1
|
Chen CC, Xie QY, Chuang PS, Darnajoux R, Chien YY, Wang WH, Tian X, Tu CH, Chen BC, Tang SL, Chen KH. A thallus-forming N-fixing fungus-cyanobacterium symbiosis from subtropical forests. SCIENCE ADVANCES 2025; 11:eadt4093. [PMID: 39937913 DOI: 10.1126/sciadv.adt4093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/14/2025] [Indexed: 02/14/2025]
Abstract
Fungi engage in diverse symbiotic relationships with phototrophs. Lichens, symbiotic complexes involving fungi and either cyanobacteria, green algae, or both, have fungi forming the external layer and much of the interior. We found an erect thallus resembling a lichen yet with an unexpected thallus structure composed of interwoven cyanobacterial filaments with numerous fungal hyphae inserted within individual cyanobacterial sheaths, contrasting with typical lichen structure. Phylogenetics identified the fungus as a previously undescribed species, Serendipita cyanobacteriicola, closely related to endophytes, and the cyanobacterium belongs to the family Coleofasciculaceae, representing a genus and species not yet classified, Symbiothallus taiwanensis. These thalli exhibit nitrogen-fixing activity similar to mosses but lower than cyanolichens. Both symbiotic partners are distinct from known lichen-forming symbionts, uncovering a phylogenetically and morphologically unprecedented thallus-forming fungus-cyanobacterium symbiosis. We propose the name "phyllosymbia" for these thalli to underscore their unique symbiotic nature and leaf-like appearance. This finding marks a previously unknown instance of fungi solely residing within structures generated by cyanobacteria.
Collapse
Affiliation(s)
- Che-Chih Chen
- Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan
- Department of Biology, National Museum of Natural Science, Taichung 404605, Taiwan
- Department of Plant Pathology, National Chung Hsing University, Taichung 402202, Taiwan
| | - Qiao-Yi Xie
- Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Po-Shun Chuang
- Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Romain Darnajoux
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), UMR 5300 Centre Nationalde la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD), Toulouse INP, Université de Toulouse, Toulouse, France
| | - Yi-Ying Chien
- Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Wen-Hong Wang
- Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Xuejiao Tian
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Chiao-Hui Tu
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Bi-Chang Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Sen-Ling Tang
- Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Ko-Hsuan Chen
- Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
2
|
Yahr R. The genome sequence of a lichen-forming fungus, Platismatia glauca Linnaeus, 1753. Wellcome Open Res 2024; 9:457. [PMID: 39415779 PMCID: PMC11480706 DOI: 10.12688/wellcomeopenres.22842.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2024] [Indexed: 10/19/2024] Open
Abstract
We present a genome assembly from a specimen of Platismatia glauca (lichen-forming fungus; Ascomycota; Lecanoromycetes; Lecanorales; Parmeliaceae). The genome sequence is 33.2 megabases in span. Most of the assembly is scaffolded into 21 chromosomal pseudomolecules. The mitochondrial genome has also been assembled and is 95.06 kilobases in length.
Collapse
Affiliation(s)
- Rebecca Yahr
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, UK
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Darmostuk V, Flakus A. First molecular evidence of lichen-inhabiting Acrospermum and new insights into the evolution of lifestyles of Acrospermales (Dothideomycetes). Mycologia 2024; 116:17-30. [PMID: 37955982 DOI: 10.1080/00275514.2023.2264131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/25/2023] [Indexed: 11/15/2023]
Abstract
Acrospermales represent one of the least studied lineages of Dothideomycetes and are characterized by diverse ecological strategies, including saprotrophic, epiphytic, fungicolous, lichenicolous, and bryophilous lifestyles. The order is composed of two teleomorphic genera, Acrospermum and Oomyces, and five anamorphic genera of unclear relationships. The objectives of the study were to establish the phylogenetic position of Acrospermum species collected from lichens in the tropical forest of Bolivia and to infer the evolution of the lichenicolous lifestyle in Acrospermales. Our results reveal that the examined specimens from Bolivia represent a new species, A. bolivianum, which is well characterized by its phylogenetic distinctness, morphological characteristics, and host selection. The new species is the first lichenicolous member of Acrospermum and forms a well-supported clade sister to the bryophilous Acrospermum adeanum. The evolution of lifestyles, concluded by phylogenetic analyses and ancestral state reconstructions, indicated that the saprotrophic lifestyle is ancestral to Acrospermales. This corresponds to their close relationship to other saprotrophic lineages of Dothideomycetes and indicates that the wide spectrum of nutritional strategies, currently observed in Acrospermales, may be a result of more recent shifts in their ecology. Our results also suggest that the lichenicolous lifestyle in Acrospermales appeared independently at least two times. Lichenicolous species are represented in our data set by Acrospermum bolivianum and Gonatophragmium physciae, which evolved from lichenicolous and plant-parasite ancestors, respectively. The genus Oomyces, represented by O. carneoalbus, was included for the first time in the phylogenetic analysis and showed a sister relationship to the remaining taxa of Acrospermales.
Collapse
Affiliation(s)
- Valerii Darmostuk
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, Krakow PL-31-512, Poland
| | - Adam Flakus
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, Krakow PL-31-512, Poland
| |
Collapse
|
4
|
Ahmad N, Ritz M, Calchera A, Otte J, Schmitt I, Brueck T, Mehlmer N. Biosynthetic gene cluster synteny: Orthologous polyketide synthases in Hypogymnia physodes, Hypogymnia tubulosa, and Parmelia sulcata. Microbiologyopen 2023; 12:e1386. [PMID: 37877655 PMCID: PMC10582450 DOI: 10.1002/mbo3.1386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/15/2023] [Accepted: 09/26/2023] [Indexed: 10/26/2023] Open
Abstract
Lichens are symbiotic associations consisting of a photobiont (algae or cyanobacteria) and a mycobiont (fungus), which together generate a variety of unique secondary metabolites. To access this biosynthetic potential for biotechnological applications, deeper insights into the biosynthetic pathways and corresponding gene clusters are necessary. Here, we provide a comparative view of the biosynthetic gene clusters of three lichen mycobionts derived from Hypogymnia physodes, Hypogymnia tubulosa, and Parmelia sulcata. In addition, we present a high-quality PacBio metagenome of Parmelia sulcata, from which we extracted the mycobiont bin containing 214 biosynthetic gene clusters. Most biosynthetic gene clusters in these genomes were associated with T1PKSs, followed by NRPSs and terpenes. This study focused on biosynthetic gene clusters related to polyketide synthesis. Based on ketosynthase homology, we identified nine highly syntenic clusters present in all three species. Among the four clusters belonging to nonreducing PKSs, two are putatively linked to lichen substances derived from orsellinic acid (orcinol depsides and depsidones, e.g., lecanoric acid, physodic acid, lobaric acid), one to compounds derived from methylated forms of orsellinic acid (beta orcinol depsides, e.g., atranorin), and one to melanins. Five clusters with orthologs in all three species are linked to reducing PKSs. Our study contributes to sorting and dereplicating the vast PKS diversity found in lichenized fungi. High-quality sequences of biosynthetic gene clusters of these three common species provide a foundation for further exploration into biotechnological applications and the molecular evolution of lichen substances.
Collapse
Affiliation(s)
- Nadim Ahmad
- Department of Chemistry, Werner Siemens Chair of Synthetic Biotechnology, TUM School of Natural SciencesTechnical University of Munich (TUM)GarchingGermany
| | - Manfred Ritz
- Department of Chemistry, Werner Siemens Chair of Synthetic Biotechnology, TUM School of Natural SciencesTechnical University of Munich (TUM)GarchingGermany
| | - Anjuli Calchera
- Senckenberg Biodiversity and Climate Research Centre (SBiK‐F)Frankfurt am MainGermany
| | - Jürgen Otte
- Senckenberg Biodiversity and Climate Research Centre (SBiK‐F)Frankfurt am MainGermany
| | - Imke Schmitt
- Senckenberg Biodiversity and Climate Research Centre (SBiK‐F)Frankfurt am MainGermany
- Institute of Ecology, Evolution and DiversityGoethe University FrankfurtFrankfurt am MainGermany
| | - Thomas Brueck
- Department of Chemistry, Werner Siemens Chair of Synthetic Biotechnology, TUM School of Natural SciencesTechnical University of Munich (TUM)GarchingGermany
| | - Norbert Mehlmer
- Department of Chemistry, Werner Siemens Chair of Synthetic Biotechnology, TUM School of Natural SciencesTechnical University of Munich (TUM)GarchingGermany
| |
Collapse
|
5
|
Etayo J, Sancho LG, Pino-Bodas R. Taxonomic and phylogenetic approach to some Antarctic lichenicolous fungi. Mycol Prog 2023. [DOI: 10.1007/s11557-022-01860-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
6
|
Stucchi L, Galeano J, Pastor JM, Iriondo JM, Cuesta JA. Prevalence of mutualism in a simple model of microbial coevolution. Phys Rev E 2022; 106:054401. [PMID: 36559513 DOI: 10.1103/physreve.106.054401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 09/09/2022] [Indexed: 06/17/2023]
Abstract
Evolutionary transitions among ecological interactions are widely known, although their detailed dynamics remain absent for most population models. Adaptive dynamics has been used to illustrate how the parameters of population models might shift through evolution, but within an ecological regime. Here we use adaptive dynamics combined with a generalized logistic model of population dynamics to show that transitions of ecological interactions might appear as a consequence of evolution. To this purpose, we introduce a two-microbial toy model in which population parameters are determined by a bookkeeping of resources taken from (and excreted to) the environment, as well as from the byproducts of the other species. Despite its simplicity, this model exhibits all kinds of potential ecological transitions, some of which resemble those found in nature. Overall, the model shows a clear trend toward the emergence of mutualism.
Collapse
Affiliation(s)
- Luciano Stucchi
- Universidad del Pacífico, 15072 Lima, Peru and Group of Complex Systems, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Javier Galeano
- Group of Complex Systems, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Juan Manuel Pastor
- Group of Complex Systems, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Jose María Iriondo
- Biodiversity and Conservation Area, ESCET, Universidad Rey Juan Carlos, 28933 Madrid, Spain
| | - José A Cuesta
- Grupo Interdisciplinar de Sistemas Complejos (GISC), 28911 Madrid, Spain; Department of Mathematics, Universidad Carlos III de Madrid, 28911 Leganés, Madrid, Spain; and Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, 50018 Zaragoza, Spain
| |
Collapse
|
7
|
A New Cryptic Lineage in Parmeliaceae (Ascomycota) with Pharmacological Properties. J Fungi (Basel) 2022; 8:jof8080826. [PMID: 36012814 PMCID: PMC9409757 DOI: 10.3390/jof8080826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
We used molecular data to address species delimitation in a species complex of the parmelioid genus Canoparmelia and compare the pharmacological properties of the two clades identified. We used HPLC_DAD_MS chromatography to identify and quantify the secondary substances and used a concatenated data set of three ribosomal markers to infer phylogenetic relationships. Some historical herbarium specimens were also examined. We found two groups that showed distinct pharmacological properties. The phylogenetic study supported the separation of these two groups as distinct lineages, which are here accepted as distinct species: Canoparmelia caroliniana occurring in temperate to tropical ecosystems of a variety of worldwide localities, including America, Macaronesia, south-west Europe and potentially East Africa, whereas the Kenyan populations represent the second group, for which we propose the new species C. kakamegaensis Garrido-Huéscar, Divakar & Kirika. This study highlights the importance of recognizing cryptic species using molecular data, since it can result in detecting lineages with pharmacological properties previously overlooked.
