1
|
Sun PW, Chang JT, Luo MX, Chao CT, Du FK, Liao PC. In situ diversification and adaptive introgression in Taiwanese Scutellaria. PLANT BIOLOGY (STUTTGART, GERMANY) 2025; 27:238-254. [PMID: 39844615 DOI: 10.1111/plb.13769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/17/2024] [Indexed: 01/24/2025]
Abstract
Island habitats provide unique opportunities to study speciation. Recent work indicates that both ex situ origination and in situ speciation contribute to island species diversity. However, clear evidence of local adaptation of endemic plant species on islands requires in-depth studies, which are scarce. This study underscores the importance of local adaptation in maintaining species boundaries by examining how adaptive introgression, hybridization, and local adaptation contribute to genetic variation in island species. Multilocus genome scanning of 51 nuclear genes was used to investigate the evolutionary relationships of the Scutellaria species complex on Taiwan Island and assess the role of in situ diversification in generating high endemism and genetic diversity. Interspecies introgressions were detected by phylogenetic networks and ABBA-BABA-based analysis, suggesting ongoing or recent speciation processes. Coalescent-based simulation identified hybrid speciation in Scutellaria taiwanensis and Scutellaria hsiehii, with evidence of hybridization between more than two parental species. Genotype-environment association studies revealed that the influence of climate, particularly precipitation- and temperature-related factors, contributed to adaptive genetic divergence between species. Additionally, adaptive introgression related to environmental pressures that may have facilitated the colonization of new island habitats were identified. This research illustrates how hybridization, introgression, and adaptation shaped the evolutionary histories and divergence of this island-endemic plant species complex and sheds light on the multifaceted mechanisms of speciation on semi-isolated islands.
Collapse
Affiliation(s)
- P-W Sun
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, USA
| | - J-T Chang
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - M-X Luo
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - C-T Chao
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - F K Du
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - P-C Liao
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
2
|
Suetsugu K, Hirota SK, Ishibashi M, Ishida K, Hayakawa H, Suyama Y. Insular environment-dependent introgression from an arid-grassland orchid to a wetland orchid on an oceanic island. Evol Lett 2024; 8:799-812. [PMID: 39677566 PMCID: PMC11637555 DOI: 10.1093/evlett/qrae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/15/2024] [Accepted: 06/25/2024] [Indexed: 12/17/2024] Open
Abstract
Adaptive introgression plays a vital role in allowing recipient species to adapt and colonize new environments. However, our understanding of such environment-dependent introgressions is primarily limited to specific plant taxa in particular settings. In Japan, two related orchid species, the autonomously self-pollinating Pogonia minor and the outcrossing Pogonia japonica, typically inhabit dry grasslands and wetlands, respectively. Intriguingly, an island ecotype of P. japonica exists in arid, wind-swept, open sites on volcanic mountain slopes on Kozu Island, in the oceanic Izu Islands. To investigate potential introgression and its implications between P. japonica and P. minor on Kozu Island, we applied a comprehensive approach that included examining morphological traits, genome-wide SNP data, and plastid DNA sequences. We also examined the breeding systems of these species on Kozu Island through artificial pollination experiments to determine if introgression from P. minor has endowed the P. japonica ecotype with selfing capabilities. Extensive sampling on Kozu Island revealed that all P. japonica specimens exhibit signs of introgression from P. minor, suggesting the absence of pure P. japonica populations on the island. Furthermore, the chloroplast haplotypes of the insular P. japonica ecotype consistently match those of P. minor, indicating a predominantly asymmetrical initial hybridization with P. minor acting mainly as the maternal parent in the formation of F1 hybrids. Despite the advantages of self-fertilization in isolated environments, the insular P. japonica does not exhibit autogamy. Consequently, the scarcity of moist habitats, rather than selection pressure for selfing, likely contributes to the observed widespread introgression. Our study strongly suggests that the arid-environment-adapted P. minor has introgressed into the insular ecotype of P. japonica, enabling its successful colonization of arid volcanic mountain slopes of the oceanic island.
Collapse
Affiliation(s)
- Kenji Suetsugu
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Hyogo 657-8501, Japan
- Institute for Advanced Research, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Shun K Hirota
- Field Science Center, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-onsen, Osaki, Miyagi 989-6711, Japan
- Botanical Gardens, Osaka Metropolitan University, 2000 Kisaichi, Katano City, Osaka 576-0004, Japan
| | | | | | - Hiroshi Hayakawa
- Museum of Natural and Environmental History, Shizuoka 5762 Oya, Suruga, 422-8017, Japan
| | - Yoshihisa Suyama
- Field Science Center, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-onsen, Osaki, Miyagi 989-6711, Japan
| |
Collapse
|
3
|
Leal JL, Milesi P, Hodková E, Zhou Q, James J, Eklund DM, Pyhäjärvi T, Salojärvi J, Lascoux M. Complex Polyploids: Origins, Genomic Composition, and Role of Introgressed Alleles. Syst Biol 2024; 73:392-418. [PMID: 38613229 PMCID: PMC11282369 DOI: 10.1093/sysbio/syae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/18/2023] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Introgression allows polyploid species to acquire new genomic content from diploid progenitors or from other unrelated diploid or polyploid lineages, contributing to genetic diversity and facilitating adaptive allele discovery. In some cases, high levels of introgression elicit the replacement of large numbers of alleles inherited from the polyploid's ancestral species, profoundly reshaping the polyploid's genomic composition. In such complex polyploids, it is often difficult to determine which taxa were the progenitor species and which taxa provided additional introgressive blocks through subsequent hybridization. Here, we use population-level genomic data to reconstruct the phylogenetic history of Betula pubescens (downy birch), a tetraploid species often assumed to be of allopolyploid origin and which is known to hybridize with at least four other birch species. This was achieved by modeling polyploidization and introgression events under the multispecies coalescent and then using an approximate Bayesian computation rejection algorithm to evaluate and compare competing polyploidization models. We provide evidence that B. pubescens is the outcome of an autoploid genome doubling event in the common ancestor of B. pendula and its extant sister species, B. platyphylla, that took place approximately 178,000-188,000 generations ago. Extensive hybridization with B. pendula, B. nana, and B. humilis followed in the aftermath of autopolyploidization, with the relative contribution of each of these species to the B. pubescens genome varying markedly across the species' range. Functional analysis of B. pubescens loci containing alleles introgressed from B. nana identified multiple genes involved in climate adaptation, while loci containing alleles derived from B. humilis revealed several genes involved in the regulation of meiotic stability and pollen viability in plant species.
