suggesting that EMF may not be hindering invasion, at least not on the scale of this experiment. Taken together our results demonstrate that seed predation may be limiting the invasion of P.ponderosa in the study region as propagule pressure only overcomes seed predation at the plantation edge. Here we provide evidence of how strong biotic resistance can suppress an invasion, regardless of the variation in propagule pressure and the availability of mutualists.
Collapse
|
31
|
Latitudinal Distribution of Mycorrhizal Types in Native and Alien Trees in Montane Ecosystems from Southern South America. Fungal Biol 2019. [DOI: 10.1007/978-3-030-15228-4_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
What happens to the mycorrhizal communities of native and exotic seedlings when Pseudotsuga menziesii invades Nothofagaceae forests in Patagonia, Argentina? ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY 2018. [DOI: 10.1016/j.actao.2018.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
33
|
Porter SS, Faber-Hammond JJ, Friesen ML. Co-invading symbiotic mutualists of Medicago polymorpha retain high ancestral diversity and contain diverse accessory genomes. FEMS Microbiol Ecol 2017; 94:4705886. [DOI: 10.1093/femsec/fix168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/29/2017] [Indexed: 02/06/2023] Open
Affiliation(s)
- Stephanie S Porter
- School of Biological Sciences, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA 98686, USA
| | - Joshua J Faber-Hammond
- School of Biological Sciences, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA 98686, USA
| | - Maren L Friesen
- Department of Plant Biology, Michigan State University, 612 Wilson Road, East Lansing, MI, 48824, USA
- Department of Plant Pathology, Washington State University, P.O. Box 646430 Pullman, WA 99164, USA
- Department of Crop and Soil Sciences, Washington State University, P.O. Box 646420 Pullman, WA 99164, USA
| |
Collapse
|
34
|
Toole DR, Cannon GH, Brislawn CJ, Graves JM, Lamendella R, Muth TR, Muth NZ. Differences in soil fungal assemblages associated with native and non-native tree species of varying weediness. Biol Invasions 2017. [DOI: 10.1007/s10530-017-1580-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
La Pierre KJ, Simms EL, Tariq M, Zafar M, Porter SS. Invasive legumes can associate with many mutualists of native legumes, but usually do not. Ecol Evol 2017; 7:8599-8611. [PMID: 29075475 PMCID: PMC5648655 DOI: 10.1002/ece3.3310] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/19/2017] [Accepted: 06/25/2017] [Indexed: 12/13/2022] Open
Abstract
Mutualistic interactions can strongly influence species invasions, as the inability to form successful mutualisms in an exotic range could hamper a host's invasion success. This barrier to invasion may be overcome if an invader either forms novel mutualistic associations or finds and associates with familiar mutualists in the exotic range. Here, we ask (1) does the community of rhizobial mutualists associated with invasive legumes in their exotic range overlap with that of local native legumes and (2) can any differences be explained by fundamental incompatibilities with particular rhizobial genotypes? To address these questions, we first characterized the rhizobial communities naturally associating with three invasive and six native legumes growing in the San Francisco Bay Area. We then conducted a greenhouse experiment to test whether the invasive legume could nodulate with any of a broad array of rhizobia found in their exotic range. There was little overlap between the Bradyrhizobium communities associated with wild‐grown invasive and native legumes, yet the invasive legumes could nodulate with a broad range of rhizobial strains under greenhouse conditions. These observations suggest that under field conditions in their exotic range, these invasive legumes are not currently associating with the mutualists of local native legumes, despite their potential to form such associations. However, the promiscuity with which these invading legumes can form mutualistic associations could be an important factor early in the invasion process if mutualist scarcity limits range expansion. Overall, the observation that invasive legumes have a community of rhizobia distinct from that of native legumes, despite their ability to associate with many rhizobial strains, challenges existing assumptions about how invading species obtain their mutualists. These results can therefore inform current and future efforts to prevent and remove invasive species.