Collapse
|
8
|
Sánchez M, Ureña-Vacas I, González-Burgos E, Divakar PK, Gómez-Serranillos MP. The Genus Cetraria s. str.-A Review of Its Botany, Phytochemistry, Traditional Uses and Pharmacology. Molecules 2022; 27:molecules27154990. [PMID: 35956939 PMCID: PMC9370490 DOI: 10.3390/molecules27154990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
The genus Cetraria s. str. (Parmeliaceae family, Cetrarioid clade) consists of 15 species of mostly erect brown or greenish yellow fruticose or subfoliose thallus. These Cetraria species have a cosmopolitan distribution, being primarily located in the Northern Hemisphere, in North America and in the Eurasia area. Phytochemical analysis has demonstrated the presence of dibenzofuran derivatives (usnic acid), depsidones (fumarprotocetraric and protocetraric acids) and fatty acids (lichesterinic and protolichesterinic acids). The species of Cetraria, and more particularly Cetraria islandica, has been widely employed in folk medicine for the treatment of digestive and respiratory diseases as decoctions, tinctures, aqueous extract, and infusions. Moreover, Cetraria islandica has had an important nutritional and cosmetic value. These traditional uses have been validated in in vitro and in vivo pharmacological studies. Additionally, new therapeutic activities are being investigated, such as antioxidant, immunomodulatory, cytotoxic, genotoxic and antigenotoxic. Among all Cetraria species, the most investigated by far has been Cetraria islandica, followed by Cetraria pinastri and Cetraria aculeata. The aim of the current review is to update all the knowledge about the genus Cetraria covering aspects that include taxonomy and phylogeny, morphology and distribution, ecological and environmental interest, phytochemistry, traditional uses and pharmacological properties.
Collapse
|
9
|
Lücking R, Leavitt SD, Hawksworth DL. Species in lichen-forming fungi: balancing between conceptual and practical considerations, and between phenotype and phylogenomics. FUNGAL DIVERS 2021. [DOI: 10.1007/s13225-021-00477-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
AbstractLichens are symbiotic associations resulting from interactions among fungi (primary and secondary mycobionts), algae and/or cyanobacteria (primary and secondary photobionts), and specific elements of the bacterial microbiome associated with the lichen thallus. The question of what is a species, both concerning the lichen as a whole and its main fungal component, the primary mycobiont, has faced many challenges throughout history and has reached new dimensions with the advent of molecular phylogenetics and phylogenomics. In this paper, we briefly revise the definition of lichens and the scientific and vernacular naming conventions, concluding that the scientific, Latinized name usually associated with lichens invariably refers to the primary mycobiont, whereas the vernacular name encompasses the entire lichen. Although the same lichen mycobiont may produce different phenotypes when associating with different photobionts or growing in axenic culture, this discrete variation does not warrant the application of different scientific names, but must follow the principle "one fungus = one name". Instead, broadly agreed informal designations should be used for such discrete morphologies, such as chloromorph and cyanomorph for lichens formed by the same mycobiont but with either green algae or cyanobacteria. The taxonomic recognition of species in lichen-forming fungi is not different from other fungi and conceptual and nomenclatural approaches follow the same principles. We identify a number of current challenges and provide recommendations to address these. Species delimitation in lichen-forming fungi should not be tailored to particular species concepts but instead be derived from empirical evidence, applying one or several of the following principles in what we call the LPR approach: lineage (L) coherence vs. divergence (phylogenetic component), phenotype (P) coherence vs. divergence (morphological component), and/or reproductive (R) compatibility vs. isolation (biological component). Species hypotheses can be established based on either L or P, then using either P or L (plus R) to corroborate them. The reliability of species hypotheses depends not only on the nature and number of characters but also on the context: the closer the relationship and/or similarity between species, the higher the number of characters and/or specimens that should be analyzed to provide reliable delimitations. Alpha taxonomy should follow scientific evidence and an evolutionary framework but should also offer alternative practical solutions, as long as these are scientifically defendable. Taxa that are delimited phylogenetically but not readily identifiable in the field, or are genuinely cryptic, should not be rejected due to the inaccessibility of proper tools. Instead, they can be provisionally treated as undifferentiated complexes for purposes that do not require precise determinations. The application of infraspecific (gamma) taxonomy should be restricted to cases where there is a biological rationale, i.e., lineages of a species complex that show limited phylogenetic divergence but no evidence of reproductive isolation. Gamma taxonomy should not be used to denote discrete phenotypical variation or ecotypes not warranting the distinction at species level. We revise the species pair concept in lichen-forming fungi, which recognizes sexually and asexually reproducing morphs with the same underlying phenotype as different species. We conclude that in most cases this concept does not hold, but the actual situation is complex and not necessarily correlated with reproductive strategy. In cases where no molecular data are available or where single or multi-marker approaches do not provide resolution, we recommend maintaining species pairs until molecular or phylogenomic data are available. This recommendation is based on the example of the species pair Usnea aurantiacoatra vs. U. antarctica, which can only be resolved with phylogenomic approaches, such as microsatellites or RADseq. Overall, we consider that species delimitation in lichen-forming fungi has advanced dramatically over the past three decades, resulting in a solid framework, but that empirical evidence is still missing for many taxa. Therefore, while phylogenomic approaches focusing on particular examples will be increasingly employed to resolve difficult species complexes, broad screening using single barcoding markers will aid in placing as many taxa as possible into a molecular matrix. We provide a practical protocol how to assess and formally treat taxonomic novelties. While this paper focuses on lichen fungi, many of the aspects discussed herein apply generally to fungal taxonomy. The new combination Arthonia minor (Lücking) Lücking comb. et stat. nov. (Bas.: Arthonia cyanea f. minor Lücking) is proposed.
Collapse
|
10
|
Nelsen MP, Leavitt SD, Heller K, Muggia L, Lumbsch HT. Macroecological diversification and convergence in a clade of keystone symbionts. FEMS Microbiol Ecol 2021; 97:6279059. [PMID: 34014310 DOI: 10.1093/femsec/fiab072] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/18/2021] [Indexed: 11/12/2022] Open
Abstract
Lichens are classic models of symbiosis, and one of the most frequent nutritional modes among fungi. The ecologically and geographically widespread lichen-forming algal (LFA) genus Trebouxia is one of the best-studied groups of LFA and associates with over 7000 fungal species. Despite its importance, little is known about its diversification. We synthesized twenty years of publicly available data by characterizing the ecological preferences of this group and testing for time-variant shifts in climatic regimes over a distribution of trees. We found evidence for limited shifts among regimes, but that disparate lineages convergently evolved similar ecological tolerances. Early Trebouxia lineages were largely forest specialists or habitat generalists that occupied a regime whose extant members occur in moderate climates. Trebouxia then convergently diversified in non-forested habitats and expanded into regimes whose modern representatives occupy wet-warm and cool-dry climates. We rejected models in which climatic diversification slowed through time, suggesting climatic diversification is inconsistent with that expected under an adaptive radiation. In addition, we found that climatic and vegetative regime shifts broadly coincided with the evolution of biomes and associated or similar taxa. Together, our work illustrates how this keystone symbiont from an iconic symbiosis evolved to occupy diverse habitats across the globe.
Collapse
Affiliation(s)
- Matthew P Nelsen
- The Field Museum, Negaunee Integrative Research Center, 1400 S. Lake Shore Drive, Chicago, IL 60605, USA
| | - Steven D Leavitt
- Department of Biology and M. L. Bean Life Science Museum, Brigham Young University, 4102 Life Science Building, Provo, UT 84602, USA
| | - Kathleen Heller
- The Field Museum, Negaunee Integrative Research Center, 1400 S. Lake Shore Drive, Chicago, IL 60605, USA.,Biological Sciences Division, University of Chicago, 5841 S. Maryland Avenue, Chicago, IL 60637, USA
| | - Lucia Muggia
- Department of Life Sciences, University of Trieste, via Giorgieri 10, 34127 Trieste, Italy
| | - H Thorsten Lumbsch
- The Field Museum, Negaunee Integrative Research Center, 1400 S. Lake Shore Drive, Chicago, IL 60605, USA
| |
Collapse
|
11
|
The Coevolution of Plants and Microbes Underpins Sustainable Agriculture. Microorganisms 2021; 9:microorganisms9051036. [PMID: 34065848 PMCID: PMC8151373 DOI: 10.3390/microorganisms9051036] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/01/2021] [Accepted: 05/07/2021] [Indexed: 12/20/2022] Open
Abstract
Terrestrial plants evolution occurred in the presence of microbes, the phytomicrobiome. The rhizosphere microbial community is the most abundant and diverse subset of the phytomicrobiome and can include both beneficial and parasitic/pathogenic microbes. Prokaryotes of the phytomicrobiome have evolved relationships with plants that range from non-dependent interactions to dependent endosymbionts. The most extreme endosymbiotic examples are the chloroplasts and mitochondria, which have become organelles and integral parts of the plant, leading to some similarity in DNA sequence between plant tissues and cyanobacteria, the prokaryotic symbiont of ancestral plants. Microbes were associated with the precursors of land plants, green algae, and helped algae transition from aquatic to terrestrial environments. In the terrestrial setting the phytomicrobiome contributes to plant growth and development by (1) establishing symbiotic relationships between plant growth-promoting microbes, including rhizobacteria and mycorrhizal fungi, (2) conferring biotic stress resistance by producing antibiotic compounds, and (3) secreting microbe-to-plant signal compounds, such as phytohormones or their analogues, that regulate aspects of plant physiology, including stress resistance. As plants have evolved, they recruited microbes to assist in the adaptation to available growing environments. Microbes serve themselves by promoting plant growth, which in turn provides microbes with nutrition (root exudates, a source of reduced carbon) and a desirable habitat (the rhizosphere or within plant tissues). The outcome of this coevolution is the diverse and metabolically rich microbial community that now exists in the rhizosphere of terrestrial plants. The holobiont, the unit made up of the phytomicrobiome and the plant host, results from this wide range of coevolved relationships. We are just beginning to appreciate the many ways in which this complex and subtle coevolution acts in agricultural systems.