Collapse
Affiliation(s)
- J Luis Leal
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
| | - Pascal Milesi
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
- Science for Life Laboratory (SciLifeLab), Uppsala University, 75237 Uppsala, Sweden
| | - Eva Hodková
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16521 Prague, Czech Republic
| | - Qiujie Zhou
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
| | - Jennifer James
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
| | - D Magnus Eklund
- Physiology and Environmental Toxicology, Department of Organismal Biology, Uppsala University, Norbyvägen 18A, 75236 Uppsala, Sweden
| | - Tanja Pyhäjärvi
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, P.O. Box 65 (Viikinkaari 1), 00014 Helsinki, Finland
- Department of Forest Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Jarkko Salojärvi
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, P.O. Box 65 (Viikinkaari 1), 00014 Helsinki, Finland
| | - Martin Lascoux
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
- Science for Life Laboratory (SciLifeLab), Uppsala University, 75237 Uppsala, Sweden
| |
Collapse
|
4
|
Yang X, Su Y, Huang S, Hou Q, Wei P, Hao Y, Huang J, Xiao H, Ma Z, Xu X, Wang X, Cao S, Cao X, Zhang M, Wen X, Ma Y, Peng Y, Zhou Y, Cao K, Qiao G. Comparative population genomics reveals convergent and divergent selection in the apricot-peach-plum-mei complex. HORTICULTURE RESEARCH 2024; 11:uhae109. [PMID: 38883333 PMCID: PMC11179850 DOI: 10.1093/hr/uhae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/06/2024] [Indexed: 06/18/2024]
Abstract
The economically significant genus Prunus includes fruit and nut crops that have been domesticated for shared and specific agronomic traits; however, the genomic signals of convergent and divergent selection have not been elucidated. In this study, we aimed to detect genomic signatures of convergent and divergent selection by conducting comparative population genomic analyses of the apricot-peach-plum-mei (APPM) complex, utilizing a haplotype-resolved telomere-to-telomere (T2T) genome assembly and population resequencing data. The haplotype-resolved T2T reference genome for the plum cultivar was assembled through HiFi and Hi-C reads, resulting in two haplotypes 251.25 and 251.29 Mb in size, respectively. Comparative genomics reveals a chromosomal translocation of ~1.17 Mb in the apricot genomes compared with peach, plum, and mei. Notably, the translocation involves the D locus, significantly impacting titratable acidity (TA), pH, and sugar content. Population genetic analysis detected substantial gene flow between plum and apricot, with introgression regions enriched in post-embryonic development and pollen germination processes. Comparative population genetic analyses revealed convergent selection for stress tolerance, flower development, and fruit ripening, along with divergent selection shaping specific crop, such as somatic embryogenesis in plum, pollen germination in mei, and hormone regulation in peach. Notably, selective sweeps on chromosome 7 coincide with a chromosomal collinearity from the comparative genomics, impacting key fruit-softening genes such as PG, regulated by ERF and RMA1H1. Overall, this study provides insights into the genetic diversity, evolutionary history, and domestication of the APPM complex, offering valuable implications for genetic studies and breeding programs of Prunus crops.
Collapse
Affiliation(s)
- Xuanwen Yang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering/College of Life Sciences, Guizhou University, Guiyang 550025, China
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Science, Zhengzhou 450009, China
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Ying Su
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Xinjiang, Urumqi 830046, China
| | - Siyang Huang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Qiandong Hou
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering/College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Pengcheng Wei
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Science, Zhengzhou 450009, China
| | - Yani Hao
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Department of Bioinformatics, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Jiaqi Huang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hua Xiao
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Zhiyao Ma
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xiaodong Xu
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xu Wang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Shuo Cao
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuejing Cao
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Mengyan Zhang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xiaopeng Wen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering/College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Yuhua Ma
- Institute of Pomology Science, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Yanling Peng
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yongfeng Zhou
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- National Key Laboratory of Tropical Crop Breeding, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 570100, China
| | - Ke Cao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Science, Zhengzhou 450009, China
| | - Guang Qiao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering/College of Life Sciences, Guizhou University, Guiyang 550025, China
| |
Collapse
|
5
|
Yang Z, Liang L, Xiang W, Wang L, Ma Q, Wang Z. Conservation genomics provides insights into genetic resilience and adaptation of the endangered Chinese hazelnut, Corylus chinensis. PLANT DIVERSITY 2024; 46:294-308. [PMID: 38798732 PMCID: PMC11119545 DOI: 10.1016/j.pld.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 05/29/2024]
Abstract
Global climate change has increased concerns regarding biodiversity loss. However, many key conservation issues still required further research, including demographic history, deleterious mutation load, adaptive evolution, and putative introgression. Here we generated the first chromosome-level genome of the endangered Chinese hazelnut, Corylus chinensis, and compared the genomic signatures with its sympatric widespread C. kwechowensis-C. yunnanensis complex. We found large genome rearrangements across all Corylus species and identified species-specific expanded gene families that may be involved in adaptation. Population genomics revealed that both C. chinensis and the C. kwechowensis-C. yunnanensis complex had diverged into two genetic lineages, forming a consistent pattern of southwestern-northern differentiation. Population size of the narrow southwestern lineages of both species have decreased continuously since the late Miocene, whereas the widespread northern lineages have remained stable (C. chinensis) or have even recovered from population bottlenecks (C. kwechowensis-C. yunnanensis complex) during the Quaternary. Compared with C. kwechowensis-C. yunnanensis complex, C. chinensis showed significantly lower genomic diversity and higher inbreeding level. However, C. chinensis carried significantly fewer deleterious mutations than C. kwechowensis-C. yunnanensis complex, as more effective purging selection reduced the accumulation of homozygous variants. We also detected signals of positive selection and adaptive introgression in different lineages, which facilitated the accumulation of favorable variants and formation of local adaptation. Hence, both types of selection and exogenous introgression could have mitigated inbreeding and facilitated survival and persistence of C. chinensis. Overall, our study provides critical insights into lineage differentiation, local adaptation, and the potential for future recovery of endangered trees.
Collapse
Affiliation(s)
- Zhen Yang
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Lisong Liang
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Weibo Xiang
- National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, China Three Gorges Corporation, Beijing 100083, China
- Rare Plants Research Institute of Yangtze River, China Three Gorges Corporation, Yichang 443133, China
| | - Lujun Wang
- Research Institute of Economic Forest Cultivation and Processing, Anhui Academy of Forestry, Hefei 230031, China
| | - Qinghua Ma
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Zhaoshan Wang
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
6
|
Stubbs RL, Theodoridis S, Mora-Carrera E, Keller B, Potente G, Yousefi N, Jay P, Léveillé-Bourret É, Choudhury RR, Celep F, Kochjarová J, Conti E. The genomes of Darwin's primroses reveal chromosome-scale adaptive introgression and differential permeability of species boundaries. THE NEW PHYTOLOGIST 2024; 241:911-925. [PMID: 37921572 DOI: 10.1111/nph.19361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2023]
Abstract
Introgression is an important source of genetic variation that can determine species adaptation to environmental conditions. Yet, definitive evidence of the genomic and adaptive implications of introgression in nature remains scarce. The widespread hybrid zones of Darwin's primroses (Primula elatior, Primula veris, and Primula vulgaris) provide a unique natural laboratory for studying introgression in flowering plants and the varying permeability of species boundaries. Through analysis of 650 genomes, we provide evidence of an introgressed genomic region likely to confer adaptive advantage in conditions of soil toxicity. We also document unequivocal evidence of chloroplast introgression, an important precursor to species-wide chloroplast capture. Finally, we provide the first evidence that the S-locus supergene, which controls heterostyly in primroses, does not introgress in this clade. Our results contribute novel insights into the adaptive role of introgression and demonstrate the importance of extensive genomic and geographical sampling for illuminating the complex nature of species boundaries.
Collapse
Affiliation(s)
- Rebecca L Stubbs
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, 8008, Switzerland
| | - Spyros Theodoridis
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, 60325, Germany
| | - Emiliano Mora-Carrera
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, 8008, Switzerland
| | - Barbara Keller
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, 8008, Switzerland
| | - Giacomo Potente
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, 8008, Switzerland
| | - Narjes Yousefi
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, 8008, Switzerland
| | - Paul Jay
- Center for GeoGenetics, University of Copenhagen, Copenhagen, 1350, Denmark
| | - Étienne Léveillé-Bourret
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale (IRBV), Université de Montréal, Montreal, QC, H1X 2B2, Canada
| | | | - Ferhat Celep
- Department of Biology, Faculty of Arts and Sciences, Kırıkkale University, Kırıkkale, 71450, Turkey
| | - Judita Kochjarová
- Department of Phytology, Faculty of Forestry, Technical University in Zvolen, Zvolen, 96001, Slovak Republic
| | - Elena Conti
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, 8008, Switzerland
| |
Collapse
|
7
|
Zhao D, Zhang J, Hui N, Wang L, Tian Y, Ni W, Long J, Jiang L, Li Y, Diao S, Li J, Tembrock LR, Wu Z, Wang Z. A Genomic Quantitative Study on the Contribution of the Ancestral-State Bases Relative to Derived Bases in the Divergence and Local Adaptation of Populus davidiana. Genes (Basel) 2023; 14:genes14040821. [PMID: 37107579 PMCID: PMC10137690 DOI: 10.3390/genes14040821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/17/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Identifying alleles associated with adaptation to new environments will advance our understanding of evolution from the molecular level. Previous studies have found that the Populus davidiana southwest population in East Asia has differentiated from other populations in the range. We aimed to evaluate the contributions of the ancestral-state bases (ASBs) relative to derived bases (DBs) in the local adaptation of P. davidiana in the Yunnan-Guizhou Plateau from a quantitative perspective using whole-genome re-sequencing data from 90 P. davidiana samples from three regions across the species range. Our results showed that the uplift of the Qinghai-Tibet Plateau during the Neogene and associated climate fluctuations during the Middle Pleistocene were likely an important factor in the early divergence of P. davidiana. Highly differentiated genomic regions between populations were inferred to have undergone strong linked natural selection, and ASBs are the chief means by which populations of P. davidiana adapt to novel environmental conditions; however, when adapting to regions with high environmental differences relative to the ancestral range, the proportion of DBs was significantly higher than that of background regions, as ASBs are insufficient to cope with these environments. Finally, a number of genes were identified in the outlier region.
