1
|
Yang YF, Xiao SF, Hu CY, Zhou QY, Liu CJ, Deng SG, Ma LQ. Sparingly-soluble CaCO 3 promotes plant growth and arsenic accumulation in As-hyperaccumulator Pteris vittata: Oxidative stress and gene expression in As metabolisms. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138307. [PMID: 40252325 DOI: 10.1016/j.jhazmat.2025.138307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/15/2025] [Accepted: 04/14/2025] [Indexed: 04/21/2025]
Abstract
Being a lithophytic plant and arsenic-hyperaccumulator, Pteris vittata can efficiently utilize sparingly-soluble CaCO3, which enhances its arsenic (As) uptake and plant growth with the underlying mechanisms being unclear. Here, after growing P. vittata for 14 days under hydroponics containing 50 μM As and 8.0 mM CaCO3 or 0.8 mM CaCl2, the plant biomass, Ca, As and malondialdehyde (MDA) contents and As-metabolizing gene expressions in P. vittata were determined. Compared to CaCl2 control, CaCO3 increased plant biomass by 44-57 % to 2.4-3.9 g plant-1. Consistent with its better growth, P. vittata effectively solubilized CaCO3, with Ca being increased from 42-57 to 356-369 μM in the growth media, resulting in 38-76 % greater Ca uptake in the roots. Due to its continued Ca supply, CaCO3+As treatment enhanced the As content in P. vittata fronds by 39 % to 1460 mg kg-1 compared to the CaCl2+As control, with MDA being decreased by 16 %. The increased As accumulation was probably attributed to 1.3-1.6 fold upregulation of phosphate transporters PvPht1;3/1;4 for As uptake in P. vittata roots, and 1.4-fold upregulation of arsenite antiporters PvACR3;2/3;3 for As translocation to and sequestration in P. vittata fronds. Overall, the efficient CaCO3 utilization and its enhanced As accumulation in P. vittata shed light on its potential application in phytoremediation of As-contaminated soils.
Collapse
Affiliation(s)
- Yu-Fei Yang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, and Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shu-Fen Xiao
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, and Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Chun-Yan Hu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, and Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Qian-Yu Zhou
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, and Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Chen-Jing Liu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, and Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Song-Ge Deng
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, and Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, and Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
2
|
Li Z, Kim HJ, Luoni L, Conter C, Masè N, Resentini F, Xie P, Astegno A, Bonza MC, Hua J. Evolutionarily conserved BON1 regulates the basal cytosolic Ca 2+ level by calmodulin-independent activation of Ca 2+ pumps in Arabidopsis. Proc Natl Acad Sci U S A 2025; 122:e2504457122. [PMID: 40455997 DOI: 10.1073/pnas.2504457122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Accepted: 04/25/2025] [Indexed: 06/18/2025] Open
Abstract
Plasma membrane-localized autoinhibited Ca2+ pumps are essential for maintaining basal cytosolic Ca2+ levels for regulating growth processes and environmental responses. These pumps are known to be activated by calmodulins to maintain Ca2+ homeostasis in plants and animals. Here, we demonstrate that the evolutionarily conserved copine protein BON1 is critical for maintaining low cytosolic Ca2+ concentrations by directly regulating two plasma membrane-localized Ca2+ pumps ACA8 and ACA10 in Arabidopsis. BON1 interacts with a region within the N-terminal domain of ACA8 and ACA10, preceding the calmodulin binding sites, and stimulates ACA8 activity. This activation can occur without calmodulin binding, indicating that BON1 and calmodulin independently regulate the Ca2+ pump. Loss of BON1 function results in elevated basal cytosolic Ca2+ concentrations, which can be partially rescued by overexpressing hyperactive ACA8 or ACA10. Furthermore, we show that BON1 has one high-affinity Ca2+ binding site in the VWA domain that is critical for activation of ACA8 as well as for BON1 function, suggesting a feedback mechanism for Ca2+ homeostasis at resting concentrations. Our findings suggest that this Ca2+ responsive regulatory mechanism extends beyond Arabidopsis, as we show interactions between ACA and BON proteins from algae to flowering plants, pointing to an ancient regulatory mechanism for maintaining low basal cytosolic Ca2+. Notably, a human plasma membrane-localized autoinhibited Ca2+ pump can also be activated by a human BON protein in a yeast functional assay system, suggesting evolutionary conservation in Ca2+ regulation across species.
Collapse
Affiliation(s)
- Zhan Li
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
- Xianghu Laboratory, Hangzhou 311231, Zhejiang, China
| | - Hyo Jung Kim
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
| | - Laura Luoni
- Department of Biosciences, University of Milan, Milano 20133, Italy
| | - Carolina Conter
- Department of Biotechnology, University of Verona, Verona 37134, Italy
| | - Nicola Masè
- Department of Biotechnology, University of Verona, Verona 37134, Italy
| | | | - Peiqiao Xie
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
| | | | | | - Jian Hua
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
| |
Collapse
|
3
|
Wen X, Lin Z, Sheng B, Ye X, Zhao Y, Liu G, Chen G, Qin L, Liu X, Xu D. Research Status of Agricultural Nanotechnology and Its Application in Horticultural Crops. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:765. [PMID: 40423156 DOI: 10.3390/nano15100765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 05/06/2025] [Accepted: 05/18/2025] [Indexed: 05/28/2025]
Abstract
Global food security is facing numerous severe challenges. Population growth, climate change, and irrational agricultural inputs have led to a reduction in available arable land, a decline in soil fertility, and difficulties in increasing crop yields. As a result, the supply of food and agricultural products is under serious threat. Against this backdrop, the development of new technologies to increase the production of food and agricultural products and ensure their supply is extremely urgent. Agricultural nanotechnology, as an emerging technology, mainly utilizes the characteristics of nanomaterials such as small size, large specific surface area, and surface effects. It plays a role in gene delivery, regulating crop growth, adsorbing environmental pollutants, detecting the quality of agricultural products, and preserving fruits and vegetables, providing important technical support for ensuring the global supply of food and agricultural products. Currently, the research focus of agricultural nanotechnology is concentrated on the design and preparation of nanomaterials, the regulation of their properties, and the optimization of their application effects in the agricultural field. In terms of the research status, certain progress has been made in the research of nano-fertilizers, nano-pesticides, nano-sensors, nano-preservation materials, and nano-gene delivery vectors. However, it also faces problems such as complex processes and incomplete safety evaluations. This review focuses on the horticultural industry, comprehensively expounding the research status and application progress of agricultural nanotechnology in aspects such as the growth regulation of horticultural crops and the quality detection and preservation of horticultural products. It also deeply analyzes the opportunities and challenges faced by the application of nanomaterials in the horticultural field. The aim is to provide a reference for the further development of agricultural nanotechnology in the horticultural industry, promote its broader and more efficient application, contribute to solving the global food security problem, and achieve sustainable agricultural development.
Collapse
Affiliation(s)
- Xiaobin Wen
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Zhihao Lin
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Bin Sheng
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Xueling Ye
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Yiming Zhao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Guangyang Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, 8 Zhihui Road, Agricultural High Tech Industry Demonstration Zone, Yellow River Delta, Dongying 257347, China
| | - Ge Chen
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Lin Qin
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Xinyan Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Donghui Xu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, 8 Zhihui Road, Agricultural High Tech Industry Demonstration Zone, Yellow River Delta, Dongying 257347, China
| |
Collapse
|
4
|
Wang F, Tanoi K, Yamauchi T, Naito K. Multi-layered apoplastic barrier underlying the ability of Na+ exclusion in Vigna marina. PLANT & CELL PHYSIOLOGY 2025; 66:554-565. [PMID: 39777497 DOI: 10.1093/pcp/pcaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 12/10/2024] [Accepted: 01/07/2025] [Indexed: 01/11/2025]
Abstract
Soil salinization and ground water depletion are increasingly constraining crop production. Identifying useful mechanisms of salt tolerance is an important step toward the development of salt-tolerant crops. Of particular interest are mechanisms that are present in crop wild relatives, as they may have greater stress tolerance than crop species. The coastal species Vigna marina is one of the promising plant resources for salt tolerance. Vigna luteola is another wild species with diverse habitats, including seaside and riverbank, hereafter V. luteola-beach and V. luteola-river, respectively. By comparative transcriptome and histological analyses, this study elucidated one important aspect of how V. marina achieves an extraordinary ability to suppress Na+ uptake. Under salt stress, V. marina specifically upregulated genes involved in Casparian strip formation and developed a multi-layered lignified apoplastic barrier around endodermis, whereas V. luteola-beach formed typical, band-like Casparian strips and V. luteola-river formed only spot-like Casparian strips. As such, the ability of developing apoplastic barrier strongly correlated with those of suppressing Na+ uptake. The disruption of lignified barrier led to a dramatic increase of Na+ allocation to the shoot in V. marina, which was manifested in leaf etiolation and burning. Interestingly, despite the presence of reinforced apoplastic barrier, V. marina maintained the transport of essential ions including K+, Mg2+, and Ca2+. This study shows that the multi-layered Casparian strip-like structure plays an important role in salt tolerance.
Collapse
Affiliation(s)
- Fanmiao Wang
- Research Center of Genetic Resources, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Keitaro Tanoi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Takaki Yamauchi
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Ken Naito
- Research Center of Genetic Resources, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| |
Collapse
|
5
|
Parris S, Lovell JT, Ding F, Zhang Z, Olvey J, Olvey M, Schmutz J, Grimwood J, Sreedasyam A, Kumar S, Li Z, Joshi P, Jenkins JW, Plott C, Stewart A, Webber J, Stiller WN, Jones DC, Saski CA. Polyploidy-mediated variations in glutamate receptor proteins linked to Fusarium wilt resistance in upland cotton. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70125. [PMID: 40227120 PMCID: PMC11995877 DOI: 10.1111/tpj.70125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 04/15/2025]
Abstract
Cotton production in the US faces a serious threat from Fusarium oxysporum f. sp. vasinfectum race 4 (FOV4), a soil-borne fungus causing Fusarium wilt by infecting the roots and vascular system of susceptible cotton, leading to rapid wilting and death. Here, we investigate genetic mechanisms of resistance to FOV4 in the highly resistant upland cotton genotype "U1" using an early-generation segregating biparental population ("U1" × "CSX8308") with comprehensive genomic resources. Reference-grade genomic assemblies of the parents revealed minor structural variations between "U1" haplotypes, a high degree of collinearity at chromosome synteny and micro-synteny levels, and significant divergence from "CSX8308" with 8.9 million SNPs. QTL analysis identified significant markers on chromosomes D03 and A02 linked to reduced Fusarium wilt severity. Within these regions, two glutamate-receptor-like (GLR) genes showed structural variation and overlapped between translocated segments on A02 and D03, suggesting a rare but important reinforcing effect of parallel evolution between susceptible and resistant genotypes. Transcriptome profiles of "U1" under FOV4 infection reveal activation of calcium-binding proteins and transcription factors regulating plant hormones (ethylene, abscisic acid, jasmonic acid, and salicylic acid), along with enzymes involved in cell wall remodeling and phytoalexin production. Advancing cotton improvement depends on incorporating durable genetic disease resistance into high-yielding, high-quality cultivars.
Collapse
Affiliation(s)
- Stephen Parris
- Department of Plant and Environmental SciencesClemson UniversityClemsonSouth CarolinaUSA
| | - John T. Lovell
- Genome Sequencing CenterHudsonAlpha Institute for BiotechnologyHuntsvilleAlabamaUSA
- Department of Energy Joint Genome InstituteBerkeleyCaliforniaUSA
| | - Feng Ding
- Department of Physics and AstronomyClemson UniversityClemsonSouth CarolinaUSA
| | - Zhenzhen Zhang
- Department of Physics and AstronomyClemson UniversityClemsonSouth CarolinaUSA
| | | | | | - Jeremy Schmutz
- Genome Sequencing CenterHudsonAlpha Institute for BiotechnologyHuntsvilleAlabamaUSA
- Department of Energy Joint Genome InstituteBerkeleyCaliforniaUSA
| | - Jane Grimwood
- Genome Sequencing CenterHudsonAlpha Institute for BiotechnologyHuntsvilleAlabamaUSA
| | - Avinash Sreedasyam
- Genome Sequencing CenterHudsonAlpha Institute for BiotechnologyHuntsvilleAlabamaUSA
| | - Sonika Kumar
- Department of Plant and Environmental SciencesClemson UniversityClemsonSouth CarolinaUSA
| | - Zhigang Li
- Department of Plant and Environmental SciencesClemson UniversityClemsonSouth CarolinaUSA
| | - Priyanka Joshi
- Department of Plant and Environmental SciencesClemson UniversityClemsonSouth CarolinaUSA
| | - Jerry W. Jenkins
- Genome Sequencing CenterHudsonAlpha Institute for BiotechnologyHuntsvilleAlabamaUSA
| | - Christopher Plott
- Genome Sequencing CenterHudsonAlpha Institute for BiotechnologyHuntsvilleAlabamaUSA
| | - Ada Stewart
- Genome Sequencing CenterHudsonAlpha Institute for BiotechnologyHuntsvilleAlabamaUSA
| | - Jenell Webber
- Genome Sequencing CenterHudsonAlpha Institute for BiotechnologyHuntsvilleAlabamaUSA
| | | | | | - Christopher A. Saski
- Department of Plant and Environmental SciencesClemson UniversityClemsonSouth CarolinaUSA
| |
Collapse
|
6
|
Yu M, Wang S, Kong L, Huang M, Zhang J, Li J, Wang R. Multiscale imaging locates thermogenic tissues and reveals the role of Ca2+ in floral thermogenesis. PLANT PHYSIOLOGY 2025; 197:kiaf131. [PMID: 40181778 DOI: 10.1093/plphys/kiaf131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 02/26/2025] [Indexed: 04/05/2025]
Abstract
Floral thermogenesis is an ancient feature that facilitates mutualism between flowers and pollinators. Yet, localization of specific thermogenic tissues within floral organs has received little attention. Here, we integrated infrared (IR) thermal imaging and micro X-ray fluorescence (μ-XRF) to localize the thermogenic tissues in the lotus (Nelumbo nucifera Gaertn.) receptacle. IR imaging preliminarily identified the primary thermogenic tissues of the receptacle as the carpels and epidermis. The calcium distribution visualized by μ-XRF complemented the results of IR imaging, indicating that the thermogenic tissues include the epidermis and the upper parts of the carpels. This ensures that heat reaches the chamber formed by the petals and receptacle over the shortest distance, thereby minimizing heat loss. Additionally, we observed a higher rate of Ca2+ transport from the apoplast to the cytosol and upregulation of genes associated with mitochondrial calcium uniporters (MCU) at the thermogenesis initiation stage as compared to the prethermogenic stage. Increasing the cytosolic Ca2+ (cCa2+) concentration reversed the inhibition of alternative respiratory pathways, further illustrating the close relationship between Ca2+ concentration and thermogenesis. Our research not only presents a precise method for identifying thermogenic tissues in plants but also demonstrates the evolutionary efforts of lotus to maximize energy utilization efficiency.