Collapse
|
12
|
Lyu D, Zajonc J, Pagé A, Tanney CAS, Shah A, Monjezi N, Msimbira LA, Antar M, Nazari M, Backer R, Smith DL. Plant Holobiont Theory: The Phytomicrobiome Plays a Central Role in Evolution and Success. Microorganisms 2021; 9:675. [PMID: 33805166 PMCID: PMC8064057 DOI: 10.3390/microorganisms9040675] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/20/2021] [Accepted: 03/23/2021] [Indexed: 12/15/2022] Open
Abstract
Under natural conditions, plants are always associated with a well-orchestrated community of microbes-the phytomicrobiome. The nature and degree of microbial effect on the plant host can be positive, neutral, or negative, and depends largely on the environment. The phytomicrobiome is integral for plant growth and function; microbes play a key role in plant nutrient acquisition, biotic and abiotic stress management, physiology regulation through microbe-to-plant signals, and growth regulation via the production of phytohormones. Relationships between the plant and phytomicrobiome members vary in intimacy, ranging from casual associations between roots and the rhizosphere microbial community, to endophytes that live between plant cells, to the endosymbiosis of microbes by the plant cell resulting in mitochondria and chloroplasts. If we consider these key organelles to also be members of the phytomicrobiome, how do we distinguish between the two? If we accept the mitochondria and chloroplasts as both members of the phytomicrobiome and the plant (entrained microbes), the influence of microbes on the evolution of plants becomes so profound that without microbes, the concept of the "plant" is not viable. This paper argues that the holobiont concept should take greater precedence in the plant sciences when referring to a host and its associated microbial community. The inclusivity of this concept accounts for the ambiguous nature of the entrained microbes and the wide range of functions played by the phytomicrobiome in plant holobiont homeostasis.
Collapse
Affiliation(s)
- Dongmei Lyu
- Department of Plant Science, Macdonald Campus, McGill University, Montréal, QC H9X 3V9, Canada; (D.L.); (J.Z.); (A.P.); (C.A.S.T.); (A.S.); (N.M.); (L.A.M.); (M.A.); (M.N.); (R.B.)
| | - Jonathan Zajonc
- Department of Plant Science, Macdonald Campus, McGill University, Montréal, QC H9X 3V9, Canada; (D.L.); (J.Z.); (A.P.); (C.A.S.T.); (A.S.); (N.M.); (L.A.M.); (M.A.); (M.N.); (R.B.)
| | - Antoine Pagé
- Department of Plant Science, Macdonald Campus, McGill University, Montréal, QC H9X 3V9, Canada; (D.L.); (J.Z.); (A.P.); (C.A.S.T.); (A.S.); (N.M.); (L.A.M.); (M.A.); (M.N.); (R.B.)
- National Research Council Canada, Aquatic and Crop Resource Development (ACRD), Montréal, QC H4P 2R2, Canada
| | - Cailun A. S. Tanney
- Department of Plant Science, Macdonald Campus, McGill University, Montréal, QC H9X 3V9, Canada; (D.L.); (J.Z.); (A.P.); (C.A.S.T.); (A.S.); (N.M.); (L.A.M.); (M.A.); (M.N.); (R.B.)
| | - Ateeq Shah
- Department of Plant Science, Macdonald Campus, McGill University, Montréal, QC H9X 3V9, Canada; (D.L.); (J.Z.); (A.P.); (C.A.S.T.); (A.S.); (N.M.); (L.A.M.); (M.A.); (M.N.); (R.B.)
| | - Nadia Monjezi
- Department of Plant Science, Macdonald Campus, McGill University, Montréal, QC H9X 3V9, Canada; (D.L.); (J.Z.); (A.P.); (C.A.S.T.); (A.S.); (N.M.); (L.A.M.); (M.A.); (M.N.); (R.B.)
| | - Levini A. Msimbira
- Department of Plant Science, Macdonald Campus, McGill University, Montréal, QC H9X 3V9, Canada; (D.L.); (J.Z.); (A.P.); (C.A.S.T.); (A.S.); (N.M.); (L.A.M.); (M.A.); (M.N.); (R.B.)
| | - Mohammed Antar
- Department of Plant Science, Macdonald Campus, McGill University, Montréal, QC H9X 3V9, Canada; (D.L.); (J.Z.); (A.P.); (C.A.S.T.); (A.S.); (N.M.); (L.A.M.); (M.A.); (M.N.); (R.B.)
| | - Mahtab Nazari
- Department of Plant Science, Macdonald Campus, McGill University, Montréal, QC H9X 3V9, Canada; (D.L.); (J.Z.); (A.P.); (C.A.S.T.); (A.S.); (N.M.); (L.A.M.); (M.A.); (M.N.); (R.B.)
| | - Rachel Backer
- Department of Plant Science, Macdonald Campus, McGill University, Montréal, QC H9X 3V9, Canada; (D.L.); (J.Z.); (A.P.); (C.A.S.T.); (A.S.); (N.M.); (L.A.M.); (M.A.); (M.N.); (R.B.)
| | - Donald L. Smith
- Department of Plant Science, Macdonald Campus, McGill University, Montréal, QC H9X 3V9, Canada; (D.L.); (J.Z.); (A.P.); (C.A.S.T.); (A.S.); (N.M.); (L.A.M.); (M.A.); (M.N.); (R.B.)
| |
Collapse
|
13
|
Grewe F, Ametrano C, Widhelm TJ, Leavitt S, Distefano I, Polyiam W, Pizarro D, Wedin M, Crespo A, Divakar PK, Lumbsch HT. Using target enrichment sequencing to study the higher-level phylogeny of the largest lichen-forming fungi family: Parmeliaceae (Ascomycota). IMA Fungus 2020; 11:27. [PMID: 33317627 PMCID: PMC7734834 DOI: 10.1186/s43008-020-00051-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/29/2020] [Indexed: 11/10/2022] Open
Abstract
Parmeliaceae is the largest family of lichen-forming fungi with a worldwide distribution. We used a target enrichment data set and a qualitative selection method for 250 out of 350 genes to infer the phylogeny of the major clades in this family including 81 taxa, with both subfamilies and all seven major clades previously recognized in the subfamily Parmelioideae. The reduced genome-scale data set was analyzed using concatenated-based Bayesian inference and two different Maximum Likelihood analyses, and a coalescent-based species tree method. The resulting topology was strongly supported with the majority of nodes being fully supported in all three concatenated-based analyses. The two subfamilies and each of the seven major clades in Parmelioideae were strongly supported as monophyletic. In addition, most backbone relationships in the topology were recovered with high nodal support. The genus Parmotrema was found to be polyphyletic and consequently, it is suggested to accept the genus Crespoa to accommodate the species previously placed in Parmotrema subgen. Crespoa. This study demonstrates the power of reduced genome-scale data sets to resolve phylogenetic relationships with high support. Due to lower costs, target enrichment methods provide a promising avenue for phylogenetic studies including larger taxonomic/specimen sampling than whole genome data would allow.
Collapse
Affiliation(s)
- Felix Grewe
- Science & Education, The Grainger Bioinformatics Center, Negaunee Integrative Research Center, Gantz Family Collections Center, and Pritzker Laboratory for Molecular Systematics, The Field Museum, 1400 S. Lake Shore Drive, Chicago, IL, USA.
| | - Claudio Ametrano
- Science & Education, The Grainger Bioinformatics Center, Negaunee Integrative Research Center, Gantz Family Collections Center, and Pritzker Laboratory for Molecular Systematics, The Field Museum, 1400 S. Lake Shore Drive, Chicago, IL, USA
| | - Todd J Widhelm
- Science & Education, The Grainger Bioinformatics Center, Negaunee Integrative Research Center, Gantz Family Collections Center, and Pritzker Laboratory for Molecular Systematics, The Field Museum, 1400 S. Lake Shore Drive, Chicago, IL, USA
| | - Steven Leavitt
- Department of Biology and M. L. Bean Life Science Museum, Brigham Young University, Provo, UT, USA
| | - Isabel Distefano
- Science & Education, The Grainger Bioinformatics Center, Negaunee Integrative Research Center, Gantz Family Collections Center, and Pritzker Laboratory for Molecular Systematics, The Field Museum, 1400 S. Lake Shore Drive, Chicago, IL, USA
| | - Wetchasart Polyiam
- Lichen Research Unit, Biology Department, Faculty of Science, Ramkhamhaeng University, Ramkhamhaeng 24 Road, Bangkok, 10240, Thailand
| | - David Pizarro
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Mats Wedin
- Department of Botany, Swedish Museum of Natural History, PO Box 50007, SE-104 05, Stockholm, Sweden
| | - Ana Crespo
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Pradeep K Divakar
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - H Thorsten Lumbsch
- Science & Education, The Grainger Bioinformatics Center, Negaunee Integrative Research Center, Gantz Family Collections Center, and Pritzker Laboratory for Molecular Systematics, The Field Museum, 1400 S. Lake Shore Drive, Chicago, IL, USA
| |
Collapse
|
14
|
Mark K, Laanisto L, Bueno CG, Niinemets Ü, Keller C, Scheidegger C. Contrasting co-occurrence patterns of photobiont and cystobasidiomycete yeast associated with common epiphytic lichen species. THE NEW PHYTOLOGIST 2020; 227:1362-1375. [PMID: 32034954 DOI: 10.1111/nph.16475] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
The popular dual definition of lichen symbiosis is under question with recent findings of additional microbial partners living within the lichen body. Here we compare the distribution and co-occurrence patterns of lichen photobiont and recently described secondary fungus (Cyphobasidiales yeast) to evaluate their dependency on lichen host fungus (mycobiont). We sequenced the nuclear internal transcribed spacer (ITS) strands for mycobiont, photobiont, and yeast from six widespread northern hemisphere epiphytic lichen species collected from 25 sites in Switzerland and Estonia. Interaction network analyses and multivariate analyses were conducted on operational taxonomic units based on ITS sequence data. Our study demonstrates the frequent presence of cystobasidiomycete yeasts in studied lichens and shows that they are much less mycobiont-specific than the photobionts. Individuals of different lichen species growing on the same tree trunk consistently hosted the same or closely related mycobiont-specific Trebouxia lineage over geographic distances while the cystobasidiomycete yeasts were unevenly distributed over the study area - contrasting communities were found between Estonia and Switzerland. These results contradict previous findings of high mycobiont species specificity of Cyphobasidiales yeast at large geographic scales. Our results suggest that the yeast might not be as intimately associated with the symbiosis as is the photobiont.