Collapse
Affiliation(s)
- Dandan Zhao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Jianguo Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Collaborative Innovation Center of Sustainable, Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Nan Hui
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Li Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Yang Tian
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Wanning Ni
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Jinhua Long
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Li Jiang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Yi Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Songfeng Diao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Jinhua Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Luke R Tembrock
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Zhaoshan Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Collaborative Innovation Center of Sustainable, Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
8
|
Zhang H, Zhang X, Wu G, Dong C, Liu J, Li M. Genomic divergence and introgression among three Populus species. Mol Phylogenet Evol 2023; 180:107686. [PMID: 36586545 DOI: 10.1016/j.ympev.2022.107686] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
Genomic divergence with gene flow is very common in both plants and animals. However, divergence and gene flow are two counteracting factors during speciation. Identifying the types of genes that are likely to be introgressed and what genetic factors restrict further effective reproduction of interspecific hybrids is of great interest to biologists. We aimed to address these issues using three related tree species, Populus alba (Pa), P. tremula (Pt), and P. tremuloides (Ps), and the interspecific hybrid of the former two species, P. × canescens (Pc). We collected 105 genomes for these four poplar lineages, including 28 Pa, 38Pt, 21 Ps, and 18 Pc individuals, to reconstruct their evolutionary histories. Our coalescence-based simulations indicated that Pa diverged earliest from Ps and Pt, and asymmetrical gene flow existed between any two lineages, with especially large ancient gene flow occurring between Pa and Pt. The genomic landscape of divergence between pairs of the three species are highly heterogeneous, which may have arisen through both divergent sorting of ancient polymorphisms and ongoing gene flow. We found that extant regions of the genome with introgressed ancestry reduced genetic divergence but elevated recombination rates and accounted for 5.76 % of the total genome. Introgressed genes were functionally associated with stress resistance, including innate immune response, anti-adversity response, and programmed cell death. However, candidate genes underlying postmating barriers of Pc were homozygous and resistant to introgression due to the incompatibility of alleles between loci after hybridization and were associated with endosperm and gamete formation and disease resistance. Our study revealed genomic dynamics during speciation with gene flow and identified regions of the genome that were likely introgressed and adaptive as well as candidate loci responsible for hybrid incompatibility that resulted in the formation of postmating barriers after hybridization.
Collapse
Affiliation(s)
- Han Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Xu Zhang
- Internet Medical and System Applications of National Engineering Laboratory, Zhengzhou University First Affiliated Hospital, Zhengzhou 450000, China
| | - Guili Wu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Congcong Dong
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Jianquan Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Minjie Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
9
|
Noguerales V, Ortego J. Genomic evidence of speciation by fusion in a recent radiation of grasshoppers. Evolution 2022; 76:2618-2633. [PMID: 35695020 PMCID: PMC9796961 DOI: 10.1111/evo.14508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/22/2022] [Accepted: 04/02/2022] [Indexed: 01/22/2023]
Abstract
Postdivergence gene flow can trigger a number of creative evolutionary outcomes, ranging from the transfer of beneficial alleles across species boundaries (i.e., adaptive introgression) to the formation of new species (i.e., hybrid speciation). Although neutral and adaptive introgression has been broadly documented in nature, hybrid speciation is assumed to be rare and the evolutionary and ecological context facilitating this phenomenon still remains controversial. Through combining genomic and phenotypic data, we evaluate the hypothesis that the dual feeding regime (based on both scrub legumes and gramineous herbs) of the taxonomically controversial grasshopper Chorthippus saulcyi algoaldensis resulted from hybridization between the sister taxa C. binotatus (that exclusively feeds on scrub legumes) and C. saulcyi (that only feeds on gramineous herbs). Genetic clustering analyses and inferences from coalescent-based demographic simulations confirm that C. s. algoaldensis represents an independently evolving lineage and support the ancient hybrid origin of this taxon (about 1.4 Ma), which sheds light on its uncertain phylogenetic position and might explain its broader trophic niche. We propose a Pleistocene hybrid speciation model where range shifts resulting from climatic oscillations can promote the formation of hybrid swarms and facilitate their long-term persistence through geographic isolation from parental forms in topographically complex landscapes.
Collapse
Affiliation(s)
- Víctor Noguerales
- Department of Biological SciencesUniversity of CyprusNicosia1678Cyprus,Island Ecology and Evolution GroupInstituto de Productos Naturales y Agrobiología (IPNA‐CSIC)San Cristóbal de La Laguna38206Spain
| | - Joaquín Ortego
- Department of Integrative EcologyEstación Biológica de Doñana (EBD‐CSIC)Sevilla41092Spain
| |
Collapse
|
10
|
Genome-wide analyses of introgression between two sympatric Asian oak species. Nat Ecol Evol 2022; 6:924-935. [PMID: 35513577 DOI: 10.1038/s41559-022-01754-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/29/2022] [Indexed: 12/13/2022]
Abstract
Introgression can be an important source of new alleles for adaption under rapidly changing environments, perhaps even more important than standing variation. Though introgression has been extensively studied in many plants and animals, key questions on the underlying mechanisms of introgression still remain unanswered. In particular, we are yet to determine the genomic distribution of introgressed regions along the genome; whether the extent and patterns of introgression are influenced by ecological factors; and when and how introgression contributes to adaptation. Here, we generated high-quality genomic resources for two sympatric widespread Asian oak species, Quercus acutissima and Q. variabilis, sampled in multiple forests to study introgression between them. We show that introgressed regions are broadly distributed across the genome. Introgression was affected by genetic divergence between pairs of populations and by the similarity of the environments in which they live-populations occupying similar ecological sites tended to share the same introgressed regions. Introgressed genomic footprints of adaptation were preferentially located in regions with suppressed recombination rate. Introgression probably confers adaptation in these oak populations by introducing allelic variation in cis-regulatory elements, in particular through transposable element insertions, thereby altering the regulation of genes related to stress. Our results provide new avenues of research for uncovering mechanisms of adaptation due to hybridization in sympatric species.
