1
|
Roig-Oliver M, Flexas J, Clemente-Moreno MJ, Carriquí M. Cell wall composition in relation to photosynthesis across land plants' phylogeny: crops as outliers. THE NEW PHYTOLOGIST 2025; 246:2384-2391. [PMID: 39763112 DOI: 10.1111/nph.20385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/13/2024] [Indexed: 05/23/2025]
Abstract
See also the Commentary on this article by Salesse‐Smith & Xiao, 246: 2375–2376.
Collapse
Affiliation(s)
- Margalida Roig-Oliver
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB) - Institut d'Investigacions Agroambientals i d'Economia de l'Aigua (INAGEA), Cra. de Valldemossa, km 7.5, Palma, Illes Balears, 07122, Spain
| | - Jaume Flexas
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB) - Institut d'Investigacions Agroambientals i d'Economia de l'Aigua (INAGEA), Cra. de Valldemossa, km 7.5, Palma, Illes Balears, 07122, Spain
| | - María José Clemente-Moreno
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB) - Institut d'Investigacions Agroambientals i d'Economia de l'Aigua (INAGEA), Cra. de Valldemossa, km 7.5, Palma, Illes Balears, 07122, Spain
| | - Marc Carriquí
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB) - Institut d'Investigacions Agroambientals i d'Economia de l'Aigua (INAGEA), Cra. de Valldemossa, km 7.5, Palma, Illes Balears, 07122, Spain
| |
Collapse
|
2
|
Lei Z, Li Z, Wright IJ, Chhajed SS, Zhang W, He D, Zhang Y. Network Architecture of Leaf Trait Correlations Has Shifted Following Crop Domestication. PLANT, CELL & ENVIRONMENT 2025; 48:4444-4454. [PMID: 39991809 DOI: 10.1111/pce.15443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 02/04/2025] [Accepted: 02/13/2025] [Indexed: 02/25/2025]
Abstract
Domestication of crops with the goal of improving yield has led to spectacular shifts in phenotypic traits and their correlation patterns. However, it is relatively unknown whether domestication has driven variation in the architecture of trait correlation networks to optimise carbon return on construction cost along the leaf economics spectrum (LES). Here, we compiled a data set of leaf functional, biochemical, and anatomical traits of 54 wild and cultivated crops. We found that crops tended to be located at the acquisitive end of global LES, typically having low leaf mass per area (LMA), high photosynthetic rate per mass, and high leaf nitrogen and phosphorus content per mass. Architectural changes in trait networks (module number, hub traits, and number of correlations) aligned with the notion of a divergent domestication syndrome due to artificial selection for faster growth and higher yield in high-resource agricultural fields. Domestication has increased the carbon return on resource investment via selecting trait combinations including higher photosynthesis, greater leaf area and LMA. We highlight that strategy-shifts towards faster photosynthetic return on investments in leaves have been coordinated with divergent trait correlation, which has important implications for understanding patterns of trait covariation under crop domestication.
Collapse
Affiliation(s)
- Zhangying Lei
- College of Agronomy, Northwest A&F University, Yangling, People's Republic of China
- Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, People's Republic of China
| | - Ziliang Li
- Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, People's Republic of China
| | - Ian J Wright
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia
- ARC Centre for Plant Success in Nature & Agriculture, Western Sydney University, Penrith, Australia
- School of Natural Sciences, Macquarie University, North Ryde, Australia
| | - Shubham S Chhajed
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia
- ARC Centre for Plant Success in Nature & Agriculture, Western Sydney University, Penrith, Australia
- School of Natural Sciences, Macquarie University, North Ryde, Australia
| | - Wangfeng Zhang
- Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, People's Republic of China
| | - Daohua He
- College of Agronomy, Northwest A&F University, Yangling, People's Republic of China
| | - Yali Zhang
- Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, People's Republic of China
| |
Collapse
|
3
|
Carriquí M, Fortesa J, Brodribb TJ. A loss of stomata exposes a critical vulnerability to variable atmospheric humidity in ferns. Curr Biol 2025; 35:1539-1548.e5. [PMID: 40107263 DOI: 10.1016/j.cub.2025.02.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/01/2025] [Accepted: 02/19/2025] [Indexed: 03/22/2025]
Abstract
Stomata confer both benefits and costs to plants, but assessing the magnitude of these effects is challenging. Some ferns have entirely lost stomata on their leaves, providing an opportunity to understand functional limitations associated with the inability to regulate transpiration. Here, we show that the loss of stomata and a massive reduction in xylem tissue investment in a filmy fern (Hymenophyllum flabellatum Labill.) leaves its vascular system exposed to catastrophic failure during relatively small reductions in atmospheric humidity. Hydraulic limitation, together with a sensitivity to fast desiccation, sets a clear lethal vapor pressure deficit threshold. This threshold enables a quantitative prediction of range contraction in H. flabellatum using a simple physical model. According to this threshold and climate projections, H. flabellatum may disappear from most of its native habitat in mainland Australia by 2050.
Collapse
Affiliation(s)
- Marc Carriquí
- University of Tasmania, School of Natural Sciences, Private Bag 55, Hobart, TAS 7001, Australia; Universitat de les Illes Balears - Agro-Environmental and Water Economics Institute, Departament de Biologia, Research Group on Plant Biology Under Mediterranean Conditions, Cra. de Valldemossa, km 7.5., Palma 07122, Spain.
| | - Josep Fortesa
- Universitat de les Illes Balears - Agro-Environmental and Water Economics Institute, Department of Geography, Natural Hazards and Emergencies Observatory of the Balearic Islands-RiscBal., Cra. de Valldemossa, km 7.5., Palma 07122, Spain
| | - Timothy J Brodribb
- University of Tasmania, School of Natural Sciences, Private Bag 55, Hobart, TAS 7001, Australia.
| |
Collapse
|
4
|
Cheng J, Yu S. Nitrogen allocation among leaves and roots mediates the interaction between plant life history trade-off and density dependence. FRONTIERS IN PLANT SCIENCE 2025; 16:1549801. [PMID: 40144762 PMCID: PMC11936912 DOI: 10.3389/fpls.2025.1549801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 02/19/2025] [Indexed: 03/28/2025]
Abstract
Introduction Carbon, nitrogen and phosphorus, as the basic components of plants, determine plant growth and adaptation strategies, while there are certain differences in nutrient allocation among different plant organs. However, little is known about the manner in which resource allocation mediates the plant life history strategy. Methods Here, we collected three census field survey datasets from the Heishiding 50-ha dynamic plot showing functional traits and nutrient allocation among leaves and roots (⍺nutrient) from 92 woody species to determine the relationship between nutrient allocation and the plant life history strategy. Results Carbon allocation ⍺carbon was mainly determined by intraspecific variation while nitrogen allocation ⍺nitrogen and phosphorus allocation ⍺phosphorus was determined by interspecific variation. Species allocating more nitrogen to leaves showed greater resource acquisition traits, while species allocating more nitrogen to roots showed greater resource conservation traits. We found a trade-off between the plant relative growth rate and conspecific density dependence; fast-growing species showed higher mortality with conspecific neighbors but tended to allocate more nitrogen to leaves rather than roots. Discussion Our study revealed interspecific variation in nutrient allocation among leaves and roots as well as their relationship with functional traits and the plant life history strategy.
Collapse
Affiliation(s)
| | - Shixiao Yu
- State Key Laboratory of Biocontrol/School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Hu W, Loka DA, Luo Y, Yu H, Wang S, Zhou Z. CYTOKININ DEHYDROGENASE suppression increases intrinsic water-use efficiency and photosynthesis in cotton under drought. PLANT PHYSIOLOGY 2025; 197:kiaf081. [PMID: 39977242 DOI: 10.1093/plphys/kiaf081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/18/2024] [Accepted: 02/04/2025] [Indexed: 02/22/2025]
Abstract
Drought reduces endogenous cytokinin (CK) content and disturbs plant water balance and photosynthesis. However, the effect of higher endogenous CK levels (achieved by suppressing cytokinin dehydrogenase [CKX] genes) on plant water status and photosynthesis under drought stress is unknown. Here, pot experiments were conducted with wild-type (WT) cotton (Gossypium hirsutum) and 2 GhCKX suppression lines (CR-3 and CR-13) to explore the effect of higher endogenous CK levels on leaf water utilization and photosynthesis under drought stress. The GhCKX suppression lines had a higher leaf net photosynthetic rate (AN) and intrinsic water-use efficiency (iWUE) than WT under drought. This increase was attributed to the decoupling of stomatal conductance (gs) and mesophyll conductance (gm) in the suppression lines in response to drought. GhCKX suppression increased gm but maintained gs relative to WT under drought, and the increased gm was associated with altered anatomical traits, including decreased cell wall thickness (Tcw) and increased surface area of chloroplast-facing intercellular airspaces per unit leaf area (Sc/S), as well as altered cell wall composition, especially decreased cellulose levels. This study provides evidence that increased endogenous CK levels can simultaneously enhance AN and iWUE in cotton under drought conditions and establishes a potential mechanism for this effect. These findings provide a potential strategy for breeding drought-tolerant crops or exploring alternative methods to promote crop drought tolerance.
Collapse
Affiliation(s)
- Wei Hu
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China
| | - Dimitra A Loka
- Institute of Industrial and Forage Crops, Hellenic Agricultural Organization, Larisa 41335, Greece
| | - Yuanyu Luo
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China
| | - Huilian Yu
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China
| | - Shanshan Wang
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China
| | - Zhiguo Zhou
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China
| |
Collapse
|
6
|
Sun D, Lei Z, Carriquí M, Zhang Y, Liu T, Wang S, Song K, Zhu L, Zhang W, Zhang Y. Reductions in mesophyll conductance under drought stress are influenced by increases in cell wall chelator-soluble pectin content and denser microfibril alignment in cotton. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1116-1130. [PMID: 39844343 DOI: 10.1093/jxb/erae467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/20/2025] [Indexed: 01/24/2025]
Abstract
Plants commonly undergo leaf morphoanatomy and composition modifications to cope with drought stress, and these tend to reduce mesophyll conductance to CO2 diffusion (gm), a key limitation to photosynthesis. The cell wall appears to play a crucial role in this reduction, yet the specific effect of cell wall component on gm and the underlying regulatory mechanisms of cell wall thickness (Tcw) variation are not well understood. In this study, we subjected cotton plants to varying levels of water deficit to investigate the impact of leaf cell wall component and the arrangement patterns of microfibrils within cell walls on Tcw and leaf gas exchange. Drought stress resulted in a significant thickening of cell walls and a decrease in gm. Concurrently, drought stress increased the content of chelator-soluble pectin and cellulose while reducing hemicellulose content. The alignment of cellulose microfibrils became more parallel and their diameter increased under drought conditions, suggesting a decrease in cell wall effective porosity which coincides with the observed reduction in gm. This research demonstrates that reduced gm typically observed under drought stress is related not only to thickened cell walls, but also to ultra-anatomical and compositional variations. Specifically, increases in cellulose content, diameter, and a highly aligned arrangement of cellulose microfibrils collectively contributed to an increase in Tcw, which, together with increases in chelator-soluble pectin content, resulted in an increased cell wall resistance to CO2 diffusion.
Collapse
Affiliation(s)
- Dongsheng Sun
- Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, 832003, China
| | - Zhangying Lei
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shanxi, China
| | - Marc Carriquí
- Research Group in Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB), Agro-Environmental and Water Economics Institute (INAGEA), Palma, Illes Balears, 07122, Spain
| | - Yujie Zhang
- Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, 832003, China
| | - Tianyang Liu
- Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, 832003, China
| | - Shengnan Wang
- Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, 832003, China
| | - Kunhao Song
- Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, 832003, China
| | - Lan Zhu
- Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, 832003, China
| | - Wangfeng Zhang
- Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, 832003, China
| | - Yali Zhang
- Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, 832003, China
| |
Collapse
|
7
|
Bellasio C. Quantifying photosynthetic restrictions. PHOTOSYNTHESIS RESEARCH 2025; 163:19. [PMID: 39964589 PMCID: PMC11835928 DOI: 10.1007/s11120-024-01129-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/17/2024] [Indexed: 02/21/2025]
Abstract
Quantifying the effect of factors controlling CO2 assimilation is crucial for understanding plant functions and developing strategies to improve productivity. Methods exist in numerous variants and produce various indicators, such as limitations, contributions, and sensitivity, often causing confusion. Simplifications and common mistakes lead to overrating the importance of diffusion-whether across stomata or the mesophyll. This work develops a consistent set of definitions that integrates all previous methods, offering a generalised framework for quantifying restrictions. Ten worked examples are provided in a free downloadable spreadsheet, demonstrating the simplicity and applicability to a wide range of questions.
Collapse
Affiliation(s)
- Chandra Bellasio
- Laboratory of Theoretical and Applied Crop Ecophysiology, Department of Chemistry, Biology and Biotechnology, Università Degli Studi Di Perugia, 06122, Perugia, Italy.
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin, Ireland.
- Biology of Plants Under Mediterranean Conditions, Department of Biology, University of the Balearic Islands, Illes Balears, 07122, Palma, Spain.
- Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia.
| |
Collapse
|
8
|
Shi Q, He B, Knauer J, Peguero-Pina JJ, Zhang SB, Huang W. Leaf nutrient basis for the differentiation of photosynthetic traits between subtropical evergreen and deciduous trees. PLANT PHYSIOLOGY 2024; 197:kiae566. [PMID: 39454624 DOI: 10.1093/plphys/kiae566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024]
Abstract
Compared with evergreens, deciduous tree species usually have higher photosynthetic efficiency to complete vegetative and reproductive growth in a shorter growing season. However, the nutrient basis for the differentiation of photosynthesis functional traits between evergreen and deciduous tree species has not yet been clarified. Thirty evergreen and 20 deciduous angiosperm tree species from a subtropical common garden were compared in terms of photosynthetic traits and leaf nutrients. Generally, their differences in area-based photosynthetic capacity were uncorrelated with area-based leaf nutrient content but were caused by the fraction of nitrogen allocated to photosynthetic components. By comparison, the differences in mass-based photosynthetic capacity were more correlated with leaf nitrogen content than leaf phosphorus and potassium content. Convergence in phosphorus and potassium constraints to photosynthesis occurred in deciduous tree species but not in evergreen tree species. Furthermore, leaf C/N ratio played a more significant role than leaf mass per area in determining the differentiation of photosynthetic traits between evergreen and deciduous groups. Our findings provide insight into the nutrient basis for photosynthetic carbon gain and functional strategies across tree species.
Collapse
Affiliation(s)
- Qi Shi
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin He
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jürgen Knauer
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Jose Javier Peguero-Pina
- Departamento de Sistemas Agrícolas, Forestales y Medio Ambiente, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, Zaragoza 50059, Spain
- Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), Zaragoza, Spain
| | - Shi-Bao Zhang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
9
|
Rahimi-Majd M, Leverett A, Neumann A, Kromdijk J, Nikoloski Z. Nonlinear models based on leaf architecture traits explain the variability of mesophyll conductance across plant species. PLANT, CELL & ENVIRONMENT 2024; 47:5158-5171. [PMID: 39166340 DOI: 10.1111/pce.15059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/29/2024] [Accepted: 07/15/2024] [Indexed: 08/22/2024]
Abstract
Mesophyll conductance (g m ) describes the efficiency with whichCO 2 moves from substomatal cavities to chloroplasts. Despite the stipulated importance of leaf architecture in affectingg m , there remains a considerable ambiguity about how and whether leaf anatomy influencesg m . Here, we employed nonlinear machine-learning models to assess the relationship between 10 leaf architecture traits andg m . These models used leaf architecture traits as predictors and achieved excellent predictability ofg m . Dissection of the importance of leaf architecture traits in the models indicated that cell wall thickness and chloroplast area exposed to internal airspace have a large impact on interspecific variation ing m . Additionally, other leaf architecture traits, such as leaf thickness, leaf density and chloroplast thickness, emerged as important predictors ofg m . We also found significant differences in the predictability between models trained on different plant functional types. Therefore, by moving beyond simple linear and exponential models, our analyses demonstrated that a larger suite of leaf architecture traits drive differences ing m than has been previously acknowledged. These findings pave the way for modulatingg m by strategies that modify its leaf architecture determinants.
Collapse
Affiliation(s)
- Milad Rahimi-Majd
- Bioinformatics Department, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Alistair Leverett
- Department of Plant Sciences, University of Cambridge, Cambridge, Cambridgeshire, UK
| | - Arne Neumann
- Bioinformatics Department, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Johannes Kromdijk
- Department of Plant Sciences, University of Cambridge, Cambridge, Cambridgeshire, UK
- Carl R Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Zoran Nikoloski
- Bioinformatics Department, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| |
Collapse
|
10
|
Alon A, Ginzburg N, Zemach H, Voet H, Cohen S, David-Schwartz R. Growing at the arid edge: Anatomical variations in leaves are more extensive than in stems of five Mediterranean species across contrasting moisture regimes. AMERICAN JOURNAL OF BOTANY 2024; 111:e16407. [PMID: 39305264 DOI: 10.1002/ajb2.16407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 10/25/2024]
Abstract
PREMISE Increasing aridity in the Mediterranean region affects ecosystems and plant life. Various anatomical changes in plants help them cope with dry conditions. This study focused on anatomical differences in leaves and xylem of five co-occurring Mediterranean plant species namely Quercus calliprinos, Pistacia palaestina, Pistacia lentiscus, Rhamnus lycioides, and Phillyrea latifolia in wet and dry sites. METHODS Stomatal density, stomatal length, leaf mass area, lamina composition, percentage of intercellular air spaces, and mesophyll cell area in leaves of plants in wet and dry sites were analyzed. Xylem anatomy was assessed through vessel length and area in branches. RESULTS In the dry site, three species had increased stomatal density and decreased stomatal length. Four species had increased palisade mesophyll and reduced air space volume. In contrast, phenotypic changes in the xylem were less pronounced; vessel length was unaffected by site conditions, but vessel diameter decreased in two species. Intercellular air spaces proved to be the most dynamic anatomical feature. Quercus calliprinos had the most extensive anatomical changes; Rhamnus lycioides had only minor changes. All these changes were observed in comparison to the species in the wet site. CONCLUSIONS This study elucidated variations in anatomical responses in leaves among co-occurring Mediterranean plant species and identified the most dynamic traits. Understanding these adaptations provides valuable insights into the ability of plants to thrive under changing climate conditions.
Collapse
Affiliation(s)
- Asaf Alon
- Institute of Plant Sciences, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
- Institute of Soil, Water and Environmental Sciences, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
- Department of Environmental Economics and Management, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Neta Ginzburg
- Institute of Plant Sciences, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| | - Hanita Zemach
- Institute of Plant Sciences, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| | - Hillary Voet
- Department of Environmental Economics and Management, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Shabtai Cohen
- Institute of Soil, Water and Environmental Sciences, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| | - Rakefet David-Schwartz
- Institute of Plant Sciences, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| |
Collapse
|
11
|
Wuyun T, Zhang L, Tosens T, Liu B, Mark K, Morales-Sánchez JÁ, Rikisahedew JJ, Kuusk V, Niinemets Ü. Extremely thin but very robust: Surprising cryptogam trait combinations at the end of the leaf economics spectrum. PLANT DIVERSITY 2024; 46:621-629. [PMID: 39290881 PMCID: PMC11403144 DOI: 10.1016/j.pld.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 09/19/2024]
Abstract
Leaf economics spectrum (LES) describes the fundamental trade-offs between leaf structural, chemical, and physiological investments. Generally, structurally robust thick leaves with high leaf dry mass per unit area (LMA) exhibit lower photosynthetic capacity per dry mass (A mass). Paradoxically, "soft and thin-leaved" mosses and spikemosses have very low A mass, but due to minute-size foliage elements, their LMA and its components, leaf thickness (LT) and density (LD), have not been systematically estimated. Here, we characterized LES and associated traits in cryptogams in unprecedented details, covering five evolutionarily different lineages. We found that mosses and spikemosses had the lowest LMA and LT values ever measured for terrestrial plants. Across a broad range of species from different lineages, A mass and LD were negatively correlated. In contrast, A mass was only related to LMA when LMA was greater than 14 g cm- 2. In fact, low A mass reflected high LD and cell wall thickness in the studied cryptogams. We conclude that evolutionarily old plant lineages attained poorly differentiated, ultrathin mesophyll by increasing LD. Across plant lineages, LD, not LMA, is the trait that represents the trade-off between leaf robustness and physiology in the LES.
Collapse
Affiliation(s)
- Tana Wuyun
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | - Lu Zhang
- College of Landscape and Architecture, Zhejiang A&F University, 666 Wusu Street, Hangzhou 311300, China
| | - Tiina Tosens
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | - Bin Liu
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | - Kristiina Mark
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | - José Ángel Morales-Sánchez
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | - Jesamine Jöneva Rikisahedew
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | - Vivian Kuusk
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
- Estonian Academy of Sciences, Kohtu 6, Tallinn 10130, Estonia
| |
Collapse
|
12
|
Xing H, Chen J, Gong S, Liu S, Xu G, Chen M, Li F, Shi Z. Variation in photosynthetic capacity of Salvia przewalskii along elevational gradients on the eastern Qinghai-Tibetan Plateau, China. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108801. [PMID: 38850729 DOI: 10.1016/j.plaphy.2024.108801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/18/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
Elevational variation in plant growing environment drives diversification of photosynthetic capacity, however, the mechanism behind this reaction is poorly understood. We measured leaf gas exchange, chlorophyll fluorescence, anatomical characteristics, and biochemical traits of Salvia przewalskii at elevations ranging from 2400 m to 3400 m above sea level (a.s.l) on the eastern Qinghai-Tibetan Plateau, China. We found that photosynthetic capacity showed an initial increase and then a decrease with rising elevation, and the best state observed at 2800 m a.s.l. Environmental factors indirectly regulated photosynthetic capacity by affecting stomatal conductance (gs), mesophyll conductance (gm), maximum velocity of carboxylation (Vc max), and maximum capacity for photosynthetic electron transport (Jmax). The average temperature (T) and total precipitation (P) during the growing season had the highest contribution to the variation of photosynthetic capacity of S. przewalskii in subalpine areas, which were 25% and 24%, respectively. Photosynthetic capacity was mainly affected by diffusional limitations (71%-89%), and mesophyll limitation (lm) played a leading role. The variation of gm was attributed to the effects of environmental factors on the volume fraction of intercellular air space (fias), the thickness of cell wall (Tcw), the surface of mesophyll cells and chloroplasts exposed to intercellular airspace (Sm, Sc), and plasma membrane intrinsic protein (PIPs, PIP1, PIP2), independent of carbonic anhydrase (CA). Optimization of leaf tissue structure and adaptive physiological responses enabled plants to efficiently cope with variable climate conditions of high-elevation areas, and the while maintaining high levels of carbon assimilation.
Collapse
Affiliation(s)
- Hongshuang Xing
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, 100091, Beijing, China
| | - Jian Chen
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, 100091, Beijing, China
| | - Shanshan Gong
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, 100091, Beijing, China
| | - Shun Liu
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, 100091, Beijing, China; Sichuan Miyaluo Forest Ecosystem National Observation and Research Station, Lixian, 623100, China
| | - Gexi Xu
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, 100091, Beijing, China; Sichuan Miyaluo Forest Ecosystem National Observation and Research Station, Lixian, 623100, China
| | - Miao Chen
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, 100091, Beijing, China
| | - Feifan Li
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, 100091, Beijing, China
| | - Zuomin Shi
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, 100091, Beijing, China; Sichuan Miyaluo Forest Ecosystem National Observation and Research Station, Lixian, 623100, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 210037, Nanjing, China.
| |
Collapse
|
13
|
Chao YS, Yang YW, Sheue CR, Lai IL. Niche and phenotypic differentiation in fern hybrid speciation, a case study of Pteris fauriei (Pteridaceae). ANNALS OF BOTANY 2024; 134:71-84. [PMID: 38470192 PMCID: PMC11756704 DOI: 10.1093/aob/mcae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 03/11/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND AND AIMS Niche differentiation is a crucial issue in speciation. Although it has a well-known role in adaptive processes of hybrid angiosperms, it is less understood in hybrid ferns. Here, we investigate whether an intermediate ecological niche of a fern hybrid is a novel adaptation that provides insights into fern hybrid speciation. METHODS Pteris fauriei (Pteridaceae) is a natural hybrid fern, occurring in environments between its parent species. The maternal Pteris minor is found in sunny areas, but the habitat of the paternal Pteris latipinna is shady. We combined data from morphology, leaf anatomy and photosynthetic traits to explore adaptation and differentiation, along with measuring the environmental features of their niches. We also performed experiments in a common garden to understand ecological plasticity. KEY RESULTS The hybrid P. fauriei was intermediate between the parent species in stomatal density, leaf anatomical features and photosynthetic characteristics in both natural habitats and a common garden. Interestingly, the maternal P. minor showed significant environmental plasticity and was more similar to the hybrid P. fauriei in the common garden, suggesting that the maternal species experiences stress in its natural habitats but thrives in environments similar to those of the hybrid. CONCLUSIONS Based on the similar niche preferences of the hybrid and parents, we propose hybrid superiority. Our results indicate that the hybrid P. fauriei exhibits greater fitness and can compete with and occupy the initial niches of the maternal P. minor. Consequently, we suggest that the maternal P. minor has experienced a niche shift, elucidating the pattern of niche differentiation in this hybrid group. These findings offer a potential explanation for the frequent occurrence of hybridization in ferns and provide new insights into fern hybrid speciation, enhancing our understanding of fern diversity.
Collapse
Affiliation(s)
- Yi-Shan Chao
- Department of Life Science, National Taiwan Normal
University, Taipei, Taiwan
| | - Yao-Wei Yang
- Department of Life Sciences, National Chung Hsing University,
Taichung, Taiwan
| | - Chiou-Rong Sheue
- Department of Life Sciences, National Chung Hsing University,
Taichung, Taiwan
- Global Change Biology Research Center, National Chung Hsing
University, Taichung, Taiwan
| | - I-Ling Lai
- Graduate Institute of Bioresources, National Pingtung University of Science
and Technology, Pingtung, Taiwan
| |
Collapse
|
14
|
Pichaco J, Manandhar A, McAdam SAM. Mechanical advantage makes stomatal opening speed a function of evaporative demand. PLANT PHYSIOLOGY 2024; 195:370-377. [PMID: 38217870 DOI: 10.1093/plphys/kiae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/15/2024]
Abstract
Stomatal opening in the light, observed in nearly all vascular land plants, is essential for providing access to atmospheric CO2 for photosynthesis. The speed of stomatal opening in the light is critical for maximizing carbon gain in environments in which light intensity changes, yet we have little understanding of how other environmental signals, particularly evaporative demand driven by vapor pressure deficit (VPD) influences the kinetics of this response. In angiosperms, and some fern species from the family Marsileaceae, a mechanical interaction between the guard cells and the epidermal cells determines the aperture of the pore. Here, we examine whether this mechanical interaction influences the speed of stomatal opening in the light. To test this, we investigated the speed of stomatal opening in response to light across a range of VPDs in seven plant species spanning the evolutionary diversity of guard cell and epidermal cell mechanical interactions. We found that stomatal opening speed is a function of evaporative demand in angiosperm species and Marsilea, which have guard cell and epidermal cell mechanical interactions. Stomatal opening speeds did not change across a range of VPD in species of gymnosperm and fern, which do not have guard cell mechanical interactions with the epidermis. We find that guard cell and epidermal cell mechanical interactions may play a key role in regulating stomatal responsiveness to light. These results provide valuable insight into the adaptive relevance of mechanical advantage.
