1
|
Huang K, De Long JR, Yan X, Wang X, Wang C, Zhang Y, Zhang Y, Wang P, Du G, van Kleunen M, Guo H. Why are graminoid species more dominant? Trait-mediated plant-soil feedbacks shape community composition. Ecology 2024; 105:e4295. [PMID: 38723655 DOI: 10.1002/ecy.4295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/15/2023] [Accepted: 02/07/2024] [Indexed: 06/04/2024]
Abstract
Species traits may determine plant interactions along with soil microbiome, further shaping plant-soil feedbacks (PSFs). However, how plant traits modulate PSFs and, consequently, the dominance of plant functional groups remains unclear. We used a combination of field surveys and a two-phase PSF experiment to investigate whether forbs and graminoids differed in PSFs and in their trait-PSF associations. When grown in forb-conditioned soils, forbs experienced stronger negative feedbacks, while graminoids experienced positive feedbacks. Graminoid-conditioned soil resulted in neutral PSFs for both functional types. Forbs with thin roots and small seeds showed more-negative PSFs than those with thick roots and large seeds. Conversely, graminoids with acquisitive root and leaf traits (i.e., thin roots and thin leaves) demonstrated greater positive PSFs than graminoids with thick roots and tough leaves. By distinguishing overall and soil biota-mediated PSFs, we found that the associations between plant traits and PSFs within both functional groups were mainly mediated by soil biota. A simulation model demonstrated that such differences in PSFs could lead to a dominance of graminoids over forbs in natural plant communities, which might explain why graminoids dominate in grasslands. Our study provides new insights into the differentiation and adaptation of plant life-history strategies under selection pressures imposed by soil biota.
Collapse
Affiliation(s)
- Kailing Huang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- Ecology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Jonathan R De Long
- Department of Ecosystem and Landscape Dynamics, Institute of Biodiversity and Ecosystem Dynamics (IBED-ELD), University of Amsterdam, Amsterdam, The Netherlands
| | - Xuebin Yan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xiaoyi Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Chunlong Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yiwei Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yuanyuan Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Peng Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Guozhen Du
- College of Ecology, Lanzhou University, Lanzhou, China
| | - Mark van Kleunen
- Ecology, Department of Biology, University of Konstanz, Konstanz, Germany
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
| | - Hui Guo
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
2
|
Delory BM, Callaway RM, Semchenko M. A trait-based framework linking the soil metabolome to plant-soil feedbacks. THE NEW PHYTOLOGIST 2024; 241:1910-1921. [PMID: 38124274 DOI: 10.1111/nph.19490] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
By modifying the biotic and abiotic properties of the soil, plants create soil legacies that can affect vegetation dynamics through plant-soil feedbacks (PSF). PSF are generally attributed to reciprocal effects of plants and soil biota, but these interactions can also drive changes in the identity, diversity and abundance of soil metabolites, leading to more or less persistent soil chemical legacies whose role in mediating PSF has rarely been considered. These chemical legacies may interact with microbial or nutrient legacies to affect species coexistence. Given the ecological importance of chemical interactions between plants and other organisms, a better understanding of soil chemical legacies is needed in community ecology. In this Viewpoint, we aim to: highlight the importance of belowground chemical interactions for PSF; define and integrate soil chemical legacies into PSF research by clarifying how the soil metabolome can contribute to PSF; discuss how functional traits can help predict these plant-soil interactions; propose an experimental approach to quantify plant responses to the soil solution metabolome; and describe a testable framework relying on root economics and seed dispersal traits to predict how plant species affect the soil metabolome and how they could respond to soil chemical legacies.
Collapse
Affiliation(s)
- Benjamin M Delory
- Institute of Ecology, Leuphana University of Lüneburg, Lüneburg, 21335, Germany
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, 3584 CB, the Netherlands
| | - Ragan M Callaway
- Division of Biological Sciences and Institute on Ecosystems, University of Montana, Missoula, MT, 59812, USA
| | - Marina Semchenko
- Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409, Tartu, Estonia
| |
Collapse
|
3
|
Fang K, Yang AL, Li YX, Zeng ZY, Wang RF, Li T, Zhao ZW, Zhang HB. Native plants change the endophyte assembly and growth of an invasive plant in response to climatic factors. Appl Environ Microbiol 2023; 89:e0109323. [PMID: 37815356 PMCID: PMC10617555 DOI: 10.1128/aem.01093-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/08/2023] [Indexed: 10/11/2023] Open
Abstract
Climate change, microbial endophytes, and local plants can affect the establishment and expansion of invasive species, yet no study has been performed to assess these interactions. Using a growth chamber, we integrated the belowground (rhizosphere soils) and aboveground (mixture of mature leaf and leaf litter) microbiota into an experimental framework to evaluate the impacts of four native plants acting as microbial inoculation sources on endophyte assembly and growth of the invasive plant Ageratina adenophora in response to drought stress and temperature change. We found that fungal and bacterial enrichment in the leaves and roots of A. adenophora exhibited distinct patterns in response to climatic factors. Many fungi were enriched in roots in response to high temperature and drought stress; in contrast, many bacteria were enriched in leaves in response to low temperature and drought stress. Inoculation of microbiota from phylogenetically close native plant species (i.e., Asteraceae Artemisia atrovirens) causes the recipient plant A. adenophora (Asteraceae) to enrich dominant microbial species from inoculation sources, which commonly results in a lower dissimilar endophytic microbiota and thus produces more negative growth effects when compared to non-Asteraceae inoculations. Drought, microbial inoculation source, and temperature directly impacted the growth of A. adenophora. Both drought and inoculation also indirectly impacted the growth of A. adenophora by changing the root endophytic fungal assembly. Our data indicate that native plant identity can greatly impact the endophyte assembly and host growth of invasive plants, which is regulated by drought and temperature.IMPORTANCEThere has been increasing interest in the interactions between global changes and plant invasions; however, it remains to quantify the role of microbial endophytes in plant invasion with a consideration of their variation in the root vs leaf of hosts, as well as the linkages between microbial inoculations, such as native plant species, and climatic factors, such as temperature and drought. Our study found that local plants acting as microbial inoculants can impact fungal and bacterial enrichment in the leaves and roots of the invasive plant Ageratina adenophora and thus produce distinct growth effects in response to climatic factors; endophyte-mediated invasion of A. adenophora is expected to operate more effectively under favorable moisture. Our study is important for understanding the interactions between climate change, microbial endophytes, and local plant identity in the establishment and expansion of invasive species.