Collapse
|
11
|
Liu Y. Conservation prioritization based on past cascading climatic effects on genetic diversity and population size dynamics: Insights from a temperate tree species. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Yang Liu
- Department of Forest and Conservation Sciences University of British Columbia Vancouver British Columbia Canada
- Department of Archaeology University of Cambridge Cambridge UK
| |
Collapse
|
12
|
Pfeilsticker TR, Jones RC, Steane DA, Harrison PA, Vaillancourt RE, Potts BM. Expansion of the rare Eucalyptus risdonii under climate change through hybridization with a closely related species despite hybrid inferiority. ANNALS OF BOTANY 2022; 129:1-14. [PMID: 34351372 PMCID: PMC8752398 DOI: 10.1093/aob/mcab103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/04/2021] [Indexed: 05/31/2023]
Abstract
BACKGROUND AND AIMS Hybridization is increasingly recognized as an integral part of the dynamics of species range expansion and contraction. Thus, it is important to understand the reproductive barriers between co-occurring species. Extending previous studies that argued that the rare Eucalyptus risdonii was expanding into the range of the surrounding E. amygdalina by both seed and pollen dispersal, we here investigate the long-term fitness of both species and their hybrids and whether expansion is continuing. METHODS We assessed the survival of phenotypes representing a continuum between the two pure species in a natural hybrid swarm after 29 years, along with seedling recruitment. The performance of pure species as well as of artificial and natural hybrids was also assessed over 28 years in a common garden trial. KEY RESULTS In the hybrid zone, E. amygdalina adults showed greater mortality than E. risdonii, and the current seedling cohort is still dominated by E. risdonii phenotypes. Morphologically intermediate individuals appeared to be the least fit. Similar results were observed after growing artificial first-generation and natural hybrids alongside pure species families in a common garden trial. Here, the survival, reproduction, health and growth of the intermediate hybrids were significantly less than those of either pure species, consistent with hybrid inferiority, although this did not manifest until later reproductive ages. Among the variable progeny of natural intermediate hybrids, the most E. risdonii-like phenotypes were the most fit. CONCLUSIONS This study contributes to the increasing number of reports of hybrid inferiority in Eucalyptus, suggesting that post-zygotic barriers contribute to the maintenance of species integrity even between closely related species. However, with fitness rapidly recovered following backcrossing, it is argued that hybridization can still be an important evolutionary process, in the present case appearing to contribute to the range expansion of the rare E. risdonii in response to climate change.
Collapse
Affiliation(s)
- T R Pfeilsticker
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Australia
| | - R C Jones
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Australia
| | - D A Steane
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Australia
| | - P A Harrison
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Australia
| | - R E Vaillancourt
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Australia
| | - B M Potts
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Australia
| |
Collapse
|
13
|
Janzen T, Miró Pina V. Estimating the time since admixture from phased and unphased molecular data. Mol Ecol Resour 2021; 22:908-926. [PMID: 34599646 PMCID: PMC9291888 DOI: 10.1111/1755-0998.13519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 11/26/2022]
Abstract
After admixture, recombination breaks down genomic blocks of contiguous ancestry. The breakdown of these blocks forms a new “molecular clock” that ticks at a much faster rate than the mutation clock, enabling accurate dating of admixture events in the recent past. However, existing theory on the breakdown of these blocks, or the accumulation of delineations between blocks, so‐called “junctions”, has mostly been limited to using regularly spaced markers on phased data. Here, we present an extension to the theory of junctions using the ancestral recombination graph that describes the expected number of junctions for any distribution of markers along the genome. Furthermore, we provide a new framework to infer the time since admixture using unphased data. We demonstrate both the phased and unphased methods on simulated data and show that our new extensions have improved accuracy with respect to previous methods, especially for smaller population sizes and more ancient admixture times. Lastly, we demonstrate the applicability of our method on three empirical data sets, including labcrosses of yeast (Saccharomyces cerevisae) and two case studies of hybridization in swordtail fish and Populus trees.
Collapse
Affiliation(s)
- Thijs Janzen
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.,Carl von Ossietzky University, Oldenburg, Germany
| | - Verónica Miró Pina
- Instituto de Investigaciones en Matemáticas Aplicadas y Sistemas (IIMAS), Universidad Nacional Autónoma de México (UNAM), México City, México.,Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
14
|
Royer‐Tardif S, Boisvert‐Marsh L, Godbout J, Isabel N, Aubin I. Finding common ground: Toward comparable indicators of adaptive capacity of tree species to a changing climate. Ecol Evol 2021; 11:13081-13100. [PMID: 34646454 PMCID: PMC8495821 DOI: 10.1002/ece3.8024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 07/26/2021] [Indexed: 01/09/2023] Open
Abstract
Adaptive capacity, one of the three determinants of vulnerability to climate change, is defined as the capacity of species to persist in their current location by coping with novel environmental conditions through acclimation and/or evolution. Although studies have identified indicators of adaptive capacity, few have assessed this capacity in a quantitative way that is comparable across tree species. Yet, such multispecies assessments are needed by forest management and conservation programs to refine vulnerability assessments and to guide the choice of adaptation measures. In this paper, we propose a framework to quantitatively evaluate five key components of tree adaptive capacity to climate change: individual adaptation through phenotypic plasticity, population phenotypic diversity as influenced by genetic diversity, genetic exchange within populations, genetic exchange between populations, and genetic exchange between species. For each component, we define the main mechanisms that underlie adaptive capacity and present associated metrics that can be used as indices. To illustrate the use of this framework, we evaluate the relative adaptive capacity of 26 northeastern North American tree species using values reported in the literature. Our results show adaptive capacity to be highly variable among species and between components of adaptive capacity, such that no one species ranks consistently across all components. On average, the conifer Picea glauca and the broadleaves Acer rubrum and A. saccharinum show the greatest adaptive capacity among the 26 species we documented, whereas the conifers Picea rubens and Thuja occidentalis, and the broadleaf Ostrya virginiana possess the lowest. We discuss limitations that arise when comparing adaptive capacity among species, including poor data availability and comparability issues in metrics derived from different methods or studies. The breadth of data required for such an assessment exemplifies the multidisciplinary nature of adaptive capacity and the necessity of continued cross-collaboration to better anticipate the impacts of a changing climate.
Collapse
Affiliation(s)
- Samuel Royer‐Tardif
- Natural Resources CanadaCanadian Forest ServiceGreat Lakes Forestry CentreSault Sainte MarieONCanada
- Centre d'enseignement et de recherche en foresterie de Sainte‐Foy inc. (CERFO)QuébecQCCanada
| | - Laura Boisvert‐Marsh
- Natural Resources CanadaCanadian Forest ServiceGreat Lakes Forestry CentreSault Sainte MarieONCanada
| | - Julie Godbout
- Ministère des Forêts de la Faune et des Parcs du QuébecDirection de la recherche forestièreQuébecQCCanada
| | - Nathalie Isabel
- Natural Resources CanadaCanadian Forest ServiceLaurentian Forestry CentreQuébecQCCanada
| | - Isabelle Aubin
- Natural Resources CanadaCanadian Forest ServiceGreat Lakes Forestry CentreSault Sainte MarieONCanada
- Centre for Forest ResearchUniversité du Québec à MontréalMontréalQCCanada
| |
Collapse
|
15
|
Moore AJ, Messick JA, Kadereit JW. Range and niche expansion through multiple interspecific hybridization: a genotyping by sequencing analysis of Cherleria (Caryophyllaceae). BMC Ecol Evol 2021; 21:40. [PMID: 33691632 PMCID: PMC7945309 DOI: 10.1186/s12862-020-01721-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 11/10/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Cherleria (Caryophyllaceae) is a circumboreal genus that also occurs in the high mountains of the northern hemisphere. In this study, we focus on a clade that diversified in the European High Mountains, which was identified using nuclear ribosomal (nrDNA) sequence data in a previous study. With the nrDNA data, all but one species was monophyletic, with little sequence variation within most species. Here, we use genotyping by sequencing (GBS) data to determine whether the nrDNA data showed the full picture of the evolution in the genomes of these species. RESULTS The overall relationships found with the GBS data were congruent with those from the nrDNA study. Most of the species were still monophyletic and many of the same subclades were recovered, including a clade of three narrow endemic species from Greece and a clade of largely calcifuge species. The GBS data provided additional resolution within the two species with the best sampling, C. langii and C. laricifolia, with structure that was congruent with geography. In addition, the GBS data showed significant hybridization between several species, including species whose ranges did not currently overlap. CONCLUSIONS The hybridization led us to hypothesize that lineages came in contact on the Balkan Peninsula after they diverged, even when those lineages are no longer present on the Balkan Peninsula. Hybridization may also have helped lineages expand their niches to colonize new substrates and different areas. Not only do genome-wide data provide increased phylogenetic resolution of difficult nodes, they also give evidence for a more complex evolutionary history than what can be depicted by a simple, branching phylogeny.