Collapse
Affiliation(s)
- Miao Yu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, P. R. China
| | - Siqin Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, P. R. China
| | - Lingdie Kong
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, P. R. China
| | - Mengsha Huang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, P. R. China
| | - Jin Zhang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, P. R. China
| | - Jing Li
- Imaging Core Facility, Technology Center for Protein Sciences, Tsinghua University, Beijing 10084, P. R. China
| | - Ruohan Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, P. R. China
| |
Collapse
|
7
|
Fedoreyeva LI, Kononenko NV. Peptides and Reactive Oxygen Species Regulate Root Development. Int J Mol Sci 2025; 26:2995. [PMID: 40243669 PMCID: PMC11989010 DOI: 10.3390/ijms26072995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/11/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Like phytohormones, peptide hormones participate in many cellular processes, participate in intercellular communications, and are involved in signal transmission. The system of intercellular communications based on peptide-receptor interactions plays a critical role in the development and functioning of plants. One of the most important molecules are reactive oxygen species (ROS). ROS participate in signaling processes and intercellular communications, including the development of the root system. ROS are recognized as active regulators of cell division and differentiation, which depend on the oxidation-reduction balance. The stem cell niche and the size of the root meristem are maintained by the intercellular interactions and signaling networks of peptide hormone and ROS. Therefore, peptides and ROS can interact with each other both directly and indirectly and function as regulators of cellular processes. Peptides and ROS regulate cell division and stem cell differentiation through a negative feedback mechanism. In this review, we focused on the molecular mechanisms regulating the development of the main root, lateral roots, and nodules, in which peptides and ROS participate.
Collapse
|
8
|
Wang J, Du BY, Zhang X, Qu X, Yang Y, Yang Z, Wang YF, Zhang P. Cryo-EM structures of Arabidopsis CNGC1 and CNGC5 reveal molecular mechanisms underlying gating and calcium selectivity. NATURE PLANTS 2025; 11:632-642. [PMID: 39979428 DOI: 10.1038/s41477-025-01923-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 01/17/2025] [Indexed: 02/22/2025]
Abstract
Plant cyclic nucleotide-gated channels (CNGCs) belong to the cyclic nucleotide-binding domain (CNBD) channel family, but are phylogenetically classified in a distinct branch. In contrast to their animal counterparts of K+-selective or non-selective cation channels, plant CNGCs mainly mediate Ca2+ influx and are involved in various physiological processes, such as stomatal movements, pollen-tube growth and immune responses. Here, we present the cryo-EM structure and electrophysiological analysis of plant CNGC representatives, Arabidopsis CNGC1 and CNGC5. We found that CNGC1 and CNGC5 contain a unique extracellular domain featuring disulfide bonds that is essential for channel gating via coupling of the voltage-sensing domain with the pore domain. The pore domain selectivity filter possesses a Gln residue at the constriction site that determines the Ca2+ selectivity. Replacement of this Gln with Glu, typically observed in CNBD-type non-selective cation channels, could convert CNGC1 and CNGC5 from Ca2+-selective channels to non-selective cation channels permeable to Ca2+, Na+ or K+. In addition, we found that the CNGC1 and CNGC5 CNBD homology domain contains intrinsic-ligand-like interactions, which may devoid the binding of cyclic nucleotides and lead to gating independent of cAMP or cGMP. This research not only provides a mechanistic understanding of plant CNGCs' function, but also adds to the comprehensive knowledge of the CNBD channels.
Collapse
Affiliation(s)
- Jianping Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bo-Ya Du
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xue Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai, China
| | - Xiaomin Qu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yang Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai, China
| | - Zhao Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai, China
| | - Yong-Fei Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
9
|
Zuo Y, Abbas A, Dauda SO, Chen C, Bose J, Donovan-Mak M, Wang Y, He J, Zhang P, Yan Z, Chen ZH. Function of key ion channels in abiotic stresses and stomatal dynamics. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109574. [PMID: 39903947 DOI: 10.1016/j.plaphy.2025.109574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 01/28/2025] [Indexed: 02/06/2025]
Abstract
Climate changes disrupt environmental and soil conditions that affect ionic balance in plants, presenting significant challenges to their survival and productivity. Membrane transporters are crucial for maintaining ionic homeostasis and regulating the movement of substances across plasma and organellar membranes, particularly under abiotic stresses. Among these abiotic stress-responsive mechanisms, stomata are critical for regulating water loss and carbon dioxide uptake, reflecting a plant's ability to respond and adapt to abiotic stresses effectively. This review highlights the role of ion transporters, including both anion and cation transporters in plant abiotic stress responses. It explores the interplay between different ion channels and regulatory components that enable plants to withstand key abiotic stresses such as drought, salinity, and heat. Moreover, we emphasized the contributions of three essential types of ion channels - potassium, anion, and calcium to abiotic stress-related stomatal regulation. These ion channels orchestrate complex signaling networks that allow plants to modulate stomatal behavior and maintain physiological balance under adverse conditions. This article provides valuable molecular and physiological insights into the mechanisms of ion transport and regulation for plants to adapt to environmental challenges. Thus, this review offers a useful foundation for developing innovative strategies to enhance crop resilience and performance in an era of increasingly unpredictable and harsh climates.
Collapse
Affiliation(s)
- Yuanyuan Zuo
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Asad Abbas
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | | | - Chen Chen
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, PR China; The University of Sydney, School of Life and Environmental Sciences, Plant Breeding Institute, Cobbitty, NSW, 2570, Australia
| | - Jayakumar Bose
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Michelle Donovan-Mak
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Yuanyuan Wang
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Jing He
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Peng Zhang
- The University of Sydney, School of Life and Environmental Sciences, Plant Breeding Institute, Cobbitty, NSW, 2570, Australia
| | - Zehong Yan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
| |
Collapse
|
10
|
Wang H, Zhang K, Tappero R, Victor TW, Bhatnagar JM, Vilgalys R, Liao HL. Inorganic nitrogen and organic matter jointly regulate ectomycorrhizal fungi-mediated iron acquisition. THE NEW PHYTOLOGIST 2025; 245:2715-2725. [PMID: 39841620 DOI: 10.1111/nph.20394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025]
Abstract
Ectomycorrhizal fungi (EMF) play a crucial role in facilitating plant nutrient uptake from the soil although inorganic nitrogen (N) can potentially diminish this role. However, the effect of inorganic N availability and organic matter on shaping EMF-mediated plant iron (Fe) uptake remains unclear. To explore this, we performed a microcosm study on Pinus taeda roots inoculated with Suillus cothurnatus treated with +/-Fe-coated sand, +/-organic matter, and a gradient of NH4NO3 concentrations. Mycorrhiza formation was most favorable under conditions with organic matter, without inorganic N. Synchrotron X-ray microfluorescence imaging on ectomycorrhizal cross-sections suggested that the effect of inorganic N on mycorrhizal Fe acquisition largely depended on organic matter supply. With organic matter, mycorrhizal Fe concentration was significantly decreased as inorganic N levels increased. Conversely, an opposite trend was observed when organic matter was absent. Spatial distribution analysis showed that Fe, zinc, calcium, and copper predominantly accumulated in the fungal mantle across all conditions, highlighting the mantle's critical role in nutrient accumulation and regulation of nutrient transfer to internal compartments. Our work illustrated that the liberation of soil mineral Fe and the EMF-mediated plant Fe acquisition are jointly regulated by inorganic N and organic matter in the soil.
Collapse
Affiliation(s)
- Haihua Wang
- North Florida Research and Education Center, University of Florida, 155 Research Road, Quincy, FL, 32351, USA
- Department of Soil, Water, and Ecosystem Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Kaile Zhang
- North Florida Research and Education Center, University of Florida, 155 Research Road, Quincy, FL, 32351, USA
- Department of Soil, Water, and Ecosystem Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Ryan Tappero
- Photon Sciences Department, Brookhaven National Laboratory, NSLS-II, Upton, NY, 11973, USA
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Tiffany W Victor
- Photon Sciences Department, Brookhaven National Laboratory, NSLS-II, Upton, NY, 11973, USA
| | | | - Rytas Vilgalys
- Department of Biology, Duke University, 130 Science Dr., Durham, NC, 27708, USA
| | - Hui-Ling Liao
- North Florida Research and Education Center, University of Florida, 155 Research Road, Quincy, FL, 32351, USA
- Department of Soil, Water, and Ecosystem Sciences, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
11
|
Mackievic V, Li Y, Hryvusevich P, Svistunenko D, Seregin I, Kozhevnikova A, Kartashov A, Shabala S, Samokhina V, Rusakovich A, Cuin TA, Sokolik A, Li X, Huang X, Yu M, Demidchik V. L-histidine makes Ni 2+ 'visible' for plant signalling systems: Shading the light on Ni 2+-induced Ca 2+ and redox signalling in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109227. [PMID: 39827704 DOI: 10.1016/j.plaphy.2024.109227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/07/2024] [Accepted: 10/21/2024] [Indexed: 01/22/2025]
Abstract
Nickel is both an important nutrient and an ecotoxicant for plants. Organic ligands, such as L-histidine (His), play a key role in Ni2+ detoxification. Here, we show that His (added together with 0.01-10 mM Ni2+) decreases Ni2+ toxicity to Arabidopsis thaliana roots not only as a result of a decrease in Ni2+ activity, but also via the induction of signalling phenomena important for adaptation such as the generation of reactive oxygen species (ROS) and cytosolic Ca2+ transients. With the use of EPR spectroscopy, we demonstrate that Ni-His complexes generate hydroxyl radicals that is not detected by the addition of Ni2+ or His separately. Similarly, Ni-His complexes, but not Ni2+, activate Ca2+ influx and K+ efflux currents in patch-clamped root protoplasts resulting in distinct cytosolic Ca2+ signals and a transient K+ release. His prevented programmed cell death symptoms (cytoplasm shrinkage, protease and endonuclease activation) induced by Ni2+ and inhibited Ni2+ accumulation at [Ni2+]>0.3 mM. Intriguingly, priming of roots with Ni-His stimulated plant resistance to Ni2+. Overall, these data show that His triggers ROS-Ca2+-mediated reactions making Ni2+ 'visible' for plant signalling machinery and facilitating adaptation to the excess Ni2+.
Collapse
Affiliation(s)
- Viera Mackievic
- Department of Plant Cell Biology and Biotechnology, Faculty of Biology, Belarusian State University, Minsk, Belarus; International Research Centre for Environmental Membrane Biology and Department of Horticulture, Foshan University, Foshan, China
| | - Yalin Li
- International Research Centre for Environmental Membrane Biology and Department of Horticulture, Foshan University, Foshan, China
| | - Palina Hryvusevich
- Department of Plant Cell Biology and Biotechnology, Faculty of Biology, Belarusian State University, Minsk, Belarus
| | - Dimitri Svistunenko
- School of Life Sciences, University of Essex, Colchester, Essex, United Kingdom
| | - Ilya Seregin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - Anna Kozhevnikova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander Kartashov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - Sergey Shabala
- International Research Centre for Environmental Membrane Biology and Department of Horticulture, Foshan University, Foshan, China; School of Biological Science, University of Western Australia, Crawley, Australia; Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia
| | - Veranika Samokhina
- Department of Plant Cell Biology and Biotechnology, Faculty of Biology, Belarusian State University, Minsk, Belarus
| | - Alina Rusakovich
- Department of Plant Cell Biology and Biotechnology, Faculty of Biology, Belarusian State University, Minsk, Belarus
| | - Tracey A Cuin
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia
| | - Anatoliy Sokolik
- Department of Plant Cell Biology and Biotechnology, Faculty of Biology, Belarusian State University, Minsk, Belarus
| | - Xuewen Li
- International Research Centre for Environmental Membrane Biology and Department of Horticulture, Foshan University, Foshan, China
| | - Xin Huang
- International Research Centre for Environmental Membrane Biology and Department of Horticulture, Foshan University, Foshan, China
| | - Min Yu
- International Research Centre for Environmental Membrane Biology and Department of Horticulture, Foshan University, Foshan, China.
| | - Vadim Demidchik
- International Research Centre for Environmental Membrane Biology and Department of Horticulture, Foshan University, Foshan, China; V.F. Kuprevich Institute of Experimental Botany, National Academy of Sciences of Belarus, Minsk, Belarus.
| |
Collapse
|
12
|
Gavelienė V, Mockevičiūtė R, Jankovska-Bortkevič E, Šveikauskas V, Zareyan M, Žalnierius T, Jankauskienė J, Jurkonienė S. Synergistic Effects of Microbial Biostimulants and Calcium in Alleviating Drought Stress in Oilseed Rape. Microorganisms 2025; 13:530. [PMID: 40142421 PMCID: PMC11944756 DOI: 10.3390/microorganisms13030530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
The study aimed to examine the changes in winter oilseed rape (Brassica napus L.) under simulated prolonged drought and to assess the effects of a microbial biostimulant ProbioHumus and calcium, individually and in combination, in order to improve the plant's drought resistance and to identify the biochemical processes occurring in the plant tissues. The oilseed rape cv. 'Visby' was grown under controlled laboratory conditions. CaCO3 (hereafter, Ca) (3.71 g) was added to the soil of one pot at 70 g m-2. Seedlings at the 3-4 leaf stage were sprayed with ProbioHumus 2 mL 100 mL-1 and exposed to drought for 8 days to achieve a high water deficit. Irrigation was then resumed, and recovery was assessed after 4 days. The data showed that the microbial biostimulant alleviated the physiological and biochemical response of oilseed rape to drought stress. ProbioHumus + Ca reduced plant wilting by increasing leaf relative water content (RWC) by 87% and induced drought tolerance by increasing endogenous proline content 4-fold, increasing photosynthetic pigment content in leaves by 10-28%, reducing H2O2 by 53% and malondialdehyde (MDA) by 45%, and stimulating stomata opening (by 2-fold on the upper and 1.4-fold in the lower leaf surface), vs. drought control. The most effective measure to increase plant survival and/or resume growth after drought was the application of a microbial biostimulant with additional calcium to the soil. The practical implications of this research point to the potential benefits of applying these ecological measures under field conditions.