Collapse
Affiliation(s)
- Javier Pichaco
- Irrigation and Crop Ecophysiology Group, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS, CSIC), Avenida Reina Mercedes 10, 41012 Seville, Spain
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Anju Manandhar
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Scott A M McAdam
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
15
|
Binstock BR, Manandhar A, McAdam SAM. Characterizing the breakpoint of stomatal response to vapor pressure deficit in an angiosperm. PLANT PHYSIOLOGY 2024; 194:732-740. [PMID: 37850913 DOI: 10.1093/plphys/kiad560] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/21/2023] [Accepted: 10/05/2023] [Indexed: 10/19/2023]
Abstract
Vapor pressure difference between the leaf and atmosphere (VPD) is the most important regulator of daytime transpiration, yet the mechanism driving stomatal responses to an increase in VPD in angiosperms remains unresolved. Here, we sought to characterize the mechanism driving stomatal closure at high VPD in an angiosperm species, particularly testing whether abscisic acid (ABA) biosynthesis could explain the observation of a trigger point for stomatal sensitivity to an increase in VPD. We tracked leaf gas exchange and modeled leaf water potential (Ψl) in leaves exposed to a range of step-increases in VPD in the herbaceous species Senecio minimus Poir. (Asteraceae). We found that mild increases in VPD in this species did not induce stomatal closure because modeled Ψl did not decline below a threshold close to turgor loss point (Ψtlp), but when leaves were exposed to a large increase in VPD, stomata closed as modeled Ψl declined below Ψtlp. Leaf ABA levels were higher in leaves exposed to a step-increase in VPD that caused Ψl to transiently decline below Ψtlp and in which stomata closed compared with leaves in which stomata did not close. We conclude that the stomata of S. minimus are insensitive to VPD until Ψl declines to a threshold that triggers the biosynthesis of ABA and that this mechanism might be common to angiosperms.
Collapse
Affiliation(s)
- Benjamin R Binstock
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Anju Manandhar
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Scott A M McAdam
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
16
|
Guo J, Beverly DP, Ewers BE, Williams DG. Stomatal, mesophyll and biochemical limitations to photosynthesis and their relationship with leaf structure over an elevation gradient in two conifers. PHOTOSYNTHESIS RESEARCH 2023; 157:85-101. [PMID: 37212937 DOI: 10.1007/s11120-023-01022-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 03/29/2023] [Indexed: 05/23/2023]
Abstract
Photosynthetic responses across complex elevational gradients provides insight into fundamental processes driving responses of plant growth and net primary production to environmental change. Gas exchange of needles and twig water potential were measured in two widespread coniferous tree species, Pinus contorta and Picea engelmannii, over an 800-m elevation gradient in southeastern Wyoming, USA. We hypothesized that limitations to photosynthesis imposed by mesophyll conductance (gm) would be greatest at the highest elevation sites due to higher leaf mass per area (LMA) and that estimations of maximum rate of carboxylation (Vcmax) without including gm would obscure elevational patterns of photosynthetic capacity. We found that gm decreased with elevation for P. contorta and remained constant for P. engelmannii, but in general, limitation to photosynthesis by gm was small. Indeed, estimations of Vcmax when including gm were equivalent to those estimated without including gm and no correlation was found between gm and LMA nor between gm and leaf N. Stomatal conductance (gs) and biochemical demand for CO2 were by far the most limiting processes to photosynthesis at all sites along the elevation gradient. Photosynthetic capacity (A) and gs were influenced strongly by differences in soil water availability across the elevation transect, while gm was less responsive to water availability. Based on our analysis, variation in gm plays only a minor role in driving patterns of photosynthesis in P. contorta and P. engelmannii across complex elevational gradients in dry, continental environments of the Rocky Mountains and accurate modeling of photosynthesis, growth and net primary production in these forests may not require detailed estimation of this trait value.
Collapse
Affiliation(s)
- Jiemin Guo
- Department of Botany, University of Wyoming, Laramie, WY, 82071, USA.
| | - Daniel P Beverly
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN, USA
- Biology Department, Indiana University, Bloomington, IN, USA
| | - Brent E Ewers
- Department of Botany, University of Wyoming, Laramie, WY, 82071, USA
| | - David G Williams
- Department of Botany, University of Wyoming, Laramie, WY, 82071, USA
- Department of Ecosystem Science and Management, University of Wyoming, Laramie, WY, 82071, USA
| |
Collapse
|
17
|
Oliwa J, Skoczowski A, Rut G, Kornaś A. Water-Deficit Stress in the Epiphytic Elkhorn Fern: Insight into Photosynthetic Response. Int J Mol Sci 2023; 24:12064. [PMID: 37569438 PMCID: PMC10418323 DOI: 10.3390/ijms241512064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Progressive climate changes cause disturbance of water relations in tropical rainforests, where epiphytic ferns are an important element of biodiversity. In these plants, the efficiency of photosynthesis is closely related to the efficiency of water transport. In addition, due to the lack of contact with the soil, epiphytes are extremely susceptible to water-deficit stress. The aim of this experiment was to determine the response of the photosynthetic apparatus of Platycerium bifurcatum to a 6-week water deficit. The hydration and pigment composition of leaves were determined using reflectance spectroscopy and epifluorescence microscopy. Chlorophyll a fluorescence kinetics parameters, fluorescence induction curves (OJIP), low-temperature fluorescence curves at 77 K and proline concentration were analyzed at seven time points. After a decrease in leaf hydration by 10-15%, there were disturbances in the oxidation-reduction balance, especially in the initial photochemical reactions, a rapid decrease in plant vitality (PI) and significant fluctuations in chlorophyll a fluorescence parameters. The relative size of PSI antenna structures compared to PSII decreased in the following weeks of water deficit. Changes in photochemical reactions were accompanied by a decrease in gross photosynthesis and an increase in proline concentration. Changes in the functioning of photosynthesis light phase and the pigment composition of leaves are related to the resistance of elkhorn fern to long-term water deficit.
Collapse
Affiliation(s)
- Jakub Oliwa
- Institute of Biology and Earth Sciences, Pedagogical University of Krakow, Podchorążych 2, 30-084 Kraków, Poland; (A.S.); (G.R.); (A.K.)
| | | | | | | |
Collapse
|
18
|
Liu M, Yang C, Mu R. Effect of soil water-phosphorus coupling on the photosynthetic capacity of Robinia pseudoacacia L. seedlings in semi-arid areas of the Loess Plateau, China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:932. [PMID: 37432491 DOI: 10.1007/s10661-023-11574-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/30/2023] [Indexed: 07/12/2023]
Abstract
Afforestation can improve soil erosion in the ecologically fragile areas of the Loess Plateau; however, the amount of water and phosphorus fertilizer that can promote vegetation survival is unclear, which hinders the improvement of the local ecological environment and the waste of water and fertilizer. In this study, based on field surveys, water and fertilizer control tests on Robinia pseudoacacia L. seedlings in experimental fields, and fitting CO2 response curves to R. pseudoacacia seedlings using a Li-6400 portable photosynthesizer, we measured their leaf nutrient contents and calculated resource use efficiency. The results showed that (1) under the same moisture gradient, except for photosynthetic phosphorus utilization efficiency (PPUE), light use efficiency (LUE), water use efficiency (WUE), carbon utilization efficiency (CUE), and photosynthetic nitrogen use efficiency (PNUE) all increased with increasing phosphorus fertilizer application. Under the same phosphorus fertilizer gradient, WUE increased with decreasing water application, and LUE, CUE, PNUE, and PPUE all reached the maximum at 55-60% of field water holding capacity. (2) Net photosynthetic rate (Pn) of R. pseudoacacia seedlings increased with increasing intercellular carbon dioxide concentration (Ci), and as Ci continued to increase, the increase in Pn became slower, but no maximal electron transport rate (TPU) occurred. Under the same CO2 concentration, Pn reached a maximum at 55-60% of field water holding capacity and phosphorus fertilizer at 30 gPm-2·a-1. (3) Leaf maximum carboxylation rate (Vcmax), maximum electron transport rate (Jmax), daily respiration (Rd), stomatal conductance (Gs), and mesophyll conductance (Gm) reached their maximum at 30 gPm-2·a-1 of phosphorus fertilizer. Vcmax, Jmax, and Rd reached their maximum at 55-60% of field water holding capacity; Gs and Gm reached their maximum at 75-80% of field water holding capacity. (4) The higher the soil phosphorus content, the lower the biochemical (lb), stomatal (ls), and mesophyll (lm). With the increase of soil moisture, lb and ls are higher, and lm is lower. (5) Structural equation modeling showed that water-phosphorus coupling had a less direct effect on Rd and a more direct impact on Gs and Gm. Relative photosynthetic limitation directly affected the photosynthetic rate, indicating that water and phosphorus affected the photosynthetic rate through relative plant limitation. It was concluded that the resource use efficiency and photosynthetic capacity reached the maximum when 55-60% of field water holding capacity was maintained, and phosphorus fertilization was at 30 gP m-2·a-1. Therefore, maintaining suitable soil moisture and phosphorus fertilizer levels in the semi-arid zone of the Loess Plateau can improve the photosynthetic capacity of R. pseudoacacia seedlings.
Collapse
Affiliation(s)
- Minxia Liu
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, 730070, China.
| | - Chunliang Yang
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, 730070, China
| | - Ruolan Mu
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, 730070, China
| |
Collapse
|
19
|
Adams WW, Stewart JJ, Polutchko SK, Cohu CM, Muller O, Demmig-Adams B. Foliar Phenotypic Plasticity Reflects Adaptation to Environmental Variability. PLANTS (BASEL, SWITZERLAND) 2023; 12:2041. [PMID: 37653958 PMCID: PMC10224448 DOI: 10.3390/plants12102041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/10/2023] [Accepted: 05/18/2023] [Indexed: 09/02/2023]
Abstract
Arabidopsis thaliana ecotypes adapted to native habitats with different daylengths, temperatures, and precipitation were grown experimentally under seven combinations of light intensity and leaf temperature to assess their acclimatory phenotypic plasticity in foliar structure and function. There were no differences among ecotypes when plants developed under moderate conditions of 400 µmol photons m-2 s-1 and 25 °C. However, in response to more extreme light or temperature regimes, ecotypes that evolved in habitats with pronounced differences in either the magnitude of changes in daylength or temperature or in precipitation level exhibited pronounced adjustments in photosynthesis and transpiration, as well as anatomical traits supporting these functions. Specifically, when grown under extremes of light intensity (100 versus 1000 µmol photons m-2 s-1) or temperature (8 °C versus 35 °C), ecotypes from sites with the greatest range of daylengths and temperature over the growing season exhibited the greatest differences in functional and structural features related to photosynthesis (light- and CO2-saturated capacity of oxygen evolution, leaf dry mass per area or thickness, phloem cells per minor vein, and water-use efficiency of CO2 uptake). On the other hand, the ecotype from the habitat with the lowest precipitation showed the greatest plasticity in features related to water transport and loss (vein density, ratio of water to sugar conduits in foliar minor veins, and transpiration rate). Despite these differences, common structure-function relationships existed across all ecotypes and growth conditions, with significant positive, linear correlations (i) between photosynthetic capacity (ranging from 10 to 110 µmol O2 m-2 s-1) and leaf dry mass per area (from 10 to 75 g m-2), leaf thickness (from 170 to 500 µm), and carbohydrate-export infrastructure (from 6 to 14 sieve elements per minor vein, from 2.5 to 8 µm2 cross-sectional area per sieve element, and from 16 to 82 µm2 cross-sectional area of sieve elements per minor vein); (ii) between transpiration rate (from 1 to 17 mmol H2O m-2 s-1) and water-transport infrastructure (from 3.5 to 8 tracheary elements per minor vein, from 13.5 to 28 µm2 cross-sectional area per tracheary element, and from 55 to 200 µm2 cross-sectional area of tracheary elements per minor vein); (iii) between the ratio of transpirational water loss to CO2 fixation (from 0.2 to 0.7 mol H2O to mmol-1 CO2) and the ratio of water to sugar conduits in minor veins (from 0.4 to 1.1 tracheary to sieve elements, from 4 to 6 µm2 cross-sectional area of tracheary to sieve elements, and from 2 to 6 µm2 cross-sectional area of tracheary elements to sieve elements per minor vein); (iv) between sugar conduits and sugar-loading cells; and (v) between water conducting and sugar conducting cells. Additionally, the proportion of water conduits to sugar conduits was greater for all ecotypes grown experimentally under warm-to-hot versus cold temperature. Thus, developmental acclimation to the growth environment included ecotype-dependent foliar structural and functional adjustments resulting in multiple common structural and functional relationships.