Collapse
Affiliation(s)
- Abigail J. Moore
- Department of Microbiology and Plant Biology and Oklahoma Biological Survey, University of Oklahoma, 770 Van Vleet Oval, Norman, OK 73019 USA
| | - Jennifer A. Messick
- Department of Biology, University of Central Oklahoma, Howell Hall, Room 220, Edmond, OK 73034 USA
| | - Joachim W. Kadereit
- Fachbereich Biologie, Institut Für Organismische Und Molekulare Evolutionsbiologie, Johannes Gutenberg-Universität Mainz, Anselm-Franz-von-Bentzel-Weg 9a, 55099 Mainz, Germany
| |
Collapse
|
16
|
Liu Y, El-Kassaby YA. Transcriptome-wide analysis of introgression-resistant regions reveals genetic divergence genes under positive selection in Populus trichocarpa. Heredity (Edinb) 2021; 126:442-462. [PMID: 33214679 PMCID: PMC8027638 DOI: 10.1038/s41437-020-00388-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 11/09/2022] Open
Abstract
Comparing gene expression patterns and genetic polymorphisms between populations is of central importance for understanding the origin and maintenance of biodiversity. Based on population-specific gene expression levels and allele frequency differences, we sought to identify population divergence (PD) genes across the introgression-resistant genomic regions of Populus trichocarpa. Genes containing highly diverged loci [i.e., genetic divergence (GD)] or showing expression divergence (ED) between populations were widely distributed in the genome and substantially enriched in functional categories related to stress responses, disease resistance, timing of flowering, cell cycle regulation, plant growth, and development. Nine genomic regions showing evidence of strong positive selection were overlapped with GD genes, which had significant differences between Oregon (a southernmost peripheral deme) and the other demes. However, we did not find evidence that genes under positive selection show an enrichment for ED. PD genes and genes under selection pertained to the same gene classes, such as SERINE/CYSTEINE PROTEASE, ABC TRANSPORTER, GLYCOSYLTRANSFERASE and other transferases. Our analysis also revealed that GD genes were polymorphic within the species (41.9 ± 3.66 biallelic variants per gene), as previously reported in herbaceous plants. By contrast, ED genes contained less genetic variants (10.73 ± 1.14) and were likely highly expressed. In addition, we found that trans- rather than cis-acting variants considerably contribute to the evolution of >90% PD genes. Overall, this study elucidates that cohorts of PD genes agree with the general attributes of known speciation genes and GD genes will provide substrates for positive selection to operate on.
Collapse
Affiliation(s)
- Yang Liu
- Department of Forest and Conservation Sciences, The University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada.
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, The University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
17
|
Numaguchi K, Akagi T, Kitamura Y, Ishikawa R, Ishii T. Interspecific introgression and natural selection in the evolution of Japanese apricot (Prunus mume). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1551-1567. [PMID: 33048374 DOI: 10.1111/tpj.15020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/09/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Domestication and population differentiation in crops involve considerable phenotypic changes. The logs of these evolutionary paths, including natural/artificial selection, can be found in the genomes of the current populations. However, these profiles have been little studied in tree crops, which have specific characters, such as long generation time and clonal propagation, maintaining high levels of heterozygosity. We conducted exon-targeted resequencing of 129 genomes in the genus Prunus, mainly Japanese apricot (Prunus mume), and apricot (Prunus armeniaca), plum (Prunus salicina), and peach (Prunus persica). Based on their genome-wide single-nucleotide polymorphisms merged with published resequencing data of 79 Chinese P. mume cultivars, we inferred complete and ongoing population differentiation in P. mume. Sliding window characterization of the indexes for genetic differentiation identified interspecific fragment introgressions between P. mume and related species (plum and apricot). These regions often exhibited strong selective sweeps formed in the paths of establishment or formation of substructures of P. mume, suggesting that P. mume has frequently imported advantageous genes from other species in the subgenus Prunus as adaptive evolution. These findings shed light on the complicated nature of adaptive evolution in a tree crop that has undergone interspecific exchange of genome fragments with natural/artificial selections.
Collapse
Affiliation(s)
- Koji Numaguchi
- Graduate School of Agricultural Science, Kobe University, Nada-ku, Rokkodai 1-1, Kobe, 657-8501, Japan
- Japanese Apricot Laboratory, Wakayama Fruit Tree Experiment Station, Minabe, Higashi-honjo 1416-7, Wakayama, 645-0021, Japan
| | - Takashi Akagi
- Graduate School of Environmental and Life Science, Okayama University, Kita-ku, Tsushima-naka 1-1-1, Okayama, 700-8530, Japan
| | - Yuto Kitamura
- Japanese Apricot Laboratory, Wakayama Fruit Tree Experiment Station, Minabe, Higashi-honjo 1416-7, Wakayama, 645-0021, Japan
| | - Ryo Ishikawa
- Graduate School of Agricultural Science, Kobe University, Nada-ku, Rokkodai 1-1, Kobe, 657-8501, Japan
| | - Takashige Ishii
- Graduate School of Agricultural Science, Kobe University, Nada-ku, Rokkodai 1-1, Kobe, 657-8501, Japan
| |
Collapse
|
18
|
Nieto Feliner G, Casacuberta J, Wendel JF. Genomics of Evolutionary Novelty in Hybrids and Polyploids. Front Genet 2020; 11:792. [PMID: 32849797 PMCID: PMC7399645 DOI: 10.3389/fgene.2020.00792] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/03/2020] [Indexed: 12/15/2022] Open
Abstract
It has long been recognized that hybridization and polyploidy are prominent processes in plant evolution. Although classically recognized as significant in speciation and adaptation, recognition of the importance of interspecific gene flow has dramatically increased during the genomics era, concomitant with an unending flood of empirical examples, with or without genome doubling. Interspecific gene flow is thus increasingly thought to lead to evolutionary innovation and diversification, via adaptive introgression, homoploid hybrid speciation and allopolyploid speciation. Less well understood, however, are the suite of genetic and genomic mechanisms set in motion by the merger of differentiated genomes, and the temporal scale over which recombinational complexity mediated by gene flow might be expressed and exposed to natural selection. We focus on these issues here, considering the types of molecular genetic and genomic processes that might be set in motion by the saltational event of genome merger between two diverged species, either with or without genome doubling, and how these various processes can contribute to novel phenotypes. Genetic mechanisms include the infusion of new alleles and the genesis of novel structural variation including translocations and inversions, homoeologous exchanges, transposable element mobilization and novel insertional effects, presence-absence variation and copy number variation. Polyploidy generates massive transcriptomic and regulatory alteration, presumably set in motion by disrupted stoichiometries of regulatory factors, small RNAs and other genome interactions that cascade from single-gene expression change up through entire networks of transformed regulatory modules. We highlight both these novel combinatorial possibilities and the range of temporal scales over which such complexity might be generated, and thus exposed to natural selection and drift.
Collapse
Affiliation(s)
- Gonzalo Nieto Feliner
- Department of Biodiversity and Conservation, Real Jardín Botánico, CSIC, Madrid, Spain
| | - Josep Casacuberta
- Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Barcelona, Spain
| | - Jonathan F. Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, United States
| |
Collapse
|
19
|
Nagamitsu T, Uchiyama K, Izuno A, Shimizu H, Nakanishi A. Environment-dependent introgression from Quercus dentata to a coastal ecotype of Quercus mongolica var. crispula in northern Japan. THE NEW PHYTOLOGIST 2020; 226:1018-1028. [PMID: 31424559 PMCID: PMC7216917 DOI: 10.1111/nph.16131] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/09/2019] [Indexed: 05/25/2023]
Abstract
Introgression from one species in a specific environment to another may facilitate colonization of the environment by the recipient species. However, such environment-dependent introgression has been clarified in limited plant taxa. In northern Japan, there are two interfertile oak species: Quercus dentata (Qd) in coastal areas and Q. mongolica var. crispula (Qc) in inland areas. However, at higher latitudes where Qd is rare, a coastal Qc ecotype with Qd-like traits is distributed in the coastal areas. We distinguished inland Qc, coastal Qc, and coastal Qd populations based on genome-wide genotypes and multitrait phenotypes and verified introgression from coastal Qd to coastal Qc using reduced library sequencing. Genotypes and phenotypes differed among the populations, and coastal Qc was intermediate between inland Qc and coastal Qd. The ABBA-BABA test showed introgression from coastal Qd to coastal Qc. In coastal Qc, we found various stages of introgression after the first generation of backcross but detected no genomic regions where introgression was enhanced. Overall, we show evidence for introgression from a coastal species to an ecotype of an inland species, which has colonized the coastal environment. It remains unclear whether introgressed alleles are selected in the coastal environment.