Collapse
Affiliation(s)
- Kristiina Mark
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Fr. R. Kreutzwaldi 5, Tartu, 51006, Estonia
- Department of Biodiversity and Conservation Biology, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf, 8903, Switzerland
| | - Lauri Laanisto
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Fr. R. Kreutzwaldi 5, Tartu, 51006, Estonia
| | - C Guillermo Bueno
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - Ülo Niinemets
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Fr. R. Kreutzwaldi 5, Tartu, 51006, Estonia
- Estonian Academy of Sciences, Kohtu 6, Tallinn, 10130, Estonia
| | - Christine Keller
- Department of Biodiversity and Conservation Biology, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf, 8903, Switzerland
| | - Christoph Scheidegger
- Department of Biodiversity and Conservation Biology, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf, 8903, Switzerland
| |
Collapse
|
15
|
Nelsen MP, Lücking R, Boyce CK, Lumbsch HT, Ree RH. The macroevolutionary dynamics of symbiotic and phenotypic diversification in lichens. Proc Natl Acad Sci U S A 2020; 117:21495-21503. [PMID: 32796103 PMCID: PMC7474681 DOI: 10.1073/pnas.2001913117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Symbioses are evolutionarily pervasive and play fundamental roles in structuring ecosystems, yet our understanding of their macroevolutionary origins, persistence, and consequences is incomplete. We traced the macroevolutionary history of symbiotic and phenotypic diversification in an iconic symbiosis, lichens. By inferring the most comprehensive time-scaled phylogeny of lichen-forming fungi (LFF) to date (over 3,300 species), we identified shifts among symbiont classes that broadly coincided with the convergent evolution of phylogenetically or functionally similar associations in diverse lineages (plants, fungi, bacteria). While a relatively recent loss of lichenization in Lecanoromycetes was previously identified, our work instead suggests lichenization was abandoned far earlier, interrupting what had previously been considered a direct switch between trebouxiophycean and trentepohlialean algal symbionts. Consequently, some of the most diverse clades of LFF are instead derived from nonlichenized ancestors and re-evolved lichenization with Trentepohliales algae, a clade that also facilitated lichenization in unrelated lineages of LFF. Furthermore, while symbiont identity and symbiotic phenotype influence the ecology and physiology of lichens, they are not correlated with rates of lineage birth and death, suggesting more complex dynamics underly lichen diversification. Finally, diversification patterns of LFF differed from those of wood-rotting and ectomycorrhizal taxa, likely reflecting contrasts in their fundamental biological properties. Together, our work provides a timeline for the ecological contributions of lichens, and reshapes our understanding of symbiotic persistence in a classic model of symbiosis.
Collapse
Affiliation(s)
- Matthew P Nelsen
- Department of Science and Education, Negaunee Integrative Research Center, The Field Museum, Chicago, IL 60605;
| | - Robert Lücking
- Botanischer Garten und Botanisches Museum, Freie Universität Berlin, 14195 Berlin, Germany
| | - C Kevin Boyce
- Department of Geological Sciences, Stanford University, Stanford, CA 94305
| | - H Thorsten Lumbsch
- Department of Science and Education, Negaunee Integrative Research Center, The Field Museum, Chicago, IL 60605
| | - Richard H Ree
- Department of Science and Education, Negaunee Integrative Research Center, The Field Museum, Chicago, IL 60605
| |
Collapse
|
16
|
Guterres DC, Dos Santos MDDM, Silva RAFD, Souza ESDC, Soares WRO, Pinho DB, Dianese JC. Cladosterigma: an enigmatic fungus, previously considered a basidiomycete, now revealed as an ascomycete member of the Gomphillaceae. Mycologia 2020; 112:829-846. [PMID: 32684107 DOI: 10.1080/00275514.2020.1781501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Cladosterigma clavariellum has been treated as a basidiomycete since its first description by Spegazzini in 1886 as Microcera clavariella. After further morphological studies, between 1919 and 2011, it remained among the basidiomycetes, most recently as incertae sedis in the order Cryptobasidiales. Our studies, based on light and scanning electron microscopy, supported by multilocus phylogenetic analyses-second-largest subunit of RNA polymerase II (RPB2), translation elongation factor 1-alpha (TEF1), small subunit (18S), large subunit (28S), and nuclear internal transcribed spacers (ITS1-5.8S-ITS2 = ITS) of the nuclear rDNA sequences, and mitochondrial rDNA small subunit (mtSSU)-finally determined the phylogenetic placement of Cladosterigma as the first nonlichenicolous mycoparasitic member of the Gomphillaceae within the Graphidales, an ascomycete order previously composed predominantly of lichen-forming fungi.
Collapse
Affiliation(s)
| | | | | | | | | | - Danilo Batista Pinho
- Departamento de Fitopatologia, Universidade de Brasília , 70910-900, Brasília, DF, Brazil
| | - José Carmine Dianese
- Departamento de Fitopatologia, Universidade de Brasília , 70910-900, Brasília, DF, Brazil.,Departamento de Biologia Celular/Biologia Microbiana, Universidade de Brasília , 70910-900, Brasília, DF, Brazil
| |
Collapse
|
17
|
Inhibitory Mechanism of Trichoderma virens ZT05 on Rhizoctonia solani. PLANTS 2020; 9:plants9070912. [PMID: 32707691 PMCID: PMC7412022 DOI: 10.3390/plants9070912] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 01/09/2023]
Abstract
Trichoderma is a filamentous fungus that is widely distributed in nature. As a biological control agent of agricultural pests, Trichoderma species have been widely studied in recent years. This study aimed to understand the inhibitory mechanism of Trichoderma virens ZT05 on Rhizoctonia solani through the side-by-side culture of T. virens ZT05 and R. solani. To this end, we investigated the effect of volatile and nonvolatile metabolites of T. virens ZT05 on the mycelium growth and enzyme activity of R. solani and analyzed transcriptome data collected from side-by-side culture. T. virens ZT05 has a significant antagonistic effect against R. solani. The mycelium of T. virens ZT05 spirally wraps around and penetrates the mycelium of R. solani and inhibits the growth of R. solani. The volatile and nonvolatile metabolites of T. virens ZT05 have significant inhibitory effects on the growth of R. solani. The nonvolatile metabolites of T. virens ZT05 significantly affect the mycelium proteins of R. solani, including catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), selenium-dependent glutathione peroxidase (GSH-Px), soluble proteins, and malondialdehyde (MDA). Twenty genes associated with hyperparasitism, including extracellular proteases, oligopeptide transporters, G-protein coupled receptors (GPCRs), chitinases, glucanases, and proteases were found to be upregulated during the antagonistic process between T. virens ZT05 and R. solani. Thirty genes related to antibiosis function, including tetracycline resistance proteins, reductases, the heat shock response, the oxidative stress response, ATP-binding cassette (ABC) efflux transporters, and multidrug resistance transporters, were found to be upregulated during the side-by-side culture of T. virens ZT05 and R. solani. T. virens ZT05 has a significant inhibitory effect on R. solani, and its mechanism of action is associated with hyperparasitism and antibiosis.
Collapse
|
18
|
Liu F, Chen S, Ferreira MA, Chang R, Sayari M, Kanzi AM, Wingfield BD, Wingfield MJ, Pizarro D, Crespo A, Divakar PK, de Beer ZW, Duong TA. Draft genome sequences of five Calonectria species from Eucalyptus plantations in China, Celoporthe dispersa, Sporothrix phasma and Alectoria sarmentosa. IMA Fungus 2019; 10:22. [PMID: 32647626 PMCID: PMC7325655 DOI: 10.1186/s43008-019-0023-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 12/31/2022] Open
Abstract
Draft genome sequences of five Calonectria species [including Calonectria aciculata, C. crousiana, C. fujianensis, C. honghensis and C. pseudoturangicola], Celoporthe dispersa, Sporothrix phasma and Alectoria sarmentosa are presented. Species of Calonectria are the causal agents of Eucalyptus leaf blight disease, threatening the growth and sustainability of Eucalyptus plantations in China. Celoporthe dispersa is the causal agent of stem canker in native Syzygium cordatum and exotic Tibouchina granulosa in South Africa. Sporothrix phasma was first discovered in the infructescences of Protea laurifolia and Protea neriifolia in South Africa. Alectoria sarmentosa is fruticose lichen belongs to the alectorioid clade of the family Parmeliaceae. The availability of these genome sequences will facilitate future studies on the systematics, population genetics, and genomics of these fungi.
Collapse
Affiliation(s)
- Feifei Liu
- State Key Laboratory of Tree Genetics and Breeding (SKLTGB), Chinese Academy of Forestry (CAF), Haidian District, Beijing, 100091 China.,China Eucalypt Research Centre (CERC), Chinese Academy of Forestry (CAF), ZhanJiang, 524022 GuangDong Province China.,Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028 South Africa
| | - Shuaifei Chen
- State Key Laboratory of Tree Genetics and Breeding (SKLTGB), Chinese Academy of Forestry (CAF), Haidian District, Beijing, 100091 China.,China Eucalypt Research Centre (CERC), Chinese Academy of Forestry (CAF), ZhanJiang, 524022 GuangDong Province China.,Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028 South Africa
| | - Maria A Ferreira
- Department of Plant Pathology, Universidade Federal de Lavras (Federal University of Lavras), Postal Box 3037, Lavras, 37200-000 Brazil
| | - Runlei Chang
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028 South Africa
| | - Mohammad Sayari
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028 South Africa
| | - Aquillah M Kanzi
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028 South Africa
| | - Brenda D Wingfield
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028 South Africa
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028 South Africa
| | - David Pizarro
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Ana Crespo
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Pradeep K Divakar
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Z Wilhelm de Beer
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028 South Africa
| | - Tuan A Duong
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028 South Africa
| |
Collapse
|
19
|
Łubek A, Kukwa M, Czortek P, Jaroszewicz B. Lichenicolous fungi are more specialized than their lichen hosts in primeval forest ecosystems, Białowieża Forest, northeast Poland. FUNGAL ECOL 2019. [DOI: 10.1016/j.funeco.2019.100866] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
20
|
González-Burgos E, Fernández-Moriano C, Gómez-Serranillos MP. Current knowledge on Parmelia genus: Ecological interest, phytochemistry, biological activities and therapeutic potential. PHYTOCHEMISTRY 2019; 165:112051. [PMID: 31234093 DOI: 10.1016/j.phytochem.2019.112051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/03/2019] [Accepted: 06/11/2019] [Indexed: 06/09/2023]
Abstract
Parmelia Acharius is one of the most representative genera within Parmeliaceae family which is the largest and the most widespread family of lichen-forming fungi. Parmelia lichens present a medium to large foliose thallus and they are distributed from the Artic to the Antartic continents, being more concentrated in temperate regions. According to its current description, the genus encompasses up to 41 different species and it is phylogenetically located within the Parmelioid clade (the largest group in the family). Interestingly, some of its species are among the most common epiphytic lichens in Europe such as Parmelia sulcata Taylor and Parmelia saxatilis (L.) Ach. The present work aims at providing a complete overview of the existing knowledge on the genus, from general concepts such as taxonomy and phylogeny, to their ecological relevance and biological interest for pharmaceutical uses. As reported, Parmelia lichens arise as valuable tools for biomonitoring environmental pollution due to their capacity to bioaccumulate metal elements and its response to acid rain. Moreover, they produce a wide array of specialized products/metabolites including depsides, depsidones, triterpenes and dibenzofurans, which have been suggested to exert promising pharmacological activities, mainly antimicrobial, antioxidant and cytotoxic activities. Herein, we discuss past and recent data regarding to the phytochemical characterization of more than 15 species. Even though the knowledge is still scarce in comparsion to other groups of organisms such as higher plants and other non-lichenized fungi. Reviewed works suggest that Parmelia lichens are worthy of further research for determining their actual possibilities as sources of bioactive compounds with potential therapeutic applications.