Collapse
Affiliation(s)
- William W. Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA; (J.J.S.); (S.K.P.); (B.D.-A.)
| | - Jared J. Stewart
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA; (J.J.S.); (S.K.P.); (B.D.-A.)
| | - Stephanie K. Polutchko
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA; (J.J.S.); (S.K.P.); (B.D.-A.)
| | - Christopher M. Cohu
- Environmental Science and Technology, Colorado Mesa University, Grand Junction, CO 81502, USA;
| | - Onno Muller
- Pflanzenwissenschaften (IBG-2), Institut für Bio- und Geowissenschaften, Forschungszentrum Jülich, 52428 Jülich, Germany;
| | - Barbara Demmig-Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA; (J.J.S.); (S.K.P.); (B.D.-A.)
| |
Collapse
|
20
|
Fujii S, Nishida K, Akitsu T, Kume A, Hanba Y. Variation in leaf mesophyll anatomy of fern species imposes significant effects on leaf gas exchange, light capture, and leaf hydraulic conductance. PHOTOSYNTHETICA 2023; 61:225-235. [PMID: 39650679 PMCID: PMC11515861 DOI: 10.32615/ps.2023.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/13/2023] [Indexed: 12/11/2024]
Abstract
The mesophyll anatomical traits are essential factors for efficient light capture, CO2 diffusion, and hydraulics in leaves. At the same time, leaf hydraulics are governed by the xylem anatomical traits. Thus, simultaneous analyses of the mesophyll and xylem anatomy will clarify the links among light capture, CO2 capture, and water use. However, such simultaneous analyses have been scarcely performed, particularly on non-seed plants. Using seven fern species, we first showed that fern species with a large mesophyll thickness had a high photosynthetic rate related to high light capture, high drought tolerance, and low leaf hydraulic conductance. The chloroplast surface area (Sc) per mesophyll thickness significantly decreased with an increase in mesophyll thickness, which may increase light diffusion and absorption efficiency in each chloroplast. The photosynthetic rate per Sc was almost constant with mesophyll thickness, which suggests that ferns enhance their light capture ability via the regulation of chloroplast density.
Collapse
Affiliation(s)
- S. Fujii
- Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, 606-8585 Kyoto, Japan
| | - K. Nishida
- Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, 606-8585 Kyoto, Japan
| | - T.K. Akitsu
- Earth Observation Research Center, Japan Aerospace Exploration Agency, 2-1-1 Sengen, 305-8505 Tsukuba, Japan
| | - A. Kume
- Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, 819-0395 Fukuoka, Japan
| | - Y.T. Hanba
- Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, 606-8585 Kyoto, Japan
| |
Collapse
|
21
|
Wang XQ, Sun H, Zeng ZL, Huang W. Within-branch photosynthetic gradients are more related to the coordinated investments of nitrogen and water than leaf mass per area. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 198:107681. [PMID: 37054614 DOI: 10.1016/j.plaphy.2023.107681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 03/18/2023] [Accepted: 04/03/2023] [Indexed: 05/07/2023]
Abstract
Nitrogen (N) and water are key resources for leaf photosynthesis and the growth of whole plants. Within-branch leaves need different amounts of N and water to support their differing photosynthetic capacities according to light exposure. To test this scheme, we measured the within-branch investments of N and water and their effects on photosynthetic traits in two deciduous tree species Paulownia tomentosa and Broussonetia papyrifera. We found that leaf photosynthetic capacity gradually increased from branch bottom to top (i.e. from shade to sun leaves). Concomitantly, stomatal conductance (gs) and leaf N content gradually increased, owing to the symport of water and inorganic mineral from root to leaf. Variation of leaf N content led to large gradients of mesophyll conductance, maximum velocity of Rubisco for carboxylation, maximum electron transport rate and leaf mass per area (LMA). Correlation analysis indicated that the within-branch difference in photosynthetic capacity was mainly related to gs and leaf N content, with a relatively minor contribution of LMA. Furthermore, the simultaneous increases of gs and leaf N content enhanced photosynthetic N use efficiency (PNUE) but hardly affected water use efficiency. Therefore, within-branch adjustment of N and water investments is an important strategy used by plants to optimize the overall photosynthetic carbon gain and PNUE.
Collapse
Affiliation(s)
- Xiao-Qian Wang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Hu Sun
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi-Lan Zeng
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
22
|
Tong R, Yang X, Wang Q, Li L, Li Y, Shi Y, Mu C, Wang J. The Shift in Key Functional Traits Caused by Precipitation under Nitrogen and Phosphorus Deposition Drives Biomass Change in Leymus chinensis. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091781. [PMID: 37176839 PMCID: PMC10181414 DOI: 10.3390/plants12091781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/18/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023]
Abstract
The trade-offs between key functional traits in plants have a decisive impact on biomass production. However, how precipitation and nutrient deposition affect the trade-offs in traits and, ultimately, productivity is still unclear. In the present study, a mesocosm experiment was conducted to explore the relationships between biomass production and the aboveground and belowground key functional traits and their trade-offs under changes in precipitation and nutrient depositions in Leymus chinensis, a monodominant perennial rhizome grass widespread in the eastern Eurasian steppe. Our results showed that moisture is the key factor regulating the effect of nitrogen (N) and phosphorus (P) deposition on increased biomass production. Under conditions of average precipitation, water use efficiency (WUE) was the key trait determining the biomass of L. chinensis. There were obvious trade-offs between WUE and leaf area, specific leaf area, leaf thickness, and leaf dry matter. Conversely, under increasing precipitation, the effect of restricted soil water on leaf traits was relieved; the key limiting trait changed from WUE to plant height. These findings indicate that the shift of fundamental traits of photosynthetic carbon gain induced by precipitation under N and P deposition is the key ecological driving mechanism for the biomass production of typical dominant species in semi-arid grassland.
Collapse
Affiliation(s)
- Ruqiang Tong
- Key Laboratory of Vegetation Ecology of the Ministry of Education, Institute of Grassland Science, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun 130024, China
| | - Xinran Yang
- Key Laboratory of Vegetation Ecology of the Ministry of Education, Institute of Grassland Science, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun 130024, China
| | - Qiuyue Wang
- School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Lin Li
- Jilin Agricultural Radio and Television School, Changchun 130599, China
| | - Yanan Li
- Key Laboratory of Vegetation Ecology of the Ministry of Education, Institute of Grassland Science, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun 130024, China
| | - Yujie Shi
- Key Laboratory of Vegetation Ecology of the Ministry of Education, Institute of Grassland Science, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun 130024, China
| | - Chunsheng Mu
- Key Laboratory of Vegetation Ecology of the Ministry of Education, Institute of Grassland Science, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun 130024, China
| | - Junfeng Wang
- Key Laboratory of Vegetation Ecology of the Ministry of Education, Institute of Grassland Science, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
23
|
Quintanilla LG, Aranda I, Clemente-Moreno MJ, Pons-Perpinyà J, Gago J. Ecophysiological Differentiation among Two Resurrection Ferns and Their Allopolyploid Derivative. PLANTS (BASEL, SWITZERLAND) 2023; 12:1529. [PMID: 37050155 PMCID: PMC10096763 DOI: 10.3390/plants12071529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
Theoretically, the coexistence of diploids and related polyploids is constrained by reproductive and competitive mechanisms. Although niche differentiation can explain the commonly observed co-occurrence of cytotypes, the underlying ecophysiological differentiation among cytotypes has hardly been studied. We compared the leaf functional traits of the allotetraploid resurrection fern Oeosporangium tinaei (HHPP) and its diploid parents, O. hispanicum (HH) and O. pteridioides (PP), coexisting in the same location. Our experimental results showed that all three species can recover physiological status after severe leaf dehydration, which confirms their 'resurrection' ability. However, compared with PP, HH had much higher investment per unit area of light-capturing surface, lower carbon assimilation rate per unit mass for the same midday water potential, higher non-enzymatic antioxidant capacity, higher carbon content, and lower contents of nitrogen, phosphorus, and other macronutrients. These traits allow HH to live in microhabitats with less availability of water and nutrients (rock crevices) and to have a greater capacity for resurrection. The higher assimilation capacity and lower antioxidant capacity of PP explain its more humid and nutrient-rich microhabitats (shallow soils). HHPP traits were mostly intermediate between those of HH and PP, and they allow the allotetraploid to occupy the free niche space left by the diploids.
Collapse
Affiliation(s)
- Luis G. Quintanilla
- School of Environmental Sciences and Technology (ESCET), University Rey Juan Carlos, 28922 Móstoles, Spain
| | - Ismael Aranda
- National Institute for Agricultural and Food Research and Technology (INIA), Spanish National Research Council, 28040 Madrid, Spain
| | - María José Clemente-Moreno
- Agro-Environmental and Water Economics Institute (INAGEA), University of the Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Joan Pons-Perpinyà
- Agro-Environmental and Water Economics Institute (INAGEA), University of the Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Jorge Gago
- Agro-Environmental and Water Economics Institute (INAGEA), University of the Balearic Islands, 07122 Palma de Mallorca, Spain
| |
Collapse
|
24
|
Aros-Mualin D, Guadagno CR, Silvestro D, Kessler M. Light, rather than circadian rhythm, regulates gas exchange in ferns and lycophytes. PLANT PHYSIOLOGY 2023; 191:1634-1647. [PMID: 36691320 PMCID: PMC10022864 DOI: 10.1093/plphys/kiad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Circadian regulation plays a vital role in optimizing plant responses to the environment. However, while circadian regulation has been extensively studied in angiosperms, very little is known for lycophytes and ferns, leaving a gap in our understanding of the evolution of circadian rhythms across the plant kingdom. Here, we investigated circadian regulation in gas exchange through stomatal conductance and photosynthetic efficiency in a phylogenetically broad panel of 21 species of lycophytes and ferns over a 46 h period under constant light and a selected few under more natural conditions with day-night cycles. No rhythm was detected under constant light for either lycophytes or ferns, except for two semi-aquatic species of the family Marsileaceae (Marsilea azorica and Regnellidium diphyllum), which showed rhythms in stomatal conductance. Furthermore, these results indicated the presence of a light-driven stomatal control for ferns and lycophytes, with a possible passive fine-tuning through leaf water status adjustments. These findings support previous evidence for the fundamentally different regulation of gas exchange in lycophytes and ferns compared to angiosperms, and they suggest the presence of alternative stomatal regulations in Marsileaceae, an aquatic family already well known for numerous other distinctive physiological traits. Overall, our study provides evidence for heterogeneous circadian regulation across plant lineages, highlighting the importance of broad taxonomic scope in comparative plant physiology studies.
Collapse
Affiliation(s)
| | | | - Daniele Silvestro
- Department of Biology, University of Fribourg, Fribourg 1700, Switzerland
- Department of Biological and Environmental Sciences and Global Gothenburg Biodiversity Centre, University of Gothenburg, Gothenburg SE-405 30, Sweden
- Swiss Institute of Bioinformatics, Fribourg 1700, Switzerland
| | - Michael Kessler
- Department of Systematics and Evolutionary Botany, University of Zurich, Zurich 8008, Switzerland
| |
Collapse
|
25
|
Max AC, Loram-Lourenço L, Silva FG, de Souza LHM, Dias JRM, Espíndula MC, Farnese FS, Hammond W, Torres-Ruiz JM, Cochard H, Menezes-Silva PE. A bitter future for coffee production? Physiological traits associated with yield reveal high vulnerability to hydraulic failure in Coffea canephora. PLANT, CELL & ENVIRONMENT 2023; 46:764-779. [PMID: 36517464 DOI: 10.1111/pce.14514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 12/06/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
The increase in frequency and intensity of drought events have hampered coffee production in the already threatened Amazon region, yet little is known about key aspects underlying the variability in yield potential across genotypes, nor to what extent higher productivity is linked to reduced drought tolerance. Here we explored how variations in morphoanatomical and physiological leaf traits can explain differences in yield and vulnerability to embolism in 11 Coffea canephora genotypes cultivated in the Western Amazon. The remarkable variation in coffee yield across genotypes was tightly related to differences in their carbon assimilation and water transport capacities, revealing a diffusive limitation to photosynthesis linked by hydraulic constraints. Although a clear trade-off between water transport efficiency and safety was not detected, all the studied genotypes operated in a narrow and/or negative hydraulic safety margin, suggesting a high vulnerability to leaf hydraulic failure (HF), especially on the most productive genotypes. Modelling exercises revealed that variations in HF across genotypes were mainly associated with differences in leaf water vapour leakage when stomata are closed, reflecting contrasting growth strategies. Overall, our results provide a new perspective on the challenges of sustaining coffee production in the Amazon region under a drier and warmer climate.
