1
|
Ji K, Wei Y, Wang X, Liu Y, Sun R, Li Y, Lan G. Distribution patterns of fungal community diversity in the dominant tree species Dacrydium pectinatum and Vatica mangachapoi in tropical rainforests. Microbiol Spectr 2025:e0309224. [PMID: 40243370 DOI: 10.1128/spectrum.03092-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Plant microbial communities are shaped by plant compartments, but the patterns of fungal communities in aboveground and belowground compartments, and which environmental factors can affect them, remain unknown. Here, to address this research gap, high-throughput sequencing technology was performed to investigate the diversity of fungal communities in leaves' and roots' compartments of Dacrydium pectinatum and Vatica mangachapoi from Hainan Island of China. Fungal communities in leaves and roots exhibited significant differences. Eurotiomycetes (16.57%) and Dothideomycetes (45.57%) were predominantly found in leaves, while Agaricomycetes (36.53%) dominated in roots. Compared to the roots, the leaf compartments had higher α-diversity. According to the Mantel test, soil pH mainly influenced roots, while the main driving factors for leaves were rainfall and temperature. The proportion of dispersal-limited processes in rhizoplane (76.67%) and root endosphere (73.81%) were greater than that in leaf epiphytic (62.38%) and leaf endophytic (68.1%), driven by ectomycorrhizal fungi with known dispersal limitations. In summary, the compositions of the leaf and root fungal communities of both endangered tree species differed, partly driven by environmental factors unique to each compartment. Our results provide valuable theoretical and practical insights for preserving tropical tree species. IMPORTANCE Understanding the assembly of microbial communities across different compartments is a prerequisite for harnessing them to enhance plant growth. Our findings reveal significant differences in fungal community structures between the root and leaf compartments. Compared to the roots, the leaf compartments exhibited higher α-diversity. While soil pH mainly influenced fungal communities in the roots, the primary drivers for the leaves were rainfall and temperature. The dispersal-limited processes of fungal communities in the roots were greater than those in the leaves, primarily influenced by mycorrhizal fungi. These findings demonstrate compartment-specific plant-microbe interactions and environmental responses, offering actionable insights for conserving tropical tree species through habitat optimization (e.g., soil pH management) and dispersal corridor preservation. This compartment-aware perspective enhances our ability to leverage microbial functions to improve the resilience of endangered trees in the face of climate change.
Collapse
Affiliation(s)
- Kepeng Ji
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou City, Hainan Province, China
- College of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Yaqing Wei
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou City, Hainan Province, China
- Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou City, Hainan Province, China
| | - Xin Wang
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou City, Hainan Province, China
- College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yu Liu
- ECNU-Alberta Joint Lab for Biodiversity Study, Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Rui Sun
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou City, Hainan Province, China
- Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou City, Hainan Province, China
| | - Yuwu Li
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Guoyu Lan
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou City, Hainan Province, China
- Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou City, Hainan Province, China
| |
Collapse
|
2
|
Boisseaux M, Troispoux V, Bordes A, Cazal J, Cazal SO, Coste S, Stahl C, Schimann H. Are plant traits drivers of endophytic communities in seasonally flooded tropical forests? AMERICAN JOURNAL OF BOTANY 2024; 111:e16366. [PMID: 39010811 DOI: 10.1002/ajb2.16366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 07/17/2024]
Abstract
PREMISE In the Amazon basin, seasonally flooded (SF) forests offer varying water constraints, providing an excellent way to investigate the role of habitat selection on microbial communities within plants. However, variations in the microbial community among host plants cannot solely be attributed to environmental factors, and how plant traits contribute to microbial assemblages remains an open question. METHODS We described leaf- and root-associated microbial communities using ITS2 and 16 S high-throughput sequencing and investigated the stochastic-deterministic balance shaping these community assemblies using two null models. Plant ecophysiological functioning was evaluated by focusing on 10 leaf and root traits in 72 seedlings, belonging to seven tropical SF tree species in French Guiana. We then analyzed how root and leaf traits drove the assembly of endophytic communities. RESULTS While both stochastic and deterministic processes governed the endophyte assembly in the leaves and roots, stochasticity prevailed. Discrepancies were found between fungi and bacteria, highlighting that these microorganisms have distinct ecological strategies within plants. Traits, especially leaf traits, host species and spatial predictors better explained diversity than composition, but they were modest predictors overall. CONCLUSIONS This study widens our knowledge about tree species in SF forests, a habitat sensitive to climate change, through the combined analyses of their associated microbial communities with functional traits. We emphasize the need to investigate other plant traits to better disentangle the drivers of the relationship between seedlings and their associated microbiomes, ultimately enhancing their adaptive capacities to climate change.
Collapse
Affiliation(s)
- Marion Boisseaux
- UMR EcoFoG, Agroparistech, Cirad, CNRS, INRAE, Université des Antilles, Université de la Guyane. Campus Agronomique, Kourou, 97310, France
| | - Valérie Troispoux
- UMR EcoFoG, Agroparistech, Cirad, CNRS, INRAE, Université des Antilles, Université de la Guyane. Campus Agronomique, Kourou, 97310, France
| | - Alice Bordes
- Université Grenoble Alpes, INRAE, URLESSEM, Saint-Martin-d'Hères, France, Grenoble, France
| | - Jocelyn Cazal
- UMR EcoFoG, Agroparistech, Cirad, CNRS, INRAE, Université des Antilles, Université de la Guyane. Campus Agronomique, Kourou, 97310, France
| | - Saint-Omer Cazal
- UMR EcoFoG, Agroparistech, Cirad, CNRS, INRAE, Université des Antilles, Université de la Guyane. Campus Agronomique, Kourou, 97310, France
| | - Sabrina Coste
- UMR EcoFoG, Agroparistech, Cirad, CNRS, INRAE, Université des Antilles, Université de la Guyane. Campus Agronomique, Kourou, 97310, France
| | - Clément Stahl
- UMR EcoFoG, Agroparistech, Cirad, CNRS, INRAE, Université des Antilles, Université de la Guyane. Campus Agronomique, Kourou, 97310, France
| | - Heidy Schimann
- INRAE, Université de Bordeaux, BIOGECO, Cestas, 33610, France
| |
Collapse
|
3
|
Sierra AM, Meléndez O, Bethancourt R, Bethancourt A, Rodríguez-Castro L, López CA, Sedio BE, Saltonstall K, Villarreal A JC. Leaf Endophytes Relationship with Host Metabolome Expression in Tropical Gymnosperms. J Chem Ecol 2024; 50:815-829. [PMID: 38809282 DOI: 10.1007/s10886-024-01511-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 05/30/2024]
Abstract
Plant-microbe interactions play a pivotal role in shaping host fitness, especially concerning chemical defense mechanisms. In cycads, establishing direct correlations between specific endophytic microbes and the synthesis of highly toxic defensive phytochemicals has been challenging. Our research delves into the intricate relationship between plant-microbe associations and the variation of secondary metabolite production in two closely related Zamia species that grow in distinct habitats; terrestrial and epiphytic. Employing an integrated approach, we combined microbial metabarcoding, which characterize the leaf endophytic bacterial and fungal communities, with untargeted metabolomics to test if the relative abundances of specific microbial taxa in these two Zamia species were associated with different metabolome profiles. The two species studied shared approximately 90% of the metabolites spanning diverse biosynthetic pathways: alkaloids, amino acids, carbohydrates, fatty acids, polyketides, shikimates, phenylpropanoids, and terpenoids. Co-occurrence networks revealed positive associations among metabolites from different pathways, underscoring the complexity of their interactions. Our integrated analysis demonstrated to some degree that the intraspecific variation in metabolome profiles of the two host species was associated with the abundance of bacterial orders Acidobacteriales and Frankiales, as well as the fungal endophytes belonging to the orders Chaetothyriales, Glomerellales, Heliotiales, Hypocreales, and Sordariales. We further associate individual metabolic similarity with four specific fungal endophyte members of the core microbiota, but no specific bacterial taxa associations were identified. This study represents a pioneering investigation to characterize leaf endophytes and their association with metabolomes in tropical gymnosperms, laying the groundwork for deeper inquiries into this complex domain.