Collapse
Affiliation(s)
- Virgilija Gavelienė
- Laboratory of Plant Physiology, Nature Research Centre, Akademijos Str. 2, 08412 Vilnius, Lithuania; (R.M.); (E.J.-B.); (V.Š.); (M.Z.); (T.Ž.); (J.J.)
| | | | | | | | | | | | | | - Sigita Jurkonienė
- Laboratory of Plant Physiology, Nature Research Centre, Akademijos Str. 2, 08412 Vilnius, Lithuania; (R.M.); (E.J.-B.); (V.Š.); (M.Z.); (T.Ž.); (J.J.)
| |
Collapse
|
13
|
Bhattacharyya S, Bleker C, Meier B, Giridhar M, Rodriguez EU, Braun AM, Peiter E, Vothknecht UC, Chigri F. Ca 2+-dependent H 2O 2 response in roots and leaves of barley - a transcriptomic investigation. BMC PLANT BIOLOGY 2025; 25:232. [PMID: 39979811 PMCID: PMC11841189 DOI: 10.1186/s12870-025-06248-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 02/12/2025] [Indexed: 02/22/2025]
Abstract
BACKGROUND Ca2+ and H2O2 are second messengers that regulate a wide range of cellular events in response to different environmental and developmental cues. In plants, stress-induced H2O2 has been shown to initiate characteristic Ca2+ signatures; however, a clear picture of the molecular connection between H2O2-induced Ca2+ signals and H2O2-induced cellular responses is missing, particularly in cereal crops such as barley. Here, we employed RNA-seq analyses to identify transcriptome changes in roots and leaves of barley after H2O2 treatment under conditions that inhibited the formation of cytosolic Ca2+ transients. To that end, plasma membrane Ca2+ channels were blocked by LaCl3 application prior to stimulation of barley tissues with H2O2. RESULTS We examined the expression patterns of 4246 genes that had previously been shown to be differentially expressed upon H2O2 application. Here, we further compared their expression between H2O2 and LaCl3 + H2O2 treatment. Genes showing expression patterns different to the previous study were considered to be Ca2+-dependent H2O2-responsive genes. These genes, numbering 331 in leaves and 1320 in roots, could be classified in five and four clusters, respectively. Expression patterns of several genes from each cluster were confirmed by RT-qPCR. We furthermore performed a network analysis to identify potential regulatory paths from known Ca2+-related genes to the newly identified Ca2+-dependent H2O2 responsive genes, using the recently described Stress Knowledge Map. This analysis indicated several transcription factors as key points of the responses mediated by the cross-talk between H2O2 and Ca2+. CONCLUSION Our study indicates that about 70% of the H2O2-responsive genes in barley roots require a transient increase in cytosolic Ca2+ concentrations for alteration in their transcript abundance, whereas in leaves, the Ca2+ dependency was much lower at about 33%. Targeted gene analysis and pathway modeling identified not only known components of the Ca2+ signaling cascade in plants but also genes that are not yet connected to stimuli-associated signaling. Potential key transcription factors identified in this study can be further analyzed in barley and other crops to ultimately disentangle the underlying mechanisms of H2O2-associated signal transduction mechanisms. This could aid breeding for improved stress resistance to optimize performance and productivity under increasing climate challenges.
Collapse
Affiliation(s)
- Sabarna Bhattacharyya
- Institute for Cellular and Molecular Botany (IZMB), University of Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Carissa Bleker
- Department of Biotechnology and Systems Biology, National Institute of Biology (NIB), Večna pot 111, Ljubljana, SI-1000, Slovenia
| | - Bastian Meier
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 3, D-06120, Halle (Saale), Germany
| | - Maya Giridhar
- Leibniz Institute for Food Systems Biology, Technical University of Munich, Lise-Meitner- Strasse 34, D-85354, Freising, Germany
| | - Elena Ulland Rodriguez
- Institute for Cellular and Molecular Botany (IZMB), University of Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Adrian Maximilian Braun
- Institute for Cellular and Molecular Botany (IZMB), University of Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Edgar Peiter
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 3, D-06120, Halle (Saale), Germany
| | - Ute C Vothknecht
- Institute for Cellular and Molecular Botany (IZMB), University of Bonn, Kirschallee 1, D-53115, Bonn, Germany.
| | - Fatima Chigri
- Institute for Cellular and Molecular Botany (IZMB), University of Bonn, Kirschallee 1, D-53115, Bonn, Germany.
| |
Collapse
|
14
|
Brownlee C, Wheeler GL. Cellular calcium homeostasis and regulation of its dynamic perturbation. QUANTITATIVE PLANT BIOLOGY 2025; 6:e5. [PMID: 40070722 PMCID: PMC11894410 DOI: 10.1017/qpb.2025.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 03/14/2025]
Abstract
Calcium ions (Ca2+) play pivotal roles in a host of cellular signalling processes. The requirement to maintain resting cytosolic Ca2+ levels in the 100-200 nM range provides a baseline for dynamic excursions from resting levels that determine the nature of many physiological responses to external stimuli and developmental processes. This review provides an overview of the key components of the Ca2+ homeostatic machinery, including known channel-mediated Ca2+ entry pathways along with transporters that act to shape the cytosolic Ca2+ signature. The relative roles of the vacuole and endoplasmic reticulum as sources or sinks for cytosolic Ca2+ are considered, highlighting significant gaps in our understanding. The components contributing to mitochondrial, chloroplast and nuclear Ca2+ homeostasis and organellar Ca2+ signals are also considered. Taken together, a complex picture of the cellular Ca2+ homeostatic machinery emerges with some clear differences from mechanisms operating in many animal cells.
Collapse
Affiliation(s)
- Colin Brownlee
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, UK
- School of Ocean and Earth Sciences, University of Southampton, Southampton, UK
| | - Glen L. Wheeler
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, UK
| |
Collapse
|
15
|
Li Y, Hu X, Mkapa DS, Xie L, Guo P, Tan S, Zhang W, Chen H, Huang X, Yi K. Agave macroacantha Transcriptome Reveals Candidate CNGC Genes Responsive to Cold Stress in Agave. PLANTS (BASEL, SWITZERLAND) 2025; 14:513. [PMID: 40006772 PMCID: PMC11860156 DOI: 10.3390/plants14040513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/01/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025]
Abstract
Agave, with its unique appearance and ability to produce hard fibers, holds high economic value. However, low temperatures during winter can restrict its growth and even damage the leaves, causing a loss of ornamental appeal or affecting the fiber quality. Conversely, the plant cyclic nucleotide-gated channel (CNGC) family plays an important role in the growth and development of plants and the response to stress. Studying the CNGC family genes is of great importance for analyzing the mechanism by which agave responds to cold stress. This research conducted a transcriptomic analysis of the ornamental plant Agave macroacantha. Through assembly via Illumina sequencing, 119,911 transcripts were obtained, including 78,083 unigenes. In total, 6, 10, 11, and 13 CNGC genes were successfully identified from A. macroacantha, Agave. H11648, Agave. deserti, and Agave. tequilana, respectively. These CNGC genes could be divided into four groups (I, II, III, and IV), and group IV could be divided into two subgroups (IV-A and IV-B). The relative expression levels were quantified by qRT-PCR assays, which revealed that AhCNGC4.1 was significantly upregulated after cold treatment and Ca(NO3)2 treatment, suggesting its importance in cold stress and calcium signaling. Additionally, the Y2H assay has preliminarily identified interacting proteins of AhCNGC4.1, including AhCML19 and AhCBSX3. This study has established a completely new transcriptome dataset of A. macroacantha for the first time, enriching the bioinformatics of agave's transcriptome. The identified CNGC genes are of great significance for understanding the evolution of agave species. The cloned CNGC genes, expression pattern analysis, and protein interaction results laid a foundation for future research related to the molecular functions of agave CNGC genes in cold tolerance.
Collapse
Affiliation(s)
- Yubo Li
- School of Tropical Agricultural and Forestry, Hainan University, Danzhou 571737, China
- National Key Laboratory for Tropical Crop Breeding, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Xiaoli Hu
- National Key Laboratory for Tropical Crop Breeding, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Dietram Samson Mkapa
- National Key Laboratory for Tropical Crop Breeding, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Mlingano Centre, Tanzania Agricultural Research Institute (TARI), Tanga P.O. Box 5088, Tanzania
| | - Li Xie
- Pengshui Miao Tujia Autonomous County of Chongqing Agriculture and Rural Committee, Chongqing 409600, China
| | - Pingan Guo
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi 435002, China
| | - Shibei Tan
- National Key Laboratory for Tropical Crop Breeding, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Weiyi Zhang
- School of Tropical Agricultural and Forestry, Hainan University, Danzhou 571737, China
| | - Helong Chen
- National Key Laboratory for Tropical Crop Breeding, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Xing Huang
- National Key Laboratory for Tropical Crop Breeding, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou 571101, China
- Hainan Key Laboratory for Monitoring and Control of Tropical Agricultural Pests, Haikou 571101, China
| | - Kexian Yi
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572025, China
| |
Collapse
|
16
|
Wang Z, Lv R, Hong Y, Su C, Wang Z, Zhu J, Yang R, Wang R, Li Y, Meng J, Luan Y. Transcription factor KUA1 positively regulates tomato resistance against Phytophthora infestans by fine-tuning reactive oxygen species accumulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70007. [PMID: 39993147 DOI: 10.1111/tpj.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/20/2024] [Accepted: 01/10/2025] [Indexed: 02/26/2025]
Abstract
Tomato is a horticultural crop of global significance. However, the pathogen Phytophthora infestans causing the late blight disease imposes a severe threat to tomato production and quality. Many transcription factors (TFs) are known to be involved in responses to plant pathogens, however, the key TFs in tomato resistant to P. infestans remain to be explored. Here, we identified six TFs related to tomato responses to P. infestans infection. In particular, we found overexpression of SlKUA1 could significantly improve tomato resistance to P. infestans; moreover, reactive oxygen species (ROS) accumulation was significantly increased in OE-SlKUA1 compared with WT after P. infestans infection along with higher expression of SlRBOHD. Surprisingly, we found that SlKUA1 could not bind to the promoter of SlRBOHD. Further experiments revealed that SlKUA1 inhibited the expression of SlPrx1 by binding to its promoter region, thereby decreasing POD enzyme abundance and causing compromised ROS scavenge. Meanwhile, we identified that SlKUA1 also binds to the promoter region of two plant immune-related genes, SlMAPK7 and SlRLP4, promoting their expression and enhancing tomato disease resistance. Together, our results have unraveled that SlKUA1 can boost tomato resistance against P. infestans through quantitatively regulating ROS accumulation and related immune gene expression, thus, providing promising new targets for breeding late blight resistance tomatoes.
Collapse
Affiliation(s)
- Zhicheng Wang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
- College of Criminal Science and Technology, Criminal Investigation Police University of China, Shenyang, 110854, China
| | - Ruili Lv
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Yuhui Hong
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian, 116600, China
| | - Chenglin Su
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Zhengjie Wang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Jiaxuan Zhu
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Ruirui Yang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Ruiming Wang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Yan Li
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yushi Luan
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
17
|
Naziębło A, Bemowska-Kałabun O, Wierzbicka M, Zienkiewicz M. Foliar application of nitrates limits lead uptake by Cucumis sativus L. plants. J Trace Elem Med Biol 2025; 87:127592. [PMID: 39798232 DOI: 10.1016/j.jtemb.2025.127592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/24/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Lead is a toxic heavy metal, which accumulates in the soil and is readily absorbed by plant roots. The uptake of toxic elements by crops is a serious threat to human health. For this reason, it is important to prevent the incorporation of heavy metals into the food chain. Our previous study showed that foliar application of calcium nitrate reduces the intensity of lead uptake by different plant species. A significant decrease in metal concentration was observed both in the roots and in the shoots of three crops: tomato, cucumber, and flax. The present research investigated the mechanism for limiting lead accumulation in plant tissues. The experiments were conducted on Cucumis sativus L. seedlings, grown in hydroponic conditions. To compare the role of Ca2 + and NO3- ions in the restriction of lead uptake three different calcium salts (nitrate, chloride, and formate), and two nitrates (calcium and potassium) were applied foliarly to plants. The results show that Ca(NO3)2 is more efficient in decreasing lead accumulation in tissues than other calcium salts which suggests an important role of NO3- ions in the process. In addition, the study demonstrated that the exogenous supply of nitrates helps compensate for nitrogen deficiency caused by lead action and supports the mineral balance. The reduction in lead toxicity to plants after foliar application of nitrates may be due to the stimulation of the biosynthesis of nitric oxide - a key molecule responsible for stress response.