Collapse
Affiliation(s)
- Aldo Custódio Max
- Federal Institute of Education, Science and Technology of Rondônia, Vilhena, Brazil
| | - Lucas Loram-Lourenço
- Laboratory of Applied Studies in Plant Physiology, Federal Institute of Education, Science and Technology Goiano, Rio Verde Campus, Rio Verde, Brazil
| | - Fabiano Guimarães Silva
- Laboratory of Applied Studies in Plant Physiology, Federal Institute of Education, Science and Technology Goiano, Rio Verde Campus, Rio Verde, Brazil
| | | | | | | | - Fernanda S Farnese
- Laboratory of Applied Studies in Plant Physiology, Federal Institute of Education, Science and Technology Goiano, Rio Verde Campus, Rio Verde, Brazil
| | - William Hammond
- Department of Agronomy, University of Florida, Gainesville, Florida, USA
| | | | - Hervé Cochard
- INRAE, PIAF, Université Clermont-Auvergne, Clermont-Ferrand, France
| | - Paulo Eduardo Menezes-Silva
- Laboratory of Applied Studies in Plant Physiology, Federal Institute of Education, Science and Technology Goiano, Rio Verde Campus, Rio Verde, Brazil
| |
Collapse
|
26
|
Bai K, Zhou X, Lv S, Wei S, Deng L, Tan Y. Biogeochemical niche conservatism relates to plant species diversification and life form evolution in a subtropical montane evergreen broad-leaved forest. Ecol Evol 2022; 12:e9587. [PMID: 36479033 PMCID: PMC9719084 DOI: 10.1002/ece3.9587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 11/05/2022] [Accepted: 11/18/2022] [Indexed: 09/10/2024] Open
Abstract
The evolutionary mechanisms underlying the biogeochemical niche conservatism in forests remain incompletely understood. Here we aimed to determine how the strengths of biogeochemical niche conservatism vary among elements and between life forms. We measured leaf concentrations of basal elements (C, N, P, K, Ca, and Mg) in a wide range of life forms in a subtropical montane evergreen broad-leaved forest. We found that differences in life forms such as evergreen/deciduous woody species and herbaceous/woody species significantly affected leaf elemental composition. The significant phylogenetic signal was present in leaf C, N, K, and Mg concentrations but absent in leaf P and Ca concentrations in all species. These contrasting strengths of biogeochemical niche conservatism were best generated by Ornstein-Uhlenbeck processes toward optima. Woody species were evolutionarily selected to show lower optimal leaf N, P, and K concentrations and higher optimal leaf C, Ca, and Mg concentrations than herbaceous species. The number of optima varied from the least in leaf C concentration to the most in leaf Ca concentration, suggesting the stronger convergent evolution of leaf Ca concentration. The positions of optima toward the tips were more selected in woody species, suggesting the more frequency of species-specific adaptations in woody species. The positions of optima were also selected at the nodes towards the species groupings from certain life forms (e.g., the group of 12 Polypodiales ferns in leaf Ca evolution and the group of three evergreen Theaceae species in leaf P evolution) that were converged to present similar leaf elemental composition. During the evolution of biogeochemical niche, strong correlations were found among leaf C, N, P, and K concentrations and between leaf Ca and Mg concentrations. In conclusion, the strengths of biogeochemical niche conservatism can vary among elements and between life forms due to the different tempo and mode of Ornstein-Uhlenbeck processes.
Collapse
Affiliation(s)
- Kundong Bai
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of EducationGuilingChina
- Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River BasinGuangxi Normal UniversityGuilingChina
- Guangxi Lijiangyuan Forest Ecosystem Research StationNanningChina
| | - Xuewen Zhou
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of EducationGuilingChina
- Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River BasinGuangxi Normal UniversityGuilingChina
| | - Shihong Lv
- Guangxi Zhuang Autonomous Region and Chinese Academy of SciencesGuangxi Institute of BotanyGuilingChina
| | - Shiguang Wei
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of EducationGuilingChina
- Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River BasinGuangxi Normal UniversityGuilingChina
| | - Lili Deng
- Guangxi Zhuang Autonomous Region and Chinese Academy of SciencesGuangxi Institute of BotanyGuilingChina
| | - Yibo Tan
- Xing'an Guilin Lijiangyuan Forest Ecosystem Observation and Research Station of GuangxiNanningChina
| |
Collapse
|
27
|
Li J, Chen X, Wu P, Niklas KJ, Lu Y, Zhong Q, Hu D, Cheng L, Cheng D. The fern economics spectrum is unaffected by the environment. PLANT, CELL & ENVIRONMENT 2022; 45:3205-3218. [PMID: 36029253 DOI: 10.1111/pce.14428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
The plant economics spectrum describes the trade-off between plant resource acquisition and storage, and sheds light on plant responses to environmental changes. However, the data used to construct the plant economics spectrum comes mainly from seed plants, thereby neglecting vascular non-seed plant lineages such as the ferns. To address this omission, we evaluated whether a fern economics spectrum exists using leaf and root traits of 23 fern species living under three subtropical forest conditions differing in light intensity and nutrient gradients. The fern leaf and root traits were found to be highly correlated and formed a plant economics spectrum. Specific leaf mass and root tissue density were found to be on one side of the spectrum (conservative strategy), whereas photosynthesis rate, specific root area, and specific root length were on the other side of the spectrum (acquisitive strategy). Ferns had higher photosynthesis and respiration rates, and photosynthetic nitrogen-use efficiency under high light conditions and higher specific root area and lower root tissue density in high nutrient environments. However, environmental changes did not significantly affect their resource acquisition strategies. Thus, the plant economics spectrum can be broadened to include ferns, which expands its phylogenetic and ecological implications and utility.
Collapse
Affiliation(s)
- Jinlong Li
- Institute of Geography, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Xiaoping Chen
- Institute of Geography, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian, China
- Key Laboratory of Plant Physiology and Ecology in Fujian Province, Fujian Normal University, Fuzhou, China
| | - Panpan Wu
- Institute of Geography, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Karl J Niklas
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Yimiao Lu
- Institute of Geography, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Quanlin Zhong
- Institute of Geography, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Dandan Hu
- Institute of Geography, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Lin Cheng
- Jiangxi Wuyishan National Nature Reserve Administration Bureau, Wuyishan National Nature Reserve, Shangrao, Jiangxi, China
| | - Dongliang Cheng
- Institute of Geography, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian, China
- Key Laboratory of Plant Physiology and Ecology in Fujian Province, Fujian Normal University, Fuzhou, China
| |
Collapse
|
28
|
Hu W, Lu Z, Gu H, Ye X, Li X, Cong R, Ren T, Lu J. Potassium availability influences the mesophyll structure to coordinate the conductance of CO 2 and H 2 O during leaf expansion. PLANT, CELL & ENVIRONMENT 2022; 45:2987-3000. [PMID: 35864569 DOI: 10.1111/pce.14405] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Leaf growth relies on photosynthesis and hydraulics to provide carbohydrates and expansion power; in turn, leaves intercept light and construct organism systems for functioning. Under potassium (K) deficiency stress, leaf area, photosynthesis and hydraulics are all affected by alterations in leaf structure. However, the connection between changes in leaf growth and function caused by the structure under K regulation is unclear. Consequently, the leaf hydraulic conductance (Kleaf ) and photosynthetic rate (A) combined with leaf anatomical characteristics of Brassica napus were continuously observed during leaf growth under different K supply levels. The results showed that Kleaf and A decreased simultaneously after leaf area with the increasing K deficiency stress. K deficiency significantly increased longitudinal mesophyll cell investment, leading to a reduced volume fraction of intercellular air-space (fias ) and decreased leaf expansion rate. Furthermore, reduced fias decreased mesophyll and chloroplast surfaces exposed to intercellular airspace and gas phase H2 O transport, which induced coordinated changes in CO2 mesophyll conductance and hydraulic conductance in extra-xylem pathways. Adequate K supply facilitated higher fias through smaller palisade tissue cell density (loose mesophyll cell arrangement) and smaller spongy tissue cell size, which coordinated CO2 and H2 O conductance and promoted leaf area expansion.
Collapse
Affiliation(s)
- Wenshi Hu
- Microelement Research Center, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Zhifeng Lu
- Microelement Research Center, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Hehe Gu
- Microelement Research Center, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Xiaolei Ye
- Microelement Research Center, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Xiaokun Li
- Microelement Research Center, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Rihuan Cong
- Microelement Research Center, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Tao Ren
- Microelement Research Center, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Jianwei Lu
- Microelement Research Center, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, China
| |
Collapse
|
29
|
Huang G, Zhang Q, Yang Y, Shu Y, Ren X, Peng S, Li Y. Interspecific variation in the temperature response of mesophyll conductance is related to leaf anatomy. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:221-234. [PMID: 35962704 DOI: 10.1111/tpj.15942] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/22/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Although mesophyll conductance (gm ) is known to be sensitive to temperature (T), the mechanisms underlying the temperature response of gm are not fully understood. In particular, it has yet to be established whether interspecific variation in gm -T relationships is associated with mesophyll anatomy and vein traits. In the present study, we measured the short-term response of gm in eight crop species, and leaf water potential (Ψleaf ) in five crop species over a temperature range of 15-35°C. The considered structural parameters are surface areas of mesophyll cells and chloroplasts facing intercellular airspaces per unit leaf area (Sm and Sc ), cell wall thickness (Tcw ), and vein length per area (VLA). We detected large interspecific variations in the temperature responses of gm and Ψleaf . The activation energy for gm (Ea,gm ) was found to be positively correlated with Sc , although it showed no correlation with Tcw . In contrast, VLA was positively correlated with the slope of the linear model of Ψleaf -T (a), whereas Ea,gm was marginally correlated with VLA and a. A two-component model was subsequently used to model gm -T relationships, and the mechanisms underlying the temperature response of gm are discussed. The data presented here indicate that leaf anatomy is a major determinant of the interspecific variation in gm -T relationships.
Collapse
Affiliation(s)
- Guanjun Huang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River
| | - Qiangqiang Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River
| | - Yuhan Yang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River
| | - Yu Shu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River
| | - Xifeng Ren
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Shaobing Peng
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River
| | - Yong Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River
| |
Collapse
|
30
|
Knauer J, Cuntz M, Evans JR, Niinemets Ü, Tosens T, Veromann‐Jürgenson L, Werner C, Zaehle S. Contrasting anatomical and biochemical controls on mesophyll conductance across plant functional types. THE NEW PHYTOLOGIST 2022; 236:357-368. [PMID: 35801854 PMCID: PMC9804998 DOI: 10.1111/nph.18363] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/30/2022] [Indexed: 06/06/2023]
Abstract
Mesophyll conductance (gm ) limits photosynthesis by restricting CO2 diffusion between the substomatal cavities and chloroplasts. Although it is known that gm is determined by both leaf anatomical and biochemical traits, their relative contribution across plant functional types (PFTs) is still unclear. We compiled a dataset of gm measurements and concomitant leaf traits in unstressed plants comprising 563 studies and 617 species from all major PFTs. We investigated to what extent gm limits photosynthesis across PFTs, how gm relates to structural, anatomical, biochemical, and physiological leaf properties, and whether these relationships differ among PFTs. We found that gm imposes a significant limitation to photosynthesis in all C3 PFTs, ranging from 10-30% in most herbaceous annuals to 25-50% in woody evergreens. Anatomical leaf traits explained a significant proportion of the variation in gm (R2 > 0.3) in all PFTs except annual herbs, in which gm is more strongly related to biochemical factors associated with leaf nitrogen and potassium content. Our results underline the need to elucidate mechanisms underlying the global variability of gm . We emphasise the underestimated potential of gm for improving photosynthesis in crops and identify modifications in leaf biochemistry as the most promising pathway for increasing gm in these species.
Collapse
Affiliation(s)
- Jürgen Knauer
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNSW2751Australia
- Climate Science CentreCSIRO Oceans and AtmosphereCanberraACT2601Australia
- Max Planck Institute for Biogeochemistry07745JenaGermany
| | - Matthias Cuntz
- AgroParisTech, UMR SilvaINRAE, Université de Lorraine54000NancyFrance
| | - John R. Evans
- ARC Centre of Excellence for Translational PhotosynthesisResearch School of BiologyThe Australian National UniversityCanberraACT2601Australia
| | - Ülo Niinemets
- Institute of Agricultural and Environmental SciencesEstonian University of Life Sciences51006TartuEstonia
| | - Tiina Tosens
- Institute of Agricultural and Environmental SciencesEstonian University of Life Sciences51006TartuEstonia
| | | | | | - Sönke Zaehle
- Max Planck Institute for Biogeochemistry07745JenaGermany
| |
Collapse
|
31
|
Xiong D, Flexas J. Safety-efficiency tradeoffs? Correlations of photosynthesis, leaf hydraulics, and dehydration tolerance across species. Oecologia 2022; 200:51-64. [PMID: 36040668 DOI: 10.1007/s00442-022-05250-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/23/2022] [Indexed: 11/26/2022]
Abstract
The tradeoffs between carbon assimilation and hydraulic efficiencies and drought-tolerance traits on different scales are considered a central tenet in plant ecophysiology; however, no clear tradeoff between these traits has emerged in previous studies using woody angiosperms or grasses by investigating several hydraulic tolerance and gas exchange efficiency and/or water transport efficiency traits. In this study, we measured numerous efficiency, resistance, and leaf anatomical traits, including light-saturated gas exchange, leaf hydraulic vulnerability curves, pressure-volume curves, and leaf anatomical traits, in seven species with diverse drought tolerance. A substantial variation in photosynthetic rate, stomatal conductance, mesophyll conductance, maximum leaf hydraulic conductance (Kmax), mesophyll anatomical traits, and leaf vein density across species was observed. Both mesophyll conductance and Kmax were related to leaf anatomical traits, but other gas exchange traits were decoupled from Kmax. Although the efficiency and tolerance traits varied widely across estimated species, no clear trade-off between safety traits and efficiency traits was observed. These findings suggested that postulated leaf-level drought tolerance-carbon assimilation and hydraulic efficiency tradeoff does not exist among distant species and that the fact that different leaf anatomical traits determine efficiency and tolerance capacity might contribute to the lack of such tradeoffs.
Collapse
Affiliation(s)
- Dongliang Xiong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Jaume Flexas
- Research Group on Plant Biology Under Mediterranean Conditions, Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA), Universitat de Les Illes Balears, Carretera de Valldemossa Km 7.5Illes Balears, 07121, Palma, Spain
| |
Collapse
|
32
|
Huang G, Peng S, Li Y. Variation of photosynthesis during plant evolution and domestication: implications for improving crop photosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4886-4896. [PMID: 35436322 DOI: 10.1093/jxb/erac169] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/16/2022] [Indexed: 06/14/2023]
Abstract
Studies investigating the mechanisms underlying the variation of photosynthesis along plant phylogeny and especially during domestication are of great importance, and may provide new insights to further improve crop photosynthesis. In the present study, we compiled a database including 542 sets of data of leaf gas exchange parameters and leaf structural and chemical traits in ferns and fern allies, gymnosperms, non-crop angiosperms, and crops. We found that photosynthesis was dramatically improved from ferns and fern allies to non-crop angiosperms, and further increased in crops. The improvement of photosynthesis during phylogeny and domestication was related to increases in carbon dioxide diffusional capacities and, to a lesser extent, biochemical capacity. Cell wall thickness rather than chloroplast surface area facing intercellular airspaces drives the variation of mesophyll conductance. The variation of the maximum carboxylation rate was not related to leaf nitrogen content. The slope of the relationship between mass-based photosynthesis and nitrogen was lower in crops than in non-crop angiosperms. These findings suggest that the manipulation of cell wall thickness is the most promising approach to further improve crop photosynthesis, and that an increase of leaf nitrogen will be less efficient in improving photosynthesis in crops than in non-crop angiosperms.