Collapse
Affiliation(s)
- Adriel M Sierra
- Département de Biologie, Université Laval, Québec, (QC), G1V 0A6, Canada.
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, (QC), G1V 0A6, Canada.
| | - Omayra Meléndez
- Departamento de Microbiología y Parasitología, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Panamá, Panamá
- Smithsonian Tropical Research Institute, Ancón, Panamá
| | - Rita Bethancourt
- Departamento de Microbiología y Parasitología, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Panamá, Panamá
| | - Ariadna Bethancourt
- Departamento de Microbiología y Parasitología, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Panamá, Panamá
| | - Lilisbeth Rodríguez-Castro
- Departamento de Microbiología, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Panamá, Panamá
- Smithsonian Tropical Research Institute, Ancón, Panamá
| | - Christian A López
- Smithsonian Tropical Research Institute, Ancón, Panamá
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Brian E Sedio
- Smithsonian Tropical Research Institute, Ancón, Panamá
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | | | - Juan Carlos Villarreal A
- Département de Biologie, Université Laval, Québec, (QC), G1V 0A6, Canada.
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, (QC), G1V 0A6, Canada.
- Smithsonian Tropical Research Institute, Ancón, Panamá.
- Canada Research Chair in Genomics of Tropical Symbioses, Department of Biology, Université Laval, Québec, G1V 0A6, Canadá.
| |
Collapse
|
4
|
Lan G, Wei Y, Zhang X, Wu Z, Ji K, Xu H, Chen B, He F. Assembly and maintenance of phyllosphere microbial diversity during rubber tree leaf senescence. Commun Biol 2024; 7:1192. [PMID: 39333257 PMCID: PMC11437020 DOI: 10.1038/s42003-024-06907-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024] Open
Abstract
Phyllosphere microorganisms execute important ecological functions including supporting host plant growth, enhancing host resistance to abiotic stresses, and promoting plant diversity. How leaf developmental stages affect plant-microbiome interactions and phyllosphere microbial community assembly and diversity is poorly understood. In this study, we utilized amplicon sequencing of 16S rRNA and ITS genes to investigate the composition and diversity of microbial communities across different leaf developmental stages of rubber trees. Our findings reveal that endophytic microbial communities, particularly bacterial communities, are more influenced by leaf senescence than by epiphytic communities. The high abundance of metabolism genes in the endosphere of yellow leaves contributes to the degradation and nutrient relocation processes. Nutrient loss leads to a higher abundance of α-Proteobacteria (r-selected microorganisms) in the yellow leaf endosphere, thereby promoting stochastic community assembly. As leaves age, the proportion of microorganisms entering the inner layer of leaves increases, consequently enhancing the diversity of microorganisms in the inner layer of leaves. These results offer insights into the mechanisms governing community assembly and diversity of leaf bacteria and fungi, thereby advancing our understanding of the evolving functions of microbial communities during leaf senescence in general, and for an important tropical crop species in particular.
Collapse
Affiliation(s)
- Guoyu Lan
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road, Haikou City, Hainan Province, 571101, China.
- Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou City, Hainan Province, 571737, China.
| | - Yaqing Wei
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road, Haikou City, Hainan Province, 571101, China
- Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou City, Hainan Province, 571737, China
| | - Xicai Zhang
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road, Haikou City, Hainan Province, 571101, China
- Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou City, Hainan Province, 571737, China
| | - Zhixiang Wu
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road, Haikou City, Hainan Province, 571101, China
- Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou City, Hainan Province, 571737, China
| | - Kepeng Ji
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road, Haikou City, Hainan Province, 571101, China
- Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou City, Hainan Province, 571737, China
| | - Han Xu
- Research, Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, Guangdong Province, 510520, China
| | - Bangqian Chen
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road, Haikou City, Hainan Province, 571101, China
- Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou City, Hainan Province, 571737, China
| | - Fangliang He
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, T6G 2H1, Canada.
| |
Collapse
|
5
|
Rangel LI, Leveau JHJ. Applied microbiology of the phyllosphere. Appl Microbiol Biotechnol 2024; 108:211. [PMID: 38358509 PMCID: PMC10869387 DOI: 10.1007/s00253-024-13042-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024]
Abstract
The phyllosphere, or plant leaf surface, represents a microbial ecosystem of considerable size, holding extraordinary biodiversity and enormous potential for the discovery of new products, tools, and applications in biotechnology, agriculture, medicine, and elsewhere. This mini-review highlights the applied microbiology of the phyllosphere as an original field of study concerning itself with the genes, gene products, natural compounds, and traits that underlie phyllosphere-specific adaptations and services that have commercial and economic value for current or future innovation. Examples include plant-growth-promoting and disease-suppressive phyllobacteria, probiotics and fermented foods that support human health, as well as microbials that remedy foliar contamination with airborne pollutants, residual pesticides, or plastics. Phyllosphere microbes promote plant biomass conversion into compost, renewable energy, animal feed, or fiber. They produce foodstuffs such as thickening agents and sugar substitutes, industrial-grade biosurfactants, novel antibiotics and cancer drugs, as well as enzymes used as food additives or freezing agents. Furthermore, new developments in DNA sequence-based profiling of leaf-associated microbial communities allow for surveillance approaches in the context of food safety and security, for example, to detect enteric human pathogens on leafy greens, predict plant disease outbreaks, and intercept plant pathogens and pests on internationally traded goods. KEY POINTS: • Applied phyllosphere microbiology concerns leaf-specific adaptations for economic value • Phyllobioprospecting searches the phyllosphere microbiome for product development • Phyllobiomonitoring tracks phyllosphere microbial profiles for early risk detection.