Collapse
Affiliation(s)
- Kai Fang
- State Key Laboratory for Conservation and Utilization of Bioresources in Yunnan, Yunnan University, Kunming, China
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Ai-Ling Yang
- State Key Laboratory for Conservation and Utilization of Bioresources in Yunnan, Yunnan University, Kunming, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Yu-Xuan Li
- State Key Laboratory for Conservation and Utilization of Bioresources in Yunnan, Yunnan University, Kunming, China
| | - Zhao-Ying Zeng
- State Key Laboratory for Conservation and Utilization of Bioresources in Yunnan, Yunnan University, Kunming, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Rui-Fang Wang
- College of Agriculture and Forestry, Puer University, Puer, Yunnan, China
| | - Tao Li
- State Key Laboratory for Conservation and Utilization of Bioresources in Yunnan, Yunnan University, Kunming, China
| | - Zhi-Wei Zhao
- State Key Laboratory for Conservation and Utilization of Bioresources in Yunnan, Yunnan University, Kunming, China
| | - Han-Bo Zhang
- State Key Laboratory for Conservation and Utilization of Bioresources in Yunnan, Yunnan University, Kunming, China
| |
Collapse
|
4
|
Zhao W, Wang X, Howard MM, Kou Y, Liu Q. Functional shifts in soil fungal communities regulate differential tree species establishment during subalpine forest succession. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160616. [PMID: 36462659 DOI: 10.1016/j.scitotenv.2022.160616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/27/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Soil fungi can differentially affect plant performance and community dynamics. While fungi play key roles in driving the plant-soil feedbacks (PSFs) that promote grassland succession, it remains unclear how the fungi-mediated PSFs affect tree species establishment during forest succession. We inoculated pioneer broadleaf (Betula platyphylla and Betula albosinensis) and nonpioneer coniferous tree seedlings (Picea asperata and Abies faxoniana) with fungal-dominated rooting zone soils collected from dominant plant species of early-, mid- and late-successional stages in a subalpine forest, and compared their biomass and fungal communities. All tree species accumulated abundant pathogenic fungi in early-successional inoculated soil, which generated negative biotic feedbacks and lowered seedling biomass. High levels of soil ectomycorrhizal fungi from mid- and late-successional stages resulted in positive biotic PSFs and strongly facilitated slow-growing coniferous seedling performance to favour successional development. B. albosinensis also grew better in mid- and late-successional soils with fewer pathogenic fungi than in early-successional soil, indicating its large susceptibility to pathogen attack. In contrast, the growth of another pioneer tree, B. platyphylla, was significantly suppressed in late-successional soil and was mostly driven by saprotrophic fungi, despite the unchanged pathogenic fungal community traits between the two fast-growing species. This unexpected result suggested a host specificity-dependent mechanism involved in the different impacts of fungal pathogens on host trees. Our findings reveal a critical role of functional shifts in soil fungal communities in mediating differential PSFs of tree species across successional stages, which should be considered to improve the prediction and management of community development following forest disturbances.
Collapse
Affiliation(s)
- Wenqiang Zhao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiaohu Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mia M Howard
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Yongping Kou
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Qing Liu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
5
|
Xu H, Qu Q, Wang Z, Xue S, Xu Z. Plant-soil-enzyme C-N-P stoichiometry and microbial nutrient limitation responses to plant-soil feedbacks during community succession: A 3-year pot experiment in China. FRONTIERS IN PLANT SCIENCE 2022; 13:1009886. [PMID: 36204057 PMCID: PMC9531649 DOI: 10.3389/fpls.2022.1009886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Studying plant-soil feedback (PSF) can improve the understanding of the plant community composition and structure; however, changes in plant-soil-enzyme stoichiometry in response to PSF are unclear. The present study aimed to analyze the changes in plant-soil-enzyme stoichiometry and microbial nutrient limitation to PSF, and identify the roles of nutrient limitation in PSF. Setaria viridis, Stipa bungeana, and Bothriochloa ischaemum were selected as representative grass species in early-, mid-, and late-succession; furthermore, three soil types were collected from grass species communities in early-, mid-, and late-succession to treat the three successional species. A 3-year (represents three growth periods) PSF experiment was performed with the three grasses in the soil in the three succession stages. We analyzed plant biomass and plant-soil-enzyme C-N-P stoichiometry for each plant growth period. The plant growth period mainly affected the plant C:N in the early- and late- species but showed a less pronounced effect on the soil C:N. During the three growth periods, the plants changed from N-limited to P-limited; the three successional species soils were mainly limited by N, whereas the microbes were limited by both C and N. The plant-soil-enzyme stoichiometry and plant biomass were not significantly correlated. In conclusion, during PSF, the plant growth period significantly influences the plant-soil-microbial nutrient limitations. Plant-soil-enzyme stoichiometry and microbial nutrient limitation cannot effectively explain PSF during succession on the Loess Plateau.