Collapse
Affiliation(s)
- Aleksandra Naziębło
- Department of Ecotoxicology, Institute of Environmental Biology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, Warszawa 02-096, Poland; Institute of Technology and Life Sciences - State Research Institute, Al. Hrabska 3, Raszyn 05-090, Poland.
| | - Olga Bemowska-Kałabun
- Isotope Laboratory, Faculty's Independent Centres, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, Warszawa 02-096, Poland
| | - Małgorzata Wierzbicka
- Department of Ecotoxicology, Institute of Environmental Biology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, Warszawa 02-096, Poland
| | - Maksymilian Zienkiewicz
- Department of Molecular Plant Physiology, Institute of Environmental Biology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, Warszawa 02-096, Poland
| |
Collapse
|
18
|
Naveed M, Aslam M, Ahmed SR, Tan DKY, De Mastro F, Tariq MS, Sakhawat A, Asad MA, Liu Y. An overview of heat stress in Chickpea ( Cicer arietinum L.): effects, mechanisms and diverse molecular breeding approaches for enhancing resilience and productivity. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2025; 45:18. [PMID: 39850651 PMCID: PMC11751345 DOI: 10.1007/s11032-025-01538-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 01/07/2025] [Indexed: 01/25/2025]
Abstract
Chickpea (Cicer arietinum. L) holds the esteemed position of being the second most cultivated and consumed legume crop globally. Nevertheless, both biotic and abiotic constraints limit chickpea production. This legume is sensitive to heat stress at its reproductive stage leading to reduced flowering, flower abortion, and lack of pod formation, therefore emerging as a major limiting factor for yield. Chickpea, predominantly cultivated in semi-arid regions, is frequently subjected to high-temperature stress, which adversely affects its growth and yield. Given the escalating impacts of climate change, the development of heat-tolerant chickpea genotypes is imperative and can be achieved through the integration of advanced biotechnological approaches. The appropriate solution devised by some researchers is the modification of genetic architecture by targeting specific genes associated with tolerance to heat stress and harnessing them in the development of more robust chickpea varieties. Besides this, multi-omics strategies (Genomics, Transcriptomics, Proteomics, and Metabolomics) have made it easier to reveal the distinct genes / quantitative trait loci (QTLs) / markers, proteins, and metabolites correlated with heat tolerance. This review compiles noteworthy revelations and different tactics to boost chickpea tolerance under heat temperatures. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-025-01538-4.
Collapse
Affiliation(s)
- Mahak Naveed
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Mariyah Aslam
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
- Plant Breeding and Genetics Division, Chickpea Group, Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan
| | - Syed Riaz Ahmed
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
- Horticulture Research Institute (HRI), Pakistan Agricultural Research Council, Islamabad, Pakistan
| | - Daniel K. Y. Tan
- School of Life and Environmental Sciences, Plant Breeding Institute, Faculty of Science, Sydney Institute of Agriculture, The University of Sydney, Sydney, NSW 2006 Australia
| | - Francesco De Mastro
- Department of Soil, Plant, and Food Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy
| | - Muhammad Sayyam Tariq
- Plant Breeding and Genetics Division, Chickpea Group, Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan
| | - Ammara Sakhawat
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Muhammad Azeem Asad
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
- Plant Breeding and Genetics Division, Chickpea Group, Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan
| | - Yongming Liu
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024 China
| |
Collapse
|
19
|
Weralupitiya C, Eccersall S, Meisrimler CN. Shared signals, different fates: Calcium and ROS in plant PRR and NLR immunity. Cell Rep 2024; 43:114910. [PMID: 39471173 DOI: 10.1016/j.celrep.2024.114910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/04/2024] [Accepted: 10/09/2024] [Indexed: 11/01/2024] Open
Abstract
Lacking an adaptive immune system, plants rely on innate immunity comprising two main layers: PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI), both utilizing Ca2+ influx and reactive oxygen species (ROS) for signaling. PTI, mediated by pattern-recognition receptors (PRRs), responds to conserved pathogen- or damage-associated molecular patterns. Some pathogens evade PTI using effectors, triggering plants to activate ETI. At the heart of ETI are nucleotide-binding leucine-rich repeat receptors (NLRs), which detect specific pathogen effectors and initiate a robust immune response. NLRs, equipped with a nucleotide-binding domain and leucine-rich repeats, drive a potent immune reaction starting with pronounced, prolonged cytosolic Ca2+ influx, followed by increased ROS levels. This sequence of events triggers the hypersensitive response-a localized cell death designed to limit pathogen spread. This intricate use of Ca2+ and ROS highlights the crucial role of NLRs in supplementing the absence of an adaptive immune system in plant innate immunity.
Collapse
Affiliation(s)
| | - Sophie Eccersall
- University of Canterbury, School of Biological Science, Christchurch, New Zealand
| | - Claudia-Nicole Meisrimler
- University of Canterbury, School of Biological Science, Christchurch, New Zealand; Biomolecular Interaction Centre, Christchurch, New Zealand.
| |
Collapse
|
20
|
van Dieren A, Schwarzenbacher RE, Sonnewald S, Bittner A, Vothknecht UC. Analysis of abiotic and biotic stress-induced Ca 2+ transients in the crop species Solanum tuberosum. Sci Rep 2024; 14:27625. [PMID: 39528594 PMCID: PMC11555376 DOI: 10.1038/s41598-024-79134-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
Secondary messengers, such as calcium ions (Ca2+), are integral parts of a system that transduces environmental stimuli into appropriate cellular responses. Different abiotic and biotic stresses as well as developmental processes trigger temporal increases in cytosolic free Ca2+ levels by an influx from external and internal stores. Stimulus-specificity is obtained by a certain amplitude, duration, oscillation and localisation of the response. Most knowledge on stress-specific Ca2+ transient, called calcium signatures, has been gained in the model plant Arabidopsis thaliana, while reports about stress-related Ca2+ signalling in crop plants are comparatively scarce. In this study, we introduced the Ca2+ biosensor apoaequorin into potato (Solanum tuberosum, Lcv. Désirée). We observed dose-dependent calcium signatures in response to a series of stress stimuli, including H2O2, NaCl, mannitol and pathogen-associated molecular patterns (PAMPs) with stimuli-specific kinetics. Direct comparison with Arabidopsis revealed differences in the kinetics and amplitude of Ca2+ transients between both species, implying species-specific sensitivity for different stress conditions. The potato line generated in this work provides a useful tool for further investigations on stress-induced signalling pathways, which could contribute to the generation of novel, stress-tolerant potato varieties.
Collapse
Affiliation(s)
- Annelotte van Dieren
- Institute for Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany.
| | | | - Sophia Sonnewald
- Department of Biology, Chair of Biochemistry, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstraße 5, Erlangen, 91058, Germany
| | - Andras Bittner
- Institute for Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Ute C Vothknecht
- Institute for Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany.
| |
Collapse
|
21
|
Wei H, Wang Z, Wang J, Mao X, He W, Hu W, Tang M, Chen H. Mycorrhizal and non-mycorrhizal perennial ryegrass roots exhibit differential regulation of lipid and Ca 2+ signaling pathways in response to low and high temperature stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109099. [PMID: 39260265 DOI: 10.1016/j.plaphy.2024.109099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/16/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
Lipids and Ca2+ are involved as intermediate messengers in temperature-sensing signaling pathways. Arbuscular mycorrhizal (AM) symbiosis is a mutualistic symbiosis between fungi and terrestrial plants that helps host plants cope with adverse environmental conditions. Nonetheless, the regulatory mechanisms of lipid- and Ca2+-mediated signaling pathways in mycorrhizal plants under cold and heat stress have not been determined. The present work focused on investigating the lipid- and Ca2+-mediated signaling pathways in arbuscular mycorrhizal (AM) and non-mycorrhizal (NM) roots under temperature stress and determining the role of Ca2+ levels in AM symbiosis and temperature stress tolerance in perennial ryegrass (Lolium perenne L.) Compared with NM plants, AM symbiosis increased phosphatidic acid (PA) and Ca2+ signaling in the roots of perennial ryegrass, increasing the expression of genes associated with low temperature (LT) stress, including LpICE1, LpCBF3, LpCOR27, LpCOR47, LpIRI, and LpAFP, and high temperature (HT) stress, including LpHSFC1b, LpHSFC2b, LpsHSP17.8, LpHSP22, LpHSP70, and LpHSP90, under LT and HT conditions. These effects result in modulated antioxidant enzyme activities, reduced lipid peroxidation, and suppressed growth inhibition caused by LT and HT stresses. Furthermore, exogenous Ca2+ application enhanced AM symbiosis, leading to the upregulation of Ca2+ signaling pathway genes in roots and ultimately promoting the growth of perennial ryegrass under LT and HT stresses. These findings shed light on lipid and Ca2+ signal transduction in AM-associated plants under LT and HT stresses, emphasizing that Ca2+ enhances cold and heat tolerance in mycorrhizal plants.
Collapse
Affiliation(s)
- Hongjian Wei
- State Key Laboratory of Conservation and Utilization of Subtropical Agro- Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Zhihao Wang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro- Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Jiajin Wang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro- Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xinjie Mao
- State Key Laboratory of Conservation and Utilization of Subtropical Agro- Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Wenyuan He
- State Key Laboratory of Conservation and Utilization of Subtropical Agro- Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Wentao Hu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro- Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Ming Tang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro- Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
| | - Hui Chen
- State Key Laboratory of Conservation and Utilization of Subtropical Agro- Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
22
|
Liu H, Lu C, Liu XQ, Zhuo CJ, Luo RJ, Huang QT, Tang Z, Zhao CQ, Guerinot ML, Salt DE, Zhao FJ, Huang XY. A chloroplast localized heavy metal-associated domain containing protein regulates grain calcium accumulation in rice. Nat Commun 2024; 15:9265. [PMID: 39462135 PMCID: PMC11513116 DOI: 10.1038/s41467-024-53648-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Calcium (Ca) is an essential mineral nutrient and plays a crucial signaling role in all living organisms. Increasing Ca content in staple foods such as rice is vital for improving Ca nutrition of humans. Here we map a quantitative trait locus that controls Ca concentration in rice grains and identify the causal gene as GCSC1 (Grain Ca and Sr Concentrations 1), which encodes a chloroplast vesicle localized homo-oligomeric protein. GCSC1 exhibits Ca2+ transport activity in heterologous assays in yeast and Xenopus laevis oocytes and is involved in the efflux of Ca2+ from the chloroplast to the cytosol. Knockout of GCSC1 results in increased chloroplast Ca concentration, lower stomatal conductance in leaves and enhanced Ca allocation to grains. Natural variation in grain Ca concentration is attributed to the variable expression of GCSC1 resulting from its promoter sequence variation. Our study identifies a chloroplast localized heavy metal-associated domain containing protein that regulates chloroplast Ca2+ efflux and provides a way to biofortify Ca in rice to benefit human nutrition.
Collapse
Affiliation(s)
- Huan Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Cun Lu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xiang-Qian Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Chen-Jin Zhuo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- Sanya Institute of Nanjing Agricultural University, Sanya, China
| | - Rong-Jian Luo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Qiu-Tang Huang
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zhong Tang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Chun-Qing Zhao
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Mary Lou Guerinot
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - David E Salt
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xin-Yuan Huang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China.
- Sanya Institute of Nanjing Agricultural University, Sanya, China.
| |
Collapse
|
23
|
Mudrilov M, Ladeynova M, Vetrova Y, Vodeneev V. Analysis of the Mechanisms Underlying the Specificity of the Variation Potential Induced by Different Stimuli. PLANTS (BASEL, SWITZERLAND) 2024; 13:2896. [PMID: 39458843 PMCID: PMC11511009 DOI: 10.3390/plants13202896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
Plants are able to perceive diverse environmental factors and form an appropriate systemic functional response. Systemic responses are induced by stimulus-specific long-distance signals that carry information about the stimulus. Variation potential is proposed as a candidate for the role of such a signal. Here, we focus on the mechanisms that determine the specificity of the variation potential under the action of different local stimuli. Local stimuli such as heating, burning and wounding cause variation potential, the parameters of which differ depending on the type of stimulus. It was found that the stimulus-specific features of the hydraulic signal monitored by changes in leaf thickness and variation potential, such as a greater amplitude upon heating and burning and a significant amplitude decrement upon burning and wounding, were similar. The main features of these signals are the greater amplitude upon heating and burning, and a significant amplitude decrement upon burning and wounding. Together with the temporal correspondence of signal propagation, this evidence indicates a role for the hydraulic signal in the induction of stimulus-specific variation potential. Experiments using mechanosensitive channel inhibitors have demonstrated that the hydraulic signal contributes more to the induction of the variation potential in the case of rapidly growing stimuli, such as burning and wounding, than in the case of gradual heating. For thermal stimuli (gradual heating and burning), a greater contribution, compared to wounding, of the chemical signal related to reactive oxygen species to the induction of the variation potential was demonstrated. Thus, the specificity of the parameters of the variation potential is determined by the different contributions of hydraulic and chemical signals.