Collapse
Affiliation(s)
- Lorena I Rangel
- Cell & Molecular Sciences, The James Hutton Institute, Dundee, Scotland, UK.
- Department of Plant Pathology, University of California, Davis, CA, USA.
| | - Johan H J Leveau
- Department of Plant Pathology, University of California, Davis, CA, USA.
| |
Collapse
|
6
|
Huang WF, Li J, Huang JA, Liu ZH, Xiong LG. Review: Research progress on seasonal succession of phyllosphere microorganisms. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111898. [PMID: 37879538 DOI: 10.1016/j.plantsci.2023.111898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/15/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023]
Abstract
Phyllosphere microorganisms have recently attracted the attention of scientists studying plant microbiomes. The origin, diversity, functions, and interactions of phyllosphere microorganisms have been extensively explored. Many experiments have demonstrated seasonal cycles of phyllosphere microbes. However, a comprehensive comparison of these separate investigations to characterize seasonal trends in phyllosphere microbes of woody and herbaceous plants has not been conducted. In this review, we explored the dynamic changes of phyllosphere microorganisms in woody and non-woody plants with the passage of the season, sought to find the driving factors, summarized these texts, and thought about future research trends regarding the application of phyllosphere microorganisms in agricultural production. Seasonal trends in phyllosphere microorganisms of herbaceous and woody plants have similarities and differences, but extensive experimental validation is needed. Climate, insects, hosts, microbial interactions, and anthropogenic activities are the diverse factors that influence seasonal variation in phyllosphere microorganisms.
Collapse
Affiliation(s)
- Wen-Feng Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, Hunan, China
| | - Juan Li
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, Hunan, China
| | - Jian-An Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, Hunan, China
| | - Zhong-Hua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, Hunan, China
| | - Li-Gui Xiong
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, Hunan, China.
| |
Collapse
|
7
|
Cambon MC, Trillat M, Lesur-Kupin I, Burlett R, Chancerel E, Guichoux E, Piouceau L, Castagneyrol B, Le Provost G, Robin S, Ritter Y, Van Halder I, Delzon S, Bohan DA, Vacher C. Microbial biomarkers of tree water status for next-generation biomonitoring of forest ecosystems. Mol Ecol 2023; 32:5944-5958. [PMID: 37815414 DOI: 10.1111/mec.17149] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 10/11/2023]
Abstract
Next-generation biomonitoring proposes to combine machine-learning algorithms with environmental DNA data to automate the monitoring of the Earth's major ecosystems. In the present study, we searched for molecular biomarkers of tree water status to develop next-generation biomonitoring of forest ecosystems. Because phyllosphere microbial communities respond to both tree physiology and climate change, we investigated whether environmental DNA data from tree phyllosphere could be used as molecular biomarkers of tree water status in forest ecosystems. Using an amplicon sequencing approach, we analysed phyllosphere microbial communities of four tree species (Quercus ilex, Quercus robur, Pinus pinaster and Betula pendula) in a forest experiment composed of irrigated and non-irrigated plots. We used these microbial community data to train a machine-learning algorithm (Random Forest) to classify irrigated and non-irrigated trees. The Random Forest algorithm detected tree water status from phyllosphere microbial community composition with more than 90% accuracy for oak species, and more than 75% for pine and birch. Phyllosphere fungal communities were more informative than phyllosphere bacterial communities in all tree species. Seven fungal amplicon sequence variants were identified as candidates for the development of molecular biomarkers of water status in oak trees. Altogether, our results show that microbial community data from tree phyllosphere provides information on tree water status in forest ecosystems and could be included in next-generation biomonitoring programmes that would use in situ, real-time sequencing of environmental DNA to help monitor the health of European temperate forest ecosystems.
Collapse
Affiliation(s)
- Marine C Cambon
- INRAE, University of Bordeaux, BIOGECO, Pessac, France
- School of Natural Sciences, Bangor University, Bangor, UK
| | | | - Isabelle Lesur-Kupin
- INRAE, University of Bordeaux, BIOGECO, Pessac, France
- HelixVenture, Mérignac, France
| | - Régis Burlett
- INRAE, University of Bordeaux, BIOGECO, Pessac, France
| | | | | | | | | | | | | | - Yves Ritter
- INRAE, University of Bordeaux, BIOGECO, Pessac, France
| | | | | | - David A Bohan
- Agroécologie, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | | |
Collapse
|
8
|
Gao J, Uwiringiyimana E, Zhang D. Microbial composition and diversity of the tobacco leaf phyllosphere during plant development. Front Microbiol 2023; 14:1199241. [PMID: 37502406 PMCID: PMC10368876 DOI: 10.3389/fmicb.2023.1199241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/06/2023] [Indexed: 07/29/2023] Open
Abstract
Phyllosphere-associated microorganisms affect host plant's nutrients availability, its growth and ecological functions. Tobacco leaves provide a wide-area habitat for microbial life. Previous studies have mainly focused on phyllosphere microbiota at one time point of tobacco growth process, but more is unknown about dynamic changes in phyllospheric microbial composition from earlier to the late stage of plant development. In the current study, we had determined the bacterial and fungal communities succession of tobacco growth stages (i.e., seedling, squaring, and maturing) by using both 16S rRNA sequencing for bacterial and ITS sequencing for fungi. Our results demonstrated that among tobacco growth stages, the phyllospheric bacterial communities went through more distinct succession than the fungal communities did. Proteobacteria and Actinobacteria exerted the most influence in tobacco development from seedling to squaring stages. At maturing stage, Proteobacteria and Actinobacteria dominance was gradually replaced by Firmicutes and Bacteroidetes. Network analysis revealed that Proteobacteria, as the core phyllospheric microbia, played essential role in stabilizing the whole bacterial network during tobacco development, and consequently rendered it to more profound ecological functions. During tobacco development, the contents of leaf sugar, nicotine, nitrogen and potassium were significantly correlated with either bacterial or fungal communities, and these abiotic factors accounted for 39.3 and 51.5% of the total variation, respectively. We overall evinced that the development of tobacco phyllosphere is accompanied by variant dynamics of phyllospheric microbial community.