Collapse
Affiliation(s)
- Hongwei Xu
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qing Qu
- State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, China
| | - Zhanhui Wang
- Hebei Drinking Water Safety Monitoring Technol Inn, Chengde, China
| | - Sha Xue
- State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, China
| | - Zhenfeng Xu
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
6
|
Koziol L, Bauer JT, Duell EB, Hickman K, House G, Schultz PA, Tipton AG, Wilson GWT, Bever J. Manipulating plant microbiomes in the field: Native mycorrhizae advance plant succession and improve native plant restoration. J Appl Ecol 2022. [DOI: 10.1111/1365-2664.14036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Liz Koziol
- Kansas Biological Station University of Kansas Lawrence KS USA
| | | | | | | | | | | | - Alice G. Tipton
- Kansas Biological Station University of Kansas Lawrence KS USA
- St. Louis University St. Louis MO USA
| | | | - James D. Bever
- Kansas Biological Station University of Kansas Lawrence KS USA
| |
Collapse
|
7
|
Soil Microbial and Organic Carbon Legacies of Pre-Existing Plants Drive Pioneer Tree Growth during Subalpine Forest Succession. FORESTS 2022. [DOI: 10.3390/f13071110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Fast-growing pioneer tree species play a crucial role in triggering late successional development in forests. Experimental evidence of the soil legacy effects of pre-existing plants on pioneer tree performance is lacking. We explored the legacy effects of soils conditioned by early successional herbs (Poa poophagorum Bor and Potentilla fragarioides L.) and mid-successional shrubs (Rhododendron fortunei Lindl. and Enkianthus quinqueflorus Lour.) on late-successional ectomycorrhizal (ECM) pioneer tree (Betula platyphylla Sukaczev) seedling growth. The soils were analyzed for soil nutrient status and fungal and bacterial compositions using ITS and 16S rRNA gene sequencing. B. platyphylla seedlings produced higher biomass in soils conditioned by shrubs. Soil organic carbon (SOC) and bacterial and fungal legacies most impacted pioneer tree seedling growth. Additionally, the partial least squares path model revealed that soil nutrients, especially SOC, indirectly affected seedling biomass by their direct effects on the bacterial and fungal communities. The changes in bacterial community composition had a stronger effect on seedling biomass than those of fungi because bacteria with shorter turnover times are generally considered to be more efficient than fungi in enhancing nutrient availability. Our study integrates soil microbial and nutrient legacies to explain the potential mechanisms of pioneer tree regeneration.
Collapse
|
8
|
Aldorfová A, Dostálek T, Münzbergová Z. Effects of soil conditioning, root and shoot litter addition interact to determine the intensity of plant–soil feedback. OIKOS 2022. [DOI: 10.1111/oik.09025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Anna Aldorfová
- Inst. of Botany of the Czech Academy of Sciences Průhonice Czech Republic
- Dept of Botany, Faculty of Science, Charles Univ. in Prague Praha 2 Czech Republic
| | - Tomáš Dostálek
- Inst. of Botany of the Czech Academy of Sciences Průhonice Czech Republic
- Dept of Botany, Faculty of Science, Charles Univ. in Prague Praha 2 Czech Republic
| | - Zuzana Münzbergová
- Inst. of Botany of the Czech Academy of Sciences Průhonice Czech Republic
- Dept of Botany, Faculty of Science, Charles Univ. in Prague Praha 2 Czech Republic
| |
Collapse
|
9
|
Wang G, Koziol L, Foster BL, Bever JD. Microbial mediators of plant community response to long-term N and P fertilization: Evidence of a role of plant responsiveness to mycorrhizal fungi. GLOBAL CHANGE BIOLOGY 2022; 28:2721-2735. [PMID: 35048483 DOI: 10.1111/gcb.16091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/26/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Climate changes and anthropogenic nutrient enrichment widely threaten plant diversity and ecosystem functions. Understanding the mechanisms governing plant species turnover across nutrient gradients is crucial to developing successful management and restoration strategies. We tested whether and how soil microbes, particularly arbuscular mycorrhizal fungi (AMF), could mediate plant community response to a 15 years long-term N (0, 4, 8, and 16 g N m-2 year-1 ) and P (0 and 8 g N m-2 year-1 ) enrichment in a grassland system. We found N and P enrichment resulted in plant community diversity decrease and composition change, in which perennial C4 graminoids were dramatically reduced while annuals and perennial forbs increased. Metabarcoding analysis of soil fungal community showed that N and P changed fungal diversity and composition, of which only a cluster of AMF identified by the co-occurrence networks analysis was highly sensitive to P treatments and was negatively correlated with shifts in percentage cover of perennial C4 graminoids. Moreover, by estimating the mycorrhizal responsiveness (MR) of 41 plant species in the field experiment from 264 independent tests, we found that the community weighted mean MR of the plant community was substantially reduced with nutrient enrichment and was positively correlated with C4 graminoids percentage cover. Both analyses of covariance and structural equation modeling indicated that the shift in MR rather than AMF composition change was the primary predictor of the decline in perennial C4 graminoids, suggesting that the energy cost invested by C4 plants on those sensitive AMF might drive the inferior competitive abilities compared with other groups. Our results suggest that shifts in the competitive ability of mycorrhizal responsive plants can drive plant community change to anthropogenic eutrophication, suggesting a functional benefit of mycorrhizal mutualism in ecological restoration following climatic or anthropogenic degradation of soil communities.