Collapse
Affiliation(s)
- Guanjun Huang
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shaobing Peng
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yong Li
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
33
|
Perera-Castro AV, González-Rodríguez ÁM, Fernández-Marín B. When time is not of the essence: constraints to the carbon balance of bryophytes. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4562-4575. [PMID: 35298628 DOI: 10.1093/jxb/erac104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
The data available so far indicate that the photosynthetic and relative growth rates of bryophytes are 10% of those reported for tracheophytes. By examining the existing literature and reanalysing data published in over 100 studies, this review examines the ecophysiological, biochemical, and structural reasons behind this phenomenon. The limiting Rubisco content and surface for gas exchange are the internal factors that can explain the low photosynthetic and growth rates of bryophytes. The role of the thicker cell walls of bryophytes in limiting CO2 diffusion is unclear, due to the current uncertainties regarding their porosity and permeability to CO2. From this review, it is also evident that, despite bryophytes having low photosynthetic rates, their positive carbon balance is tightly related to their capacity to deal with extreme conditions. Contributing factors include their capacity to deal with large daily temperature oscillations, and their capacity to delay the cessation of photosynthesis under water deficit (or to tolerate desiccation in extreme situations). Although further studies on bryophytes are needed before more solid conclusions can be drawn, it seems that their success relies on their remarkable tolerance to a highly variable environment, possibly at the expense of their maximum photosynthetic rate.
Collapse
Affiliation(s)
- Alicia V Perera-Castro
- Department of Botany, Ecology and Plant Physiology, Universidad de La Laguna, 38200 La Laguna, Canary Islands, Spain
| | - Águeda M González-Rodríguez
- Department of Botany, Ecology and Plant Physiology, Universidad de La Laguna, 38200 La Laguna, Canary Islands, Spain
| | - Beatriz Fernández-Marín
- Department of Botany, Ecology and Plant Physiology, Universidad de La Laguna, 38200 La Laguna, Canary Islands, Spain
| |
Collapse
|
34
|
Zou J, Hu W, Li Y, Zhu H, He J, Wang Y, Meng Y, Chen B, Zhao W, Wang S, Zhou Z. Leaf anatomical alterations reduce cotton's mesophyll conductance under dynamic drought stress conditions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:391-405. [PMID: 35506315 DOI: 10.1111/tpj.15794] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/25/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
Drought stress significantly affects cotton's net photosynthetic rate (A) by restraining stomatal (gs ) and mesophyll conductance (gm ) as well as perturbing its biochemical process, resulting in yield reductions. Despite the significant progress in dissecting effects of drought on photosynthesis, the variability observed in cotton's gm , and the mechanisms contributing to that variability under dynamic drought stress conditions are poorly understood. For that reason, a controlled-environment experiment with two cotton genotypes (Dexiamian 1, Yuzaomian 9110), three water levels (soil relative water content: control [75 ± 5]%, moderate drought [60 ± 5]%, severe drought [45 ± 5]%), and two drought durations (10 and 31 days) were conducted. The results indicated that the cotton boll biomass was significantly decreased under 10-day severe drought and 31-day moderate and severe drought. Decreases in gs were later accompanied by decreases in gm and further combined with reductions in electron transport rate, as drought stress progressed in duration and severity, ultimately resulting in significant reductions in A of subtending leaf. Stomatal and mesophyll conductance constraints were the primary factors limiting photosynthesis, while biochemical constraints decreased, as drought stress progressed. Considering gm , its decline was ascribed to increases in the diffusion resistance of CO2 through cytoplasm (rcyt ), under short- or long-term drought, as well as to increases in leaf dry mass (LMA), and decreases in the chloroplast surface area exposed to intercellular air space (Sc /S), under long-term drought. It was concluded that A could be enhanced, under dynamic drought stress conditions, by increasing gm through increasing Sc /S and reducing LMA and rcyt .
Collapse
Affiliation(s)
- Jie Zou
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Wei Hu
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Yuxia Li
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Honghai Zhu
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Jiaqi He
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Youhua Wang
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Yali Meng
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Binglin Chen
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Wenqing Zhao
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Shanshan Wang
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Zhiguo Zhou
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| |
Collapse
|
35
|
Zeng F, Zhu L, Wang G, Liang Y, Ma D, Wang J. Higher CO 2 Assimilation in Selected Rice Recombinant Inbred Lines Is Driven by Higher CO 2 Diffusion and Light Use Efficiency Related to Leaf Anatomy and Mesophyll Cell Density. FRONTIERS IN PLANT SCIENCE 2022; 13:915050. [PMID: 35812953 PMCID: PMC9261980 DOI: 10.3389/fpls.2022.915050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Leaf anatomy determining the light distribution within the leaf and exerting influence on CO2 diffusion is considered to have dramatic potential for photosynthesis performance increase. In this study, we observed that two rice recombinant inbred lines, H138 and H217 (RILF11 plants from Sasanishiki × IRAT10), have higher net CO2 assimilation (An) than their parent Sasanishiki due mainly to the improvement of leaf anatomy. Our results showed that An positively correlated with anatomy traits' mesophyll cell number per cross-sectional area (NO.mescell/Acros) and mesophyll area (Ames). NO.mescell/Acros exert direct and indirect effects on An. Compared to Sasanishiki flag leaves, IRAT10, H138, and H217 have higher mesophyll cell numbers. Simultaneously, higher chlorophyll content and expression of genes encoding the light-harvesting protein of PSII and PSI (Lhcb1, 2, 3 and Lhca1, 2, 3) were recorded in IRAT10, H138, and H217, which facilitates light use efficiency. Higher electron transport rate and RuBP concentration were recorded in IRAT10, H138, and H217 flag leaves. Retinoblastoma-related gene (OsRBR1), exerting effects on mesophyll cell density, can be used to modify leaf anatomy for improving leaf photosynthesis. Additionally, higher stomatal conductance and mesophyll conductance were also recorded in H138 and H217 than in Sasanishiki. Furthermore, we modeled mesophyll conductance through anatomical traits, and the results revealed that chloroplast thickness was the dominant factor restricting CO2 diffusion within mesophyll cells rather than cell wall thickness. Higher RuBP content accompanied by higher CO2 concentration within the carboxylation set in H138 and H217 flag leaves contributed to higher CO2 assimilation.
Collapse
|
36
|
Momayyezi M, Borsuk AM, Brodersen CR, Gilbert ME, Théroux‐Rancourt G, Kluepfel DA, McElrone AJ. Desiccation of the leaf mesophyll and its implications for CO 2 diffusion and light processing. PLANT, CELL & ENVIRONMENT 2022; 45:1362-1381. [PMID: 35141930 PMCID: PMC9314819 DOI: 10.1111/pce.14287] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 05/09/2023]
Abstract
Leaves balance CO2 and radiative absorption while maintaining water transport to maximise photosynthesis. Related species with contrasting leaf anatomy can provide insights into inherent and stress-induced links between structure and function for commonly measured leaf traits for important crops. We used two walnut species with contrasting mesophyll anatomy to evaluate these integrated exchange processes under non-stressed and drought conditions using a combination of light microscopy, X-ray microCT, gas exchange, hydraulic conductance, and chlorophyll distribution profiles through leaves. Juglans regia had thicker palisade mesophyll, higher fluorescence in the palisade, and greater low-mesophyll porosity that were associated with greater gas-phase diffusion (gIAS ), stomatal and mesophyll (gm ) conductances and carboxylation capacity. More and highly-packed mesophyll cells and bundle sheath extensions (BSEs) in Juglans microcarpa led to higher fluorescence in the spongy and in proximity to the BSEs. Both species exhibited drought-induced reductions in mesophyll cell volume, yet the associated increases in porosity and gIAS were obscured by declines in biochemical activity that decreased gm . Inherent differences in leaf anatomy between the species were linked to differences in gas exchange, light absorption and photosynthetic capacity, and drought-induced changes in leaf structure impacted performance via imposing species-specific limitations to light absorption, gas exchange and hydraulics.
Collapse
Affiliation(s)
- Mina Momayyezi
- Department of Viticulture and EnologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Aleca M. Borsuk
- School of the EnvironmentYale UniversityNew HavenConnecticutUSA
| | | | | | | | | | - Andrew J. McElrone
- Department of Viticulture and EnologyUniversity of CaliforniaDavisCaliforniaUSA
- USDA‐ARSCrops Pathology and Genetics Research UnitDavisCaliforniaUSA
| |
Collapse
|
37
|
Flexas J, Zhang Y, Gulías J, Xiong D, Carriquí M, Baraza E, Du T, Lei Z, Meng H, Dou H, Ribas-Carbo M, Xiang D, Xu W. Leaf physiological traits of plants from the Qinghai-Tibet Plateau and other arid sites in China: Identifying susceptible species and well-adapted extremophiles. JOURNAL OF PLANT PHYSIOLOGY 2022; 272:153689. [PMID: 35398716 DOI: 10.1016/j.jplph.2022.153689] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
Extreme environments, such as deserts and high-elevation ecosystems, are very important from biodiversity and ecological perspectives. However, plant physiology at those sites has been scarcely studied, likely due to logistic difficulties. In the present study, leaf physiological traits in native plants were analyzed from arid zones across an elevational transect in Western China, from Turpan Basin to the Qinghai-Tibet Plateau (QTP) at Delingha. The aim of this study was to use leaf physiological traits to help identifying potentially threatened species and true extremophiles. Physiological measurements in the field, and particularly in situ measurements of gas exchange and chlorophyll fluorescence, have been determined to be useful to determine the current state of plants at a given environment. Using this approach plus a combination of leaf traits, several species performing particularly well at the QTP were identified, e.g. Hedysarum multijugum, as well as at Manas drylands, e.g. Peganum harmala and Setaria viridis. On the other hand, several species showed marked signs of severe stress, in particular a very low photosynthetic rate over its potential maximum, as well as other negative traits, like low water and/or nitrogen-use-efficiency, which should be considered in conservation plans. Interestingly, all C4 species studied except Setaria viridis were among the most stressed species. Despite their higher water use efficiency and drought-tolerance reputation, they presented a much larger photosynthesis depression than most C3 species. This is an intriguing and interesting observation that deserves further studies.
Collapse
Affiliation(s)
- Jaume Flexas
- Research Group on Plant Biology Under Mediterranean Conditions, Department de Biologia, Universitat de Les Illes Balears (UIB) - Agro-Environmental and Water Economics Institute (INAGEA), Carretera de Valldemossa Km 7.5, 07122, Palma, Illes Balears, Spain; King Abdulaziz University, P.O. Box 80200, Jeddah, 21589, Saudi Arabia.
| | - Yali Zhang
- Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps / College of Agriculture/College of Life Science, Shihezi University, Shihezi, Xinjiang, 832003, China.
| | - Javier Gulías
- Research Group on Plant Biology Under Mediterranean Conditions, Department de Biologia, Universitat de Les Illes Balears (UIB) - Agro-Environmental and Water Economics Institute (INAGEA), Carretera de Valldemossa Km 7.5, 07122, Palma, Illes Balears, Spain
| | - Dongliang Xiong
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Marc Carriquí
- Research Group on Plant Biology Under Mediterranean Conditions, Department de Biologia, Universitat de Les Illes Balears (UIB) - Agro-Environmental and Water Economics Institute (INAGEA), Carretera de Valldemossa Km 7.5, 07122, Palma, Illes Balears, Spain
| | - Elena Baraza
- Research Group on Plant Biology Under Mediterranean Conditions, Department de Biologia, Universitat de Les Illes Balears (UIB) - Agro-Environmental and Water Economics Institute (INAGEA), Carretera de Valldemossa Km 7.5, 07122, Palma, Illes Balears, Spain
| | - Tingting Du
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zhangying Lei
- Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps / College of Agriculture/College of Life Science, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Haofeng Meng
- Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps / College of Agriculture/College of Life Science, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Haitao Dou
- Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps / College of Agriculture/College of Life Science, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Miquel Ribas-Carbo
- Research Group on Plant Biology Under Mediterranean Conditions, Department de Biologia, Universitat de Les Illes Balears (UIB) - Agro-Environmental and Water Economics Institute (INAGEA), Carretera de Valldemossa Km 7.5, 07122, Palma, Illes Balears, Spain
| | - Dao Xiang
- Wulanwusu Agro-Meteorological Experiment Station of Xinjiang / Wulanwusu National Comprehensive Meteorological Observation Special Test Field, Wulanwusu, 832199, Xinjiang, China
| | - Wenbin Xu
- Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps / College of Agriculture/College of Life Science, Shihezi University, Shihezi, Xinjiang, 832003, China
| |
Collapse
|
38
|
Abdallah M, Douthe C, Flexas J. Leaf morpho-physiological comparison between native and non-native plant species in a Mediterranean island. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02797-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AbstractIslands tend to be more prone to plant invasions than mainland regions, with the Mediterranean ones not being an exception. So far, a large number of studies on comparing leaf morphological and physiological traits between native and non-native plants in Mediterranean environments have been performed, although none of them on Mediterranean islands. To fill this gap, this study focuses on 14 plant species grown in a controlled growth chamber in the absence of stress. The goal was (1) to differentiate leaf morpho-physiological traits between native and non-native plants on a Mediterranean island and (2) to deepen in the underlying causes of the differential photosynthetic traits displayed by non-native species. Results showed that in Mediterranean islands, non-native plant species show on average larger values of net CO2 assimilation, stomatal conductance (gm), photosynthetic nitrogen-use efficiency, among others, and lower leaf mass per area (LMA) and leaf thickness, compared to the native species. Among the assessed traits, this study reports for the first time larger gm, and lower mesophyll conductance limitation in non-native species, which seems to be linked to their lower LMA. These novel traits need to be added to the ‘leaf physiological trait invasive syndrome’. It was also found that on a Mediterranean island, native and non-native species are placed on opposite sides of the leaf economics spectrum, with non-native species being placed on the ‘‘fast-return’’ end. In conclusion, this study demonstrates that non-native species inhabiting a Mediterranean island possess distinct leaf morphological and physiological traits compared to co-occurring native species, at least during the favorable growth season, which increases the chances of a successful invasion.