Collapse
Affiliation(s)
- Jianing Gao
- College of Tourism and Geographical Science, Leshan Normal University, Leshan, China
| | - Ernest Uwiringiyimana
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dan Zhang
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
9
|
Rowland L, Ramírez-Valiente JA, Hartley IP, Mencuccini M. How woody plants adjust above- and below-ground traits in response to sustained drought. THE NEW PHYTOLOGIST 2023. [PMID: 37306017 DOI: 10.1111/nph.19000] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/01/2023] [Indexed: 06/13/2023]
Abstract
Future increases in drought severity and frequency are predicted to have substantial impacts on plant function and survival. However, there is considerable uncertainty concerning what drought adjustment is and whether plants can adjust to sustained drought. This review focuses on woody plants and synthesises the evidence for drought adjustment in a selection of key above-ground and below-ground plant traits. We assess whether evaluating the drought adjustment of single traits, or selections of traits that operate on the same plant functional axis (e.g. photosynthetic traits) is sufficient, or whether a multi-trait approach, integrating across multiple axes, is required. We conclude that studies on drought adjustments in woody plants might overestimate the capacity for adjustment to drier environments if spatial studies along gradients are used, without complementary experimental approaches. We provide evidence that drought adjustment is common in above-ground and below-ground traits; however, whether this is adaptive and sufficient to respond to future droughts remains uncertain for most species. To address this uncertainty, we must move towards studying trait integration within and across multiple axes of plant function (e.g. above-ground and below-ground) to gain a holistic view of drought adjustments at the whole-plant scale and how these influence plant survival.
Collapse
Affiliation(s)
- Lucy Rowland
- Geography, Faculty of Environment, Science and Economy, University of Exeter, Exeter, EX4 4RJ, UK
| | | | - Iain P Hartley
- Geography, Faculty of Environment, Science and Economy, University of Exeter, Exeter, EX4 4RJ, UK
| | - Maurizio Mencuccini
- CREAF, Campus de Bellaterra (UAB), Cerdanyola del Vallés, Barcelona, 08193, Spain
- ICREA, Barcelona, 08010, Spain
| |
Collapse
|
10
|
Drummond JS, Rosado BHP. On the role of the phyllosphere community in leaf wettability and water shedding. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7204-7207. [PMID: 36124627 DOI: 10.1093/jxb/erac350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
We explore the interplay among factors affecting leaf wettability and water shedding by discussing how the phyllosphere directly affects plant wettability.
Collapse
Affiliation(s)
- Julia S Drummond
- Ecology and Evolution Graduate Program (PPGEE), IBRAG, State University of Rio de Janeiro (UERJ), R. São Francisco Xavier 524, PHLC, Maracanã, Rio de Janeiro, RJ, 20550900, Brazil
- Department of Ecology, IBRAG, State University of Rio de Janeiro (UERJ), R. São Francisco Xavier, 524, PHLC, Sala 220, Rio de Janeiro, RJ, 20550900, Brazil
| | - Bruno H P Rosado
- Department of Ecology, IBRAG, State University of Rio de Janeiro (UERJ), R. São Francisco Xavier, 524, PHLC, Sala 220, Rio de Janeiro, RJ, 20550900, Brazil
| |
Collapse
|
11
|
Mills JG, Selway CA, Weyrich LS, Skelly C, Weinstein P, Thomas T, Young JM, Marczylo E, Yadav S, Yadav V, Lowe AJ, Breed MF. Rare genera differentiate urban green space soil bacterial communities in three cities across the world. Access Microbiol 2022; 4:000320. [PMID: 35252756 PMCID: PMC8895604 DOI: 10.1099/acmi.0.000320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/09/2021] [Indexed: 11/18/2022] Open
Abstract
Vegetation complexity is potentially important for urban green space designs aimed at fostering microbial biodiversity to benefit human health. Exposure to urban microbial biodiversity may influence human health outcomes via immune training and regulation. In this context, improving human exposure to microbiota via biodiversity-centric urban green space designs is an underused opportunity. There is currently little knowledge on the association between vegetation complexity (i.e. diversity and structure) and soil microbiota of urban green spaces. Here, we investigated the association between vegetation complexity and soil bacteria in urban green spaces in Bournemouth, UK; Haikou, China; and the City of Playford, Australia by sequencing the 16S rRNA V4 gene region of soil samples and assessing bacterial diversity. We characterized these green spaces as having ‘low’ or ‘high’ vegetation complexity and explored whether these two broad categories contained similar bacterial community compositions and diversity around the world. Within cities, we observed significantly different alpha and beta diversities between vegetation complexities; however, these results varied between cities. Rare genera (<1% relative abundance individually, on average 35% relative abundance when pooled) were most likely to be significantly different in sequence abundance between vegetation complexities and therefore explained much of the differences in microbial communities observed. Overall, general associations exist between soil bacterial communities and vegetation complexity, although these are not consistent between cities. Therefore, more in-depth work is required to be done locally to derive practical actions to assist the conservation and restoration of microbial communities in urban areas.
Collapse
Affiliation(s)
- Jacob G. Mills
- School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - Caitlin A. Selway
- School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - Laura S. Weyrich
- Department of Anthropology and Huck Institutes of the Life Sciences, Pennsylvania State University, Pennsylvania, USA
- School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - Chris Skelly
- Research & Intelligence, Public Health Dorset, Dorset County Council, Dorset, UK
- Healthy Urban Microbiome Initiative
| | - Philip Weinstein
- School of Public Health, The University of Adelaide, Adelaide, Australia
- Environment Institute, The University of Adelaide, Adelaide, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - Torsten Thomas
- Centre for Marine Science and Innovation, School of Biological, Environmental and Earth Sciences, University of New South Wales, Sydney, Australia
| | - Jennifer M. Young
- College of Science and Engineering, Flinders University, Bedford Park, South Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - Emma Marczylo
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Oxfordshire, UK
| | - Sudesh Yadav
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Vijay Yadav
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Andrew J. Lowe
- Environment Institute, The University of Adelaide, Adelaide, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - Martin F. Breed
- Environment Institute, The University of Adelaide, Adelaide, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, Australia
- College of Science and Engineering, Flinders University, Bedford Park, South Australia
| |
Collapse
|
12
|
Wei Y, Lan G, Wu Z, Chen B, Quan F, Li M, Sun S, Du H. Phyllosphere fungal communities of rubber trees exhibited biogeographical patterns, but not bacteria. Environ Microbiol 2022; 24:3777-3790. [PMID: 35001480 DOI: 10.1111/1462-2920.15894] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/29/2021] [Accepted: 01/01/2022] [Indexed: 11/28/2022]
Abstract
Phyllosphere microbiomes play an essential role in maintaining host health and productivity. Still, the diversity patterns and the drivers for the phyllosphere microbial community of the tropical cash crop Rubber tree (Hevea brasiliensis) - are poorly understood. We sampled the phyllosphere of field-grown rubber trees in South China. We examined the phyllosphere bacterial and fungal composition, diversity and main drivers of these microbes using the Illumina® sequencing and assembly. Fungal communities were distinctly different in different climatic regions (i.e. Xishuangbanna and Hainan Island) and climatic factors, especially mean annual temperature, and they were the main driving factors of foliar fungal communities, indicating fungal communities showed a geographical pattern. Significant differences of phyllosphere bacterial communities were detected in different habitats (i.e. endophytic and epiphytic). Most of the differences in taxa composition came from Firmicutes spp., which have been assigned as nitrogen-fixing bacteria. Since these bacteria cannot penetrate the cuticle like fungi, the abundant epiphytic Firmicutes spp. may supplement the deficiency of nitrogen acquisition. And the main factor influencing endophytic bacteria were internal factors, such as total nitrogen, total phosphorus and water content of leaves. External factors (i.e. climate) were the main driving force for epiphytic bacteria community assembly. Our work provides empirical evidence that the assembly of phyllosphere bacterial and fungal differed, which creates a precedent for preventing and controlling rubber tree diseases and pests and rubber tree yield improvement.
