1
|
McElwain JC, Matthaeus WJ, Barbosa C, Chondrogiannis C, O' Dea K, Jackson B, Knetge AB, Kwasniewska K, Nair R, White JD, Wilson JP, Montañez IP, Buckley YM, Belcher CM, Nogué S. Functional traits of fossil plants. THE NEW PHYTOLOGIST 2024; 242:392-423. [PMID: 38409806 DOI: 10.1111/nph.19622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/19/2023] [Indexed: 02/28/2024]
Abstract
A minuscule fraction of the Earth's paleobiological diversity is preserved in the geological record as fossils. What plant remnants have withstood taphonomic filtering, fragmentation, and alteration in their journey to become part of the fossil record provide unique information on how plants functioned in paleo-ecosystems through their traits. Plant traits are measurable morphological, anatomical, physiological, biochemical, or phenological characteristics that potentially affect their environment and fitness. Here, we review the rich literature of paleobotany, through the lens of contemporary trait-based ecology, to evaluate which well-established extant plant traits hold the greatest promise for application to fossils. In particular, we focus on fossil plant functional traits, those measurable properties of leaf, stem, reproductive, or whole plant fossils that offer insights into the functioning of the plant when alive. The limitations of a trait-based approach in paleobotany are considerable. However, in our critical assessment of over 30 extant traits we present an initial, semi-quantitative ranking of 26 paleo-functional traits based on taphonomic and methodological criteria on the potential of those traits to impact Earth system processes, and for that impact to be quantifiable. We demonstrate how valuable inferences on paleo-ecosystem processes (pollination biology, herbivory), past nutrient cycles, paleobiogeography, paleo-demography (life history), and Earth system history can be derived through the application of paleo-functional traits to fossil plants.
Collapse
Affiliation(s)
- Jennifer C McElwain
- School of Natural Sciences, Botany, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - William J Matthaeus
- School of Natural Sciences, Botany, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Catarina Barbosa
- School of Natural Sciences, Botany, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | | | - Katie O' Dea
- School of Natural Sciences, Botany, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Bea Jackson
- School of Natural Sciences, Botany, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Antonietta B Knetge
- School of Natural Sciences, Botany, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Kamila Kwasniewska
- School of Natural Sciences, Botany, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Richard Nair
- School of Natural Sciences, Botany, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Joseph D White
- Department of Biology, Baylor University, Waco, 76798-7388, TX, USA
| | - Jonathan P Wilson
- Department of Environmental Studies, Haverford College, Haverford, Pennsylvania, 19041, PA, USA
| | - Isabel P Montañez
- UC Davis Institute of the Environment, University of California, Davis, CA, 95616, USA
- Department of Earth and Planetary Sciences, University of California, Davis, CA, 95616, USA
| | - Yvonne M Buckley
- School of Natural Sciences, Zoology, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | | | - Sandra Nogué
- Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), 08193, Catalonia, Spain
- CREAF, Bellaterra (Cerdanyola del Vallès), 08193, Catalonia, Spain
| |
Collapse
|
2
|
Niklas KJ, Tiffney BH. Viridiplantae Body Plans Viewed Through the Lens of the Fossil Record and Molecular Biology. Integr Comp Biol 2023; 63:1316-1330. [PMID: 36316013 PMCID: PMC10755189 DOI: 10.1093/icb/icac150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/19/2022] [Accepted: 10/27/2022] [Indexed: 12/30/2023] Open
Abstract
A review of the fossil record coupled with insights gained from molecular and developmental biology reveal a series of body plan transformations that gave rise to the first land plants. Across diverse algal clades, including the green algae and their descendants, the plant body plan underwent a unicellular $\to $ colonial $\to $ simple multicellular → complex multicellular transformation series. The colonization of land involved increasing body size and associated cell specialization, including cells capable of hydraulic transport. The evolution of the life-cycle that characterizes all known land plant species involved a divergence in body plan phenotypes between the haploid and diploid generations, one adapted to facilitate sexual reproduction (a free-water dependent gametophyte) and another adapted to the dissemination of spores (a more water-independent sporophyte). The amplification of this phenotypic divergence, combined with indeterminate growth in body size, resulted in a desiccation-adapted branched sporophyte with a cuticularized epidermis, stomates, and vascular tissues. Throughout the evolution of the land plants, the body plans of the sporophyte generation involved "axiation," i.e., the acquisition of a cylindrical geometry and subsequent organographic specializations.