Collapse
Affiliation(s)
| | | | | | - Vladimir Vodeneev
- Department of Biophysics, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia
| |
Collapse
|
24
|
Pittman JK, Hirschi KD. CAX control: multiple roles of vacuolar cation/H + exchangers in metal tolerance, mineral nutrition and environmental signalling. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:911-919. [PMID: 39030923 DOI: 10.1111/plb.13698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 06/16/2024] [Indexed: 07/22/2024]
Abstract
Plant vacuolar transporters, particularly CAX (Cation/H+ Exchangers) responsible for Ca2+/H+ exchange on the vacuole tonoplast, play a central role in governing cellular pH, ion balance, nutrient storage, metal accumulation, and stress responses. Furthermore, CAX variants have been employed to enhance the calcium content of crops, contributing to biofortification efforts. Recent research has uncovered the broader significance of these transporters in plant signal transduction and element partitioning. The use of genetically encoded Ca2+ sensors has begun to highlight the crucial role of CAX isoforms in generating cytosolic Ca2+ signals, underscoring their function as pivotal hubs in diverse environmental and developmental signalling networks. Interestingly, it has been observed that the loss of CAX function can be advantageous in specific stress conditions, both for biotic and abiotic stressors. Determining the optimal timing and approach for modulating the expression of CAX is a critical concern. In the future, strategically manipulating the temporal loss of CAX function in agriculturally important crops holds promise to bolster plant immunity, enhance cold tolerance, and fortify resilience against one of agriculture's most significant challenges, namely flooding.
Collapse
Affiliation(s)
- J K Pittman
- Department of Earth and Environmental Sciences, School of Natural Sciences, The University of Manchester, Manchester, UK
| | - K D Hirschi
- Children's Nutrition Research, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
25
|
Arinzechi C, Dong C, Huang P, Zhao P, Liao Q, Li Q, Yang Z. Synergistic mitigation of cadmium stress in rice (Oryza sativa L.) through combined selenium, calcium, and magnesium supplementation. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:435. [PMID: 39316186 DOI: 10.1007/s10653-024-02209-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024]
Abstract
Rice is susceptible to cadmium (Cd) accumulation, which poses a threat to human health. Traditional methods for mitigating moderately contaminated soils can be impractical or prohibitively expensive, necessitating innovative approaches to reduce Cd uptake in rice. Nutrient management has emerged as a promising solution by leveraging the antagonistic interactions between nutrients and cadmium. However, the research on the synergistic effects of multiple nutrients on Cd toxicity in rice is limited. To address this limitation, pot experiments was utilized to investigate the combined effects of selenium (Se), calcium (Ca), and magnesium (Mg) denoted as (SeCM) on Cd uptake and translocation in rice. The synergistic application of SeCM reduced grain Cd levels by 55.0%, surpassing the individual effects of Se (42.1%) and CM (40.5%), and bringing Cd content below the safe consumption limits. SeCM treatment exhibited multiple beneficial effects: it decreased malondialdehyde (MDA) levels, enhanced catalase (CAT), peroxidase (POD) and glutathione (GSH) enzyme activities, limited Cd translocation from roots to shoots, promoted iron plaque formation, and reduced Cd transfer from soil to iron plaque and subsequently to rice grains. Correlation analysis revealed strong negative relationships between rice Cd content, Cd translocation factors, and the translocation factors of selenium, calcium, and magnesium. These findings suggest that selenium, calcium, and magnesium collaboratively mitigate Cd toxicity through antagonistic and competitive interactions. These nutrients enhance the uptake of beneficial elements, while competitively inhibiting the translocation and accumulation of Cd in rice plants. SeCM application offers a promising strategy for producing nutrient-rich, and Cd-safe rice in contaminated soils.
Collapse
Affiliation(s)
- Chukwuma Arinzechi
- School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China
| | - Chunhua Dong
- Soil and Fertilizer Institute of Hunan Province, Changsha, 410125, People's Republic of China
| | - Peicheng Huang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China
| | - Pengwei Zhao
- School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China
| | - Qi Liao
- School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China
| | - Qingzhu Li
- School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China
| | - Zhihui Yang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China.
| |
Collapse
|
26
|
Zhang S, Wang G, Yu W, Wei L, Gao C, Li D, Guo L, Yang J, Jian S, Liu N. Multi-omics analyses reveal the mechanisms underlying the responses of Casuarina equisetifolia ssp. incana to seawater atomization and encroachment stress. BMC PLANT BIOLOGY 2024; 24:854. [PMID: 39266948 PMCID: PMC11391710 DOI: 10.1186/s12870-024-05561-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024]
Abstract
Casuarina equisetifolia trees are used as windbreaks in subtropical and tropical coastal zones, while C. equisetifolia windbreak forests can be degraded by seawater atomization (SA) and seawater encroachment (SE). To investigate the mechanisms underlying the response of C. equisetifolia to SA and SE stress, the transcriptome and metabolome of C. equisetifolia seedlings treated with control, SA, and SE treatments were analyzed. We identified 737, 3232, 3138, and 3899 differentially expressed genes (SA and SE for 2 and 24 h), and 46, 66, 62, and 65 differentially accumulated metabolites (SA and SE for 12 and 24 h). The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that SA and SE stress significantly altered the expression of genes related to plant hormone signal transduction, plant-pathogen interaction, and starch and sucrose metabolism pathways. The accumulation of metabolites associated with the biosynthetic pathways of phenylpropanoid and amino acids, as well as starch and sucrose metabolism, and glycolysis/gluconeogenesis were significantly altered in C. equisetifolia subjected to SA and SE stress. In conclusion, C. equisetifolia responds to SA and SE stress by regulating plant hormone signal transduction, plant-pathogen interaction, biosynthesis of phenylpropanoid and amino acids, starch and sucrose metabolism, and glycolysis/gluconeogenesis pathways. Compared with SA stress, C. equisetifolia had a stronger perception and response to SE stress, which required more genes and metabolites to be regulated. This study enhances our understandings of how C. equisetifolia responds to two types of seawater stresses at transcriptional and metabolic levels. It also offers a theoretical framework for effective coastal vegetation management in tropical and subtropical regions.
Collapse
Affiliation(s)
- Shike Zhang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Institute of Geographical Sciences, Henan Academy of Sciences, Zhengzhou, 450052, China
| | - Guobing Wang
- Institute of Geographical Sciences, Henan Academy of Sciences, Zhengzhou, 450052, China
| | - Weiwei Yu
- Institute of Geographical Sciences, Henan Academy of Sciences, Zhengzhou, 450052, China
| | - Long Wei
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Coastal Shelterbelt Ecosystem National Observation and Research Station, Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Chao Gao
- Institute of Geographical Sciences, Henan Academy of Sciences, Zhengzhou, 450052, China
| | - Di Li
- Institute of Geographical Sciences, Henan Academy of Sciences, Zhengzhou, 450052, China
| | - Lili Guo
- Institute of Geographical Sciences, Henan Academy of Sciences, Zhengzhou, 450052, China
| | - Jianbo Yang
- Institute of Geographical Sciences, Henan Academy of Sciences, Zhengzhou, 450052, China
| | - Shuguang Jian
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| | - Nan Liu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
27
|
Zhou S, Wang W, Wang P, Ma H, Li W. The role of reactive oxygen species in regulation of the plasma membrane H+-ATPase activity in Masson pine (Pinus massoniana Lamb.) roots responding to acid stress. TREE PHYSIOLOGY 2024; 44:tpae083. [PMID: 38982738 DOI: 10.1093/treephys/tpae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/21/2024] [Accepted: 07/04/2024] [Indexed: 07/11/2024]
Abstract
To understand the role of reactive oxygen species (ROS) in regulation of the plasma membrane (PM) H+-ATPase in acid-stressed Masson pine roots, different acidity (pH 6.6 as the control, pH 5.6 and pH 4.6) of simulated acid rain (SAR) added with and without external chemicals (H2O2, enzyme inhibitors and ROS scavenger) was prepared. After 30 days of SAR exposure, the plant morphological phenotype attributes, levels of cellular ROS and lipid peroxidation, enzymatic activities of antioxidants, PM nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity and PM H+-ATPase activity in pine seedlings were measured. Compared with the control, the growth of pine seedlings exposed to SAR in the presence or absence of H2O2 was well-maintained, but the application of Na3VO4, 1,3-dimethyl-2-thiourea, N, N-dimethylthiourea (DMTU) and diphenyleneiodonium chloride (DPI) caused a substantial growth inhibition. In addition, SAR exposure, SAR with H2O2 treatment, and SAR with Na3VO4 treatment increased the cellular H2O2 content, O2- content and malondialdehyde (MDA) content, while the use of DMTU and DPI lead to relatively low levels. Similarly, the enzymatic activities of antioxidants, PM NADPH oxidase and PM H+-ATPase in acid stressed pine seedlings elevated with the increasing acidity. A significant stimulation of these enzymatic activities obtained from SAR with H2O2 treatment was observed, whereas which decreased obviously with the addition of Na3VO4, DMTU and DPI (P < 0.05). Moreover, a positive correlation was found between plant morphological attributes and the PM H+-ATPase activity (P < 0.05). Besides, the PM H+-ATPase activity positively correlated with the cellular ROS contents and the enzymatic activities of antioxidants and PM NADPH oxidase (P < 0.05). Therefore, the PM H+-ATPase is instrumental in the growth of pine seedlings resisting to acid stress by enhancing its activity. The process involves the signaling transduction of cellular ROS and coordination with PM NADPH oxidase.
Collapse
Affiliation(s)
- Sijie Zhou
- College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, P.R. China
- Cooperative College, Jiangsu Vocational College of Business, Nantong 226011, P.R. China
| | - Wenxin Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Ping Wang
- College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, P.R. China
| | - Huiyan Ma
- College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, P.R. China
| | - Wenhui Li
- College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, P.R. China
| |
Collapse
|
28
|
Gan P, Tang C, Lu Y, Ren C, Nasab HR, Kun X, Wang X, Li L, Kang Z, Wang X, Wang J. Quantitative phosphoproteomics reveals molecular pathway network in wheat resistance to stripe rust. STRESS BIOLOGY 2024; 4:32. [PMID: 38945963 PMCID: PMC11214938 DOI: 10.1007/s44154-024-00170-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/24/2024] [Indexed: 07/02/2024]
Abstract
Protein phosphorylation plays an important role in immune signaling transduction in plant resistance to pathogens. Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), severely devastates wheat production. Nonetheless, the molecular mechanism of wheat resistance to stripe rust remains limited. In this study, quantitative phosphoproteomics was employed to investigate the protein phosphorylation changes in wheat challenged by Pst. A total of 1537 and 2470 differentially accumulated phosphoproteins (DAPs) were identified from four early infection stage (6, 12, 18 and 24 h post-inoculation) in incompatible and compatible wheat-Pst interactions respectively. KEGG analysis revealed that Oxidative Phosphorylation, Phosphatidylinositol Signaling, and MAPK signaling processes are distinctively enriched in incompatible interaction, while Biosynthesis of secondary metabolites and RNA degradation process were significantly enriched in compatible interactions. In particular, abundant changes in phosphorylation levels of chloroplast proteins were identified, suggesting the regulatory role of photosynthesis in wheat-Pst interaction, which is further emphasized by protein-protein interaction (PPI) network analysis. Motif-x analysis identified [xxxxSPxxxx] motif, likely phosphorylation sites for defensive response-related kinases, and a new [xxxxSSxxxx] motif significantly enriched in incompatible interaction. The results shed light on the early phosphorylation events contributing to wheat resistance against Pst. Moreover, our study demonstrated that the phosphorylation levels of Nucleoside diphosphate kinase TaNAPK1 are upregulated at 12 hpi with CYR23 and at 24 hpi with CYR31. Transient silencing of TaNAPK1 was able to attenuate wheat resistance to CYR23 and CYR31. Our study provides new insights into the mechanisms underlying Pst-wheat interactions and may provide database to find potential targets for the development of new resistant varieties.
Collapse
Affiliation(s)
- Pengfei Gan
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chunlei Tang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yi Lu
- Plant Protection Station of Xinjiang Uygur Autonomous Region, Urumqi, 830049, Xinjiang, China
| | - Chenrong Ren
- Plant Protection Station of Xinjiang Uygur Autonomous Region, Urumqi, 830049, Xinjiang, China
| | - Hojjatollah Rabbani Nasab
- Plant Protection Research Department,Agricultural and Natural Resource Research and Education Center of Golestan, Agricultural Research,Education and Extension Organization (AREEO), Gorgan, Iran
| | - Xufeng Kun
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaodong Wang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Liangzhuang Li
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaojie Wang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Jianfeng Wang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
29
|
Chandan K, Gupta M, Ahmad A, Sarwat M. P-type calcium ATPases play important roles in biotic and abiotic stress signaling. PLANTA 2024; 260:37. [PMID: 38922354 DOI: 10.1007/s00425-024-04462-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/09/2024] [Indexed: 06/27/2024]
Abstract
MAIN CONCLUSION Knowledge of Ca2+-ATPases is imperative for improving crop quality/ food security, highly threatened due to global warming. Ca2+-ATPases modulates calcium, essential for stress signaling and modulating growth, development, and immune activities. Calcium is considered a versatile secondary messenger and essential for short- and long-term responses to biotic and abiotic stresses in plants. Coordinated transport activities from both calcium influx and efflux channels are required to generate cellular calcium signals. Various extracellular stimuli cause an induction in cytosolic calcium levels. To cope with such stresses, it is important to maintain intracellular Ca2+ levels. Plants need to evolve efficient efflux mechanisms to maintain Ca2+ ion homeostasis. Plant Ca2+-ATPases are members of the P-type ATPase superfamily and localized in the plasma membrane and endoplasmic reticulum (ER). They are required for various cellular processes, including plant growth, development, calcium signaling, and even retorts to environmental stress. These ATPases play an essential role in Ca2+ homeostasis and are actively involved in Ca2+ transport. Plant Ca2+-ATPases are categorized into two major classes: type IIA and type IIB. Although these two classes of ATPases share similarities in protein sequence, they differ in their structure, cellular localization, and sensitivity to inhibitors. Due to the emerging role of Ca2+-ATPase in abiotic and biotic plant stress, members of this family may help promote agricultural improvement under stress conditions. This review provides a comprehensive overview of P-type Ca2+-ATPase, and their role in Ca2+ transport, stress signaling, and cellular homeostasis focusing on their classification, evolution, ion specificities, and catalytic mechanisms. It also describes the main aspects of the role of Ca2+-ATPase in transducing signals during plant biotic and abiotic stress responses and its role in plant development and physiology.