Collapse
Affiliation(s)
- Elena González-Burgos
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, University Complutense of Madrid, Plaza Ramón y Cajal S/n, 28004, Madrid, Spain
| | - Carlos Fernández-Moriano
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, University Complutense of Madrid, Plaza Ramón y Cajal S/n, 28004, Madrid, Spain
| | - M Pilar Gómez-Serranillos
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, University Complutense of Madrid, Plaza Ramón y Cajal S/n, 28004, Madrid, Spain.
| |
Collapse
|
21
|
Kaasalainen U, Kukwa M, Rikkinen J, Schmidt AR. Crustose lichens with lichenicolous fungi from Paleogene amber. Sci Rep 2019; 9:10360. [PMID: 31316089 PMCID: PMC6637111 DOI: 10.1038/s41598-019-46692-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/29/2019] [Indexed: 11/29/2022] Open
Abstract
Lichens, symbiotic consortia of lichen-forming fungi and their photosynthetic partners have long had an extremely poor fossil record. However, recently over 150 new lichens were identified from European Paleogene amber and here we analyse crustose lichens from the new material. Three fossil lichens belong to the extant genus Ochrolechia (Ochrolechiaceae, Lecanoromycetes) and one fossil has conidiomata similar to those produced by modern fungi of the order Arthoniales (Arthoniomycetes). Intriguingly, two fossil Ochrolechia specimens host lichenicolous fungi of the genus Lichenostigma (Lichenostigmatales, Arthoniomycetes). This confirms that both Ochrolechia and Lichenostigma already diversified in the Paleogene and demonstrates that also the specific association between the fungi had evolved by then. The new fossils provide a minimum age constraint for both genera at 34 million years (uppermost Eocene).
Collapse
Affiliation(s)
- Ulla Kaasalainen
- Department of Geobiology, University of Göttingen, Goldschmidtstraβe 3, 37077, Göttingen, Germany.
| | - Martin Kukwa
- Department of Plant Taxonomy and Nature Conservation, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Jouko Rikkinen
- Finnish Museum of Natural History, P.O Box 7, 00014 University of Helsinki, Helsinki, Finland.,Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, P.O Box 65, 00014 University of Helsinki, Helsinki, Finland
| | - Alexander R Schmidt
- Department of Geobiology, University of Göttingen, Goldschmidtstraβe 3, 37077, Göttingen, Germany
| |
Collapse
|
22
|
Nóbrega V, Faria M, Quintana A, Kaufmann M, Ferreira A, Cordeiro N. From a Basic Microalga and an Acetic Acid Bacterium Cellulose Producer to a Living Symbiotic Biofilm. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2275. [PMID: 31311139 PMCID: PMC6678410 DOI: 10.3390/ma12142275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 12/25/2022]
Abstract
Bacterial cellulose (BC) has recently been the subject of a considerable amount of research, not only for its environmentally friendly biosynthesis, but also for its high potential in areas such as biomedicine or biomaterials. A symbiotic relationship between a photosynthetic microalga, Chlamydomonas debaryana, and a cellulose producer bacterium, Komagataeibacter saccharivorans, was established in order to obtain a viable and active biofilm. The effect of the growth media composition ratio on the produced living material was investigated, as well as the microalgae biomass quantity, temperature, and incubation time. The optimal temperature for higher symbiotic biofilm production was 30 °C with an incubation period of 14 days. The high microalgae presence, 0.75% w/v, and 60:40 HS:BG-11 medium (v/v) induced a biofilm microalgae incorporation rate of 85%. The obtained results report, for the first time, a successful symbiotic interaction developed in situ between an alkaline photosynthetic microalga and an acetic acid bacterium. These results are promising and open a new window to BC living biofilm applications in medical fields that have not yet been explored.
Collapse
Affiliation(s)
- Vítor Nóbrega
- LB3, Faculty of Science and Engineering, University of Madeira, 9000-390 Funchal, Portugal
| | - Marisa Faria
- LB3, Faculty of Science and Engineering, University of Madeira, 9000-390 Funchal, Portugal
- Oceanic Observatory of Madeira (OOM), ARDITI, Madeira Tecnopolo, 9020-105 Funchal, Portugal
| | - Antera Quintana
- Banco Español de Algas, Instituto de Oceanografía y Cambio Global (IOCAG), Universidad de Las Palmas de Gran Canaria, 35214 Telde, Spain
| | - Manfred Kaufmann
- Marine Biology Station of Funchal, Faculty of Life Sciences, University of Madeira, 9000-107 Funchal, Portugal
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
| | - Artur Ferreira
- CICECO, Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Nereida Cordeiro
- LB3, Faculty of Science and Engineering, University of Madeira, 9000-390 Funchal, Portugal.
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
23
|
Huang JP, Kraichak E, Leavitt SD, Nelsen MP, Lumbsch HT. Accelerated diversifications in three diverse families of morphologically complex lichen-forming fungi link to major historical events. Sci Rep 2019; 9:8518. [PMID: 31253825 PMCID: PMC6599062 DOI: 10.1038/s41598-019-44881-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/20/2019] [Indexed: 11/09/2022] Open
Abstract
Historical mass extinction events had major impacts on biodiversity patterns. The most recent and intensively studied event is the Cretaceous - Paleogene (K-Pg) boundary (ca. 66 million years ago [MYA]). However, the factors that may have impacted diversification dynamics vary across lineages. We investigated the macroevolutionary dynamics with a specific focus on the impact of major historical events such as the K-Pg mass extinction event on two major subclasses - Lecanoromycetidae and Ostropomycetidae - of lichen-forming fungi and tested whether variation in the rate of diversification can be associated with the evolution of a specific trait state - macrolichen. Our results reveal accelerated diversification events in three families of morphologically complex lichen-forming fungi - Cladoniaceae, Parmeliaceae, and Peltigeraceae - which are from the subclass Lecanoromycetidae and mostly composed of macrolichens, those that form three dimensional structures. Our RTT plot result for the subclass Lecanoromycetidae also reveals accelerated diversification. Changes in diversification rates occurred around the transition between Mesozoic and Cenozoic eras and was likely related to the K-Pg mass extinction event. The phylogenetic positions for rate increases estimated based on marginal shift probability are, however, scattered from 100 to 40 MYA preventing us from making explicit inference. Although we reveal that the phenotypic state of macrolichens is associated with a higher diversification rate than microlichens, we also show that the evolution of macrolichens predated the K-Pg event. Furthermore, the association between macrolichens and increased diversification is not universal and can be explained, in part, by phylogenetic relatedness. By investigating the macroevolutionary dynamics of lichen-forming fungi our study provides a new empirical system suitable to test the effect of major historical event on shaping biodiversity patterns and to investigate why changes in biodiversity patterns are not in concordance across clades. Our results imply that multiple historical events during the transition from Mesozoic to Cenozoic eras, including the K-Pg mass extinction event, impacted the evolutionary dynamics in lichen-forming fungi. However, future studies focusing on individual lichen-forming fungal families are required to ascertain whether diversification rates are associated with growth form and certain geological events.
Collapse
Affiliation(s)
- Jen-Pan Huang
- Integrative Research Center, The Field Museum, Chicago, IL, 60605, USA. .,Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.
| | - Ekaphan Kraichak
- Department of Botany, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Steven D Leavitt
- Department of Biology and M. L. Bean Life Science Museum, Brigham Young University, Provo, UT, 84602, USA
| | - Matthew P Nelsen
- Integrative Research Center, The Field Museum, Chicago, IL, 60605, USA
| | | |
Collapse
|
24
|
|
25
|
Flakus A, Etayo J, Pérez-Ortega S, Kukwa M, Palice Z, Rodriguez-Flakus P. A new genus, Zhurbenkoa, and a novel nutritional mode revealed in the family Malmideaceae (Lecanoromycetes, Ascomycota). Mycologia 2019; 111:593-611. [PMID: 31136256 DOI: 10.1080/00275514.2019.1603500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Lichen-inhabiting fungi are highly specialized mycoparasites, commensals or rarely saprotrophs, that are common components of almost every ecosystem, where they develop obligate associations with lichens. Their relevance, however, contrasts with the relatively small number of these fungi described so far. Recent estimates and ongoing studies indicate that a significant fraction of their diversity remains undiscovered and may be expected in tropical regions, in particular in hyperdiverse fog-exposed montane forests. Here, we introduce the new genus Zhurbenkoa, from South America and Europe, for three lichenicolous fungi growing on thalli of the widespread lichen genus Cladonia (Lecanorales). Phylogenetic analyses based on combined sequence data of mt and nuc rDNA obtained from Andean populations (Bolivia) placed Zhurbenkoa as a member of Malmideaceae, a recently introduced family of lichen-forming fungi in the class Lecanoromycetes. Zhurbenkoa is closely related to the genera Savoronala and Sprucidea. The new genus is characterized by the development of grayish brown to almost black apothecia lacking an evident margin, an epihymenium interspersed with crystals (often seen as pruina), a strongly conglutinated hymenium made of noncapitate and sparsely branched paraphyses, a colorless exciple composed of radially arranged hyphae, a Lecanora/Micarea-like ascus type, and aseptate or 1-septate ellipsoidal colorless ascospores. Zhurbenkoa includes two Neotropical (Z. cladoniarum, Z. latispora) and one widespread (Z. epicladonia) species. The lichenicolous trophic mode is documented for the first time in the Malmideaceae, which until now included only lichen-forming associations between fungi and green algae.
Collapse
Affiliation(s)
- Adam Flakus
- a Department of Lichenology, W. Szafer Institute of Botany, Polish Academy of Sciences , Lubicz 46 , PL-31-512 Krakow , Poland
| | - Javier Etayo
- b Navarro Villoslada 16 , 3° dcha ., E-31003 Pamplona , Navarra , Spain
| | | | - Martin Kukwa
- d Department of Plant Taxonomy and Nature Conservation, Faculty of Biology, University of Gdańsk , Wita Stwosza 59 , PL-80-308 Gdańsk , Poland
| | - Zdeněk Palice
- e Institute of Botany, Czech Academy of Sciences , CZ-25243 Průhonice , Czech Republic
| | - Pamela Rodriguez-Flakus
- f Laboratory of Molecular Analyses, W. Szafer Institute of Botany, Polish Academy of Sciences , Lubicz 46 , PL-31512 Krakow , Poland
| |
Collapse
|
26
|
Zhang J, Miao Y, Rahimi MJ, Zhu H, Steindorff A, Schiessler S, Cai F, Pang G, Chenthamara K, Xu Y, Kubicek CP, Shen Q, Druzhinina IS. Guttation capsules containing hydrogen peroxide: an evolutionarily conserved NADPH oxidase gains a role in wars between related fungi. Environ Microbiol 2019; 21:2644-2658. [PMID: 30815928 PMCID: PMC6850483 DOI: 10.1111/1462-2920.14575] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 02/24/2019] [Accepted: 02/26/2019] [Indexed: 12/01/2022]
Abstract
When resources are limited, the hypocrealean fungus Trichoderma guizhouense can overgrow another hypocrealean fungus Fusarium oxysporum, cause sporadic cell death and arrest growth. A transcriptomic analysis of this interaction shows that T. guizhouense undergoes a succession of metabolic stresses while F. oxysporum responded relatively neutrally but used the constitutive expression of several toxin‐encoding genes as a protective strategy. Because of these toxins, T. guizhouense cannot approach it is potential host on the substrate surface and attacks F. oxysporum from above. The success of T. guizhouense is secured by the excessive production of hydrogen peroxide (H2O2), which is stored in microscopic bag‐like guttation droplets hanging on the contacting hyphae. The deletion of NADPH oxidase nox1 and its regulator, nor1 in T. guizhouense led to a substantial decrease in H2O2 formation with concomitant loss of antagonistic activity. We envision the role of NOX proteins in the antagonism of T. guizhouense as an example of metabolic exaptation evolved in this fungus because the primary function of these ancient proteins was probably not linked to interfungal relationships. In support of this, F. oxysporum showed almost no transcriptional response to T. guizhouense Δnox1 strain indicating the role of NOX/H2O2 in signalling and fungal communication.