Collapse
Affiliation(s)
- Karl J Niklas
- The School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Bruce H Tiffney
- Department of Earth Science and College of Creative Studies, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
3
|
Discovery of the First Blattinopsids of the Genus Glaphyrophlebia Handlirsch, 1906 (Paoliida: Blattinopsidae) in the Upper Carboniferous of Southern France and Spain and Hypothesis on the Diversification of the Family. DIVERSITY 2022. [DOI: 10.3390/d14121129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Glaphyrophlebia victoiriensis sp. nov. (Paoliida: Blattinopsidae) is the third Gzhelian representative of the genus and is described based on a beautiful forewing from the Var department in Southern France. Together with the description of another forewing fragment of a Glaphyrophlebia sp. from the Province of León in NW Spain, they improve our knowledge of fossil insects from French and Spanish upper Carboniferous deposits. The specimen of Glaphyrophlebia sp. is the first mention of the family in the Carboniferous of Spain and extends the geographical distribution of the genus. These descriptions suggest that the genus Glaphyrophlebia was speciose during the Upper Pennsylvanian, while otherwise very diverse in the lower and middle Permian strata of the Russian Federation. We proposed the first hypothesis to explain the diversification of the family and of its most speciose genera and to argue that their diversity dynamics were likely linked with the major environmental changes that followed the collapse of the Carboniferous rainforest, notably the extension of arid biomes during the Permian period. The exquisite preservation and the fineness of the sediment from Tante Victoire, in which the new species was found, suggests that the locality is suitable for preserving other fossil insects and will require additional investigations.
Collapse
|
4
|
Nel A, Santos AA, Hernández-Orúe A, Wappler T, Diez JB, Peñalver E. The First Representative of the Roachoid Family Spiloblattinidae (Insecta, Dictyoptera) from the Late Pennsylvanian of the Iberian Peninsula. INSECTS 2022; 13:828. [PMID: 36135529 PMCID: PMC9505066 DOI: 10.3390/insects13090828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Sysciophlebia 'sp. form Villablino', the first Iberian representative of the Palaeozoic-Early Mesozoic family Spiloblattinidae, is described and illustrated. Its forewing colour pattern is strongly similar to those of the Gzhelian-early-middle Asselian species Sysciophlebia euglyptica, Sysciophlebia ilfeldensis, Sysciophlebia rubida, and 'Sysciophlebia sp. form KBQ', supporting the currently proposed Gzhelian age for its type locality. It supports the use of the representatives of the Spiloblattinidae for stratigraphic purposes. The diagnoses and limits of the families Subioblattidae, Phyloblattidae, Compsoblattidae, Spiloblattinidae, and of the spiloblattinid genera are discussed.
Collapse
Affiliation(s)
- André Nel
- Institut Systématique Evolution Biodiversité (ISYEB), Museum National d’Histoire Naturelle, CNRS, Sorbonne Université, Université des Antilles, EPHE, 57 Rue Cuvier, CP 50, 75005 Paris, France
| | - Artai A. Santos
- Departamento de Xeociencias Mariñas e Ordenación do Territorio, Facultade de Ciencias do Mar, Universidade de Vigo, 36310 Vigo, Spain
- Centro de Investigación Mariña, Universidade de Vigo (CIM-UVIGO), 36310 Vigo, Spain
| | - Antonio Hernández-Orúe
- Departamento de Geología, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Part 644, 48080 Bilbao, Spain
| | - Torsten Wappler
- Department of Natural History, Hessisches Landesmuseum Darmstadt, Friedensplatz 1, 64283 Darmstadt, Germany
- Department of Palaeontology, Institute of Geosciences, Rheinische Friedrich-Wilhelms-Universität Bonn, Nussallee 8, 53115 Bonn, Germany
| | - José B. Diez
- Departamento de Xeociencias Mariñas e Ordenación do Territorio, Facultade de Ciencias do Mar, Universidade de Vigo, 36310 Vigo, Spain
- Centro de Investigación Mariña, Universidade de Vigo (CIM-UVIGO), 36310 Vigo, Spain
| | - Enrique Peñalver
- Instituto Geológico y Minero de España (IGME), CSIC, C/Cirilo Amorós 42, 46004 Valencia, Spain
| |
Collapse
|
5
|
Abstract