Collapse
Affiliation(s)
- Teruyoshi Nagamitsu
- Hokkaido Research Center, Forestry and Forest Products Research InstituteForest Research and Management OrganizationSapporo062‐8516Japan
| | - Kentaro Uchiyama
- Department of Forest Molecular Genetics and BiotechnologyForestry and Forest Products Research InstituteForest Research and Management OrganizationTsukuba305‐8687Japan
| | - Ayako Izuno
- Department of Forest Molecular Genetics and BiotechnologyForestry and Forest Products Research InstituteForest Research and Management OrganizationTsukuba305‐8687Japan
| | - Hajime Shimizu
- Greenery Research and Information CenterForestry Research InstituteHokkaido Research OrganizationBibai079‐0198Japan
| | - Atsushi Nakanishi
- Hokkaido Research Center, Forestry and Forest Products Research InstituteForest Research and Management OrganizationSapporo062‐8516Japan
| |
Collapse
|
20
|
Wang M, Zhang L, Zhang Z, Li M, Wang D, Zhang X, Xi Z, Keefover-Ring K, Smart LB, DiFazio SP, Olson MS, Yin T, Liu J, Ma T. Phylogenomics of the genus Populus reveals extensive interspecific gene flow and balancing selection. THE NEW PHYTOLOGIST 2020; 225:1370-1382. [PMID: 31550399 DOI: 10.1111/nph.16215] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 09/16/2019] [Indexed: 05/10/2023]
Abstract
Phylogenetic analysis is complicated by interspecific gene flow and the presence of shared ancestral polymorphisms, particularly those maintained by balancing selection. In this study, we aimed to examine the prevalence of these factors during the diversification of Populus, a model tree genus in the Northern Hemisphere. We constructed phylogenetic trees of 29 Populus taxa using 80 individuals based on re-sequenced genomes. Our species tree analyses recovered four main clades in the genus based on consensus nuclear phylogenies, but in conflict with the plastome phylogeny. A few interspecific relationships remained unresolved within the multiple-species clade because of inconsistent gene trees. Our results indicated that gene flow has been widespread within each clade and also occurred among the four clades during their early divergence. We identified 45 candidate genes with ancient polymorphisms maintained by balancing selection. These genes were mainly associated with mating compatibility, growth and stress resistance. Both gene flow and selection-mediated ancient polymorphisms are prevalent in the genus Populus. These are potentially important contributors to adaptive variation. Our results provide a framework for the diversification of model tree genus that will facilitate future comparative studies.
Collapse
Affiliation(s)
- Mingcheng Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Lei Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Zhiyang Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Mengmeng Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Deyan Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Xu Zhang
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology & College of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Zhenxiang Xi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Ken Keefover-Ring
- Departments of Botany and Geography, University of Wisconsin-Madison, 430 Lincoln Dr., Madison, WI, 53706, USA
| | - Lawrence B Smart
- Horticulture Section, School of Integrative Plant Science, New York State Agricultural Experiment Station, Cornell University, Geneva, NY, 14456, USA
| | - Stephen P DiFazio
- Department of Biology, West Virginia University, Morgantown, WV, 25606, USA
| | - Matthew S Olson
- Department of Biological Sciences, Texas Tech University, Box 43131, Lubbock, TX, 79409-3131, USA
| | - Tongming Yin
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Jianquan Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology & College of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Tao Ma
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
21
|
Isabel N, Holliday JA, Aitken SN. Forest genomics: Advancing climate adaptation, forest health, productivity, and conservation. Evol Appl 2020; 13:3-10. [PMID: 31892941 PMCID: PMC6935596 DOI: 10.1111/eva.12902] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/09/2019] [Accepted: 12/09/2019] [Indexed: 12/17/2022] Open
Abstract
Forest ecosystems provide important ecological services and resources, from habitat for biodiversity to the production of environmentally friendly products, and play a key role in the global carbon cycle. Humanity is counting on forests to sequester and store a substantial portion of the anthropogenic carbon dioxide produced globally. However, the unprecedented rate of climate change, deforestation, and accidental importation of invasive insects and diseases are threatening the health and productivity of forests, and their capacity to provide these services. Knowledge of genetic diversity, local adaptation, and genetic control of key traits is required to predict the adaptive capacity of tree populations, inform forest management and conservation decisions, and improve breeding for productive trees that will withstand the challenges of the 21st century. Genomic approaches have well accelerated the generation of knowledge of the genetic and evolutionary underpinnings of nonmodel tree species, and advanced their applications to address these challenges. This special issue of Evolutionary Applications features 14 papers that demonstrate the value of a wide range of genomic approaches that can be used to better understand the biology of forest trees, including species that are widespread and managed for timber production, and others that are threatened or endangered, or serve important ecological roles. We highlight some of the major advances, ranging from understanding the evolution of genomes since the period when gymnosperms separated from angiosperms 300 million years ago to using genomic selection to accelerate breeding for tree health and productivity. We also discuss some of the challenges and future directions for applying genomic tools to address long-standing questions about forest trees.
Collapse
Affiliation(s)
- Nathalie Isabel
- Laurentian Forestry CentreCanadian Forest ServiceNatural Resources CanadaQuébecCanada
- Canada Research Chair in Forest GenomicsCentre for Forest Research and Institute for Systems and Integrative BiologyUniversité LavalQuébecCanada
| | - Jason A. Holliday
- Department of Forest Resources and Environmental ConservationVirginia TechBlacksburgVAUSA
| | - Sally N. Aitken
- Centre for Forest Conservation Genetics and Department of Forest and Conservation SciencesUniversity of British ColumbiaVancouverCanada
| |
Collapse
|
22
|
Bresadola L, Caseys C, Castiglione S, Buerkle CA, Wegmann D, Lexer C. Admixture mapping in interspecific Populus hybrids identifies classes of genomic architectures for phytochemical, morphological and growth traits. THE NEW PHYTOLOGIST 2019; 223:2076-2089. [PMID: 31104343 PMCID: PMC6771622 DOI: 10.1111/nph.15930] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 05/06/2019] [Indexed: 05/03/2023]
Abstract
The genomic architecture of functionally important traits is key to understanding the maintenance of reproductive barriers and trait differences when divergent populations or species hybridize. We conducted a genome-wide association study (GWAS) to study trait architecture in natural hybrids of two ecologically divergent Populus species. We genotyped 472 seedlings from a natural hybrid zone of Populus alba and Populus tremula for genome-wide markers from reduced representation sequencing, phenotyped the plants in common gardens for 46 phytochemical (phenylpropanoid), morphological and growth traits, and used a Bayesian polygenic model for mapping. We detected three classes of genomic architectures: traits with finite, detectable associations of genetic loci with phenotypic variation in addition to highly polygenic heritability; traits with indications for polygenic heritability only; and traits with no detectable heritability. For the first class, we identified genome regions with plausible candidate genes for phenylpropanoid biosynthesis or its regulation, including MYB transcription factors and glycosyl transferases. GWAS in natural, recombinant hybrids represent a promising step towards resolving the genomic architecture of phenotypic traits in long-lived species. This facilitates the fine-mapping and subsequent functional characterization of genes and networks causing differences in hybrid performance and fitness.