Collapse
Affiliation(s)
- Jian Zhang
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, China.,Microbiology and Applied Genomics Group, Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
| | - Youzhi Miao
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Mohammad Javad Rahimi
- Microbiology and Applied Genomics Group, Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
| | - Hong Zhu
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Andrei Steindorff
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Sabine Schiessler
- Microbiology and Applied Genomics Group, Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
| | - Feng Cai
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, China.,Microbiology and Applied Genomics Group, Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
| | - Guan Pang
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Komal Chenthamara
- Microbiology and Applied Genomics Group, Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
| | - Yu Xu
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Christian P Kubicek
- Microbiology and Applied Genomics Group, Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria.,Steinschoetelgasse 7,1100, Vienna, Austria
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Irina S Druzhinina
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, China.,Microbiology and Applied Genomics Group, Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
| |
Collapse
|
27
|
Gerlach ADCL, Toprak Z, Naciri Y, Caviró EA, da Silveira RMB, Clerc P. New insights into the Usnea cornuta aggregate (Parmeliaceae, lichenized Ascomycota): Molecular analysis reveals high genetic diversity correlated with chemistry. Mol Phylogenet Evol 2019; 131:125-137. [DOI: 10.1016/j.ympev.2018.10.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 09/17/2018] [Accepted: 10/26/2018] [Indexed: 01/01/2023]
|
28
|
Singh G, Ptroot A, Ico VJ, Tte J, Pradeep K Divakar, Crespo A, Cáceres MEDS, H Thorsten Lumbsch, Schmitt I. Neoprotoparmelia gen. nov. and Maronina (Lecanorales, Protoparmelioideae): species description and generic delimitation using DNA barcodes and phenotypical characters. MycoKeys 2018:19-50. [PMID: 30595656 PMCID: PMC6303283 DOI: 10.3897/mycokeys.44.29904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/12/2018] [Indexed: 11/12/2022] Open
Abstract
Multilocus phylogenetic studies revealed a high level of cryptic diversity within the lichen-forming fungal genus Maronina (Protoparmelioideae, Parmeliaceae). Coalescent-based species delimitation suggested that most of the cryptic molecular lineages warranted recognition as separate species. Here we study the morphology and chemistry of these taxa and formally describe eight new species based on phenotypical and molecular characters. Further, we evaluate the use of ITS rDNA as a DNA barcode for identifying species in this genus. For the first time, we obtained an ITS sequence of Maroninaaustraliensis, the type species of the genus and showed that it is phylogenetically not closely related to species currently placed in Maronina or Protoparmelia. We assembled a dataset of 66 ITS sequences to assess the interspecies genetic distances amongst the twelve Maronina species using ITS as DNA barcode. We found that Maronina and Protoparmelia form a supported monophyletic group whereas M.australiensis is sister to both. We therefore propose a new genus Neoprotoparmelia to accommodate the tropical-subtropical species within Protoparmelioideae, with Neoprotoparmeliacorallifera as the type, N.amerisidiata, N.australisidiata, N.brasilisidiata, N.capensis, N.crassa, N.pauli, N.plurisporibadia and N.siamisidiata as new species and N.capitata, N.isidiata, N.multifera, N.orientalis and N.pulchra as new proposed combinations. We provide a key to Neoprotoparmelia and confirm the use of ITS for accurately identifying species in this group.
Collapse
Affiliation(s)
- Garima Singh
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - André Ptroot
- Laboratório de Botânica/Liquenologia, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, Caixa Postal 549, CEP 79070-900, Campo Grande, Mato Grosso do Sul, Brazil
| | - Víctor J Ico
- Departamento de Farmacología, Farmacognosia y Botánica, U.D. Botánica, Facultad de Farmacia, Universidad Complutense, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain
| | - Jürgen Tte
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Pradeep K Divakar
- Departamento de Farmacología, Farmacognosia y Botánica, U.D. Botánica, Facultad de Farmacia, Universidad Complutense, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain
| | - Ana Crespo
- Departamento de Farmacología, Farmacognosia y Botánica, U.D. Botánica, Facultad de Farmacia, Universidad Complutense, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain
| | | | - H Thorsten Lumbsch
- Science & Education, Field Museum of Natural History, 1400 S. Lake Shore Drive, Chicago, IL, 60605, United States of America
| | - Imke Schmitt
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany.,Department of Biological Sciences, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| |
Collapse
|
29
|
Mark K, Randlane T, Thor G, Hur JS, Obermayer W, Saag A. Lichen chemistry is concordant with multilocus gene genealogy in the genus Cetrelia (Parmeliaceae, Ascomycota). Fungal Biol 2018; 123:125-139. [PMID: 30709518 DOI: 10.1016/j.funbio.2018.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 11/02/2018] [Accepted: 11/22/2018] [Indexed: 12/18/2022]
Abstract
The lichen genus Cetrelia represents a taxonomically interesting case where morphologically almost uniform populations differ considerably from each other chemically. Similar variation is not uncommon among lichenized fungi, but it is disputable whether such populations should be considered entities at the species level. Species boundaries in Cetrelia are traditionally delimited either as solely based on morphology or as combinations of morpho- and chemotypes. A dataset of four nuclear markers (ITS, IGS, Mcm7, RPB1) from 62 specimens, representing ten Cetrelia species, was analysed within Bayesian and maximum likelihood frameworks. Analyses recovered a well-resolved phylogeny where the traditional species generally were monophyletic, with the exception of Cetrelia chicitae and Cetrelia pseudolivetorum. Species delimitation analyses supported the distinction of 15 groups within the studied Cetrelia taxa, dividing three traditionally identified species into some species candidates. Chemotypes, distinguished according to the major medullary substance, clearly correlated with clades recovered within Cetrelia, while samples with the same reproductive mode were dispersed throughout the phylogenetic tree. Consequently, delimiting Cetrelia species based only on reproductive morphology is not supported phylogenetically. Character analyses suggest that chemical characters have been more consistent compared to reproductive mode and indicate that metabolite evolution in Cetrelia towards more complex substances is probable.
Collapse
Affiliation(s)
- Kristiina Mark
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu 51005, Estonia; Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | - Tiina Randlane
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu 51005, Estonia.
| | - Göran Thor
- Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jae-Seoun Hur
- Korean Lichen Research Institute, Sunchon National University, 255 Jungang-Ro, South Korea
| | | | - Andres Saag
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu 51005, Estonia
| |
Collapse
|
30
|
Pizarro D, Divakar PK, Grewe F, Leavitt SD, Huang JP, Dal Grande F, Schmitt I, Wedin M, Crespo A, Lumbsch HT. Phylogenomic analysis of 2556 single-copy protein-coding genes resolves most evolutionary relationships for the major clades in the most diverse group of lichen-forming fungi. FUNGAL DIVERS 2018. [DOI: 10.1007/s13225-018-0407-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
31
|
Singh G, Grande FD, Schnitzler J, Pfenninger M, Schmitt I. Different diversification histories in tropical and temperate lineages in the ascomycete subfamily Protoparmelioideae (Parmeliaceae). MycoKeys 2018; 36:1-19. [PMID: 29997448 PMCID: PMC6037653 DOI: 10.3897/mycokeys.36.22548] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 06/19/2018] [Indexed: 11/12/2022] Open
Abstract
Background: Environment and geographic processes affect species' distributions as well as evolutionary processes, such as clade diversification. Estimating the time of origin and diversification of organisms helps us understand how climate fluctuations in the past might have influenced the diversification and present distribution of species. Complementing divergence dating with character evolution could indicate how key innovations have facilitated the diversification of species. Methods: We estimated the divergence times within the newly recognised subfamily Protoparmelioideae (Ascomycota) using a multilocus dataset to assess the temporal context of diversification events. We reconstructed ancestral habitats and substrate using a species tree generated in *Beast. Results: We found that the diversification in Protoparmelioideae occurred during the Miocene and that the diversification events in the tropical clade Maronina predate those of the extratropical Protoparmelia. Character reconstructions suggest that the ancestor of Protoparmelioideae was most probably a rock-dwelling lichen inhabiting temperate environments. Conclusions: Major diversification within the subtropical/tropical genus Maronina occurred between the Paleocene and Miocene whereas the diversifications within the montane, arctic/temperate genus Protoparmelia occurred much more recently, i.e. in the Miocene.
Collapse
Affiliation(s)
- Garima Singh
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany
| | - Francesco Dal Grande
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany
| | - Jan Schnitzler
- Department of Molecular Evolution and Plant Systematics, Institute of Biology, Leipzig University, Germany
| | - Markus Pfenninger
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany
| | - Imke Schmitt
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany
- Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Goethe Universität Frankfurt am Main, Germany
| |
Collapse
|
32
|
Three new species and one new combination of Gypsoplaca (lichenized Ascomycota) from the Hengduan Mountains in China. Mycol Prog 2018. [DOI: 10.1007/s11557-018-1396-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
33
|
Paul F, Otte J, Schmitt I, Dal Grande F. Comparing Sanger sequencing and high-throughput metabarcoding for inferring photobiont diversity in lichens. Sci Rep 2018; 8:8624. [PMID: 29872090 PMCID: PMC5988838 DOI: 10.1038/s41598-018-26947-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/22/2018] [Indexed: 11/26/2022] Open
Abstract
The implementation of HTS (high-throughput sequencing) approaches is rapidly changing our understanding of the lichen symbiosis, by uncovering high bacterial and fungal diversity, which is often host-specific. Recently, HTS methods revealed the presence of multiple photobionts inside a single thallus in several lichen species. This differs from Sanger technology, which typically yields a single, unambiguous algal sequence per individual. Here we compared HTS and Sanger methods for estimating the diversity of green algal symbionts within lichen thalli using 240 lichen individuals belonging to two species of lichen-forming fungi. According to HTS data, Sanger technology consistently yielded the most abundant photobiont sequence in the sample. However, if the second most abundant photobiont exceeded 30% of the total HTS reads in a sample, Sanger sequencing generally failed. Our results suggest that most lichen individuals in the two analyzed species, Lasallia hispanica and L. pustulata, indeed contain a single, predominant green algal photobiont. We conclude that Sanger sequencing is a valid approach to detect the dominant photobionts in lichen individuals and populations. We discuss which research areas in lichen ecology and evolution will continue to benefit from Sanger sequencing, and which areas will profit from HTS approaches to assessing symbiont diversity.
Collapse
Affiliation(s)
- Fiona Paul
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Jürgen Otte
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Imke Schmitt
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany.
- Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany.
| | - Francesco Dal Grande
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany.