Massive carbon (C) release with abrupt warming has occurred repeatedly during greenhouse states, and these events have driven episodes of ocean deoxygenation and extinction. Records from these paleo events, coupled with biogeochemical modeling, provide clear evidence that with continued warming, the modern oceans will experience substantial deoxygenation. There are, however, few constraints from the geologic record on the effects of rapid warming under icehouse conditions. We document a C-cycle perturbation that occurred under an Earth system state experiencing recurrent glaciation. A suite of proxies suggests increased seafloor anoxia during this event in step with abrupt increase in CO2 partial pressure and a biodiversity nadir. Warming-mediated increases in marine anoxia may be more pronounced in a glaciated versus unglaciated climate state. Piecing together the history of carbon (C) perturbation events throughout Earth’s history has provided key insights into how the Earth system responds to abrupt warming. Previous studies, however, focused on short-term warming events that were superimposed on longer-term greenhouse climate states. Here, we present an integrated proxy (C and uranium [U] isotopes and paleo CO2) and multicomponent modeling approach to investigate an abrupt C perturbation and global warming event (∼304 Ma) that occurred during a paleo-glacial state. We report pronounced negative C and U isotopic excursions coincident with a doubling of atmospheric CO2 partial pressure and a biodiversity nadir. The isotopic excursions can be linked to an injection of ∼9,000 Gt of organic matter–derived C over ∼300 kyr and to near 20% of areal extent of seafloor anoxia. Earth system modeling indicates that widespread anoxic conditions can be linked to enhanced thermocline stratification and increased nutrient fluxes during this global warming within an icehouse.
Collapse
|
6
|
Freeze tolerance influenced forest cover and hydrology during the Pennsylvanian. Proc Natl Acad Sci U S A 2021; 118:2025227118. [PMID: 34635589 DOI: 10.1073/pnas.2025227118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2021] [Indexed: 11/18/2022] Open
Abstract
The distribution of forest cover alters Earth surface mass and energy exchange and is controlled by physiology, which determines plant environmental limits. Ancient plant physiology, therefore, likely affected vegetation-climate feedbacks. We combine climate modeling and ecosystem-process modeling to simulate arboreal vegetation in the late Paleozoic ice age. Using GENESIS V3 global climate model simulations, varying pCO2, pO2, and ice extent for the Pennsylvanian, and fossil-derived leaf C:N, maximum stomatal conductance, and specific conductivity for several major Carboniferous plant groups, we simulated global ecosystem processes at a 2° resolution with Paleo-BGC. Based on leaf water constraints, Pangaea could have supported widespread arboreal plant growth and forest cover. However, these models do not account for the impacts of freezing on plants. According to our interpretation, freezing would have affected plants in 59% of unglaciated land during peak glacial periods and 73% during interglacials, when more high-latitude land was unglaciated. Comparing forest cover, minimum temperatures, and paleo-locations of Pennsylvanian-aged plant fossils from the Paleobiology Database supports restriction of forest extent due to freezing. Many genera were limited to unglaciated land where temperatures remained above -4 °C. Freeze-intolerance of Pennsylvanian arboreal vegetation had the potential to alter surface runoff, silicate weathering, CO2 levels, and climate forcing. As a bounding case, we assume total plant mortality at -4 °C and estimate that contracting forest cover increased net global surface runoff by up to 6.1%. Repeated freezing likely influenced freeze- and drought-tolerance evolution in lineages like the coniferophytes, which became increasingly dominant in the Permian and early Mesozoic.
Collapse
|
7
|
Yu S, Bekkering CS, Tian L. Metabolic engineering in woody plants: challenges, advances, and opportunities. ABIOTECH 2021; 2:299-313. [PMID: 36303882 PMCID: PMC9590576 DOI: 10.1007/s42994-021-00054-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/06/2021] [Indexed: 06/16/2023]
Abstract
Woody plant species represent an invaluable reserve of biochemical diversity to which metabolic engineering can be applied to satisfy the need for commodity and specialty chemicals, pharmaceuticals, and renewable energy. Woody plants are particularly promising for this application due to their low input needs, high biomass, and immeasurable ecosystem services. However, existing challenges have hindered their widespread adoption in metabolic engineering efforts, such as long generation times, large and highly heterozygous genomes, and difficulties in transformation and regeneration. Recent advances in omics approaches, systems biology modeling, and plant transformation and regeneration methods provide effective approaches in overcoming these outstanding challenges. Promises brought by developments in this space are steadily opening the door to widespread metabolic engineering of woody plants to meet the global need for a wide range of sustainably sourced chemicals and materials.