Collapse
Affiliation(s)
- Guangzhou Wang
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, People's Republic of China
- Kansas Biological Survey, University of Kansas, Lawrence, Kansas, USA
| | - Liz Koziol
- Kansas Biological Survey, University of Kansas, Lawrence, Kansas, USA
| | - Bryan L Foster
- Kansas Biological Survey, University of Kansas, Lawrence, Kansas, USA
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, USA
| | - James D Bever
- Kansas Biological Survey, University of Kansas, Lawrence, Kansas, USA
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
10
|
Zhu SC, Zheng HX, Liu WS, Liu C, Guo MN, Huot H, Morel JL, Qiu RL, Chao Y, Tang YT. Plant-Soil Feedbacks for the Restoration of Degraded Mine Lands: A Review. Front Microbiol 2022; 12:751794. [PMID: 35087482 PMCID: PMC8787142 DOI: 10.3389/fmicb.2021.751794] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/17/2021] [Indexed: 11/13/2022] Open
Abstract
Much effort has been made to remediate the degraded mine lands that bring severe impacts to the natural environments. However, it remains unclear what drives the recovery of biodiversity and ecosystem functions, making the restoration of these fragile ecosystems a big challenge. The interactions among plant species, soil communities, and abiotic conditions, i.e., plant-soil feedbacks (PSFs), significantly influence vegetation development, plant community structure, and ultimately regulate the recovery of ecosystem multi-functionality. Here, we present a conceptual framework concerning PSFs patterns and potential mechanisms in degraded mine lands. Different from healthy ecosystems, mine lands are generally featured with harsh physical and chemical properties, which may have different PSFs and should be considered during the restoration. Usually, pioneer plants colonized in the mine lands can adapt to the stressful environment by forming tolerant functional traits and gathering specific soil microbial communities. Understanding the mechanisms of PSFs would enhance our ability to predict and alter both the composition of above- and below-ground communities, and improve the recovery of ecosystem functions in degraded mine lands. Finally, we put forward some challenges of the current PSFs study and discuss avenues for further research in the ecological restoration of degraded mine lands.
Collapse
Affiliation(s)
- Shi-Chen Zhu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, China.,Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou, China
| | - Hong-Xiang Zheng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, China.,Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou, China
| | - Wen-Shen Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, China.,Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou, China
| | - Chang Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, China.,Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou, China.,Laboratoire Sols et Environnement, INRAE-Universiteì de Lorraine, Vandoeuvre-leÌs-Nancy, France
| | - Mei-Na Guo
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, China.,Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou, China.,Laboratoire Sols et Environnement, INRAE-Universiteì de Lorraine, Vandoeuvre-leÌs-Nancy, France
| | - Hermine Huot
- CNRS, LIEC, Université de Lorraine, Nancy, France
| | - Jean Louis Morel
- Laboratoire Sols et Environnement, INRAE-Universiteì de Lorraine, Vandoeuvre-leÌs-Nancy, France
| | - Rong-Liang Qiu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agricultural and Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yuanqing Chao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, China.,Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou, China
| | - Ye-Tao Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, China.,Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
11
|
Chiusano ML, Incerti G, Colantuono C, Termolino P, Palomba E, Monticolo F, Benvenuto G, Foscari A, Esposito A, Marti L, de Lorenzo G, Vega-Muñoz I, Heil M, Carteni F, Bonanomi G, Mazzoleni S. Arabidopsis thaliana Response to Extracellular DNA: Self Versus Nonself Exposure. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10081744. [PMID: 34451789 PMCID: PMC8400022 DOI: 10.3390/plants10081744] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 01/14/2023]
Abstract
The inhibitory effect of extracellular DNA (exDNA) on the growth of conspecific individuals was demonstrated in different kingdoms. In plants, the inhibition has been observed on root growth and seed germination, demonstrating its role in plant-soil negative feedback. Several hypotheses have been proposed to explain the early response to exDNA and the inhibitory effect of conspecific exDNA. We here contribute with a whole-plant transcriptome profiling in the model species Arabidopsis thaliana exposed to extracellular self- (conspecific) and nonself- (heterologous) DNA. The results highlight that cells distinguish self- from nonself-DNA. Moreover, confocal microscopy analyses reveal that nonself-DNA enters root tissues and cells, while self-DNA remains outside. Specifically, exposure to self-DNA limits cell permeability, affecting chloroplast functioning and reactive oxygen species (ROS) production, eventually causing cell cycle arrest, consistently with macroscopic observations of root apex necrosis, increased root hair density and leaf chlorosis. In contrast, nonself-DNA enters the cells triggering the activation of a hypersensitive response and evolving into systemic acquired resistance. Complex and different cascades of events emerge from exposure to extracellular self- or nonself-DNA and are discussed in the context of Damage- and Pathogen-Associated Molecular Patterns (DAMP and PAMP, respectively) responses.
Collapse
Affiliation(s)
- Maria Luisa Chiusano
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (F.M.); (F.C.); (G.B.)