Collapse
Affiliation(s)
- Kumari Chandan
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, 201313, India
| | - Meenakshi Gupta
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, 201313, India
| | - Altaf Ahmad
- Department of Botany, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Maryam Sarwat
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, 201313, India.
| |
Collapse
|
30
|
Sun K, Pan YT, Jiang HJ, Xu JY, Ma CY, Zhou J, Liu Y, Shabala S, Zhang W, Dai CC. Root endophyte-mediated alteration in plant H2O2 homeostasis regulates symbiosis outcome and reshapes the rhizosphere microbiota. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3153-3170. [PMID: 38394357 DOI: 10.1093/jxb/erae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/22/2024] [Indexed: 02/25/2024]
Abstract
Endophytic symbioses between plants and fungi are a dominant feature of many terrestrial ecosystems, yet little is known about the signaling that defines these symbiotic associations. Hydrogen peroxide (H2O2) is recognized as a key signal mediating the plant adaptive response to both biotic and abiotic stresses. However, the role of H2O2 in plant-fungal symbiosis remains elusive. Using a combination of physiological analysis, plant and fungal deletion mutants, and comparative transcriptomics, we reported that various environmental conditions differentially affect the interaction between Arabidopsis and the root endophyte Phomopsis liquidambaris, and link this process to alterations in H2O2 levels and H2O2 fluxes across root tips. We found that enhanced H2O2 efflux leading to a moderate increase in H2O2 levels at the plant-fungal interface is required for maintaining plant-fungal symbiosis. Disturbance of plant H2O2 homeostasis compromises the symbiotic ability of plant roots. Moreover, the fungus-regulated H2O2 dynamics modulate the rhizosphere microbiome by selectively enriching for the phylum Cyanobacteria, with strong antioxidant defenses. Our results demonstrated that the regulation of H2O2 dynamics at the plant-fungal interface affects the symbiotic outcome in response to external conditions and highlight the importance of the root endophyte in reshaping the rhizosphere microbiota.
Collapse
Affiliation(s)
- Kai Sun
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Yi-Tong Pan
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Hui-Jun Jiang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Jia-Yan Xu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Chen-Yu Ma
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Jiayu Zhou
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, Jiangsu, China
| | - Yunqi Liu
- Zhongguancun Xuyue Non-invasive Micro-test Technology Industrial Alliance, Beijing 10080, China
| | - Sergey Shabala
- School of Biological Science, University of Western Australia, Crawley, WA 60909, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, China
| | - Wei Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| |
Collapse
|
31
|
Guo Z, Zuo Y, Wang S, Zhang X, Wang Z, Liu Y, Shen Y. Early signaling enhance heat tolerance in Arabidopsis through modulating jasmonic acid synthesis mediated by HSFA2. Int J Biol Macromol 2024; 267:131256. [PMID: 38556243 DOI: 10.1016/j.ijbiomac.2024.131256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
Given the detrimental impact of global warming on crop production, it is particularly important to understand how plants respond and adapt to higher temperatures. Using the non-invasive micro-test technique and laser confocal microscopy, we found that the cascade process of early signals (K+, H2O2, H+, and Ca2+) ultimately resulted in an increase in the cytoplasmic Ca2+ concentration when Arabidopsis was exposed to heat stress. Quantitative real-time PCR demonstrated that heat stress significantly up-regulated the expression of CAM1, CAM3 and HSFA2; however, after CAM1 and CAM3 mutation, the upregulation of HSFA2 was reduced. In addition, heat stress affected the expression of LOX3 and OPR3, which was not observed when HSFA2 was mutated. Luciferase reporter gene expression assay and electrophoretic mobility shift assay showed that HSFA2 regulated the expression of both genes. Determination of jasmonic acid (JA) content showed that JA synthesis was promoted by heat stress, but was damaged when HSFA2 and OPR3 were mutated. Finally, physiological experiments showed that JA reduced the relative electrical conductivity of leaves, enhanced chlorophyll content and relative water content, and improved the survival rate of Arabidopsis under heat stress. Together, our results reveal a new pathway for Arabidopsis to sense and transmit heat signals; HSFA2 is involved in the JA synthesis, which can act as a defensive compound improving Arabidopsis heat tolerance.
Collapse
Affiliation(s)
- Zhujuan Guo
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China
| | - Yixin Zuo
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China
| | - Shuyao Wang
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China
| | - Xiao Zhang
- College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong 030619, PR China
| | - Zhaoyuan Wang
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China
| | - Yahui Liu
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China
| | - Yingbai Shen
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China.
| |
Collapse
|
32
|
Khan WA, Penrose B, Yun P, Zhou M, Shabala S. Exogenous zinc application mitigates negative effects of salinity on barley ( Hordeum vulgare) growth by improving root ionic homeostasis. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23266. [PMID: 38753957 DOI: 10.1071/fp23266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/25/2024] [Indexed: 05/18/2024]
Abstract
Detrimental effects of salinity could be mitigated by exogenous zinc (Zn) application; however, the mechanisms underlying this amelioration are poorly understood. This study demonstrated the interaction between Zn and salinity by measuring plant biomass, photosynthetic performance, ion concentrations, ROS accumulation, antioxidant activity and electrophysiological parameters in barley (Hordeum vulgare L.). Salinity stress (200mM NaCl for 3weeks) resulted in a massive reduction in plant biomass; however, both fresh and dry weight of shoots were increased by ~30% with adequate Zn supply. Zinc supplementation also maintained K+ and Na+ homeostasis and prevented H2 O2 toxicity under salinity stress. Furthermore, exposure to 10mM H2 O2 resulted in massive K+ efflux from root epidermal cells in both the elongation and mature root zones, and pre-treating roots with Zn reduced ROS-induced K+ efflux from the roots by 3-4-fold. Similar results were observed for Ca2+ . The observed effects may be causally related to more efficient regulation of cation-permeable non-selective channels involved in the transport and sequestration of Na+ , K+ and Ca2+ in various cellular compartments and tissues. This study provides valuable insights into Zn protective functions in plants and encourages the use of Zn fertilisers in barley crops grown on salt-affected soils.
Collapse
Affiliation(s)
- Waleed Amjad Khan
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas. 7001, Australia
| | - Beth Penrose
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas. 7001, Australia
| | - Ping Yun
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas. 7001, Australia
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas. 7001, Australia
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas. 7001, Australia; and International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China; and School of Biological Science, University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
33
|
Jing T, Li J, He Y, Shankar A, Saxena A, Tiwari A, Maturi KC, Solanki MK, Singh V, Eissa MA, Ding Z, Xie J, Awasthi MK. Role of calcium nutrition in plant Physiology: Advances in research and insights into acidic soil conditions - A comprehensive review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108602. [PMID: 38608506 DOI: 10.1016/j.plaphy.2024.108602] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/20/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
Plant mineral nutrition has immense significance for crop productivity and human well-being. Soil acidity plays a major role in determining the nutrient availability that influences plant growth. The importance of calcium (Ca) in biological processes, such as signaling, metabolism, and cell growth, underlines its critical role in plant growth and development. This review focuses on soil acidification, a gradual process resulting from cation leaching, fertilizer utilization, and drainage issues. Soil acidification significantly hampers global crop production by modifying nutrient accessibility. In acidic soils, essential nutrients, such as nitrogen (N), phosphorus (P), potassium (K), magnesium (Mg), and Ca become less accessible, establishing a correlation between soil pH and plant nutrition. Cutting-edge Ca nutrition technologies, including nanotechnology, genetic engineering, and genome sequencing, offer the potential to deliver Ca and reduce the reliance on conventional soluble fertilizers. These fertilizers not only contribute to environmental contamination but also impose economic burdens on farmers. Nanotechnology can enhance nutrient uptake, and Ca nanoparticles improve nutrient absorption and release. Genetic engineering enables the cultivation of acid-tolerant crop varieties by manipulating Ca-related genes. High-throughput technologies such as next-generation sequencing and microarrays aid in identifying the microbial structures, functions, and biosynthetic pathways involved in managing plant nutritional stress. The ultimate goal is to shed light on the importance of Ca, problems associated with soil acidity, and potential of emerging technologies to enhance crop production while minimizing the environmental impact and economic burden on farmers.
Collapse
Affiliation(s)
- Tao Jing
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Genetic Improvement of Bananas, Sanya Research Institute, State Key Laboratory of Biological Breeding for Tropical Crops, Hainan Province, China
| | - Jingyang Li
- Tropical Crops Genetic and Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Yingdui He
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Genetic Improvement of Bananas, Sanya Research Institute, State Key Laboratory of Biological Breeding for Tropical Crops, Hainan Province, China
| | - Alka Shankar
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, 382715, Gujarat, India
| | - Abhishek Saxena
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, India
| | - Archana Tiwari
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, India
| | - Krishna Chaitanya Maturi
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India; Department of Biology, Hong Kong Baptist University, Hong Kong, Hong Kong SAR
| | - Manoj Kumar Solanki
- Department of Life Sciences and Biological Sciences, IES University, Bhopal, Madhya Pradesh, India
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, 382715, Gujarat, India
| | - Mamdouh A Eissa
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Genetic Improvement of Bananas, Sanya Research Institute, State Key Laboratory of Biological Breeding for Tropical Crops, Hainan Province, China; Department of Soils and Water, Faculty of Agriculture, Assiut University, Assiut, 71526, Egypt
| | - Zheli Ding
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Genetic Improvement of Bananas, Sanya Research Institute, State Key Laboratory of Biological Breeding for Tropical Crops, Hainan Province, China
| | - Jianghui Xie
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Genetic Improvement of Bananas, Sanya Research Institute, State Key Laboratory of Biological Breeding for Tropical Crops, Hainan Province, China.
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| |
Collapse
|
34
|
Zhong S, Zhao P, Peng X, Li HJ, Duan Q, Cheung AY. From gametes to zygote: Mechanistic advances and emerging possibilities in plant reproduction. PLANT PHYSIOLOGY 2024; 195:4-35. [PMID: 38431529 PMCID: PMC11060694 DOI: 10.1093/plphys/kiae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024]
Affiliation(s)
- Sheng Zhong
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, College of Life Sciences, Peking University, Beijing 100871, China
| | - Peng Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xiongbo Peng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Hong-Ju Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Center for Molecular Agrobiology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiaohong Duan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Alice Y Cheung
- Department of Biochemistry and Molecular Biology, Molecular and Cellular Biology Program, Plant Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
35
|
Lian S, Chen Y, Zhou Y, Feng T, Chen J, Liang L, Qian Y, Huang T, Zhang C, Wu F, Zou W, Li Z, Meng L, Li M. Functional differentiation and genetic diversity of rice cation exchanger (CAX) genes and their potential use in rice improvement. Sci Rep 2024; 14:8642. [PMID: 38622172 PMCID: PMC11018787 DOI: 10.1038/s41598-024-58224-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/26/2024] [Indexed: 04/17/2024] Open
Abstract
Cation exchanger (CAX) genes play an important role in plant growth/development and response to biotic and abiotic stresses. Here, we tried to obtain important information on the functionalities and phenotypic effects of CAX gene family by systematic analyses of their expression patterns, genetic diversity (gene CDS haplotypes, structural variations, gene presence/absence variations) in 3010 rice genomes and nine parents of 496 Huanghuazhan introgression lines, the frequency shifts of the predominant gcHaps at these loci to artificial selection during modern breeding, and their association with tolerances to several abiotic stresses. Significant amounts of variation also exist in the cis-regulatory elements (CREs) of the OsCAX gene promoters in 50 high-quality rice genomes. The functional differentiation of OsCAX gene family were reflected primarily by their tissue and development specific expression patterns and in varied responses to different treatments, by unique sets of CREs in their promoters and their associations with specific agronomic traits/abiotic stress tolerances. Our results indicated that OsCAX1a and OsCAX2 as general signal transporters were in many processes of rice growth/development and responses to diverse environments, but they might be of less value in rice improvement. OsCAX1b, OsCAX1c, OsCAX3 and OsCAX4 was expected to be of potential value in rice improvement because of their associations with specific traits, responsiveness to specific abiotic stresses or phytohormones, and relatively high gcHap and CRE diversity. Our strategy was demonstrated to be highly efficient to obtain important genetic information on genes/alleles of specific gene family and can be used to systematically characterize the other rice gene families.