Collapse
Affiliation(s)
- Shu Yu
- Department of Plant Sciences, Mail Stop 3, University of California, Davis, CA 95616 USA
| | - Cody S. Bekkering
- Department of Plant Sciences, Mail Stop 3, University of California, Davis, CA 95616 USA
| | - Li Tian
- Department of Plant Sciences, Mail Stop 3, University of California, Davis, CA 95616 USA
| |
Collapse
|
8
|
Wynn PC, Warriach HM, Iqbal H, McGill DM. The future of smallholder farming in developing countries in the face of climate change: a perspective with a focus on Pakistan. ANIMAL PRODUCTION SCIENCE 2021. [DOI: 10.1071/an20496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The fragile balance in the world’s carbon equilibrium through the discovery of cheap carbon-based fuels in the nineteenth century has led to mass industrialisation and an explosion in the world human population, including that of Pakistan. Farmers worldwide will need to adapt their production systems to accommodate global warming and increased climate extremes resulting from these man-made environmental changes. The focus will need to be on smallholder farmers who generate 53% of the world’s food but who are least equipped to accommodate climate change. The most major limitation will be fresh water supply, no more exemplified than in Pakistan as Himalayan snowfall decreases and peak snow melt comes earlier in spring, limiting irrigation water for summer C4 crops such as corn, millet, sorghum and sugarcane. These are destined to replace the traditional C3 crops of wheat and rice, which will not be as suited to climate change conditions resulting from a projected mean 2°C rise in ambient temperature. Smallholder farmers will need to access superior-quality seed for crop cultivars for both human food and animal forage bred to withstand climatic change. Quantitative genetic selection programs for tropically adapted livestock must be implemented with a major focus on Pakistan’s Nili Ravi and Kundhi buffalo, together with Sahiwal cattle servicing the milk consumption needs of Pakistan’s burgeoning population of 211 million. The quality of forage available for livestock emanating largely from crop residues needs to be improved to meet the country’s greenhouse-gas production targets in line with international expectation. The challenge remains for governments to sustain marketing chains that allow them to be profitable when operating in an increasingly hostile environment. The conservation of soil fertility through increased carbon sequestration will be an important imperative. It is likely that females will play a more important role in directing adaptation in these communities. Successful adjustment will be dependent on effective extension programs working with all sectors of the community including males, females and children from all walks of life in both rural and urban environments. Failure to do so will lead to rapid increases in climate refugee numbers, which the world can ill-afford.
Collapse
|
9
|
Hoysted GA, Kowal J, Pressel S, Duckett JG, Bidartondo MI, Field KJ. Carbon for nutrient exchange between Lycopodiella inundata and Mucoromycotina fine root endophytes is unresponsive to high atmospheric CO 2. MYCORRHIZA 2021; 31:431-440. [PMID: 33884466 PMCID: PMC8266774 DOI: 10.1007/s00572-021-01033-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/14/2021] [Indexed: 05/26/2023]
Abstract
Non-vascular plants associating with arbuscular mycorrhizal (AMF) and Mucoromycotina 'fine root endophyte' (MFRE) fungi derive greater benefits from their fungal associates under higher atmospheric [CO2] (a[CO2]) than ambient; however, nothing is known about how changes in a[CO2] affect MFRE function in vascular plants. We measured movement of phosphorus (P), nitrogen (N) and carbon (C) between the lycophyte Lycopodiella inundata and Mucoromycotina fine root endophyte fungi using 33P-orthophosphate, 15 N-ammonium chloride and 14CO2 isotope tracers under ambient and elevated a[CO2] concentrations of 440 and 800 ppm, respectively. Transfers of 33P and 15 N from MFRE to plants were unaffected by changes in a[CO2]. There was a slight increase in C transfer from plants to MFRE under elevated a[CO2]. Our results demonstrate that the exchange of C-for-nutrients between a vascular plant and Mucoromycotina FRE is largely unaffected by changes in a[CO2]. Unravelling the role of MFRE in host plant nutrition and potential C-for-N trade changes between symbionts under different abiotic conditions is imperative to further our understanding of the past, present and future roles of plant-fungal symbioses in ecosystems.