- Department of Research Infrastructures for Marine Biological Resources (RIMAR), Stazione Zoologica “Anton Dohrn”, 80121 Napoli, Italy;
- Correspondence: (M.L.C.); (S.M.)
| | - Guido Incerti
- Department of Agri-Food, Animal and Environmental Sciences, University of Udine, 33100 Udine, Italy;
| | - Chiara Colantuono
- Telethon Institute of Genetics and Medicine, via campi Flegrei, 34 Pozzuoli, 80078 Napoli, Italy;
| | - Pasquale Termolino
- Institute of Biosciences and Bioresources (IBBR), National Research Council of Italy (CNR), 80055 Portici, Italy;
| | - Emanuela Palomba
- Department of Research Infrastructures for Marine Biological Resources (RIMAR), Stazione Zoologica “Anton Dohrn”, 80121 Napoli, Italy;
| | - Francesco Monticolo
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (F.M.); (F.C.); (G.B.)
| | - Giovanna Benvenuto
- Biology and Evolution of Marine Organisms Department (BEOM), Stazione Zoologica “Anton Dohrn”, 80121 Napoli, Italy;
| | - Alessandro Foscari
- Dipartimento di Scienze della Vita, University of Trieste, 34127 Trieste, Italy;
| | - Alfonso Esposito
- Department of Cellular, Computational and Integrative Biology—CIBIO, University of Trento, 38123 Trento, Italy;
| | - Lucia Marti
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (L.M.); (G.d.L.)
| | - Giulia de Lorenzo
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (L.M.); (G.d.L.)
| | - Isaac Vega-Muñoz
- Departemento de Ingeniería Genética, CINVESTAV-Irapuato, Guanajuato 36821, Mexico; (I.V.-M.); (M.H.)
| | - Martin Heil
- Departemento de Ingeniería Genética, CINVESTAV-Irapuato, Guanajuato 36821, Mexico; (I.V.-M.); (M.H.)
| | - Fabrizio Carteni
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (F.M.); (F.C.); (G.B.)
| | - Giuliano Bonanomi
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (F.M.); (F.C.); (G.B.)
| | - Stefano Mazzoleni
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (F.M.); (F.C.); (G.B.)
- Correspondence: (M.L.C.); (S.M.)
| |
Collapse
|
12
|
Zhang J, Ai Z, Xu H, Liu H, Wang G, Deng L, Liu G, Xue S. Plant-microbial feedback in secondary succession of semiarid grasslands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:143389. [PMID: 33190882 DOI: 10.1016/j.scitotenv.2020.143389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
Plant-soil feedback (PSF) is an important driver of plant community dynamics. The role of plant species in PSF has been emphasized for secondary succession processes; however, microbial responses to PSF and the underlying mechanisms responsible for their effects on plant succession remain poorly understood, particularly in semiarid grassland ecosystems. Here, we conducted a greenhouse experiment using soil collected from early-, mid-, and late-successional plant communities to measure net pairwise PSF for species grown under monoculture. Soils conditioned by pre-successional species had a positive feedback effect on subsequent plant species, whereas soil conditioned by subsequent plant species had a negative feedback effect on pre-successional species. The feedback effect of plants from different successional stages on soil bacterial and fungal communities was mainly positive. However, the bacterial genera in the soil conditioned by early- and mid-successional species and fungal classes in the soil conditioned by early- successional species had a negative feedback effect on late-successional species. Thus, the effects of soil fungal and bacterial communities on species in other successional stages varied with taxonomic level. Our results provide insight into the manner in which soil microbial communities influence PSF responses during secondary succession processes.
Collapse
Affiliation(s)
- Jiaoyang Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China; Institute of Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Water Resources, Yangling, Shaanxi 712100, People's Republic of China
| | - Zemin Ai
- College of Geomatics, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, People's Republic of China
| | - Hongwei Xu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China; Institute of Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Water Resources, Yangling, Shaanxi 712100, People's Republic of China
| | - Hongfei Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China; Institute of Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Water Resources, Yangling, Shaanxi 712100, People's Republic of China
| | - Guoliang Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China; Institute of Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Water Resources, Yangling, Shaanxi 712100, People's Republic of China
| | - Lei Deng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China; Institute of Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Water Resources, Yangling, Shaanxi 712100, People's Republic of China
| | - Guobin Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China; Institute of Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Water Resources, Yangling, Shaanxi 712100, People's Republic of China
| | - Sha Xue
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China; Institute of Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Water Resources, Yangling, Shaanxi 712100, People's Republic of China.
| |
Collapse
|
13
|
Hannula S, Morriën E, van der Putten W, de Boer W. Rhizosphere fungi actively assimilating plant-derived carbon in a grassland soil. FUNGAL ECOL 2020. [DOI: 10.1016/j.funeco.2020.100988] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
14
|
Heinen R, Hannula SE, De Long JR, Huberty M, Jongen R, Kielak A, Steinauer K, Zhu F, Bezemer TM. Plant community composition steers grassland vegetation via soil legacy effects. Ecol Lett 2020; 23:973-982. [PMID: 32266749 PMCID: PMC7318629 DOI: 10.1111/ele.13497] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/13/2020] [Accepted: 02/28/2020] [Indexed: 01/14/2023]
Abstract
Soil legacy effects are commonly highlighted as drivers of plant community dynamics and species co-existence. However, experimental evidence for soil legacy effects of conditioning plant communities on responding plant communities under natural conditions is lacking. We conditioned 192 grassland plots using six different plant communities with different ratios of grasses and forbs and for different durations. Soil microbial legacies were evident for soil fungi, but not for soil bacteria, while soil abiotic parameters did not significantly change in response to conditioning. The soil legacies affected the composition of the succeeding vegetation. Plant communities with different ratios of grasses and forbs left soil legacies that negatively affected succeeding plants of the same functional type. We conclude that fungal-mediated soil legacy effects play a significant role in vegetation assembly of natural plant communities.