Collapse
Affiliation(s)
- Shangshu Lian
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Yanjun Chen
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Yanyan Zhou
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Ting Feng
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Jingsi Chen
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Lunping Liang
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Yingzhi Qian
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Tao Huang
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Chenyang Zhang
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Fengcai Wu
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Wenli Zou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Zhikang Li
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Lijun Meng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| | - Min Li
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
36
|
Kamakura S, Bilcke G, Sato S. Transcriptional responses to salinity-induced changes in cell wall morphology of the euryhaline diatom Pleurosira laevis. JOURNAL OF PHYCOLOGY 2024; 60:308-326. [PMID: 38446079 DOI: 10.1111/jpy.13437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/23/2024] [Accepted: 02/05/2024] [Indexed: 03/07/2024]
Abstract
Diatoms are unicellular algae with morphologically diverse silica cell walls, which are called frustules. The mechanism of frustule morphogenesis has attracted attention in biology and nanomaterials engineering. However, the genetic regulation of the morphology remains unclear. We therefore used transcriptome sequencing to search for genes involved in frustule morphology in the centric diatom Pleurosira laevis, which exhibits morphological plasticity between flat and domed valve faces in salinity 2 and 7, respectively. We observed differential expression of transposable elements (TEs) and transporters, likely due to osmotic response. Up-regulation of mechanosensitive ion channels and down-regulation of Ca2+-ATPases in cells with flat valves suggested that cytosolic Ca2+ levels were changed between the morphologies. Calcium signaling could be a mechanism for detecting osmotic pressure changes and triggering morphological shifts. We also observed an up-regulation of ARPC1 and annexin, involved in the regulation of actin filament dynamics known to affect frustule morphology, as well as the up-regulation of genes encoding frustule-related proteins such as BacSETs and frustulin. Taken together, we propose a model in which salinity-induced morphogenetic changes are driven by upstream responses, such as the regulation of cytosolic Ca2+ levels, and downstream responses, such as Ca2+-dependent regulation of actin dynamics and frustule-related proteins. This study highlights the sensitivity of euryhaline diatoms to environmental salinity and the role of active cellular processes in controlling gross valve morphology under different osmotic pressures.
Collapse
Affiliation(s)
- Shiho Kamakura
- Graduate School of Bioscience and Biotechnology, Fukui Prefectural University, Obama, Fukui, Japan
| | - Gust Bilcke
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Protistology and Aquatic Ecology, Department of Biology, Ghent University, Ghent, Belgium
| | - Shinya Sato
- Faculty of Marine Science and Technology, Fukui Prefectural University, Obama, Fukui, Japan
| |
Collapse
|
37
|
Gai W, Liu C, Yang M, Li F, Xin H, Gai S. Calcium signaling facilitates chilling- and GA- induced dormancy release in tree peony. FRONTIERS IN PLANT SCIENCE 2024; 15:1362804. [PMID: 38567129 PMCID: PMC10985203 DOI: 10.3389/fpls.2024.1362804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
Calcium plays a crucial role in plant growth and development, yet little is known about its function in endodormancy regulation. Tree peony (Paeonia suffruticosa), characterized by compound buds and large flowers, is well-known for its ornamental and medicinal value. To break bud dormancy release is a prerequisite of flowering and forcing culture, particularly during the Spring Festival. In this study, the Ca2+ chelator EGTA and Ca2+ channel blocker LaCl3 were applied, resulting in a significant delay in budburst during both chilling- and gibberellin (GA)- induced dormancy release in a dosage-dependent manner. As expected, the retardation of bud break was recovered by the supplementation of 30 mM CaCl2, indicating a facilitating role of calcium in dormancy release. Accordingly, several calcium-sensor-encoding genes including Calmodulin (CaM) and Ca2+-dependent protein kinases (CDPKs) were significantly up-regulated by prolonged chilling and exogenous GAs. Ultrastructure observations revealed a decline in starch grains and the reopening of transport corridors following prolonged chilling. Calcium deposits were abundant in the cell walls and intercellular spaces at the early dormant stage but were enriched in the cytosol and nucleus before dormancy release. Additionally, several genes associated with dormancy release, including EBB1, EBB3, SVP, GA20ox, RGL1, BG6, and BG9, were differentially expressed after calcium blocking and recovery treatments, indicating that calcium might partially modulate dormancy release through GA and ABA pathways. Our findings provide novel insights into the mechanism of dormancy release and offer potential benefits for improving and perfecting forcing culture technology in tree peonies.
Collapse
Affiliation(s)
- Weiling Gai
- College of Agriculture, Qingdao Agricultural University, Qingdao, China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, China
| | - Chunying Liu
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, China
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Mengjie Yang
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, China
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Feng Li
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, China
| | - Hua Xin
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, China
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Shupeng Gai
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, China
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
38
|
Du X, Weng X, Lyu B, Zhao L, Wang H. Localized calcium transients in phragmoplast regulate cytokinesis of tobacco BY-2 cells. PLANT CELL REPORTS 2024; 43:97. [PMID: 38488911 DOI: 10.1007/s00299-024-03181-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/22/2024] [Indexed: 03/17/2024]
Abstract
KEY MESSAGE Plants exhibit a unique pattern of cytosolic Ca2+ dynamics to correlate with microtubules to regulate cytokinesis, which significantly differs from those observed in animal and yeast cells. Calcium (Ca2+) transients mediated signaling is known to be essential in cytokinesis across eukaryotic cells. However, the detailed spatiotemporal dynamics of Ca2+ during plant cytokinesis remain largely unexplored. In this study, we employed GCaMP5, a genetically encoded Ca2+ sensor, to investigate cytokinetic Ca2+ transients during cytokinesis in Nicotiana tabacum Bright Yellow-2 (BY-2) cells. We validated the effectiveness of GCaMP5 to capture fluctuations in intracellular free Ca2+ in transgenic BY-2 cells. Our results reveal that Ca2+ dynamics during BY-2 cell cytokinesis are distinctly different from those observed in embryonic and yeast cells. It is characterized by an initial significant Ca2+ spike within the phragmoplast region. This spike is followed by a decrease in Ca2+ concentration at the onset of cytokinesis in phragmoplast, which then remains elevated in comparison to the cytosolic Ca2+ until the completion of cell plate formation. At the end of cytokinesis, Ca2+ becomes uniformly distributed in the cytosol. This pattern contrasts with the typical dual waves of Ca2+ spikes observed during cytokinesis in animal embryonic cells and fission yeasts. Furthermore, applications of pharmaceutical inhibitors for either Ca2+ or microtubules revealed a close correlation between Ca2+ transients and microtubule organization in the regulation of cytokinesis. Collectively, our findings highlight the unique dynamics and crucial role of Ca2+ transients during plant cell cytokinesis, and provides new insights into plant cell division mechanisms.
Collapse
Affiliation(s)
- Xiaojuan Du
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xun Weng
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Binyang Lyu
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Lifeng Zhao
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Hao Wang
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
39
|
Rohman MM, Islam MR, Habib SH, Choudhury DA, Mohi-Ud-Din M. NADPH oxidase-mediated reactive oxygen species, antioxidant isozymes, and redox homeostasis regulate salt sensitivity in maize genotypes. Heliyon 2024; 10:e26920. [PMID: 38468963 PMCID: PMC10926083 DOI: 10.1016/j.heliyon.2024.e26920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/14/2024] [Accepted: 02/21/2024] [Indexed: 03/13/2024] Open
Abstract
The aim of the study is to examine the relationship between oxidative bursts, their regulation with ion homeostasis, and NADPH oxidase (NOX) in different salt-sensitive maize genotypes. For this, in the first study, four differently salt-sensitive maize genotypes (BIL214 × BIL218 as tolerant, BHM-5 as sensitive, and BHM-7 and BHM-9 as moderate-tolerant) were selected on the basis of phenotype, histochemical detection of reactive oxygen species (ROS), malondialdehyde (MDA) content, and specific and in-gel activity of NOX. In the next experiment, these genotypes were further examined in 200 mM NaCl solution in half-strength Hoagland media for nine days to study salt-induced changes in NOX activity, ROS accumulation, ion and redox homeostasis, the activity of antioxidants and their isozyme responses, and to find out potential relationships among the traits. Methylglyoxal (MG) and glyoxalse enzymes (Gly I and II) were also evaluated. Fully expanded leaf samplings were collected at 0 (control), 3, 6, 9-day, and after 7 days of recovery to assay different parameters. Na+/K+, NOX, ROS, and MDA contents increased significantly with the progression of stress duration in all maize genotypes, with a significantly higher value in BHM-5 as compared to tolerant and moderate-tolerant genotypes. A continual induction of Cu/Zn-SOD was observed in BIL214 × BIL218 due to salt stress. Substantial decreases in CAT2 and CAT3 isozymes in BHM-5 might be critical for the highest H2O2 burst in that sensitive genotype under salt stress. The highest intensified POD isozymes were visualized in BHM-5, BHM-7, and BHM-9, whereas BIL214 × BIL218 showed a continual induction of POD isozymes, although GPX activity decreased in all the genotypes at 9 days. Under salt stress, the tolerant genotype BIL214 × BIL218 showed superior ASA- and GSH-redox homeostasis by keeping GR and MDHAR activity high. This genotype also had a stronger MG detoxification system by having higher glyoxalase activity. Correlation, comparative heatmap, and PCA analyses revealed positive correlations among Na+/K+, NOX, O2•-, H2O2, MG, proline, GR, GST, and Gly I activities. Importantly, the relationship depends on the salt sensitivity of the genotypes. The reduced CAT activity as well as redox homeostasis were critical to the survival of the sensitive genotype.
Collapse
Affiliation(s)
- Md. Motiar Rohman
- Plant Breeding Division, Bangladesh Agricultural Research Institute, Gazipur 1701, Bangladesh
| | - Md. Robyul Islam
- SAARC Agriculture Centre, Bangladesh Agricultural Research Council, Dhaka 1215, Bangladesh
| | - Sheikh Hasna Habib
- Oil Seed Research Centre, Bangladesh Agricultural Research Institute, Gazipur 1701, Bangladesh
| | | | - Mohammed Mohi-Ud-Din
- Department of Crop Botany, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| |
Collapse
|
40
|
Cao Y, Chen X, Zhu Z, Luo Z, Hao Y, Yang X, Feng J, Zhang Z, Hu J, Jian Y, Zhu J, Liang W, Chen Z. STING contributes to lipopolysaccharide-induced tubular cell inflammation and pyroptosis by activating endoplasmic reticulum stress in acute kidney injury. Cell Death Dis 2024; 15:217. [PMID: 38485717 PMCID: PMC10940292 DOI: 10.1038/s41419-024-06600-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
Recently, innate immunity and inflammation were recognized as the key factors for acute kidney injury (AKI) caused by sepsis, which is closely related to high mortality. Stimulator of interferon genes (STING) has emerged as a critical component of innate immune and inflammatory responses. However, the role of STING in the pathogenesis of septic AKI remains unclear. This study demonstrated that the STING was significantly activated in tubular cells induced by lipopolysaccharide (LPS) in vivo and in vitro. Tubule-specific STING knockout attenuated LPS-induced renal dysfunction and pathological changes. Mechanistically, the STING pathway promotes NOD-like receptor protein 3 (NLRP3) activation. STING triggers endoplasmic reticulum (ER) stress to induce mitochondrial reactive oxygen species (mtROS) overproduction, enhancing thioredoxin-interacting protein activation and association with NLRP3. Eventually, the NLRP3 inflammasome leads to tubular cell inflammation and pyroptosis. This study revealed the STING-regulated network and further identified the STING/ER stress/mtROS/NLRP3 inflammasome axis as an emerging pathway contributing to tubular damage in LPS-induced AKI. Hence, targeting STING may be a promising therapeutic strategy for preventing septic AKI.
Collapse
Affiliation(s)
- Yun Cao
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Nephrology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical College), Haikou, China
| | - Xinghua Chen
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zijing Zhu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zilv Luo
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yiqun Hao
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xueyan Yang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jun Feng
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zongwei Zhang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jijia Hu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yonghong Jian
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiefu Zhu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Liang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Zhaowei Chen
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
41
|
Zhang J, Chen X, Song Y, Gong Z. Integrative regulatory mechanisms of stomatal movements under changing climate. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:368-393. [PMID: 38319001 DOI: 10.1111/jipb.13611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/04/2024] [Indexed: 02/07/2024]
Abstract
Global climate change-caused drought stress, high temperatures and other extreme weather profoundly impact plant growth and development, restricting sustainable crop production. To cope with various environmental stimuli, plants can optimize the opening and closing of stomata to balance CO2 uptake for photosynthesis and water loss from leaves. Guard cells perceive and integrate various signals to adjust stomatal pores through turgor pressure regulation. Molecular mechanisms and signaling networks underlying the stomatal movements in response to environmental stresses have been extensively studied and elucidated. This review focuses on the molecular mechanisms of stomatal movements mediated by abscisic acid, light, CO2 , reactive oxygen species, pathogens, temperature, and other phytohormones. We discussed the significance of elucidating the integrative mechanisms that regulate stomatal movements in helping design smart crops with enhanced water use efficiency and resilience in a climate-changing world.
Collapse
Affiliation(s)
- Jingbo Zhang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China
| | - Xuexue Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yajing Song
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
- Institute of Life Science and Green Development, School of Life Sciences, Hebei University, Baoding, 071001, China
| |
Collapse
|
42
|
Westermann J, Srikant T, Gonzalo A, Tan HS, Bomblies K. Defective pollen tube tip growth induces neo-polyploid infertility. Science 2024; 383:eadh0755. [PMID: 38422152 DOI: 10.1126/science.adh0755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024]
Abstract
Genome duplication (generating polyploids) is an engine of novelty in eukaryotic evolution and a promising crop improvement tool. Yet newly formed polyploids often have low fertility. Here we report that a severe fertility-compromising defect in pollen tube tip growth arises in new polyploids of Arabidopsis arenosa. Pollen tubes of newly polyploid A. arenosa grow slowly, have aberrant anatomy and disrupted physiology, often burst prematurely, and have altered gene expression. These phenotypes recover in evolved polyploids. We also show that gametophytic (pollen tube) genotypes of two tip-growth genes under selection in natural tetraploid A. arenosa are strongly associated with pollen tube performance in the tetraploid. Our work establishes pollen tube tip growth as an important fertility challenge for neo-polyploid plants and provides insights into a naturally evolved multigenic solution.