Collapse
|
39
|
Yang Q, Ravnskov S, Pullens JWM, Andersen MN. Interactions between biochar, arbuscular mycorrhizal fungi and photosynthetic processes in potato (Solanum tuberosum L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151649. [PMID: 34785223 DOI: 10.1016/j.scitotenv.2021.151649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/25/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Pyrolyzed biomass, generating biochar for use as soil amendment, is recognized as a promising strategy for carbon sequestration. Current understanding of the interactions between biochar, arbuscular mycorrhizal (AM), and plant photosynthesis, in terms of biochemical processes and CO2 uptake, is fragmentary. The aim of this study was to investigate the effects on photosynthesis in potato including maximum rate of carboxylation by Rubisco (Vcmax), maximum rate of electron transport rate for RuBP-regeneration (Jmax), mesophyll conductance (gm) and other plant traits. Four types of biochar (wheat or miscanthus straw pellets pyrolyzed at temperatures of either 550 °C or 700 °C) were amended into low phosphorus soil. Potato plants were inoculated with the AM fungus Rhizophagus irregularis (M+) or not (M-). The results showed that four types of biochar generally decreased nitrogen and phosphorus content of potato, especially the biochars pyrolyzed at high temperature. This negative effect of biochar on nutrient content was alleviated by AM. It was found that Vcmax was limited by low plant nitrogen content as well as leaf area and phosphorus content. Plant phosphorus content also limited Jmax, which was mutually constrained by Vcmax of leaves. Low gm was an additional limiting factor for photosynthesis. The gm was positively correlated to nitrogen content, which influenced the leaf anatomical structure by alteration of leaf mass per area. In conclusion, the influence of interactions between quality of biochar and AM symbiosis on photosynthesis of potato seems to relate to effects on plant nutrient content and leaf structures. Accordingly, a model for the dependence of Vcmax on nitrogen and phosphorus content and their interactive effect exhibited a high correlation coefficient. As potato plants form AM symbiosis under natural field conditions, the extent and interaction with the quality of amended biochar can be a determining factor for plant nutrient content, growth and yield.
Collapse
Affiliation(s)
- Qi Yang
- Department of Agroecology, Faculty of Science and Technology, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark.
| | - Sabine Ravnskov
- Department of Agroecology, Faculty of Science and Technology, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark
| | | | - Mathias Neumann Andersen
- Department of Agroecology, Faculty of Science and Technology, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark
| |
Collapse
|
40
|
Ye M, Zhang Z, Huang G, Li Y. Leaf Photosynthesis and Its Temperature Response Are Different between Growth Stages and N Supplies in Rice Plants. Int J Mol Sci 2022; 23:ijms23073885. [PMID: 35409242 PMCID: PMC8999464 DOI: 10.3390/ijms23073885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/18/2022] [Accepted: 03/29/2022] [Indexed: 12/27/2022] Open
Abstract
Leaf photosynthesis is highly correlated with CO2-diffusion capacities, which are determined by both leaf anatomical traits and environmental stimuli. In the present study, leaf photosynthetic rate (A), stomatal conductance (gs), mesophyll conductance (gm) and the related leaf anatomical traits were studied on rice plants at two growth stages and with two different N supplies, and the response of photosynthesis to temperature (T) was also studied. We found that gm was significantly higher at mid-tillering stage and at high N treatment. The larger gm was related to a larger chloroplast surface area facing intercellular air spaces and a thinner cell wall in comparison with booting stage and zero N treatment. At mid-tillering stage and at high N treatment, gm showed a stronger temperature response. The modelling of the gm-T relationships suggested that, in comparison with booting stage and zero N treatment, the stronger temperature response of gm was related to the higher activation energy of the membrane at mid-tillering stage and at high N treatment. The findings in the present study can enhance our knowledge on the physiological and environmental determinants of photosynthesis.
Collapse
Affiliation(s)
- Miao Ye
- Ministry of Agriculture and Rural Affairs Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (M.Y.); (Z.Z.); (G.H.)
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Zhengcan Zhang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (M.Y.); (Z.Z.); (G.H.)
| | - Guanjun Huang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (M.Y.); (Z.Z.); (G.H.)
| | - Yong Li
- Ministry of Agriculture and Rural Affairs Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (M.Y.); (Z.Z.); (G.H.)
- Correspondence: ; Tel.: +86-27-8728-5082; Fax: +86-27-8728-8188
| |
Collapse
|
41
|
Xiong Z, Xiong D, Yang D, Cui K, Peng S, Huang J. Effects of contrasting N supplies on leaf photosynthetic induction under fluctuating light in rice (Oryza sativa L.). PHYSIOLOGIA PLANTARUM 2022; 174:e13636. [PMID: 35122261 DOI: 10.1111/ppl.13636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/16/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Nitrogen (N) is one of the most important nutrients for crop growth and yield formation, as it is an important constituent in a large amount of proteins, cell walls, and membranes related to photosynthesis. Recently, increasing studies have suggested the important roles of photosynthetic induction and stomatal movement under fluctuating light in regulating plant carbon assimilation and water use efficiency. How leaf N content affects photosynthetic induction remains uncertain. Here, we observed a significantly faster photosynthetic induction with the increasing supply of N under fluctuating light conditions. Photosynthetic induction was mainly limited by biochemical processes but not stomatal opening after a stepwise increase in irradiance across different N supplies. Higher N supply enhanced photosynthetic efficiency under constant and fluctuating light conditions but reduced leaf intrinsic water use efficiency (WUEi ). This study is mainly focused on clarifying the crucial limitation of photosynthetic induction under different N treatments, which may facilitate the improvement of photosynthetic efficiency under complicated environments in the future.
Collapse
Affiliation(s)
- Zhuang Xiong
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Dongliang Xiong
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Desheng Yang
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Kehui Cui
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shaobing Peng
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jianliang Huang
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
42
|
Perera‐Castro AV, Flexas J. Desiccation tolerance in bryophytes relates to elasticity but is independent of cell wall thickness and photosynthesis. PHYSIOLOGIA PLANTARUM 2022; 174:e13661. [PMID: 35249226 PMCID: PMC9314017 DOI: 10.1111/ppl.13661] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/18/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Mosses have been found outliers of the trade-off between photosynthesis and bulk elastic modulus described for vascular plants. Hence, potential trade-offs among physical features of cell walls and desiccation tolerance, water relations, and photosynthesis were assessed in bryophytes and other poikilohydric species. Long-term desiccation tolerance was quantified after variable periods of desiccation/rehydration cycles. Water relations were analyzed by pressure-volume curves. Mesophyll conductance was estimated using both CO2 curve-fitting and anatomical methods. Cell wall elasticity was the parameter that better correlated with the desiccation tolerance index for desiccation tolerant species and was antagonistic to higher absolute values of osmotic potential. Although high values of cell wall effective porosity were estimated compared with the values assumed for vascular plants, the desiccation tolerance index negatively correlated with the porosity in desiccation tolerant bryophytes. Neither cell wall thickness nor photosynthetic capacity were correlated with the desiccation tolerance index of the studied species. The existence of a potential evolutionary trade-off between cell wall thickness and desiccation tolerance is rejected. The photosynthetic capacity reported for bryophytes is independent of elasticity and desiccation tolerance. Furthermore, the role of cell wall thickness in limiting CO2 conductance would be overestimated under a scenario of high cell wall porosity for most bryophytes.
Collapse
Affiliation(s)
- Alicia V. Perera‐Castro
- Department of BiologyUniversitat de les Illes Balears, INAGEAPalma de MallorcaSpain
- Department of Botany, Ecology and Plant PhysiologyUniversidad de La Laguna, Av. Astrofísico Francisco SánchezLa LagunaSpain
| | - Jaume Flexas
- Department of BiologyUniversitat de les Illes Balears, INAGEAPalma de MallorcaSpain
- King Abdulaziz UniversityJeddahSaudi Arabia
| |
Collapse
|
43
|
Cândido-Sobrinho SA, Lima VF, Freire FBS, de Souza LP, Gago J, Fernie AR, Daloso DM. Metabolism-mediated mechanisms underpin the differential stomatal speediness regulation among ferns and angiosperms. PLANT, CELL & ENVIRONMENT 2022; 45:296-311. [PMID: 34800300 DOI: 10.1111/pce.14232] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Recent results suggest that metabolism-mediated stomatal closure mechanisms are important to regulate differentially the stomatal speediness between ferns and angiosperms. However, evidence directly linking mesophyll metabolism and the slower stomatal conductance (gs ) in ferns is missing. Here, we investigated the effect of exogenous application of abscisic acid (ABA), sucrose and mannitol on stomatal kinetics and carried out a metabolic fingerprinting analysis of ferns and angiosperms leaves harvested throughout a diel course. Fern stomata did not respond to ABA in the time period analysed. No differences in the relative decrease in gs was observed between ferns and the angiosperm following provision of sucrose or mannitol. However, ferns have slower gs responses to these compounds than angiosperms. Metabolomics analysis highlights that ferns have a higher accumulation of secondary rather than primary metabolites throughout the diel course, with the opposite being observed in angiosperms. Our results indicate that metabolism-mediated stomatal closure mechanisms underpin the differential stomatal speediness regulation among ferns and angiosperms, in which the slower stomatal closure in ferns is associated with the lack of ABA-responsiveness, to a reduced capacity to respond to mesophyll-derived sucrose and to a higher carbon allocation toward secondary metabolism, which likely modulates both photosynthesis-gs and growth-stress tolerance trade-offs.
Collapse
Affiliation(s)
- Silvio A Cândido-Sobrinho
- Departamento de Bioquímica e Biologia Molecular, LabPlant, Universidade Federal do Ceará, Fortaleza-CE, Brasil
| | - Valéria F Lima
- Departamento de Bioquímica e Biologia Molecular, LabPlant, Universidade Federal do Ceará, Fortaleza-CE, Brasil
| | - Francisco B S Freire
- Departamento de Bioquímica e Biologia Molecular, LabPlant, Universidade Federal do Ceará, Fortaleza-CE, Brasil
| | - Leonardo P de Souza
- Central Metabolism Group, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Jorge Gago
- Research Group On Plant Biology Under Mediterranean Conditions, Instituto de investigaciones Agroambientales y de la Economía del Agua (INAGEA), Universitat de les Illes Balears, Palma de Mallorca, Spain
| | - Alisdair R Fernie
- Central Metabolism Group, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Danilo M Daloso
- Departamento de Bioquímica e Biologia Molecular, LabPlant, Universidade Federal do Ceará, Fortaleza-CE, Brasil
| |
Collapse
|
44
|
Lei Z, Liu F, Wright IJ, Carriquí M, Niinemets Ü, Han J, Jia M, Atwell BJ, Cai X, Zhang W, Zhou Z, Zhang Y. Comparisons of photosynthetic and anatomical traits between wild and domesticated cotton. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:873-885. [PMID: 34153103 DOI: 10.1093/jxb/erab293] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
Mesophyll conductance (gm) is a crucial leaf trait contributing to the photosynthetic rate (AN). Plant domestication typically leads to an enhancement of AN that is often associated with profound anatomical modifications, but it is unclear which of these structural alterations influence gm. We analyzed the implication of domestication on leaf anatomy and its effect on gm in 26 wild and 31 domesticated cotton genotypes (Gossypium sp.) grown under field conditions. We found that domesticated genotypes had higher AN but similar gm to wild genotypes. Consistent with this, domestication did not translate into significant differences in the fraction of mesophyll occupied by intercellular air spaces (fias) or mesophyll and chloroplast surface area exposed to intercellular air space (Sm/S and Sc/S, respectively). However, leaves of domesticated genotypes were significantly thicker, with larger but fewer mesophyll cells with thinner cell walls. Moreover, domesticated genotypes had higher cell wall conductance (gcw) but smaller cytoplasmic conductance (gcyt) than wild genotypes. It appears that domestication in cotton has not generally led to significant improvement in gm, in part because their thinner mesophyll cell walls (increasing gcw) compensate for their lower gcyt, itself due to larger distance between plasmalemma and chloroplast envelopes.