Collapse
Affiliation(s)
- Robin Heinen
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, P.O. Box 50, 6700 AB, Wageningen, The Netherlands.,Institute of Biology, Section Plant Ecology and Phytochemistry, Leiden University, P.O. Box 9505, 2300 RA, Leiden, The Netherlands
| | - S Emilia Hannula
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, P.O. Box 50, 6700 AB, Wageningen, The Netherlands
| | - Jonathan R De Long
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, P.O. Box 50, 6700 AB, Wageningen, The Netherlands
| | - Martine Huberty
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, P.O. Box 50, 6700 AB, Wageningen, The Netherlands.,Institute of Biology, Section Plant Ecology and Phytochemistry, Leiden University, P.O. Box 9505, 2300 RA, Leiden, The Netherlands
| | - Renske Jongen
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, P.O. Box 50, 6700 AB, Wageningen, The Netherlands
| | - Anna Kielak
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, P.O. Box 50, 6700 AB, Wageningen, The Netherlands
| | - Katja Steinauer
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, P.O. Box 50, 6700 AB, Wageningen, The Netherlands
| | - Feng Zhu
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, P.O. Box 50, 6700 AB, Wageningen, The Netherlands.,Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, The Chinese Academy of Sciences, 286 Huaizhong Road, 050021, Shijiazhuang, Hebei, China
| | - T Martijn Bezemer
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, P.O. Box 50, 6700 AB, Wageningen, The Netherlands.,Institute of Biology, Section Plant Ecology and Phytochemistry, Leiden University, P.O. Box 9505, 2300 RA, Leiden, The Netherlands
| |
Collapse
|
15
|
Manrubia M, van der Putten WH, Weser C, Veen C(GF. Rhizosphere and litter feedbacks to range-expanding plant species and related natives. THE JOURNAL OF ECOLOGY 2020; 108:353-365. [PMID: 32699431 PMCID: PMC7363160 DOI: 10.1111/1365-2745.13299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 09/17/2019] [Indexed: 06/11/2023]
Abstract
Plant-soil feedback (PSF) results from the net legacy effect that plants leave in the composition of soil communities and abiotic soil properties. PSF is induced by the rhizosphere and by litter inputs into the soil, however, we have little understanding of their individual contributions. Here, we examine feedback effects from the rhizosphere of living plants, decomposing litter and their combination.We used four pairs of climate warming-induced range-expanding plant species and congeneric natives, and examined PSF effects on plant biomass production, as well as on decomposition in their new range.We tested the hypothesis that the plant rhizosphere provides less negative feedback to range-expanders than to the congeneric natives, and that feedback mediated by litter decomposition does not provide such a difference because decomposers might be less specialized than pathogens. To determine PSF, we used soil from the congener species within each pair as an 'away' soil to indicate whether range-expanders may have lost their specialized soil biota upon arrival in the novel range.Our results show that although range-expanding plant species and their congeneric natives developed neutral PSF in both rhizosphere- and litter-conditioned soils, two of the four range-expanders produced more biomass than natives in soils conditioned by litter, that is, soils with high nutrient content. Shoot litter from two out of four range-expanding species decomposed more than that of natives, but decomposition was unaffected by soil conditioning. Synthesis. We compared PSF effects of range-expanders and congeneric natives mediated via both the rhizosphere and litter using the congeneric species as a control. Under those conditions, PSF effects were neutral and not affected by plant origin. Therefore, we conclude that studies not comparing within plant genera may overestimate the impact of plant origin on PSF. Still, even under those conditions range-expanders appeared to benefit more from high soil nutrient availability than natives, thus providing a possible advantage over congeneric natives.