- Departamento de Farmacología, Farmacognosia y Botánica, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| |
Collapse
|
34
|
Widhelm TJ, Bertoletti FR, Asztalos MJ, Mercado-Díaz JA, Huang JP, Moncada B, Lücking R, Magain N, Sérusiaux E, Goffinet B, Crouch N, Mason-Gamer R, Lumbsch HT. Oligocene origin and drivers of diversification in the genus Sticta (Lobariaceae, Ascomycota). Mol Phylogenet Evol 2018; 126:58-73. [PMID: 29656104 DOI: 10.1016/j.ympev.2018.04.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 02/19/2018] [Accepted: 04/05/2018] [Indexed: 11/24/2022]
Abstract
A major challenge to evolutionary biologists is to understand how biodiversity is distributed through space and time and across the tree of life. Diversification of organisms is influenced by many factors that act at different times and geographic locations but it is still not clear which have a significant impact and how drivers interact. To study diversification, we chose the lichen genus Sticta, by sampling through most of the global range and producing a time tree. We estimate that Sticta originated about 30 million years ago, but biogoegraphic analysis was unclear in estimating the origin of the genus. Furthermore, we investigated the effect of dispersal ability finding that Sticta has a high dispersal rate, as collections from Hawaii showed that divergent lineages colonized the islands at least four times. Symbiont interactions were investigated using BiSSE to understand if green-algal or cyanobacterial symbiont interactions influenced diversification, only to find that the positive results were driven almost completely by Type I error. On the other hand, another BiSSE analysis found that an association with Andean tectonic activity increases the speciation rate of species.
Collapse
Affiliation(s)
- Todd J Widhelm
- Science & Education, The Field Museum, Chicago, IL, USA; Biological Sciences, Ecology and Evolution, University of Illinois at Chicago, Chicago, IL, USA.
| | | | | | | | - Jen-Pan Huang
- Science & Education, The Field Museum, Chicago, IL, USA
| | - Bibiana Moncada
- Licenciatura en Biología, Universidad Distrital Francisco José de Caldas, Bogotá, Colombia
| | - Robert Lücking
- Kustos Herbarium, Botanischer Garten und Botanisches Museum, Berlin, Germany
| | | | | | - Bernard Goffinet
- Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Nicholas Crouch
- Biological Sciences, Ecology and Evolution, University of Illinois at Chicago, Chicago, IL, USA
| | - Roberta Mason-Gamer
- Biological Sciences, Ecology and Evolution, University of Illinois at Chicago, Chicago, IL, USA
| | | |
Collapse
|
35
|
Huang JP, Leavitt SD, Lumbsch HT. Testing the impact of effective population size on speciation rates - a negative correlation or lack thereof in lichenized fungi. Sci Rep 2018; 8:5729. [PMID: 29636516 PMCID: PMC5893563 DOI: 10.1038/s41598-018-24120-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 03/27/2018] [Indexed: 01/22/2023] Open
Abstract
The effect of microevolutionary processes on macroevolutionary patterns, and vice versa, is an important but under-investigated question. Here we present an integrative population genetic and phylogenetic study using molecular sequence data from three lichen-forming fungal lineages to empirically test the potential correlation between effective population size – approximated by the parameter θ – and estimated speciation rates using a phylogenetic tree (λ). A negative association between θ and λ was supported in one lineage of lichen-forming fungi, Melanelixia (Parmeliaceae), while no significant relationships was found for two other genera within the same family, Melanohalea and Xanthoparmelia. We discuss the significance of our results and the importance of considering microevolutionary processes when studying macroevolutionary patterns.
Collapse
Affiliation(s)
- Jen-Pan Huang
- Integrative Research Center, The Field Museum, Chicago, USA.
| | - Steven D Leavitt
- Department of Biology & M. L. Bean Museum, Brigham Young University, Provo, USA
| | | |
Collapse
|
36
|
Leavitt SD, Westberg M, Nelsen MP, Elix JA, Timdal E, Sohrabi M, St. Clair LL, Williams L, Wedin M, Lumbsch HT. Multiple, Distinct Intercontinental Lineages but Isolation of Australian Populations in a Cosmopolitan Lichen-Forming Fungal Taxon, Psora decipiens (Psoraceae, Ascomycota). Front Microbiol 2018; 9:283. [PMID: 29527197 PMCID: PMC5829036 DOI: 10.3389/fmicb.2018.00283] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 02/07/2018] [Indexed: 12/12/2022] Open
Abstract
Multiple drivers shape the spatial distribution of species, including dispersal capacity, niche incumbency, climate variability, orographic barriers, and plate tectonics. However, biogeographic patterns of fungi commonly do not fit conventional expectations based on studies of animals and plants. Fungi, in general, are known to occur across exceedingly broad, intercontinental distributions, including some important components of biological soil crust communities (BSCs). However, molecular data often reveal unexpected biogeographic patterns in lichenized fungal species that are assumed to have cosmopolitan distributions. The lichen-forming fungal species Psora decipiens is found on all continents, except Antarctica and occurs in BSCs across diverse habitats, ranging from hot, arid deserts to alpine habitats. In order to better understand factors that shape population structure in cosmopolitan lichen-forming fungal species, we investigated biogeographic patterns in the cosmopolitan taxon P. decipiens, along with the closely related taxa P. crenata and P. saviczii. We generated a multi-locus sequence dataset based on a worldwide sampling of these taxa in order to reconstruct evolutionary relationships and explore phylogeographic patterns. Both P. crenata and P. decipiens were not recovered as monophyletic; and P. saviczii specimens were recovered as a monophyletic clade closely related to a number of lineages comprised of specimens representing P. decipiens. Striking phylogeographic patterns were observed for P. crenata, with populations from distinct geographic regions belonging to well-separated, monophyletic lineages. South African populations of P. crenata were further divided into well-supported sub-clades. While well-supported phylogenetic substructure was also observed for the nominal taxon P. decipiens, nearly all lineages were comprised of specimens collected from intercontinental populations. However, all Australian specimens representing P. decipiens were recovered within a single well-supported monophyletic clade consisting solely of Australian samples. Our study supports up to 10 candidate species-level lineages in P. decipiens, based on genealogical concordance and coalescent-based species delimitation analyses. Our results support the general pattern of the biogeographic isolation of lichen-forming fungal populations in Australia, even in cases where closely related congeners have documented intercontinental distributions. Our study has important implications for understanding factors influencing diversification and distributions of lichens associated with BSC.
Collapse
Affiliation(s)
- Steven D. Leavitt
- Department of Biology and Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT, United States
| | | | | | - John A. Elix
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| | - Einar Timdal
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Mohammad Sohrabi
- Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - Larry L. St. Clair
- Department of Biology and Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT, United States
| | - Laura Williams
- Plant Ecology and Systematics, Biology Institute, University of Kaiserslautern, Kaiserslautern, Germany
| | - Mats Wedin
- Department of Botany, Swedish Museum of Natural History, Stockholm, Sweden
| | - H. T. Lumbsch
- Science and Education, The Field Museum, Chicago, IL, United States
| |
Collapse
|
37
|
|
38
|
Phylogenetic placement within Lecanoromycetes of lichenicolous fungi associated with Cladonia and some other genera. Persoonia - Molecular Phylogeny and Evolution of Fungi 2017; 39:91-117. [PMID: 29503472 PMCID: PMC5832959 DOI: 10.3767/persoonia.2017.39.05] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/03/2017] [Indexed: 11/25/2022]
Abstract
Though most of the lichenicolous fungi belong to the Ascomycetes, their phylogenetic placement based on molecular data is lacking for numerous species. In this study the phylogenetic placement of 19 species of lichenicolous fungi was determined using four loci (LSU rDNA, SSU rDNA, ITS rDNA and mtSSU). The phylogenetic analyses revealed that the studied lichenicolous fungi are widespread across the phylogeny of Lecanoromycetes. One species is placed in Acarosporales, Sarcogyne sphaerospora; five species in Dactylosporaceae, Dactylospora ahtii, D. deminuta, D. glaucoides, D. parasitica and Dactylospora sp.; four species belong to Lecanorales, Lichenosticta alcicorniaria, Epicladonia simplex, E. stenospora and Scutula epiblastematica. The genus Epicladonia is polyphyletic and the type E. sandstedei belongs to Leotiomycetes. Phaeopyxis punctum and Bachmanniomyces uncialicola form a well supported clade in the Ostropomycetidae. Epigloea soleiformis is related to Arthrorhaphis and Anzina. Four species are placed in Ostropales, Corticifraga peltigerae, Cryptodiscus epicladonia, C. galaninae and C. cladoniicola comb. nov. (= Lettauia cladoniicola). Three new species are described, Dactylospora ahtii, Cryptodiscus epicladonia and C. galaninae.
Collapse
|
39
|
DNA barcoding and LC-MS metabolite profiling of the lichen-forming genus Melanelia: Specimen identification and discrimination focusing on Icelandic taxa. PLoS One 2017; 12:e0178012. [PMID: 28542495 PMCID: PMC5443556 DOI: 10.1371/journal.pone.0178012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/06/2017] [Indexed: 11/19/2022] Open
Abstract
Taxa in the genus Melanelia (Parmeliaceae, Ascomycota) belong to a group of saxicolous lichens with brown to black foliose thalli, which have recently undergone extensive changes in circumscription. Taxa belonging to Parmeliaceae are prolific producers of bioactive compounds, which have also been traditionally used for chemotaxonomic purposes. However, the chemical diversity of the genus Melanelia and the use of chemical data for species discrimination in this genus are largely unexplored. In addition, identification based on morphological characters is challenging due to few taxonomically informative characters. Molecular identification methods, such as DNA barcoding, have rarely been applied to this genus. This study aimed to identify the Melanelia species from Iceland using DNA barcoding approach, and to explore their chemical diversity using chemical profiling. Chemometric tools were used to see if lichen metabolite profiles determined by LC-MS could be used for the identification of Icelandic Melanelia species. Barcoding using the fungal nuclear ribosomal internal transcribed spacer region (nrITS) successfully identified three Melalenlia species occurring in Iceland, together with Montanelia disjuncta (Basionym: Melanelia disjuncta). All species formed monophyletic clades in the neighbor-joining nrITS gene tree. However, high intraspecific genetic distance of M. stygia suggests the potential of unrecognized species lineages. Principal component analysis (PCA) of metabolite data gave a holistic overview showing that M. hepatizon and M. disjuncta were distinct from the rest, without the power to separate M. agnata and M. stygia due to their chemical similarity. Orthogonal partial least–squares to latent structures–discriminate analysis (OPLS-DA), however, successfully distinguished M. agnata and M. stygia by identifying statistically significant metabolites, which lead to class differentiation. This work has demonstrated the potential of DNA barcoding, chemical profiling and chemometrics in identification of Melanelia species.