Collapse
Affiliation(s)
- Grace A Hoysted
- Deparment of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK.
| | - Jill Kowal
- Comparative Plant & Fungal Biology, Royal Botanic Gardens, Kew, Richmond, TW9 3DS, UK
| | - Silvia Pressel
- Department of Life Sciences, Natural History Museum, London, SW7 5BD, UK
| | - Jeffrey G Duckett
- Department of Life Sciences, Natural History Museum, London, SW7 5BD, UK
| | - Martin I Bidartondo
- Comparative Plant & Fungal Biology, Royal Botanic Gardens, Kew, Richmond, TW9 3DS, UK
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Katie J Field
- Deparment of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
10
|
Wilson JP, White JD, Montañez IP, DiMichele WA, McElwain JC, Poulsen CJ, Hren MT. Carboniferous plant physiology breaks the mold. THE NEW PHYTOLOGIST 2020; 227:667-679. [PMID: 32267976 DOI: 10.1111/nph.16460] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/17/2019] [Indexed: 06/11/2023]
Abstract
How plants have shaped Earth surface feedbacks over geologic time is a key question in botanical and geological inquiry. Recent work has suggested that biomes during the Carboniferous Period contained plants with extraordinary physiological capacity to shape their environment, contradicting the previously dominant view that plants only began to actively moderate the Earth's surface with the rise of angiosperms during the Mesozoic Era. A recently published Viewpoint disputes this recent work, thus here, we document in detail, the mechanistic underpinnings of our modeling and illustrate the extraordinary ecophysiological nature of Carboniferous plants.
Collapse
Affiliation(s)
- Jonathan P Wilson
- Department of Environmental Studies, Haverford College, Haverford, PA, 19041, USA
| | - Joseph D White
- Department of Biology, Baylor University, Waco, TX, 76798, USA
| | - Isabel P Montañez
- Department of Earth and Planetary Sciences, University of California, Davis, CA, 95616, USA
| | - William A DiMichele
- Department of Paleobiology, Smithsonian Museum of Natural History, Washington, DC, 20560, USA
| | - Jennifer C McElwain
- Department of Botany, School of Natural Sciences, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Christopher J Poulsen
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Michael T Hren
- Center for Integrative Geosciences, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
11
|
Boyce CK, Zwieniecki MA. The prospects for constraining productivity through time with the whole-plant physiology of fossils. THE NEW PHYTOLOGIST 2019; 223:40-49. [PMID: 30304562 DOI: 10.1111/nph.15446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/26/2018] [Indexed: 06/08/2023]
Abstract
Anatomically preserved fossils allow estimation of hydraulic parameters, potentially providing constraints on interpreting whole-plant physiology. However, different organ systems have typically been considered in isolation - a problem given common mismatches of high and low conductance components coupled in the hydraulic path of the same plant. A recent paper addressed the issue of how to handle resistance mismatches in fossil plant hydraulics, focusing on Carboniferous medullosan seed plants and arborescent lycopsids. Among other problems, however, a fundamental error was made: the transpiration stream consists of resistances in series (where resistances are additive and the component with the largest resistance can dominate the behavior of the system), but emphasis was instead placed on the lowest resistance, effectively treating the system as resistances in parallel (where the component with the smallest resistance will dominate the behavior). Instead of possessing high assimilation capacities to match high specific stem conductances, it is argued here that individual high conductance components in these Paleozoic plants are nonetheless associated with low whole-plant productivity, just as can be commonly seen in living plants. Resolution of how to handle these issues may have broad implications for the Earth system including geobiological feedbacks to rock weathering, atmospheric composition, and climate.