Collapse
Affiliation(s)
- Marta Manrubia
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
| | - Wim H. van der Putten
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
- Laboratory of NematologyWageningen University and Research CentreWageningenThe Netherlands
| | - Carolin Weser
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
| | - Ciska (G. F.) Veen
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
| |
Collapse
|
16
|
Veen GF(C, Snoek BL, Bakx‐Schotman T, Wardle DA, Putten WH. Relationships between fungal community composition in decomposing leaf litter and home‐field advantage effects. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13351] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- G. F. (Ciska) Veen
- Department of Terrestrial Ecology Netherlands Institute of Ecology Wageningen The Netherlands
| | - Basten L. Snoek
- Department of Terrestrial Ecology Netherlands Institute of Ecology Wageningen The Netherlands
- Theoretical Biology and Bioinformatics Utrecht University Utrecht The Netherlands
- Laboratory of Nematology Wageningen University Wageningen The Netherlands
| | - Tanja Bakx‐Schotman
- Department of Terrestrial Ecology Netherlands Institute of Ecology Wageningen The Netherlands
| | - David A. Wardle
- Asian School of the Environment Nanyang Technological University Singapore Singapore
- Department of Forest Ecology and Management Swedish University of Agricultural Sciences Umeå Sweden
| | - Wim H. Putten
- Department of Terrestrial Ecology Netherlands Institute of Ecology Wageningen The Netherlands
- Laboratory of Nematology Wageningen University Wageningen The Netherlands
| |
Collapse
|
17
|
Saar S, Semchenko M, Barel JM, De Deyn GB. Spatial heterogeneity in root litter and soil legacies differentially affect legume root traits. PLANT AND SOIL 2018; 428:253-264. [PMID: 30996487 PMCID: PMC6435190 DOI: 10.1007/s11104-018-3667-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 02/21/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND AND AIMS Plants affect the soil environment via litter inputs and changes in biotic communities, which feed back to subsequent plant growth. Here we investigated the individual contributions of litter and biotic communities to soil feedback effects, and plant ability to respond to spatial heterogeneity in soil legacy. METHODS We tested for localised and systemic responses of Trifolium repens to soil biotic and root litter legacy of seven grassland species by exposing half of a root system to control soil and the other half to specific inoculum or root litter. RESULTS Soil inoculation triggered a localised reduction in root length while litter locally increased root biomass independent of inoculum or litter species identity. Nodule formation was locally suppressed in response to soil conditioned by another legume (Vicia cracca) and showed a trend towards systemic reduction in response to conspecific soil. V. cracca litter also caused a systemic response with thinner roots produced in the part of the root system not directly exposed to the litter. CONCLUSIONS Spatial heterogeneity in root litter distribution and soil communities generate distinct local and systemic responses in root morphology and nodulation. These responses can influence plant-mutualist interactions and nutrient cycling, and should be included in plant co-existence models.
Collapse
Affiliation(s)
- Sirgi Saar
- Department of Soil Quality, Wageningen University, P.O. Box 47, 6700 AA Wageningen, The Netherlands
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai St, 51005 Tartu, Estonia
| | - Marina Semchenko
- School of Earth and Environmental Sciences, University of Manchester, M13 9PT, Manchester, UK
| | - Janna M. Barel
- Department of Soil Quality, Wageningen University, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| | - Gerlinde B. De Deyn
- Department of Soil Quality, Wageningen University, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
18
|
Veen GF(C, Keiser AD, van der Putten WH, Wardle DA. Variation in home‐field advantage and ability in leaf litter decomposition across successional gradients. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13107] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- G. F. (Ciska) Veen
- Department of Forest Ecology and ManagementSwedish University of Agricultural Sciences Umeå Sweden
- Department of Terrestrial EcologyNetherlands Institute of Ecology Wageningen The Netherlands
| | - Ashley D. Keiser
- Department of Ecology, Evolution, and Organismal BiologyIowa State University Ames Iowa
- Institute on the EnvironmentUniversity of Minnesota St. Paul Minnesota
| | - Wim H. van der Putten
- Department of Terrestrial EcologyNetherlands Institute of Ecology Wageningen The Netherlands
- Laboratory of NematologyWageningen University Wageningen The Netherlands
| | - David A. Wardle
- Department of Forest Ecology and ManagementSwedish University of Agricultural Sciences Umeå Sweden
- Asian School of the EnvironmentNanyang Technological University Singapore City Singapore
| |
Collapse
|
19
|
Koorem K, Kostenko O, Snoek LB, Weser C, Ramirez KS, Wilschut RA, van der Putten WH. Relatedness with plant species in native community influences ecological consequences of range expansions. OIKOS 2018. [DOI: 10.1111/oik.04817] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Kadri Koorem
- Dept of Terrestrial Ecology; Netherlands Inst. of Ecology (NIOO-KNAW); PO Box 50 NL-6700AB Wageningen the Netherlands
- Dept of Botany; Inst. of Ecology and Earth Sciences, Univ. of Tartu; Tartu Estonia
| | - Olga Kostenko
- Dept of Terrestrial Ecology; Netherlands Inst. of Ecology (NIOO-KNAW); PO Box 50 NL-6700AB Wageningen the Netherlands
| | - L. Basten Snoek
- Dept of Terrestrial Ecology; Netherlands Inst. of Ecology (NIOO-KNAW); PO Box 50 NL-6700AB Wageningen the Netherlands
- Laboratory of Nematology; Wageningen Univ.; Wageningen the Netherlands
| | - Carolin Weser
- Dept of Terrestrial Ecology; Netherlands Inst. of Ecology (NIOO-KNAW); PO Box 50 NL-6700AB Wageningen the Netherlands
| | - Kelly S. Ramirez
- Dept of Terrestrial Ecology; Netherlands Inst. of Ecology (NIOO-KNAW); PO Box 50 NL-6700AB Wageningen the Netherlands
| | - Rutger A. Wilschut
- Dept of Terrestrial Ecology; Netherlands Inst. of Ecology (NIOO-KNAW); PO Box 50 NL-6700AB Wageningen the Netherlands
- Laboratory of Nematology; Wageningen Univ.; Wageningen the Netherlands
| | - Wim H. van der Putten
- Dept of Terrestrial Ecology; Netherlands Inst. of Ecology (NIOO-KNAW); PO Box 50 NL-6700AB Wageningen the Netherlands
- Laboratory of Nematology; Wageningen Univ.; Wageningen the Netherlands