Collapse
Affiliation(s)
- Zhangying Lei
- The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi, 832003, PR China
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Fang Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, PR China
| | - Ian J Wright
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Marc Carriquí
- School of Natural Sciences, University of Tasmania, Bag 55, 7001 Hobart, Tasmania, Australia
| | - Ülo Niinemets
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia
| | - Jimei Han
- School of Integrative Plant Science, Soil and Crop Science Section, Cornell University, Ithaca, NY 14850, USA
| | - Mengmeng Jia
- The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi, 832003, PR China
| | - Brian J Atwell
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, PR China
| | - Wangfeng Zhang
- The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi, 832003, PR China
| | - Zhongli Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, PR China
| | - Yali Zhang
- The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi, 832003, PR China
| |
Collapse
|
45
|
Roig-Oliver M, Douthe C, Bota J, Flexas J. Cell wall thickness and composition are related to photosynthesis in Antarctic mosses. PHYSIOLOGIA PLANTARUM 2021; 173:1914-1925. [PMID: 34432898 DOI: 10.1111/ppl.13533] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Cell wall thickness (Tcw ) has been proposed as an important anatomical trait that could determine photosynthesis through land plants' phylogeny, bryophytes being the plant group presenting the thickest walls and the lowest photosynthetic rates. Also, it has recently been suggested that cell wall composition may have the potential to influence both thickness and mesophyll conductance (gm ), representing a novel trait that could ultimately affect photosynthesis. However, only a few studies in spermatophytes have demonstrated this issue. In order to explore the role of cell wall composition in determining both Tcw and gm in mosses, we tested six species grown under field conditions in Antarctica. We performed gas exchange and chlorophyll fluorescence measurements, an anatomical characterization, and a quantitative analysis of cell wall main composition (i.e., cellulose, hemicelluloses and pectins) in these six species. We found the photosynthetic rates to vary between the species, and they also presented differences in anatomical characteristics and in cell wall composition. Whilst gm correlated negatively with Tcw and pectins content, a positive relationship between Tcw and pectins emerged, suggesting that pectins could contribute to determine cell wall porosity. Although our results do not allow us to provide conclusive statements, we suggest for the first time that cell wall composition-with pectins playing a key role-could strongly influence Tcw and gm in Antarctic mosses, ultimately defining photosynthesis.
Collapse
Affiliation(s)
- Margalida Roig-Oliver
- Departament de Biologia, Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB), INAGEA, Palma, Illes Balears, Spain
| | - Cyril Douthe
- Departament de Biologia, Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB), INAGEA, Palma, Illes Balears, Spain
| | - Josefina Bota
- Departament de Biologia, Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB), INAGEA, Palma, Illes Balears, Spain
| | - Jaume Flexas
- Departament de Biologia, Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB), INAGEA, Palma, Illes Balears, Spain
- King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
46
|
Ulloa M, Nunes-Nesi A, da Fonseca-Pereira P, Poblete-Grant P, Reyes-Díaz M, Cartes P. The effect of silicon supply on photosynthesis and carbohydrate metabolism in two wheat (Triticum aestivum L.) cultivars contrasting in response to phosphorus nutrition. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 169:236-248. [PMID: 34808466 DOI: 10.1016/j.plaphy.2021.11.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Phosphorus (P) deficiency affects agricultural systems by limiting crop quality and yield. Studies have suggested that silicon (Si) improves P uptake in plants grown under P deficiency. However, the effects of Si on photosynthesis and carbohydrate metabolism under P stress remain unclear. We performed a hydroponic study using two wheat cultivars with contrasting sensitivity to P deficiency (Púrpura, sensitive; Fritz, semi-tolerant) that were exposed to P (0, 0.01, or 0.1 mM) and Si (0 or 2 mM), and we evaluated the photosynthetic performance and metabolic alterations. In plants from the sensitive cultivar undergoing P deficiency, Si application increased sucrose levels, starch breakdown and length of shoots, and also improved plant dry weight. In Fritz (the semi-tolerant cultivar), Si exposure reduced P concentration, and increased shoot length and P use efficiency (PUE) under P shortage. Interestingly, Si application altered cell wall composition, which was associated with higher mesophyll conductance and net CO2 assimilation in Fritz plants grown under P stress. Together, our results indicate that under P deficiency, Si nutrition positively affects photosynthesis and carbohydrate levels in a genotype-dependent manner. Furthermore, these results suggest that Si plays an important role in maintaining high photosynthetic rates in wheat plants undergoing P deficiency.
Collapse
Affiliation(s)
- Marlys Ulloa
- Doctoral Program in Science of Natural Resources, Universidad de La Frontera, Avenida Francisco Salazar 01145, P.O. Box 54-D, Temuco, 4780000, Chile; Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Biotechnological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Avenida Francisco Salazar 01145, PO Box 54-D, Temuco, 4780000, Chile
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | | | - Patricia Poblete-Grant
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Biotechnological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Avenida Francisco Salazar 01145, PO Box 54-D, Temuco, 4780000, Chile
| | - Marjorie Reyes-Díaz
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Biotechnological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Avenida Francisco Salazar 01145, PO Box 54-D, Temuco, 4780000, Chile; Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Avenida Francisco Salazar 01145, PO Box 54-D, Temuco, 4780000, Chile
| | - Paula Cartes
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Biotechnological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Avenida Francisco Salazar 01145, PO Box 54-D, Temuco, 4780000, Chile; Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Avenida Francisco Salazar 01145, PO Box 54-D, Temuco, 4780000, Chile.
| |
Collapse
|
47
|
Kume A, Kamachi H, Onoda Y, Hanba YT, Hiwatashi Y, Karahara I, Fujita T. How plants grow under gravity conditions besides 1 g: perspectives from hypergravity and space experiments that employ bryophytes as a model organism. PLANT MOLECULAR BIOLOGY 2021; 107:279-291. [PMID: 33852087 DOI: 10.1007/s11103-021-01146-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
Plants have evolved and grown under the selection pressure of gravitational force at 1 g on Earth. In response to this selection pressure, plants have acquired gravitropism to sense gravity and change their growth direction. In addition, plants also adjust their morphogenesis in response to different gravitational forces in a phenomenon known as gravity resistance. However, the gravity resistance phenomenon in plants is poorly understood due to the prevalence of 1 g gravitational force on Earth: not only it is difficult to culture plants at gravity > 1 g(hypergravity) for a long period of time but it is also impossible to create a < 1 genvironment (μg, micro g) on Earth without specialized facilities. Despite these technical challenges, it is important to understand how plants grow in different gravity conditions in order to understand land plant adaptation to the 1 g environment or for outer space exploration. To address this, we have developed a centrifugal device for a prolonged duration of plant culture in hypergravity conditions, and a project to grow plants under the μg environment in the International Space Station is also underway. Our plant material of choice is Physcomitrium (Physcomitrella) patens, one of the pioneer plants on land and a model bryophyte often used in plant biology. In this review, we summarize our latest findings regarding P. patens growth response to hypergravity, with reference to our on-going "Space moss" project. In our ground-based hypergravity experiments, we analyzed the morphological and physiological changes and found unexpected increments of chloroplast size and photosynthesis rate, which might underlie the enhancement of growth and increase in the number of gametophores and rhizoids. We further discussed our approaches at the cellular level and compare the gravity resistance in mosses and that in angiosperms. Finally, we highlight the advantages and perspectives from the space experiments and conclude that research with bryophytes is beneficial to comprehensively and precisely understand gravitational responses in plants.
Collapse
Affiliation(s)
- Atsushi Kume
- Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hiroyuki Kamachi
- Faculty of Science, University of Toyama, 3190 Gofuku, Toyama, Toyama, 930-8555, Japan
| | - Yusuke Onoda
- Graduate School of Agriculture, Kyoto University, Oiwake, Kitashirakawa, Kyoto, 606-8502, Japan
| | - Yuko T Hanba
- Faculty of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Yuji Hiwatashi
- School of Food Industrial Sciences, Miyagi University, 2-2-1 Hatatate, Taihaku-ku, Sendai, Miyagi, 982-0215, Japan
| | - Ichirou Karahara
- Faculty of Science, University of Toyama, 3190 Gofuku, Toyama, Toyama, 930-8555, Japan
| | - Tomomichi Fujita
- Faculty of Science, Hokkaido University, Kita 10 Nishi8 Kita-ku, Sapporo, Hokkaido, 060-0810, Japan.
| |
Collapse
|
48
|
Jahan E, Thomson PC, Tissue DT. Mesophyll conductance in two cultivars of wheat grown in glacial to super-elevated CO2 concentrations. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7191-7202. [PMID: 34232298 DOI: 10.1093/jxb/erab320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/04/2021] [Indexed: 05/26/2023]
Abstract
Mesophyll conductance (gm) is an important factor limiting photosynthesis. However, gm response to long-term growth in variable [CO2] is not well understood, particularly in crop plants. Here, we grew two cultivars of wheat (Halberd and Cranbrook), known to differ in gm under current environmental conditions, in four [CO2] treatments: glacial (206 μmol mol-1), pre-industrial (344 μmol mol-1), current ambient (489 μmol mol-1), and super-elevated (1085 μmol mol-1), and two water treatments (well-watered and moderate water limitation), to develop an evolutionary and future climate perspective on gm control of photosynthesis and water-use efficiency (WUE). In the two wheat genotypes, gm increased with rising [CO2] from glacial to ambient [CO2], but declined at super-elevated [CO2]. The responses of gm to different growth [CO2] also depend on water stress; however, the specific mechanism of gm response to [CO2] remains unclear. Although gm and gm/gsc (mesophyll conductance/stomatal conductance) were strongly associated with the variability of photosynthetic rates (A) and WUE, we found that plants with higher gm may increase A without increasing gsc, which increased WUE. These results may be useful to inform plant breeding programmes and cultivar selection for Australian wheat under future environmental conditions.
Collapse
Affiliation(s)
- Eisrat Jahan
- The University of Sydney, School of Life and Environmental Sciences, Camden NSW, Australia
| | - Peter C Thomson
- The University of Sydney, School of Life and Environmental Sciences, Camden NSW, Australia
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith NSW, Australia
| |
Collapse
|
49
|
Liu M, Liu X, Du X, Korpelainen H, Niinemets Ü, Li C. Anatomical variation of mesophyll conductance due to salt stress in Populus cathayana females and males growing under different inorganic nitrogen sources. TREE PHYSIOLOGY 2021; 41:1462-1478. [PMID: 33554242 DOI: 10.1093/treephys/tpab017] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 01/18/2021] [Indexed: 05/26/2023]
Abstract
Synergistic regulation in leaf architecture and photosynthesis is essential for salt tolerance. However, how plant sex and inorganic nitrogen sources alter salt stress-dependent photosynthesis remains unknown. Leaf anatomical characteristics and photosynthesis of Populus cathayana Rehder females and males were investigated under salt stress conditions combined with nitrate NO3- and ammonium NH4+ supplies to clarify the underlying mechanisms. In salt-stressed females, we observed an increased mesophyll spongy cell density, a reduced chloroplast density, a decreased surface area of chloroplasts adjacent to the intercellular air space (Sc/S) and an increased mesophyll cell area per transverse section width (S/W), consequently causing mesophyll conductance (gm) and photosynthesis inhibition, especially under NH4+ supply. Conversely, males with a greater mesophyll palisade tissue thickness and chloroplast density, but a lower spongy cell density had lower S/W and higher Sc/S, and higher gm and photosynthesis. NH4+-fed females had a lower CO2 conductance through cell wall and stromal conductance perpendicular to the cell wall, but a higher chloroplast conductance from the cell wall (gcyt1) than females supplied with NO3-, whereas males had a higher chloroplast conductance and lower CO2 conductance through cell wall when supplied with NO3- instead of NH4+ under salt stress. These findings indicate sex-specific strategies in coping with salt stress related to leaf anatomy and gm under both types of nitrogen supplies, which may contribute to sex-specific CO2 capture and niche segregation.
Collapse
Affiliation(s)
- Miao Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Yuhangtang Road 2318, Hangzhou 311121, China
| | - Xiucheng Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Yuhangtang Road 2318, Hangzhou 311121, China
| | - Xuhua Du
- Key Laboratory of State Forestry and Grassland Administration on Bamboo Resources and Utilization, China National Bamboo Research Center, State Forestry and Grassland Administration, Wenyi Road 310, Hangzhou 310012, China
| | - Helena Korpelainen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO P.O. Box 27, Latokartanonkaari 5, FI-00014 Helsinki, Finland
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia
- Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia
| | - Chunyang Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Yuhangtang Road 2318, Hangzhou 311121, China
| |
Collapse
|
50
|
Xiong D, Flexas J. Leaf anatomical characteristics are less important than leaf biochemical properties in determining photosynthesis responses to nitrogen top-dressing. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5709-5720. [PMID: 34022050 DOI: 10.1093/jxb/erab230] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
The photosynthetic capacity of leaves is dramatically influenced by nitrogen (N) availability in the soil, as CO2 concentration in chloroplasts and photosynthetic biochemical capacity are related to leaf N content. The relationship between mesophyll conductance (gm) and leaf N content was expected to be shaped by leaf anatomical traits. However, the increased gm in mature leaves achieved by N top-dressing is unlikely to be caused by changes in leaf anatomy. Here, we assessed the impacts of N supply on leaf anatomical, biochemical, and photosynthetic features, specifically, the dynamic responses of leaf anatomy, biochemistry, and photosynthesis to N top-dressing in tobacco. Plant performance was substantially affected by soil N status. In comparison with the leaves of plants subjected to low N treatment, leaves of plants with high N treatment photosynthesized significantly more, due to higher CO2 diffusion conductance and photosynthetic biochemical capacity. The high gm in high N-treated leaves apparently related to modifications in the leaf anatomy; however, the rapid response of gm to N top-dressing cannot be fully explained by leaf anatomical modifications.
Collapse
Affiliation(s)
- Dongliang Xiong
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jaume Flexas
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears/Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA), Carretera de Valldemossa Km 7.5, Palma de Mallorca, Illes Balears, Spain
| |
Collapse
|