Collapse
Affiliation(s)
- C Kevin Boyce
- Geological Sciences, Stanford University, Stanford, CA, 94305, USA
| | | |
Collapse
|
12
|
Murray M, Soh WK, Yiotis C, Batke S, Parnell AC, Spicer RA, Lawson T, Caballero R, Wright IJ, Purcell C, McElwain JC. Convergence in Maximum Stomatal Conductance of C 3 Woody Angiosperms in Natural Ecosystems Across Bioclimatic Zones. FRONTIERS IN PLANT SCIENCE 2019; 10:558. [PMID: 31134112 PMCID: PMC6514322 DOI: 10.3389/fpls.2019.00558] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 04/12/2019] [Indexed: 05/26/2023]
Abstract
Stomatal conductance (g s) in terrestrial vegetation regulates the uptake of atmospheric carbon dioxide for photosynthesis and water loss through transpiration, closely linking the biosphere and atmosphere and influencing climate. Yet, the range and pattern of g s in plants from natural ecosystems across broad geographic, climatic, and taxonomic ranges remains poorly quantified. Furthermore, attempts to characterize g s on such scales have predominantly relied upon meta-analyses compiling data from many different studies. This approach may be inherently problematic as it combines data collected using unstandardized protocols, sometimes over decadal time spans, and from different habitat groups. Using a standardized protocol, we measured leaf-level g s using porometry in 218 C3 woody angiosperm species in natural ecosystems representing seven bioclimatic zones. The resulting dataset of 4273 g s measurements, which we call STraits (Stomatal Traits), was used to determine patterns in maximum g s (g smax) across bioclimatic zones and whether there was similarity in the mean g smax of C3 woody angiosperms across ecosystem types. We also tested for differential g smax in two broadly defined habitat groups - open-canopy and understory-subcanopy - within and across bioclimatic zones. We found strong convergence in mean g smax of C3 woody angiosperms in the understory-subcanopy habitats across six bioclimatic zones, but not in open-canopy habitats. Mean g smax in open-canopy habitats (266 ± 100 mmol m-2 s-1) was significantly higher than in understory-subcanopy habitats (233 ± 86 mmol m-2 s-1). There was also a central tendency in the overall dataset to operate toward a g smax of ∼250 mmol m-2 s-1. We suggest that the observed convergence in mean g smax of C3 woody angiosperms in the understory-subcanopy is due to a buffering of g smax against macroclimate effects which will lead to differential response of C3 woody angiosperm vegetation in these two habitats to future global change. Therefore, it will be important for future studies of g smax to categorize vegetation according to habitat group.
Collapse
Affiliation(s)
- Michelle Murray
- Department of Botany, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Wuu Kuang Soh
- Department of Botany, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Charilaos Yiotis
- Department of Botany, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Sven Batke
- Department of Biology, Edge Hill University, Ormskirk, United Kingdom
| | | | - Robert A. Spicer
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, China
- School of Environment, Earth and Ecosystem Sciences, The Open University, Milton Keynes, United Kingdom
| | - Tracy Lawson
- School of Biological Sciences, University of Essex, Colchester, United Kingdom
| | | | - Ian J. Wright
- Department of Biological Sciences, Faculty of Science, Macquarie University, Sydney, NSW, Australia
| | - Conor Purcell
- Department of Botany, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Jennifer C. McElwain
- Department of Botany, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
13
|
Strullu-Derrien C, Selosse MA, Kenrick P, Martin FM. The origin and evolution of mycorrhizal symbioses: from palaeomycology to phylogenomics. THE NEW PHYTOLOGIST 2018; 220:1012-1030. [PMID: 29573278 DOI: 10.1111/nph.15076] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/14/2018] [Indexed: 05/05/2023]
Abstract
Contents Summary 1012 I. Introduction 1013 II. The mycorrhizal symbiosis at the dawn and rise of the land flora 1014 III. From early land plants to early trees: the origin of roots and true mycorrhizas 1016 IV. The diversification of the AM symbiosis 1019 V. The ECM symbiosis 1021 VI. The recently evolved ericoid and orchid mycorrhizas 1023 VII. Limits of paleontological vs genetic approaches and perspectives 1023 Acknowledgements 1025 References 1025 SUMMARY: The ability of fungi to form mycorrhizas with plants is one of the most remarkable and enduring adaptations to life on land. The occurrence of mycorrhizas is now well established in c. 85% of extant plants, yet the geological record of these associations is sparse. Fossils preserved under exceptional conditions provide tantalizing glimpses into the evolutionary history of mycorrhizas, showing the extent of their occurrence and aspects of their evolution in extinct plants. The fossil record has important roles to play in establishing a chronology of when key fungal associations evolved and in understanding their importance in ecosystems through time. Together with calibrated phylogenetic trees, these approaches extend our understanding of when and how groups evolved in the context of major environmental change on a global scale. Phylogenomics furthers this understanding into the evolution of different types of mycorrhizal associations, and genomic studies of both plants and fungi are shedding light on how the complex set of symbiotic traits evolved. Here we present a review of the main phases of the evolution of mycorrhizal interactions from palaeontological, phylogenetic and genomic perspectives, with the aim of highlighting the potential of fossil material and a geological perspective in a cross-disciplinary approach.