| |
Collapse
|
20
|
Wubs ERJ, Bezemer TM. Plant community evenness responds to spatial plant–soil feedback heterogeneity primarily through the diversity of soil conditioning. Funct Ecol 2017. [DOI: 10.1111/1365-2435.13017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- E. R. Jasper Wubs
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
- Laboratory of NematologyWageningen University and Research Wageningen The Netherlands
| | - T. Martijn Bezemer
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
- Section Plant Ecology and PhytochemistryInstitute of BiologyLeiden University RA Leiden The Netherlands
| |
Collapse
|
21
|
Brinkman EP, Raaijmakers CE, de Boer W, van der Putten WH. Changing soil legacies to direct restoration of plant communities. AOB PLANTS 2017; 9:plx038. [PMID: 28948010 PMCID: PMC5597848 DOI: 10.1093/aobpla/plx038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 08/22/2017] [Indexed: 05/11/2023]
Abstract
It is increasingly acknowledged that soil biota may influence interactions among plant species; however, little is known about how to change historical influences of previous land management on soil biota, the so-called 'biotic soil legacy effect'. We used a two-phase plant community-soil feedback approach to study how plant species typical to original (i.e. undisturbed) and degraded fen meadows may influence effects of the soil community on Carex species that are dominant in fen meadows. In phase 1, soil from original, degraded, successfully and unsuccessfully restored fen meadows was conditioned by growing plants typical to original or to degraded fen meadows. In phase 2, interactions between Carex and neighbouring plant species were studied to quantify plant community-soil feedback effects in different neighbour plant mixtures. Soil conditioning with plants typical to original fen meadows resulted in significantly more Carex biomass than with plants typical to degraded fen meadows. These effects were strongest when the soil originated from unsuccessfully restored fen meadows. However, biomass of plants typical of degraded fen meadows was also higher in soil conditioned by typical fen meadow plants. We conclude that soil legacy effects of plants from degraded fen meadows can be altered by growing typical fen meadow plant species in that soil, as this enhances priority effects that favour growth of other typical fen meadow plants. As also plant species from degraded fen meadows benefitted from soil conditioning, further studies are needed to reveal if plant species can be chosen that change negative soil legacy effects for rare and endangered fen meadow plant species, but not for plant species that are typical to degraded fen meadows.
Collapse
Affiliation(s)
- E Pernilla Brinkman
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
- Corresponding author’s e-mail address:
| | - Ciska E Raaijmakers
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Wietse de Boer
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
- Department of Soil Quality, Wageningen University, PO Box 47, 6700 AA Wageningen, The Netherlands
| | - Wim H van der Putten
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
- Laboratory of Nematology, Wageningen University, PO Box 8123, 6700 ES Wageningen, The Netherlands
| |
Collapse
|
22
|
Ma HK, Pineda A, van der Wurff AWG, Raaijmakers C, Bezemer TM. Plant-Soil Feedback Effects on Growth, Defense and Susceptibility to a Soil-Borne Disease in a Cut Flower Crop: Species and Functional Group Effects. FRONTIERS IN PLANT SCIENCE 2017; 8:2127. [PMID: 29312387 PMCID: PMC5742127 DOI: 10.3389/fpls.2017.02127] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/30/2017] [Indexed: 05/22/2023]
Abstract
Plants can influence the soil they grow in, and via these changes in the soil they can positively or negatively influence other plants that grow later in this soil, a phenomenon called plant-soil feedback. A fascinating possibility is then to apply positive plant-soil feedback effects in sustainable agriculture to promote plant growth and resistance to pathogens. We grew the cut flower chrysanthemum (Dendranthema X grandiflora) in sterile soil inoculated with soil collected from a grassland that was subsequently conditioned by 37 plant species of three functional groups (grass, forb, legume), and compared it to growth in 100% sterile soil (control). We tested the performance of chrysanthemum by measuring plant growth, and defense (leaf chlorogenic acid concentration) and susceptibility to the oomycete pathogen Pythium ultimum. In presence of Pythium, belowground biomass of chrysanthemum declined but aboveground biomass was not affected compared to non-Pythium inoculated plants. We observed strong differences among species and among functional groups in their plant-soil feedback effects on chrysanthemum. Soil inocula that were conditioned by grasses produced higher chrysanthemum above- and belowground biomass and less leaf yellowness than inocula conditioned by legumes or forbs. Chrysanthemum had lower root/shoot ratios in response to Pythium in soil conditioned by forbs than by grasses. Leaf chlorogenic acid concentrations increased in presence of Pythium and correlated positively with chrysanthemum aboveground biomass. Although chlorogenic acid differed between soil inocula, it did not differ between functional groups. There was no relationship between the phylogenetic distance of the conditioning plant species to chrysanthemum and their plant-soil feedback effects on chrysanthemum. Our study provides novel evidence that plant-soil feedback effects can influence crop health, and shows that plant-soil feedbacks, plant disease susceptibility, and plant aboveground defense compounds are tightly linked. Moreover, we highlight the relevance of considering plant-soil feedbacks in sustainable horticulture, and the larger role of grasses compared to legumes or forbs in this.
Collapse
Affiliation(s)
- Hai-Kun Ma
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, Wageningen, Netherlands
- Section Plant Ecology and Phytochemistry, Institute of Biology, Leiden University, Leiden, Netherlands
- *Correspondence: Hai-Kun Ma,
| | - Ana Pineda
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, Wageningen, Netherlands
| | | | - Ciska Raaijmakers
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, Wageningen, Netherlands
| | - T. M. Bezemer
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, Wageningen, Netherlands
- Section Plant Ecology and Phytochemistry, Institute of Biology, Leiden University, Leiden, Netherlands
| |
Collapse
|