Collapse
Affiliation(s)
- Yaqing Wei
- College of Ecology and Environment, Hainan University, Haikou, 570228, China.,Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road, Haikou, Hainan, 571737, China.,Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou, Hainan, 571737, China
| | - Guoyu Lan
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road, Haikou, Hainan, 571737, China.,Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou, Hainan, 571737, China
| | - Zhixiang Wu
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road, Haikou, Hainan, 571737, China.,Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou, Hainan, 571737, China
| | - Bangqian Chen
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road, Haikou, Hainan, 571737, China.,Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou, Hainan, 571737, China
| | - Fei Quan
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road, Haikou, Hainan, 571737, China.,Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou, Hainan, 571737, China
| | - Mingmei Li
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road, Haikou, Hainan, 571737, China.,Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou, Hainan, 571737, China
| | - Shuqing Sun
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road, Haikou, Hainan, 571737, China.,Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou, Hainan, 571737, China
| | - Haonan Du
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road, Haikou, Hainan, 571737, China.,Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou, Hainan, 571737, China
| |
Collapse
|
13
|
Harrison JG, Beltran LP, Buerkle CA, Cook D, Gardner DR, Parchman TL, Poulson SR, Forister ML. A suite of rare microbes interacts with a dominant, heritable, fungal endophyte to influence plant trait expression. THE ISME JOURNAL 2021; 15:2763-2778. [PMID: 33790425 PMCID: PMC8397751 DOI: 10.1038/s41396-021-00964-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 02/08/2021] [Accepted: 03/15/2021] [Indexed: 01/31/2023]
Abstract
Endophytes are microbes that live, for at least a portion of their life history, within plant tissues. Endophyte assemblages are often composed of a few abundant taxa and many infrequently observed, low-biomass taxa that are, in a word, rare. The ways in which most endophytes affect host phenotype are unknown; however, certain dominant endophytes can influence plants in ecologically meaningful ways-including by affecting growth and immune system functioning. In contrast, the effects of rare endophytes on their hosts have been unexplored, including how rare endophytes might interact with abundant endophytes to shape plant phenotype. Here, we manipulate both the suite of rare foliar endophytes (including both fungi and bacteria) and Alternaria fulva-a vertically transmitted and usually abundant fungus-within the fabaceous forb Astragalus lentiginosus. We report that rare, low-biomass endophytes affected host size and foliar %N, but only when the heritable fungal endophyte (A. fulva) was not present. A. fulva also reduced plant size and %N, but these deleterious effects on the host could be offset by a negative association we observed between this heritable fungus and a foliar pathogen. These results demonstrate how interactions among endophytic taxa determine the net effects on host plants and suggest that the myriad rare endophytes within plant leaves may be more than a collection of uninfluential, commensal organisms, but instead have meaningful ecological roles.
Collapse
Affiliation(s)
- Joshua G. Harrison
- grid.135963.b0000 0001 2109 0381Department of Botany, University of Wyoming, Laramie, WY USA
| | - Lyra P. Beltran
- grid.266818.30000 0004 1936 914XEcology, Evolution, and Conservation Biology Program, Biology Department, University of Nevada, Reno, NV USA
| | - C. Alex Buerkle
- grid.135963.b0000 0001 2109 0381Department of Botany, University of Wyoming, Laramie, WY USA
| | - Daniel Cook
- grid.417548.b0000 0004 0478 6311Poisonous Plant Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Logan, UT USA
| | - Dale R. Gardner
- grid.417548.b0000 0004 0478 6311Poisonous Plant Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Logan, UT USA
| | - Thomas L. Parchman
- grid.266818.30000 0004 1936 914XEcology, Evolution, and Conservation Biology Program, Biology Department, University of Nevada, Reno, NV USA
| | - Simon R. Poulson
- grid.266818.30000 0004 1936 914XDepartment of Geological Sciences & Engineering, University of Nevada, Reno, NV USA
| | - Matthew L. Forister
- grid.266818.30000 0004 1936 914XEcology, Evolution, and Conservation Biology Program, Biology Department, University of Nevada, Reno, NV USA
| |
Collapse
|
14
|
Hawkes CV, Kjøller R, Raaijmakers JM, Riber L, Christensen S, Rasmussen S, Christensen JH, Dahl AB, Westergaard JC, Nielsen M, Brown-Guedira G, Hestbjerg Hansen L. Extension of Plant Phenotypes by the Foliar Microbiome. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:823-846. [PMID: 34143648 DOI: 10.1146/annurev-arplant-080620-114342] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The foliar microbiome can extend the host plant phenotype by expanding its genomic and metabolic capabilities. Despite increasing recognition of the importance of the foliar microbiome for plant fitness, stress physiology, and yield, the diversity, function, and contribution of foliar microbiomes to plant phenotypic traits remain largely elusive. The recent adoption of high-throughput technologies is helping to unravel the diversityand spatiotemporal dynamics of foliar microbiomes, but we have yet to resolve their functional importance for plant growth, development, and ecology. Here, we focus on the processes that govern the assembly of the foliar microbiome and the potential mechanisms involved in extended plant phenotypes. We highlight knowledge gaps and provide suggestions for new research directions that can propel the field forward. These efforts will be instrumental in maximizing the functional potential of the foliar microbiome for sustainable crop production.