Collapse
Affiliation(s)
- Luisa Bresadola
- Department of BiologyUniversity of FribourgChemin du Musée 101700FribourgSwitzerland
| | - Céline Caseys
- Department of BiologyUniversity of FribourgChemin du Musée 101700FribourgSwitzerland
- Department of Plant SciencesUniversity of California DavisOne Shields AvenueDavisCA95616USA
| | - Stefano Castiglione
- Department of Chemistry and Biology ‘A. Zambelli’University of SalernoVia Giovanni Paolo II 13284084Fisciano, SalernoItaly
| | - C. Alex Buerkle
- Department of BotanyUniversity of Wyoming1000 E. University Ave.LaramieWY82071USA
| | - Daniel Wegmann
- Department of BiologyUniversity of FribourgChemin du Musée 101700FribourgSwitzerland
- Swiss Institute of Bioinformatics1700FribourgSwitzerland
| | - Christian Lexer
- Department of BiologyUniversity of FribourgChemin du Musée 101700FribourgSwitzerland
- Department of Botany and Biodiversity ResearchFaculty of Life SciencesUniversity of ViennaRennweg 12A‐1030ViennaAustria
| |
Collapse
|
23
|
Wesselingh RA, Hořčicová Š, Mirzaei K. Fitness of reciprocal F
1
hybrids between
Rhinanthus minor
and
Rhinanthus major
under controlled conditions and in the field. J Evol Biol 2019; 32:931-942. [DOI: 10.1111/jeb.13492] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/25/2019] [Accepted: 05/24/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Renate A. Wesselingh
- Biodiversity Research Centre Earth and Life Institute UCLouvain Louvain‐la‐Neuve Belgium
| | - Šárka Hořčicová
- Department of Botany Faculty of Science University of South Bohemia České Budějovice Czech Republic
| | - Khaled Mirzaei
- Biodiversity Research Centre Earth and Life Institute UCLouvain Louvain‐la‐Neuve Belgium
| |
Collapse
|
24
|
Ma Y, Wang J, Hu Q, Li J, Sun Y, Zhang L, Abbott RJ, Liu J, Mao K. Ancient introgression drives adaptation to cooler and drier mountain habitats in a cypress species complex. Commun Biol 2019; 2:213. [PMID: 31240251 PMCID: PMC6581913 DOI: 10.1038/s42003-019-0445-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 04/29/2019] [Indexed: 11/11/2022] Open
Abstract
Introgression may act as an important source of new genetic variation to facilitate the adaptation of organisms to new environments, yet how introgression might enable tree species to adapt to higher latitudes and elevations remains unclear. Applying whole-transcriptome sequencing and population genetic analyses, we present an example of ancient introgression from a cypress species (Cupressus gigantea) that occurs at higher latitude and elevation on the Qinghai-Tibet Plateau into a related species (C. duclouxiana), which has likely aided the latter species to extend its range by colonizing cooler and drier mountain habitats during postglacial periods. We show that 16 introgressed candidate adaptive loci could have played pivotal roles in response to diverse stresses experienced in a high-elevation environment. Our findings provide new insights into the evolutionary history of Qinghai-Tibet Plateau plants and the importance of introgression in the adaptation of species to climate change.
Collapse
Affiliation(s)
- Yazhen Ma
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, 610065 Chengdu, Sichuan P. R. China
| | - Ji Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, 610065 Chengdu, Sichuan P. R. China
| | - Quanjun Hu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, 610065 Chengdu, Sichuan P. R. China
| | - Jialiang Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, 610065 Chengdu, Sichuan P. R. China
| | - Yongshuai Sun
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 666303 Mengla, P. R. China
| | - Lei Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, 610065 Chengdu, Sichuan P. R. China
| | - Richard J. Abbott
- School of Biology, Mitchell Building, University of St Andrews, St Andrews, Fife, KY16 9TH UK
| | - Jianquan Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, 610065 Chengdu, Sichuan P. R. China
| | - Kangshan Mao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, 610065 Chengdu, Sichuan P. R. China
| |
Collapse
|
25
|
Cronk QC, Suarez-Gonzalez A. The role of interspecific hybridization in adaptive potential at range margins. Mol Ecol 2019; 27:4653-4656. [PMID: 30562841 DOI: 10.1111/mec.14927] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 10/24/2018] [Indexed: 12/24/2022]
Abstract
Is interspecific hybridization an ordinary part of species biology? And if so, how evolutionarily important is it? These questions have been discussed in the botanical literature, in one form or another, at least since J.P. Lotsy early in the last century. He coined the term syngameon, now defined as "a group of otherwise distinct species interconnected by limited gene exchange, i.e. the most inclusive interbreeding evolutionary unit" (Suarez-Gonzalez, Lexer, & Cronk, Biology Letters, 14, 20170688, ). North American poplars (Populus, Salicaceae) form one such syngameon. In this issue of Molecular Ecology, a new study (Chhatre, Evans, DiFazio, & Keller, Molecular Ecology, 27, ) uses three species from the North American poplar syngameon to tackle the twin issues of (a) the extent of gene exchange and (b) the significance of this gene exchange to the biology of these trees. They demonstrate that a hybrid zone exists where the ranges of Populus angustifolia and Populus balsamifera overlap in the Rocky Mountains, and postulate that this hybridization may facilitate population survival at the range edges. Indeed, the authors show that a remarkable number of loci are introgressing under selection. Very remarkably, they detect additional hybridity (making a trihybrid zone) with Populus trichocarpa (a species that does not occur in the area). Intriguingly, there is some genomic evidence of ancient introgression events. This suggests a model of episodic species divergence and hybridization, in which the syngameon is dynamic and behaving as a supraspecific metapopulation over geological time.
Collapse
Affiliation(s)
- Quentin C Cronk
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
26
|
Abstract
Introgression is emerging as an important source of novel genetic variation, alongside standing variation and mutation. It is adaptive when such introgressed alleles are maintained by natural selection. Recently, there has been an explosion in the number of studies on adaptive introgression. In this review, we take a plant perspective centred on four lines of evidence: (i) introgression, (ii) selection, (iii) phenotype and (iv) fitness. While advances in genomics have contributed to our understanding of introgression and porous species boundaries (task 1), and the detection of signatures of selection in introgression (task 2), the investigation of adaptive introgression critically requires links to phenotypic variation and fitness (tasks 3 and 4). We also discuss the conservation implications of adaptive introgression in the face of climate change. Adaptive introgression is particularly important in rapidly changing environments, when standing genetic variation and mutation alone may only offer limited potential for adaptation. We conclude that clarifying the magnitude and fitness effects of introgression with improved statistical techniques, coupled with phenotypic evidence, has great potential for conservation and management efforts.
Collapse
Affiliation(s)
| | - Christian Lexer
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Quentin C B Cronk
- Department of Botany, University of British Columbia, Vancouver, Canada
| |
Collapse
|
27
|
Hamilton JA, Miller JM. From transects to transcripts: Teasing apart the architecture of reproductive isolation. Mol Ecol 2019; 27:1339-1341. [PMID: 29663588 DOI: 10.1111/mec.14516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 01/19/2018] [Indexed: 11/29/2022]
Abstract
Understanding the processes underlying speciation has long been a challenge to evolutionary biologists. This spurs from difficulties teasing apart the various mechanisms that contribute to the evolution of barriers to reproduction. The study by Rafati et al. () in this issue of Molecular Ecology combines spatially explicit whole-genome resequencing with evaluation of differential gene expression across individuals with mixed ancestry to associate the genomic architecture of reproductive barriers with expression of reproductive incompatibilities. In a natural hybrid zone between rabbit subspecies, Oryctolagus cuniculus cuniculus and O. c. algirus (Figure ), Rafati et al. () use landscape-level patterns of allele frequency variation to identify potential candidate regions of the genome associated with reproductive isolation. These candidate regions are used to test predictions associated with the genomic architecture of reproductive barriers, including the role of structural rearrangements, enrichment of functional categories associated with incompatibilities, and the contribution of protein-coding versus regulatory changes. A lack of structural rearrangements and limited protein-coding changes in candidate regions point towards the importance of regulatory variation as major contributors to genetic incompatibilities, while functional enrichments indicate overrepresentation of genes associated with male infertility. To quantify phenotypic expression of proposed incompatibilities, the authors assess gene expression of experimental crosses. Extensive misregulation of gene expression within the testes of backcross hybrids relative to F1 and parental individuals provides an important link between genotype and phenotype, validating hypotheses developed from assessment of genomic architectures. Together, this work shows how pairing natural hybrid zones with experimental crosses can be used to link observations in nature to mechanistic underpinnings that may be tested experimentally.