Collapse
Affiliation(s)
- Kimberly J La Pierre
- Department of Integrative Biology University of California Berkeley CA USA.,Present address: Smithsonian Environmental Research Center Edgewater MD USA
| | - Ellen L Simms
- Department of Integrative Biology University of California Berkeley CA USA
| | - Mohsin Tariq
- Department of Bioinformatics and Biotechnology Government College University Faisalabad Pakistan
| | - Marriam Zafar
- Centre of Agricultural Biochemistry and Biotechnology University of Agriculture Faisalabad Pakistan
| | - Stephanie S Porter
- School of Biological Sciences Washington State University Vancouver WA USA
| |
Collapse
|
36
|
Liebhold AM, Brockerhoff EG, Kalisz S, Nuñez MA, Wardle DA, Wingfield MJ. Biological invasions in forest ecosystems. Biol Invasions 2017. [DOI: 10.1007/s10530-017-1458-5] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
37
|
Bueno CG, Marín C, Silva-Flores P, Aguilera P, Godoy R. Think globally, research locally: emerging opportunities for mycorrhizal research in South America: First international mycorrhizal meeting in South America, 'Mycorrhizal symbiosis in the southern cone of South America', Valdivia, Chile, 6-9 March 2017. THE NEW PHYTOLOGIST 2017; 215:1306-1309. [PMID: 28771819 DOI: 10.1111/nph.14709] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Affiliation(s)
- C Guillermo Bueno
- Institute of Ecology and Earth Sciences, Department of Botany, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - César Marín
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Avda. Rector Eduardo Morales s/n, Campus Isla Teja, Valdivia, 5090000, Chile
| | - Patricia Silva-Flores
- Centro de Estudios Avanzados en Fruticultura - CEAF, Camino Las Parcelas 882 Los Choapinos, 2940000, Rengo, Chile
- Departamento de Botánica, Universidad de Concepción, Barrio Universitario s/n Casilla 160-C, 4030000, Concepción, Chile
| | - Paula Aguilera
- Center of Amelioration and Sustainability of Volcanic Soils, BIOREN-UFRO, Universidad de La Frontera, Avda. Francisco Salazar 01145, 4780000, Temuco, Chile
| | - Roberto Godoy
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Avda. Rector Eduardo Morales s/n, Campus Isla Teja, Valdivia, 5090000, Chile
| |
Collapse
|
38
|
Nuñez MA, Chiuffo MC, Torres A, Paul T, Dimarco RD, Raal P, Policelli N, Moyano J, García RA, van Wilgen BW, Pauchard A, Richardson DM. Ecology and management of invasive Pinaceae around the world: progress and challenges. Biol Invasions 2017. [DOI: 10.1007/s10530-017-1483-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
39
|
Co-invasive exotic pines and their ectomycorrhizal symbionts show capabilities for wide distance and altitudinal range expansion. FUNGAL ECOL 2017. [DOI: 10.1016/j.funeco.2016.11.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
40
|
Pärtel M, Zobel M, Öpik M, Tedersoo L. Global Patterns in Local and Dark Diversity, Species Pool Size and Community Completeness in Ectomycorrhizal Fungi. BIOGEOGRAPHY OF MYCORRHIZAL SYMBIOSIS 2017. [DOI: 10.1007/978-3-319-56363-3_18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
41
|
Horton TR. Spore Dispersal in Ectomycorrhizal Fungi at Fine and Regional Scales. BIOGEOGRAPHY OF MYCORRHIZAL SYMBIOSIS 2017. [DOI: 10.1007/978-3-319-56363-3_3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
42
|
Tedersoo L. Global Biogeography and Invasions of Ectomycorrhizal Plants: Past, Present and Future. BIOGEOGRAPHY OF MYCORRHIZAL SYMBIOSIS 2017. [DOI: 10.1007/978-3-319-56363-3_20] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
43
|
|
44
|
Gazol A, Zobel M, Cantero JJ, Davison J, Esler KJ, Jairus T, Öpik M, Vasar M, Moora M. Impact of alien pines on local arbuscular mycorrhizal fungal communities-evidence from two continents. FEMS Microbiol Ecol 2016; 92:fiw073. [PMID: 27056916 DOI: 10.1093/femsec/fiw073] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2016] [Indexed: 11/13/2022] Open
Abstract
The introduction of alien plants can influence biodiversity and ecosystems. However, its consequences for soil microbial communities remain poorly understood. We addressed the impact of alien ectomycorrhizal (EcM) pines on local arbuscular mycorrhizal (AM) fungal communities in two regions with contrasting biogeographic histories: in South Africa, where no native EcM plant species are present; and in Argentina, where EcM trees occur naturally. The effect of alien pines on AM fungal communities differed between these regions. In South Africa, plantations of alien EcM pines exhibited lower AM fungal richness and significantly altered community composition, compared with native fynbos. In Argentina, the richness and composition of local AM fungal communities were similar in plantations of alien EcM pines and native forest. However, the presence of alien pines resulted in slight changes to the phylogenetic structure of root AM fungal communities in both regions. In pine clearcut areas in South Africa, the richness and composition of AM fungal communities were intermediate between the native fynbos and the alien pine plantation, which is consistent with natural regeneration of former AM fungal communities following pine removal. We conclude that the response of local AM fungal communities to alien EcM pines differs between biogeographic regions with different histories of species coexistence.