Collapse
Affiliation(s)
- Christine V Hawkes
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA;
| | - Rasmus Kjøller
- Department of Biology, University of Copenhagen, 2100 Copenhagen Ø, Denmark;
| | - Jos M Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology, 6708 PB Wageningen, The Netherlands;
| | - Leise Riber
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark; , , , ,
| | - Svend Christensen
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark; , , , ,
| | - Simon Rasmussen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark;
| | - Jan H Christensen
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark; , , , ,
| | - Anders Bjorholm Dahl
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Lyngby, Denmark;
| | - Jesper Cairo Westergaard
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark; , , , ,
| | - Mads Nielsen
- Department of Computer Science, University of Copenhagen, 2100 Copenhagen Ø, Denmark;
| | - Gina Brown-Guedira
- Plant Science Research Unit, USDA Agricultural Research Service and Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA;
| | - Lars Hestbjerg Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark; , , , ,
| |
Collapse
|
15
|
Moreira JCF, Brum M, de Almeida LC, Barrera-Berdugo S, de Souza AA, de Camargo PB, Oliveira RS, Alves LF, Rosado BHP, Lambais MR. Asymbiotic nitrogen fixation in the phyllosphere of the Amazon forest: Changing nitrogen cycle paradigms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145066. [PMID: 33582326 DOI: 10.1016/j.scitotenv.2021.145066] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/06/2021] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Biological nitrogen fixation is a key process for the maintenance of natural ecosystems productivity. In tropical forests, the contribution of asymbiotic nitrogen fixation (ANF) to the nitrogen (N) input has been underestimated, even though few studies have shown that ANF may be as important as symbiotic nitrogen fixation in such environments. The inputs and abiotic modulators of ANF in the Amazon forest are not completely understood. Here, we determined ANF rates and estimated the N inputs from ANF in the phyllosphere, litter and rhizospheric soil of nine tree species in the Amazon forest over time, including an extreme drought period induced by the El Niño-Southern Oscillation. Our data showed that ANF rates in the phyllosphere were 2.8- and 17.6-fold higher than in the litter and rhizospheric soil, respectively, and was highly dependent on tree taxon. Sampling time was the major factor modulating ANF in all forest compartments. At the driest period, ANF rates were approximately 1.8-fold and 13.1-fold higher than at periods with higher rainfall, before and after the extreme drought period, respectively. Tree species was a key modulator of ANF in the phyllosphere, as well as N and Vanadium concentrations. Carbon, molybdenum and vanadium concentrations were significant modulators of ANF in the litter. Based on ANF rates at the three sampling times, we estimated that the N input in the Amazon forest through ANF in the phyllosphere, litter and rhizospheric soil, was between 0.459 and 0.714 kg N ha-1 yr-1. Our results highlight the importance of ANF in the phyllosphere for the N input in the Amazon forest, and suggest that changes in the patterns of ANF driven by large scale climatic events may impact total N inputs and likely alter forest productivity.
Collapse
Affiliation(s)
| | - Mauro Brum
- Department of Plant Biology, Programa de Pós Graduação em Ecologia, Institute of Biology, State University of Campinas -UNICAMP, PO Box 6109, 13083-970 Campinas, SP, Brazil
| | - Lidiane Cordeiro de Almeida
- Department of Ecology, IBRAG, Rio de Janeiro State University (UERJ), R. São Francisco Xavier, 524, PHLC, Sala 220, Maracanã, Rio de Janeiro, RJ, Brazil
| | - Silvia Barrera-Berdugo
- Soil Science Department, University of São Paulo, Av. Pádua Dias 11, 13418-900 Piracicaba, SP, Brazil
| | - André Alves de Souza
- Soil Science Department, University of São Paulo, Av. Pádua Dias 11, 13418-900 Piracicaba, SP, Brazil
| | - Plínio Barbosa de Camargo
- Center for Nuclear Energy in Agriculture, University of São Paulo, 303 Centenário Avenue, Piracicaba, SP 13400-970, Brazil
| | - Rafael Silva Oliveira
- Department of Plant Biology, Programa de Pós Graduação em Ecologia, Institute of Biology, State University of Campinas -UNICAMP, PO Box 6109, 13083-970 Campinas, SP, Brazil
| | - Luciana Ferreira Alves
- Department of Plant Biology, Programa de Pós Graduação em Ecologia, Institute of Biology, State University of Campinas -UNICAMP, PO Box 6109, 13083-970 Campinas, SP, Brazil
| | - Bruno Henrique Pimentel Rosado
- Department of Ecology, IBRAG, Rio de Janeiro State University (UERJ), R. São Francisco Xavier, 524, PHLC, Sala 220, Maracanã, Rio de Janeiro, RJ, Brazil
| | - Marcio Rodrigues Lambais
- Soil Science Department, University of São Paulo, Av. Pádua Dias 11, 13418-900 Piracicaba, SP, Brazil.
| |
Collapse
|
16
|
Ma Y, Fort T, Marais A, Lefebvre M, Theil S, Vacher C, Candresse T. Leaf-associated fungal and viral communities of wild plant populations differ between cultivated and natural ecosystems. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2021; 2:87-99. [PMID: 37284285 PMCID: PMC10168098 DOI: 10.1002/pei3.10043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 06/08/2023]
Abstract
Plants are colonized by diverse fungal and viral communities that influence their growth and survival as well as ecosystem functioning. Viruses interact with both plants and the fungi they host. Our understanding of plant-fungi-virus interactions is very limited, especially in wild plants. Combining metagenomic and culturomic approaches, we assessed the richness, diversity, and composition of leaf-associated fungal and viral communities from pools of herbaceous wild plants representative of four sites corresponding to cultivated or natural ecosystems. We identified 161 fungal families and 18 viral families comprising 249 RNA-dependent RNA polymerase-based operational taxonomic units (RdRp OTUs) from leaves. Fungal culturomics captured 12.3% of the fungal diversity recovered with metagenomic approaches and, unexpectedly, retrieved viral OTUs that were almost entirely different from those recovered by leaf metagenomics. Ecosystem management had a significant influence on both leaf mycobiome and virome, with a higher fungal community richness in natural ecosystems and a higher viral family richness in cultivated ecosystems, suggesting that leaf-associated fungal and viral communities are under the influence of different ecological drivers. Both the leaf-associated fungal and viral community compositions showed a strong site-specificity. Further research is needed to confirm these trends and unravel the factors structuring plant-fungi-virus interactions in wild plant populations.
Collapse
Affiliation(s)
- Yuxin Ma
- Univ. BordeauxINRAEUMR 1332 BFPVillenave d’Ornon cedexFrance
| | | | - Armelle Marais
- Univ. BordeauxINRAEUMR 1332 BFPVillenave d’Ornon cedexFrance
| | - Marie Lefebvre
- Univ. BordeauxINRAEUMR 1332 BFPVillenave d’Ornon cedexFrance
| | - Sébastien Theil
- Univ. BordeauxINRAEUMR 1332 BFPVillenave d’Ornon cedexFrance
- Present address:
INRA UMRF20, côte de ReyneAurillac15000France
| | | | | |
Collapse
|
17
|
Rosado BHP, Almeida LC. The Importance of Phyllosphere on Foliar Water Uptake. TRENDS IN PLANT SCIENCE 2020; 25:1058-1060. [PMID: 32951991 DOI: 10.1016/j.tplants.2020.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Bruno H P Rosado
- Laboratory of Plant Ecology, Department of Ecology, IBRAG, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, PHLC, Sala 220, Maracanã, Rio de Janeiro, RJ 2550900, Brazil.