Collapse
Affiliation(s)
- Jill A Hamilton
- Department of Biological Sciences, North Dakota State University, Fargo, ND, USA
| | - Joshua M Miller
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| |
Collapse
|
28
|
Yang Q, Han XM, Gu JK, Liu YJ, Yang MJ, Zeng QY. Functional and structural profiles of GST gene family from three Populus species reveal the sequence-function decoupling of orthologous genes. THE NEW PHYTOLOGIST 2019; 221:1060-1073. [PMID: 30204242 DOI: 10.1111/nph.15430] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 08/08/2018] [Indexed: 05/07/2023]
Abstract
A common assumption in comparative genomics is that orthologous genes are functionally more similar than paralogous genes. However, the validity of this assumption needs to be assessed using robust experimental data. We conducted tissue-specific gene expression and protein function analyses of orthologous groups within the glutathione S-transferase (GST) gene family in three closely related Populus species: Populus trichocarpa, Populus euphratica and Populus yatungensis. This study identified 21 GST orthologous groups in the three Populus species. Although the sequences of the GST orthologous groups were highly conserved, the divergence in enzymatic functions was prevalent. Through site-directed mutagenesis of orthologous proteins, this study revealed that nonsynonymous substitutions at key amino acid sites played an important role in the divergence of enzymatic functions. In particular, a single amino acid mutation (Arg39→Trp39) contributed to P. euphratica PeGSTU30 possessing high enzymatic activity via increasing the hydrophobicity of the active cavity. This study provided experimental evidence showing that orthologues belonging to the gene family have functional divergences. The nonsynonymous substitutions at a few amino acid sites resulted in functional divergence of the orthologous genes. Our findings provide new insights into the evolution of orthologous genes in closely related species.
Collapse
Affiliation(s)
- Qi Yang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xue-Min Han
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jin-Ke Gu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yan-Jing Liu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Mao-Jun Yang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qing-Yin Zeng
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
29
|
Ru D, Sun Y, Wang D, Chen Y, Wang T, Hu Q, Abbott RJ, Liu J. Population genomic analysis reveals that homoploid hybrid speciation can be a lengthy process. Mol Ecol 2018; 27:4875-4887. [PMID: 30357974 DOI: 10.1111/mec.14909] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 08/22/2018] [Accepted: 10/02/2018] [Indexed: 12/26/2022]
Abstract
An increasing number of species are thought to have originated by homoploid hybrid speciation (HHS), but in only a handful of cases are details of the process known. A previous study indicated that Picea purpurea, a conifer in the Qinghai-Tibet Plateau (QTP), originated through HHS from P. likiangensis and P. wilsonii. To investigate this origin in more detail, we analysed transcriptome data for 114 individuals collected from 34 populations of the three Picea species from their core distributions in the QTP. Phylogenetic, principal component and admixture analyses of nuclear SNPs showed the species to be delimited genetically and that P. purpurea was admixed with approximately 60% of its ancestry derived from P. wilsonii and 40% from P. likiangensis. Coalescent simulations revealed the best-fitting model of origin involved formation of an intermediate hybrid lineage between P. likiangensis and P. wilsonii approximately 6 million years ago (mya), which backcrossed to P. wilsonii to form P. purpurea approximately one mya. The intermediate hybrid lineage no longer exists and is referred to as a "ghost" lineage. Our study emphasizes the power of population genomic analysis combined with coalescent analysis for reconstructing the stages involved in the origin of a homoploid hybrid species over an extended period. In contrast to other studies, we show that these stages can in some instances span a relatively long period of evolutionary time.
Collapse
Affiliation(s)
- Dafu Ru
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Yongshuai Sun
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China.,CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, PR China
| | - Donglei Wang
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Yang Chen
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Tianjing Wang
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Quanjun Hu
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
| | | | - Jianquan Liu
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
| |
Collapse
|
30
|
Suarez-Gonzalez A, Hefer CA, Lexer C, Cronk QCB, Douglas CJ. Scale and direction of adaptive introgression between black cottonwood (Populus trichocarpa) and balsam poplar (P. balsamifera). Mol Ecol 2018; 27:1667-1680. [DOI: 10.1111/mec.14561] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 02/17/2018] [Accepted: 02/23/2018] [Indexed: 12/31/2022]
Affiliation(s)
| | - Charles A. Hefer
- Department of Botany; University of British Columbia; Vancouver BC Canada
| | - Christian Lexer
- Department of Botany and Biodiversity Research; University of Vienna; Vienna Austria
| | | | | |
Collapse
|
31
|
Cavender-Bares J, Kothari S, Meireles JE, Kaproth MA, Manos PS, Hipp AL. The role of diversification in community assembly of the oaks (Quercus L.) across the continental U.S. AMERICAN JOURNAL OF BOTANY 2018; 105:565-586. [PMID: 29689630 DOI: 10.1002/ajb2.1049] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 12/20/2017] [Indexed: 06/08/2023]
Abstract
PREMISE OF THE STUDY Evolutionary and biogeographic history, including past environmental change and diversification processes, are likely to have influenced the expansion, migration, and extinction of populations, creating evolutionary legacy effects that influence regional species pools and the composition of communities. We consider the consequences of the diversification process in shaping trait evolution and assembly of oak-dominated communities throughout the continental United States (U.S.). METHODS Within the U.S. oaks, we tested for phylogenetic and functional trait patterns at different spatial scales, taking advantage of a dated phylogenomic analysis of American oaks and the U.S. Forest Service (USFS) Forest Inventory and Analysis (FIA). KEY RESULTS We find (1) phylogenetic overdispersion at small grain sizes throughout the U.S. across all spatial extents and (2) a shift from overdispersion to clustering with increasing grain sizes. Leaf traits have evolved in a convergent manner, and these traits are clustered in communities at all spatial scales, except in the far west, where species with contrasting leaf types co-occur. CONCLUSIONS Our results support the hypotheses that (1) interspecific interactions were important in parallel adaptive radiation of the genus into a range of habitats across the continent and (2) that the diversification process is a critical driver of community assembly. Functional convergence of complementary species from distinct clades adapted to the same local habitats is a likely mechanism that allows distantly related species to coexist. Our findings contribute to an explanation of the long-term maintenance of high oak diversity and the dominance of the oak genus in North America.
Collapse
Affiliation(s)
- Jeannine Cavender-Bares
- Department of Ecology, Evolution and Behavior, University of Minnesota, 1479 Gortner Avenue, St. Paul, MN, 55108, USA
| | - Shan Kothari
- Department of Plant Biology, University of Minnesota, 1479 Gortner Ave, St. Paul, MN, 55108, USA
| | - José Eduardo Meireles
- Department of Ecology, Evolution and Behavior, University of Minnesota, 1479 Gortner Avenue, St. Paul, MN, 55108, USA
| | - Matthew A Kaproth
- Department of Ecology, Evolution and Behavior, University of Minnesota, 1479 Gortner Avenue, St. Paul, MN, 55108, USA
- Department of Biological Sciences, Minnesota State University, Mankato, MN, 56001, USA
| | - Paul S Manos
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Andrew L Hipp
- The Morton Arboretum, 4100 Illinois Route 53, Lisle, IL, 60532, USA
- The Field Museum, 1400 S Lake Shore Drive, Chicago, IL, 60605, USA
| |
Collapse
|