Collapse
|
40
|
Kraichak E, Crespo A, Divakar PK, Leavitt SD, Lumbsch HT. A temporal banding approach for consistent taxonomic ranking above the species level. Sci Rep 2017; 7:2297. [PMID: 28536470 PMCID: PMC5442095 DOI: 10.1038/s41598-017-02477-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/11/2017] [Indexed: 11/09/2022] Open
Abstract
Comparable taxonomic ranks within clades can facilitate more consistent classifications and objective comparisons among taxa. Here we use a temporal approach to identify taxonomic ranks. This is an extension of the temporal banding approach including a Temporal Error Score that finds an objective cut-off for each taxonomic rank using information for the current classification. We illustrate this method using a data set of the lichenized fungal family Parmeliaceae. To assess its performance, we simulated the effect of taxon sampling and compared our method with the other temporal banding method. For our sampled phylogeny, 11 of the 12 included families remained intact and 55 genera were confirmed, whereas 32 genera were lumped and 15 genera were split. Taxon sampling impacted the method at the genus level, whereas yielded only insignificant changes at the family level. The other available temporal approach also gives a similar cutoff point to our method. Our approach to identify taxonomic ranks enables taxonomists to revise and propose classifications on an objective basis, changing ranks of clades only when inconsistent with most taxa in a phylogenetic tree. An R script to find the time point with the minimal temporal error is provided.
Collapse
Affiliation(s)
- Ekaphan Kraichak
- Department of Botany, Kasetsart University, 50 Ngamwongwan Road, Ladyao, Chatuchak, Bangkok, 10900, Thailand.
- Center for Advanced Studies in Tropical Natural Resources, NRU-KU, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand.
| | - Ana Crespo
- Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Pradeep K Divakar
- Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Steven D Leavitt
- Department of Biology and M.L. Bean Life Science Museum, Brigham Young University, 4102 Life Science Building, Provo, UT, 84602, USA
| | - H Thorsten Lumbsch
- Science & Education, Field Museum of Natural History, 1400 S Lake Shore Drive, Chicago, IL, 60605, USA
| |
Collapse
|
41
|
Lücking R, Moncada B. Dismantling Marchandiomphalina into Agonimia (Verrucariaceae) and Lawreymyces
gen. nov. (Corticiaceae): setting a precedent to the formal recognition of thousands of voucherless fungi based on type sequences. FUNGAL DIVERS 2017. [DOI: 10.1007/s13225-017-0382-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
42
|
Kaasalainen U, Schmidt AR, Rikkinen J. Diversity and ecological adaptations in Palaeogene lichens. NATURE PLANTS 2017; 3:17049. [PMID: 28436942 DOI: 10.1038/nplants.2017.49] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 03/16/2017] [Indexed: 06/07/2023]
Abstract
Lichens are highly specialized symbioses between heterotrophic fungi and photoautotrophic green algae or cyanobacteria. The mycobionts of many lichens produce morphologically complex thalli to house their photobionts. Lichens play important roles in ecosystems and have been used as indicators of environmental change. Here we report the finding of 152 new fossil lichens from European Palaeogene amber, and hence increase the total number of known fossil lichens from 15 to 167. Most of the fossils represent extant lineages of the Lecanoromycetes, an almost exclusively lichen-symbiotic class of Ascomycota. The fossil lichens show a wide diversity of morphological adaptations that attached epiphytic thalli to their substrates, helped to combine external water storage with effective gas exchange and facilitated the simultaneous reproduction and dispersal of both partners in symbiosis. The fossil thallus morphologies suggest that the climate of European Palaeogene amber forests was relatively humid and most likely temperate.
Collapse
Affiliation(s)
- Ulla Kaasalainen
- Department of Geobiology, University of Göttingen, Goldschmidtstraβe 3, 37077 Göttingen, Germany
| | - Alexander R Schmidt
- Department of Geobiology, University of Göttingen, Goldschmidtstraβe 3, 37077 Göttingen, Germany
| | - Jouko Rikkinen
- Finnish Museum of Natural History, University of Helsinki, PO Box 7, FIN-00014 Finland
- Department of Biosciences, University of Helsinki, PO Box 65, FIN-00014 Finland
| |
Collapse
|
43
|
Using a temporal phylogenetic method to harmonize family- and genus-level classification in the largest clade of lichen-forming fungi. FUNGAL DIVERS 2017. [DOI: 10.1007/s13225-017-0379-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Singh BN, Upreti DK, Gupta VK, Dai XF, Jiang Y. Endolichenic Fungi: A Hidden Reservoir of Next Generation Biopharmaceuticals. Trends Biotechnol 2017; 35:808-813. [PMID: 28363407 DOI: 10.1016/j.tibtech.2017.03.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 02/17/2017] [Accepted: 03/02/2017] [Indexed: 10/19/2022]
Abstract
Endolichenic fungi (ELF) offer an opportunity to discover emerging natural drugs. ELF are promising bioresources given their ability to produce bioactive metabolites that represent unique and diverse structural classes. Here, we assess the potential of recent technologies to provide insight into the chemical diversity of ELF for biopharmaceutical development.
Collapse
Affiliation(s)
- Brahma N Singh
- Herbal Nanobiotechnology Lab, Pharmacognosy & Ethnopharmacology Division, CSIR-National Botanical Research Institute, Lucknow-226001, India.
| | - Dalip K Upreti
- Lichenology Laboratory, CSIR-National Botanical Research Institute, Lucknow-226001, India
| | - Vijai K Gupta
- Department of Chemistry and Biotechnology, ERA Chair of Green Chemistry, Tallinn University of Technology, Tallinn, 12618, Estonia.
| | - Xiao-Feng Dai
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yueming Jiang
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
45
|
Abstract
ABSTRACT
Lichen symbioses comprise a fascinating relationship between algae and fungi. The lichen symbiotic lifestyle evolved early in the evolution of ascomycetes and is also known from a few basidiomycetes. The ascomycete lineages have diversified in the lichenized stage to give rise to a tremendous variety of morphologies. Their thalli are often internally complex and stratified for optimized integration of algal and fungal metabolisms. Thalli are frequently colonized by specific nonlichenized fungi and occasionally also by other lichens. Microscopy has revealed various ways these fungi interact with their hosts. Besides the morphologically recognizable diversity of the lichen mycobionts and lichenicolous (lichen-inhabiting) fungi, many other microorganisms including other fungi and bacterial communities are now detected in lichens by culture-dependent and culture-independent approaches. The application of multi-omics approaches, refined microscopic techniques, and physiological studies has added to our knowledge of lichens, not only about the taxa involved in the lichen interactions, but also about their functions.
Collapse
|
46
|
Fernández-Moriano C, González-Burgos E, Divakar PK, Crespo A, Gómez-Serranillos MP. Evaluation of the Antioxidant Capacities and Cytotoxic Effects of Ten Parmeliaceae Lichen Species. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2016; 2016:3169751. [PMID: 28074101 PMCID: PMC5203883 DOI: 10.1155/2016/3169751] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 10/28/2016] [Accepted: 11/08/2016] [Indexed: 01/15/2023]
Abstract
Parmeliaceae represents the largest and widespread family of lichens and includes species that attract much interest regarding pharmacological activities, due to their production of unique secondary metabolites. The current work aimed to investigate the in vitro antioxidant and cytotoxic activities of the methanol extracts of ten Parmeliaceae species, collected in different continents. Methanol extraction afforded high phenolic content in the extracts. The antioxidant activity displayed by lichens was evaluated through chemical assays, such as the ORAC (Oxygen Radical Absorbance Capacity) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activities and the ferric reducing antioxidant power (FRAP). A moderately positive correlation was found between the phenolic content and the antioxidant properties for all the species: R: 0.7430 versus ORAC values, R: 0.7457 versus DPPH scavenging capacity, and R: 0.7056 versus FRAP reducing power. The methanol extract of Flavoparmelia euplecta exhibited the highest ORAC value, the extract of Myelochroa irrugans showed the maximum DPPH scavenging capacity, and Hypotrachyna cirrhata methanol extract demonstrated the highest reducing power. Further, the cytotoxic activity of the ten species was investigated on the human cancer cell lines HepG2 and MCF-7; Myelochroa irrugans exhibited the highest anticancer potential. The pharmacological activities shown here could be attributed to their phytochemical constituents.
Collapse
Affiliation(s)
- C. Fernández-Moriano
- Department of Pharmacology, Faculty of Pharmacy, University Complutense of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - E. González-Burgos
- Department of Pharmacology, Faculty of Pharmacy, University Complutense of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - P. K. Divakar
- Department of Plant Biology II, Faculty of Pharmacy, University Complutense of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - A. Crespo
- Department of Plant Biology II, Faculty of Pharmacy, University Complutense of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - M. P. Gómez-Serranillos
- Department of Pharmacology, Faculty of Pharmacy, University Complutense of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| |
Collapse
|
47
|
Molina MC, Divakar PK, Goward T, Millanes AM, Lumbsch HT, Crespo A. Neogene diversification in the temperate lichen-forming fungal genus Parmelia (Parmeliaceae, Ascomycota). SYST BIODIVERS 2016. [DOI: 10.1080/14772000.2016.1226977] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- M. Carmen Molina
- Departamento de Biología y Geología, Física y Química Inorgánica (Área de Biodiversidad y Conservación), ESCET, Universidad Rey Juan Carlos, Móstoles, 28933 Madrid, Spain
| | - Pradeep K. Divakar
- Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Trevor Goward
- UBC Herbarium, Beaty Museum, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Ana M. Millanes
- Departamento de Biología y Geología, Física y Química Inorgánica (Área de Biodiversidad y Conservación), ESCET, Universidad Rey Juan Carlos, Móstoles, 28933 Madrid, Spain
| | | | - Ana Crespo
- Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
48
|
Hidden diversity before our eyes: Delimiting and describing cryptic lichen-forming fungal species in camouflage lichens (Parmeliaceae, Ascomycota). Fungal Biol 2016; 120:1374-1391. [DOI: 10.1016/j.funbio.2016.06.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 05/24/2016] [Accepted: 06/01/2016] [Indexed: 12/19/2022]
|
49
|
Raman spectroscopic analysis of the effect of the lichenicolous fungus Xanthoriicola physciae on its lichen host. Symbiosis 2016; 71:57-63. [PMID: 28066125 PMCID: PMC5167773 DOI: 10.1007/s13199-016-0447-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 09/06/2016] [Indexed: 11/04/2022]
Abstract
Lichenicolous (lichen-dwelling) fungi have been extensively researched taxonomically over many years, and phylogenetically in recent years, but the biology of the relationship between the invading fungus and the lichen host has received limited attention, as has the effects on the chemistry of the host, being difficult to examine in situ. Raman spectroscopy is an established method for the characterization of chemicals in situ, and this technique is applied to a lichenicolous fungus here for the first time. Xanthoriicola physciae occurs in the apothecia of Xanthoria parietina, producing conidia at the hymenium surface. Raman spectroscopy of apothecial sections revealed that parietin and carotenoids were destroyed in infected apothecia. Those compounds protect healthy tissues of the lichen from extreme insolation and their removal may contribute to the deterioration of the apothecia. Scytonemin was also detected, but was most probably derived from associated cyanobacteria. This work shows that Raman spectroscopy has potential for investigating changes in the chemistry of a lichen by an invading lichenicolous fungus.
Collapse
|
50
|
Turbo-taxonomy to assemble a megadiverse lichen genus: seventy new species of Cora (Basidiomycota: Agaricales: Hygrophoraceae), honouring David Leslie Hawksworth’s seventieth birthday. FUNGAL DIVERS 2016. [DOI: 10.1007/s13225-016-0374-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|