| | - Lidiane C Almeida
- Laboratory of Plant Ecology, Department of Ecology, IBRAG, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, PHLC, Sala 220, Maracanã, Rio de Janeiro, RJ 2550900, Brazil; Programa de Pós-Graduação em Ecologia e Evolução, IBRAG, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, PHLC, Maracanã, Rio de Janeiro, RJ 2550900, Brazil
| |
Collapse
|
18
|
Nerva L, Pagliarani C, Pugliese M, Monchiero M, Gonthier S, Gullino ML, Gambino G, Chitarra W. Grapevine Phyllosphere Community Analysis in Response to Elicitor Application against Powdery Mildew. Microorganisms 2019; 7:microorganisms7120662. [PMID: 31817902 PMCID: PMC6956034 DOI: 10.3390/microorganisms7120662] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/26/2019] [Accepted: 12/05/2019] [Indexed: 12/23/2022] Open
Abstract
The reduction of antimicrobial treatments and mainly the application of environmentally friendly compounds, such as resistance elicitors, is an impelling challenge to undertake more sustainable agriculture. We performed this research to study the effectiveness of non-conventional compounds in reducing leaf fungal attack and to investigate whether they influence the grape phyllosphere. Pathogenicity tests were conducted on potted Vitis vinifera "Nebbiolo" and "Moscato" cultivars infected with the powdery mildew agent (Erysiphe necator) and treated with three elicitors. Differences in the foliar microbial community were then evaluated by community-level physiological profiling by using BiologTM EcoPlates, high throughput sequencing of the Internal Transcribed Spacer (ITS) region, and RNA sequencing for the viral community. In both cultivars, all products were effective as they significantly reduced pathogen development. EcoPlate analysis and ITS sequencing showed that the microbial communities were not influenced by the alternative compound application, confirming their specific activity as plant defense elicitors. Nevertheless, "Moscato" plants were less susceptible to the disease and presented different phyllosphere composition, resulting in a richer viral community, when compared with the "Nebbiolo" plants. The observed effect on microbial communities pointed to the existence of distinct genotype-specific defense mechanisms independently of the elicitor application.
Collapse
Affiliation(s)
- Luca Nerva
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile 26, 31015 Conegliano, Italy
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135 Torino, Italy; (C.P.); (S.G.); (G.G.)
- Correspondence: (L.N.); (W.C.); Tel.: +39-04-3845-6712 (W.C.); Fax: +39-04-3845-0773 (W.C.)
| | - Chiara Pagliarani
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135 Torino, Italy; (C.P.); (S.G.); (G.G.)
| | - Massimo Pugliese
- Centre of Competence for the Innovation in the Agro-Environmental Sector (AGROINNOVA), University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy; (M.P.); (M.L.G.)
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy
| | | | - Solène Gonthier
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135 Torino, Italy; (C.P.); (S.G.); (G.G.)
- Biocomputing and Modelling Department, National Institute of Applied Sciences, INSA Lyon, 69621 Villeurbanne cedex, France
| | - Maria Lodovica Gullino
- Centre of Competence for the Innovation in the Agro-Environmental Sector (AGROINNOVA), University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy; (M.P.); (M.L.G.)
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy
| | - Giorgio Gambino
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135 Torino, Italy; (C.P.); (S.G.); (G.G.)
| | - Walter Chitarra
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile 26, 31015 Conegliano, Italy
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135 Torino, Italy; (C.P.); (S.G.); (G.G.)
- Correspondence: (L.N.); (W.C.); Tel.: +39-04-3845-6712 (W.C.); Fax: +39-04-3845-0773 (W.C.)
| |
Collapse
|
19
|
Li Y, Wu X, Wang W, Wang M, Zhao C, Chen T, Liu G, Zhang W, Li S, Zhou H, Wu M, Yang R, Zhang G. Microbial taxonomical composition in spruce phyllosphere, but not community functional structure, varies by geographical location. PeerJ 2019; 7:e7376. [PMID: 31355059 PMCID: PMC6644631 DOI: 10.7717/peerj.7376] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 06/28/2019] [Indexed: 01/06/2023] Open
Abstract
Previous studies indicate that the plant phenotypic traits eventually shape its microbiota due to the community assembly based on the functional types. If so, the distance-related variations of microbial communities are mostly only in taxonomical composition due to the different seeds pool, and there is no difference in microbial community functional structure if the location associated factors would not cause phenotypical variations in plants. We test this hypothesis by investigating the phyllospheric microbial community from five species of spruce (Picea spp.) trees that planted similarly but at three different locations. Results indicated that the geographical location affected microbial taxonomical compositions and had no effect on the community functional structure. In fact, this actually leads to a spurious difference in the microbial community. Our findings suggest that, within similar host plants, the phyllosphere microbial communities with differing taxonomical compositions might be functionally similar.
Collapse
Affiliation(s)
- Yunshi Li
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou, China
| | - Xiukun Wu
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou, China
| | - Wanfu Wang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,Conservation Institute, Dunhuang Academy, Dunhuang, China
| | - Minghao Wang
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Changming Zhao
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Tuo Chen
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Guangxiu Liu
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou, China
| | - Wei Zhang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou, China
| | - Shiweng Li
- Lanzhou Jiaotong University, School of Environmental and Municipal Engineering, Lanzhou, China
| | - Huaizhe Zhou
- National University of Defense Technology, College of Computer, Changsha, China
| | - Minghui Wu
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Ruiqi Yang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou, China
| | - Gaosen Zhang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou, China
| |
Collapse
|
20
|
Boanares D, Kozovits AR, Lemos-Filho JP, Isaias RMS, Solar RRR, Duarte AA, Vilas-Boas T, França MGC. Foliar water-uptake strategies are related to leaf water status and gas exchange in plants from a ferruginous rupestrian field. AMERICAN JOURNAL OF BOTANY 2019; 106:935-942. [PMID: 31281976 DOI: 10.1002/ajb2.1322] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 05/03/2019] [Indexed: 06/09/2023]
Abstract
PREMISE Fog is a frequent event in Brazilian rupestrian field and plays an important role in the physiology of several plant species. Foliar water uptake (FWU) of fog may be fast or slow depending on the species. However, fog water may negatively affect CO2 assimilation. Thus, the interference in the water and carbon balance as a result of different strategies of FWU was evaluated to verify whether fog may mitigate possible water deficit in leaves. METHODS Four plant species with different FWU strategies were studied in a ferruginous rupestrian field with frequent fog. Gas exchange and water potential were measured before dawn and at midday during the dry and rainy seasons, separating foggy from non-foggy days during the dry season. RESULTS The FWU speed negatively influences CO2 assimilation in the dry season, possibly because of its negative relationship with stomatal conductance, since reduced stomatal aperture impairs carbon entrance. Fog presence increased leaf water potential both in early morning and midday during the dry season. However, during the rainy season, the values of leaf water potential were lower at midday, than during the dry season with fog at midday, which favors leaf gas exchanges. CONCLUSIONS FWU interferes negatively, but briefly with CO2 assimilation. Nevertheless, FWU prevents water loss through transpiration and increases the water status of plants in the dry season. That is, FWU results in a compensation between CO2 assimilation and foliar hydration, which, in fact, is beneficial to the plants of this ecosystem.