Collapse
Affiliation(s)
- Christine Strullu-Derrien
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK
- Interactions Arbres/Microorganismes, Laboratoire d'excellence ARBRE, Centre INRA-Lorraine, Institut national de la recherche agronomique (INRA), Unité Mixte de Recherche 1136 INRA-Université de Lorraine, 54280, Champenoux, France
| | - Marc-André Selosse
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, 57 rue Cuvier, CP39, 75005, Paris, France
- Department of Plant Taxonomy and Nature Conservation, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Paul Kenrick
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Francis M Martin
- Interactions Arbres/Microorganismes, Laboratoire d'excellence ARBRE, Centre INRA-Lorraine, Institut national de la recherche agronomique (INRA), Unité Mixte de Recherche 1136 INRA-Université de Lorraine, 54280, Champenoux, France
| |
Collapse
|
14
|
McElwain JC. Paleobotany and Global Change: Important Lessons for Species to Biomes from Vegetation Responses to Past Global Change. ANNUAL REVIEW OF PLANT BIOLOGY 2018; 69:761-787. [PMID: 29719166 DOI: 10.1146/annurev-arplant-042817-040405] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Human carbon use during the next century will lead to atmospheric carbon dioxide concentrations (pCO2) that have been unprecedented for the past 50-100+ million years according to fossil plant-based CO2 estimates. The paleobotanical record of plants offers key insights into vegetation responses to past global change, including suitable analogs for Earth's climatic future. Past global warming events have resulted in transient poleward migration at rates that are equivalent to the lowest climate velocities required for current taxa to keep pace with climate change. Paleobiome reconstructions suggest that the current tundra biome is the biome most threatened by global warming. The common occurrence of paleoforests at high polar latitudes when pCO2 was above 500 ppm suggests that the advance of woody shrub and tree taxa into tundra environments may be inevitable. Fossil pollen studies demonstrate the resilience of wet tropical forests to global change up to 700 ppm CO2, contrary to modeled predictions of the future. The paleobotanical record also demonstrates a high capacity for functional trait evolution as an additional strategy to migration and maintenance of a species' climate envelope in response to global change.
Collapse
Affiliation(s)
- Jennifer C McElwain
- Botany Department, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland;
| |
Collapse
|
15
|
Corrigendum. THE NEW PHYTOLOGIST 2018; 218:873-874. [PMID: 29561070 DOI: 10.1111/nph.14958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
|
16
|
Formation of most of our coal brought Earth close to global glaciation. Proc Natl Acad Sci U S A 2017; 114:11333-11337. [PMID: 29073052 DOI: 10.1073/pnas.1712062114] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The bulk of Earth's coal deposits used as fossil fuel today was formed from plant debris during the late Carboniferous and early Permian periods. The high burial rate of organic carbon correlates with a significant drawdown of atmospheric carbon dioxide (CO2) at that time. A recent analysis of a high-resolution record reveals large orbitally driven variations in atmospheric CO2 concentration between [Formula: see text]150 and 700 ppm for the latest Carboniferous and very low values of 100 [Formula: see text] 80 ppm for the earliest Permian. Here, I explore the sensitivity of the climate around the Carboniferous/Permian boundary to changes in Earth's orbital parameters and in atmospheric CO2 using a coupled climate model. The coldest orbital configurations are characterized by large axial tilt and small eccentricities of Earth's elliptical orbit, whereas the warmest configuration occurs at minimum tilt, maximum eccentricity, and a perihelion passage during Northern hemisphere spring. Global glaciation occurs at CO2 concentrations <40 ppm, suggesting a rather narrow escape from a fully glaciated Snowball Earth state given the low levels and large fluctuations of atmospheric CO2 These findings highlight the importance of orbital cycles for the climate and carbon cycle during the late Paleozoic ice age and the climatic significance of the fossil carbon stored in Earth's coal deposits.
Collapse
|