Collapse
Affiliation(s)
- Antonio Gazol
- Pyrenean Institute of Ecology (CSIC), Avda. Montañana 1005, Apdo. 202, 50192 Zaragoza, Spain
| | - Martin Zobel
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - Juan José Cantero
- Department of Agronomy, Faculty of Agronomy and Veterinary Sciences, National University of Rio Cuarto, Ruta Nac. 36-Km. 601-X5804BYA Río Cuarto, Córdoba, Argentina
| | - John Davison
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - Karen J Esler
- Department of Conservation Ecology and Entomology and Centre for Invasion Biology, Stellenbosch University, Private Bag x1, Matieland, 7602, South Africa
| | - Teele Jairus
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - Maarja Öpik
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - Martti Vasar
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - Mari Moora
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| |
Collapse
|
45
|
Crego RD, Jiménez JE, Rozzi R. A synergistic trio of invasive mammals? Facilitative interactions among beavers, muskrats, and mink at the southern end of the Americas. Biol Invasions 2016. [DOI: 10.1007/s10530-016-1135-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
46
|
Ángeles-Argáiz RE, Flores-García A, Ulloa M, Garibay-Orijel R. Commercial Sphagnum peat moss is a vector for exotic ectomycorrhizal mushrooms. Biol Invasions 2015. [DOI: 10.1007/s10530-015-0992-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Abstract
Sphagnum peat moss is one of the most commonly used substrates for forest plant and houseplant production. It is extracted from peat bogs in the circumboreal region and exported worldwide. Commercial peat moss is pasteurized, and is therefore believed to be free of viable ectomycorrhizal propagules. We used a bioassay with Pinus montezumae to demonstrate that commercial peat moss carries viable ectomycorrhizal spores, able to form mycorrhizae. Ectomycorrhizal fungi on seedling root-tips were sequenced for phylogenetic analyses using the ITS rDNA barcode region. We found three species: Suillus brevipes, Sphaerosporella brunnea, and Thelephora terrestris. S. brevipes and T. terrestris were found as viable inoculum transported in the peat moss, while S. brunnea was a greenhouse contaminant. S. brevipes and T. terrestris have biological characteristics (such as heat resistant and long living spores) that facilitate their survival to the extraction, transport, and storage processes of peat moss. This allows them to colonize nursery seedlings and to become potential invasive species in plantation areas. S. brevipes and T. terrestris are two of the most introduced fungi by anthropic activities; it has been argued that the vehicle for the introductions are their pine symbionts. This is the first time it has been demonstrated that peat moss is an important vehicle for the introduction of these fungi; a fact potentially related to the pattern of introduction of these ectomycorrhizal species from the northern hemisphere to elsewhere in the world.
Collapse
|
47
|
Molina R, Horton TR. Mycorrhiza Specificity: Its Role in the Development and Function of Common Mycelial Networks. ECOLOGICAL STUDIES 2015. [DOI: 10.1007/978-94-017-7395-9_1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|