Collapse
Affiliation(s)
- Daniela Boanares
- Departamento de Botânica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Alessandra R Kozovits
- Departamento de Biodiversidade, Evolução e Meio Ambiente, Universidade Federal de Ouro Preto, MG, Brasil
| | - José P Lemos-Filho
- Departamento de Botânica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Rosy M S Isaias
- Departamento de Botânica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Ricardo R R Solar
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Alexandre A Duarte
- Departamento de Botânica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Tiago Vilas-Boas
- Departamento de Botânica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Marcel G C França
- Departamento de Botânica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| |
Collapse
|
21
|
Mills JG, Brookes JD, Gellie NJC, Liddicoat C, Lowe AJ, Sydnor HR, Thomas T, Weinstein P, Weyrich LS, Breed MF. Relating Urban Biodiversity to Human Health With the 'Holobiont' Concept. Front Microbiol 2019; 10:550. [PMID: 30972043 PMCID: PMC6444116 DOI: 10.3389/fmicb.2019.00550] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/04/2019] [Indexed: 12/15/2022] Open
Abstract
A relatively unaccounted ecosystem service from biodiversity is the benefit to human health via symbiotic microbiota from our environment. This benefit occurs because humans evolved alongside microbes and have been constantly exposed to diverse microbiota. Plants and animals, including humans, are organised as a host with symbiotic microbiota, whose collective genome and life history form a single holobiont. As such, there are interdependencies between biodiversity, holobionts, and public health which lead us to argue that human health outcomes could be improved by increasing contact with biodiversity in an urban context. We propose that humans, like all holobionts, likely require a diverse microbial habitat to appropriate resources for living healthy, long lives. We discuss how industrial urbanisation likely disrupts the symbiosis between microbiota and their hosts, leading to negative health outcomes. The industrialised urban habitat is low in macro and microbial biodiversity and discourages contact with beneficial environmental microbiota. These habitat factors, alongside diet, antibiotics, and others, are associated with the epidemic of non-communicable diseases in these societies. We suggest that restoration of urban microbial biodiversity and micro-ecological processes through microbiome rewilding can benefit holobiont health and aid in treating the urban non-communicable disease epidemic. Further, we identify research gaps and some solutions to economic and strategic hurdles in applying microbiome rewilding into daily urban life.
Collapse
Affiliation(s)
- Jacob G Mills
- School of Biological Sciences, The Environment Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Justin D Brookes
- School of Biological Sciences, The Environment Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Nicholas J C Gellie
- School of Biological Sciences, The Environment Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Craig Liddicoat
- School of Biological Sciences, The Environment Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Andrew J Lowe
- School of Biological Sciences, The Environment Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Harrison R Sydnor
- School of Biological Sciences, The Environment Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Torsten Thomas
- Centre for Marine Bio-Innovation (CMB), School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Philip Weinstein
- School of Biological Sciences, The Environment Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Laura S Weyrich
- Australian Centre for Ancient DNA, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Martin F Breed
- School of Biological Sciences, The Environment Institute, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
22
|
Jiang L, Shi H, Sang M, Zheng C, Cao Y, Zhu X, Zhuo X, Cheng T, Zhang Q, Wu R, Sun L. A Computational Model for Inferring QTL Control Networks Underlying Developmental Covariation. FRONTIERS IN PLANT SCIENCE 2019; 10:1557. [PMID: 31921232 PMCID: PMC6930182 DOI: 10.3389/fpls.2019.01557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/07/2019] [Indexed: 05/02/2023]
Abstract
How one trait developmentally varies as a function of others shapes a spectrum of biological phenomena. Despite its importance to trait dissection, the understanding of whether and how genes mediate such developmental covariation is poorly understood. We integrate developmental allometry equations into the functional mapping framework to map specific QTLs that govern the correlated development of different traits. Based on evolutionary game theory, we assemble and contextualize these QTLs into an intricate but organized network coded by bidirectional, signed, and weighted QTL-QTL interactions. We use this approach to map shoot height-diameter allometry QTLs in an ornamental woody species, mei (Prunus mume). We detect "pioneering" QTLs (piQTLs) and "maintaining" QTLs (miQTLs) that determine how shoot height varies with diameter and how shoot diameter varies with height, respectively. The QTL networks inferred can visualize how each piQTL regulates others to promote height growth at a cost of diameter growth, how miQTL regulates others to benefit radial growth at a cost of height growth, and how piQTLs and miQTLs regulate each other to form a pleiotropic web of primary and secondary growth in trees. Our approach provides a unique gateway to explore the genetic architecture of developmental covariation, a widespread phenomenon in nature.
Collapse
Affiliation(s)
- Libo Jiang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Center for Computational Biology, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Hexin Shi
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Center for Computational Biology, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Mengmeng Sang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Center for Computational Biology, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Chenfei Zheng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Center for Computational Biology, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Yige Cao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Center for Computational Biology, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Xuli Zhu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Xiaokang Zhuo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Tangren Cheng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Qixiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Rongling Wu
- Center for Statistical Genetics, The Pennsylvania State University, Hershey, PA, United States
| | - Lidan Sun
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, China
- *Correspondence: Lidan Sun,
| |
Collapse
|
23
|
Dawson TE, Goldsmith GR. The value of wet leaves. THE NEW PHYTOLOGIST 2018; 219:1156-1169. [PMID: 29959896 DOI: 10.1111/nph.15307] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/03/2018] [Indexed: 06/08/2023]
Abstract
Contents Summary 1156 I. Introduction 1156 II. How often are leaves wet? 1157 III. The costs of leaf wetting 1157 IV. The real and potential benefits of leaf wetting 1161 V. Wet leaves: costs, benefits and tradeoffs in a changing world 1165 Acknowledgements 1166 References 1166 SUMMARY: An often-overlooked feature of all plants is that their leaf surfaces are wet for significant periods over their lifetimes. Leaf wetting has a number of direct and indirect effects on plant function from the scale of the leaf to that of the ecosystem. The costs of leaf wetting for plant function, such as the growth of pathogens and the leaching of nutrients, have long been recognized. However, an emerging body of research has also begun to demonstrate some very clear benefits. For instance, leaf wetting can improve plant-water relations and lead to increased photosynthesis. Leaf wetting may also lead to synergistic effects on plant function, such as when leaf water potential improvements lead to enhanced growth that does not occur when plant leaves are dry. We identify important reasons why leaf wetting can be critical for plant sciences to not only acknowledge, but also directly address, in future research. To do so, we provide a framework for the consideration of the relative balance of the various costs and benefits resulting from leaf wetting, as well as how this balance may be expected to change given projected scenarios of global climate change in the future.
Collapse
Affiliation(s)
- Todd E Dawson
- Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA
- Department of Environmental Science, Policy & Management, University of California, Berkeley, CA, 94720, USA
| | - Gregory R Goldsmith
- Ecosystem Fluxes Group, Laboratory for Atmospheric Chemistry, Paul Scherrer Institute, 5232, Villigen, Switzerland
- Schmid College of Science and Technology, Chapman University, Orange, CA, 92866, USA
| |
Collapse
|