Collapse
Affiliation(s)
- Jens Westermann
- Institute of Molecular Plant Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Thanvi Srikant
- Institute of Molecular Plant Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Adrián Gonzalo
- Institute of Molecular Plant Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Hui San Tan
- Institute of Molecular Plant Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Kirsten Bomblies
- Institute of Molecular Plant Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
43
|
Yuan D, Wu X, Jiang X, Gong B, Gao H. Types of Membrane Transporters and the Mechanisms of Interaction between Them and Reactive Oxygen Species in Plants. Antioxidants (Basel) 2024; 13:221. [PMID: 38397819 PMCID: PMC10886204 DOI: 10.3390/antiox13020221] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Membrane transporters are proteins that mediate the entry and exit of substances through the plasma membrane and organellar membranes and are capable of recognizing and binding to specific substances, thereby facilitating substance transport. Membrane transporters are divided into different types, e.g., ion transporters, sugar transporters, amino acid transporters, and aquaporins, based on the substances they transport. These membrane transporters inhibit reactive oxygen species (ROS) generation through ion regulation, sugar and amino acid transport, hormone induction, and other mechanisms. They can also promote enzymatic and nonenzymatic reactions in plants, activate antioxidant enzyme activity, and promote ROS scavenging. Moreover, membrane transporters can transport plant growth regulators, solute proteins, redox potential regulators, and other substances involved in ROS metabolism through corresponding metabolic pathways, ultimately achieving ROS homeostasis in plants. In turn, ROS, as signaling molecules, can affect the activity of membrane transporters under abiotic stress through collaboration with ions and involvement in hormone metabolic pathways. The research described in this review provides a theoretical basis for improving plant stress resistance, promoting plant growth and development, and breeding high-quality plant varieties.
Collapse
Affiliation(s)
| | | | | | | | - Hongbo Gao
- Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China; (D.Y.); (X.W.); (X.J.); (B.G.)
| |
Collapse
|
44
|
Coatsworth P, Cotur Y, Naik A, Asfour T, Collins ASP, Olenik S, Zhou Z, Gonzalez-Macia L, Chao DY, Bozkurt T, Güder F. Time-resolved chemical monitoring of whole plant roots with printed electrochemical sensors and machine learning. SCIENCE ADVANCES 2024; 10:eadj6315. [PMID: 38295162 PMCID: PMC10830104 DOI: 10.1126/sciadv.adj6315] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024]
Abstract
Traditional single-point measurements fail to capture dynamic chemical responses of plants, which are complex, nonequilibrium biological systems. We report TETRIS (time-resolved electrochemical technology for plant root environment in situ chemical sensing), a real-time chemical phenotyping system for continuously monitoring chemical signals in the often-neglected plant root environment. TETRIS consisted of low-cost, highly scalable screen-printed electrochemical sensors for monitoring concentrations of salt, pH, and H2O2 in the root environment of whole plants, where multiplexing allowed for parallel sensing operation. TETRIS was used to measure ion uptake in tomato, kale, and rice and detected differences between nutrient and heavy metal ion uptake. Modulation of ion uptake with ion channel blocker LaCl3 was monitored by TETRIS and machine learning used to predict ion uptake. TETRIS has the potential to overcome the urgent "bottleneck" in high-throughput screening in producing high-yielding plant varieties with improved resistance against stress.
Collapse
Affiliation(s)
- Philip Coatsworth
- Imperial College London, Department of Bioengineering, Royal School of Mines, SW7 2AZ London, UK
| | - Yasin Cotur
- Imperial College London, Department of Bioengineering, Royal School of Mines, SW7 2AZ London, UK
| | - Atharv Naik
- Imperial College London, Department of Bioengineering, Royal School of Mines, SW7 2AZ London, UK
| | - Tarek Asfour
- Imperial College London, Department of Bioengineering, Royal School of Mines, SW7 2AZ London, UK
| | - Alex Silva-Pinto Collins
- Imperial College London, Department of Bioengineering, Royal School of Mines, SW7 2AZ London, UK
| | - Selin Olenik
- Imperial College London, Department of Bioengineering, Royal School of Mines, SW7 2AZ London, UK
| | - Zihao Zhou
- Imperial College London, Department of Bioengineering, Royal School of Mines, SW7 2AZ London, UK
| | - Laura Gonzalez-Macia
- Imperial College London, Department of Bioengineering, Royal School of Mines, SW7 2AZ London, UK
| | - Dai-Yin Chao
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Tolga Bozkurt
- Imperial College London, Department of Life Sciences, Royal School of Mines, SW7 2AZ London, UK
| | - Firat Güder
- Imperial College London, Department of Bioengineering, Royal School of Mines, SW7 2AZ London, UK
| |
Collapse
|
45
|
Mathew IE, Rhein HS, Yang J, Gradogna A, Carpaneto A, Guo Q, Tappero R, Scholz-Starke J, Barkla BJ, Hirschi KD, Punshon T. Sequential removal of cation/H + exchangers reveals their additive role in elemental distribution, calcium depletion and anoxia tolerance. PLANT, CELL & ENVIRONMENT 2024; 47:557-573. [PMID: 37916653 DOI: 10.1111/pce.14756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/21/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023]
Abstract
Multiple Arabidopsis H+ /Cation exchangers (CAXs) participate in high-capacity transport into the vacuole. Previous studies have analysed single and double mutants that marginally reduced transport; however, assessing phenotypes caused by transport loss has proven enigmatic. Here, we generated quadruple mutants (cax1-4: qKO) that exhibited growth inhibition, an 85% reduction in tonoplast-localised H+ /Ca transport, and enhanced tolerance to anoxic conditions compared to CAX1 mutants. Leveraging inductively coupled plasma mass spectrometry (ICP-MS) and synchrotron X-ray fluorescence (SXRF), we demonstrate CAX transporters work together to regulate leaf elemental content: ICP-MS analysis showed that the elemental concentrations in leaves strongly correlated with the number of CAX mutations; SXRF imaging showed changes in element partitioning not present in single CAX mutants and qKO had a 40% reduction in calcium (Ca) abundance. Reduced endogenous Ca may promote anoxia tolerance; wild-type plants grown in Ca-limited conditions were anoxia tolerant. Sequential reduction of CAXs increased mRNA expression and protein abundance changes associated with reactive oxygen species and stress signalling pathways. Multiple CAXs participate in postanoxia recovery as their concerted removal heightened changes in postanoxia Ca signalling. This work showcases the integrated and diverse function of H+ /Cation transporters and demonstrates the ability to improve anoxia tolerance through diminishing endogenous Ca levels.
Collapse
Affiliation(s)
- Iny Elizebeth Mathew
- Pediatrics-Nutrition, Children's Nutrition Research, Baylor College of Medicine, Houston, Texas, USA
| | - Hormat Shadgou Rhein
- Pediatrics-Nutrition, Children's Nutrition Research, Baylor College of Medicine, Houston, Texas, USA
| | - Jian Yang
- Pediatrics-Nutrition, Children's Nutrition Research, Baylor College of Medicine, Houston, Texas, USA
| | - Antonella Gradogna
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, Genova, Italy
| | - Armando Carpaneto
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, Genova, Italy
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genova, Italy
| | - Qi Guo
- Faculty of Science and Engineering, Southern Cross University, Lismore, New South Wales, Australia
| | - Ryan Tappero
- Brookhaven National Laboratory, Photon Sciences Department, Upton, New York, USA
| | | | - Bronwyn J Barkla
- Faculty of Science and Engineering, Southern Cross University, Lismore, New South Wales, Australia
| | - Kendal D Hirschi
- Pediatrics-Nutrition, Children's Nutrition Research, Baylor College of Medicine, Houston, Texas, USA
| | - Tracy Punshon
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
46
|
Zhou H, Shi H, Yang Y, Feng X, Chen X, Xiao F, Lin H, Guo Y. Insights into plant salt stress signaling and tolerance. J Genet Genomics 2024; 51:16-34. [PMID: 37647984 DOI: 10.1016/j.jgg.2023.08.007] [Citation(s) in RCA: 111] [Impact Index Per Article: 111.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
Soil salinization is an essential environmental stressor, threatening agricultural yield and ecological security worldwide. Saline soils accumulate excessive soluble salts which are detrimental to most plants by limiting plant growth and productivity. It is of great necessity for plants to efficiently deal with the adverse effects caused by salt stress for survival and successful reproduction. Multiple determinants of salt tolerance have been identified in plants, and the cellular and physiological mechanisms of plant salt response and adaption have been intensely characterized. Plants respond to salt stress signals and rapidly initiate signaling pathways to re-establish cellular homeostasis with adjusted growth and cellular metabolism. This review summarizes the advances in salt stress perception, signaling, and response in plants. A better understanding of plant salt resistance will contribute to improving crop performance under saline conditions using multiple engineering approaches. The rhizosphere microbiome-mediated plant salt tolerance as well as chemical priming for enhanced plant salt resistance are also discussed in this review.
Collapse
Affiliation(s)
- Huapeng Zhou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Haifan Shi
- College of Grassland Science, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yongqing Yang
- State Key Laboratory of Plant Environmental Resilience, China Agricultural University, Beijing 100193, China
| | - Xixian Feng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xi Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Fei Xiao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Honghui Lin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yan Guo
- State Key Laboratory of Plant Environmental Resilience, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
47
|
Bibi G, Shafique I, Ali S, Ahmad R, Shah MM, Naqvi TA, Zeb I, Maathuis FJM, Hussain J. Cyclic guanosine monophosphate improves salt tolerance in Solanum lycopersicum. JOURNAL OF PLANT RESEARCH 2024; 137:111-124. [PMID: 37610631 PMCID: PMC10764492 DOI: 10.1007/s10265-023-01487-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/30/2023] [Indexed: 08/24/2023]
Abstract
The cyclic nucleotide cyclic guanosine monophosphate (cGMP) is a powerful cell signaling molecule involved in biotic and abiotic stress perception and signal transduction. In the model plant Arabidopsis thaliana, salt and osmotic stress rapidly induce increase in cGMP which plays role by modulating the activity of monovalent cation transporters, possibly by direct binding to these proteins and by altering the expression of many abiotic stress responsive genes. In a recent study, a membrane permeable analogue of cGMP (8-bromo-cGMP) was found to have a promotive effect on soluble sugar, flavonoids and lignin content, and membrane integrity in Solanum lycopersicum seedlings under salt stress. However, it remains to be elucidated how salt stress affects the endogenous cGMP level in S. lycopersicum and if Br-cGMP-induced improvement in salt tolerance in S. lycopersicum involves altered cation fluxes. The current study was conducted to answer these questions. A rapid increase (within 30 s) in endogenous cGMP level was determined in S. lycopersicum roots after treatment with 100 mM NaCl. Addition of membrane permeable Br-cGMP in growth medium remarkably ameliorated the inhibitory effects of NaCl on seedlings' growth parameters, chlorophyll content and net photosynthesis rate. In salt stressed plants, Br-cGMP significantly decreased Na+ content by reducing its influx and increasing efflux while it improved plants K+ content by reducing its efflux and enhancing influx. Furthermore, supplementation with Br-cGMP improved plant's proline content and total antioxidant capacity, resulting in markedly decreased electrolyte leakage under salt stress. Br-cGMP increased the expression of Na+/H+ antiporter genes in roots and shoots of S. lycopersicum growing under salt stress, potentially enhancing plant's ability to sequester Na+ into the vacuole. The findings of this study provide insights into the mechanism of cGMP-induced salt stress tolerance in S. lycopersicum.
Collapse
Affiliation(s)
- Gulnaz Bibi
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, University Road, Tobe Camp, Abbottabad, 22060, Pakistan
| | - Iqra Shafique
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, University Road, Tobe Camp, Abbottabad, 22060, Pakistan
| | - Sartaj Ali
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, University Road, Tobe Camp, Abbottabad, 22060, Pakistan
| | - Raza Ahmad
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, University Road, Tobe Camp, Abbottabad, 22060, Pakistan
| | - Mohammad Maroof Shah
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, University Road, Tobe Camp, Abbottabad, 22060, Pakistan
| | - Tatheer Alam Naqvi
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, University Road, Tobe Camp, Abbottabad, 22060, Pakistan
| | - Iftikhar Zeb
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, University Road, Tobe Camp, Abbottabad, 22060, Pakistan
| | | | - Jamshaid Hussain
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, University Road, Tobe Camp, Abbottabad, 22060, Pakistan.
| |
Collapse
|
48
|
Houmani H, Corpas FJ. Can nutrients act as signals under abiotic stress? PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108313. [PMID: 38171136 DOI: 10.1016/j.plaphy.2023.108313] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/11/2023] [Accepted: 12/23/2023] [Indexed: 01/05/2024]
Abstract
Plant cells are in constant communication to coordinate development processes and environmental reactions. Under stressful conditions, such communication allows the plant cells to adjust their activities and development. This is due to intercellular signaling events which involve several components. In plant development, cell-to-cell signaling is ensured by mobile signals hormones, hydrogen peroxide (H2O2), nitric oxide (NO), or hydrogen sulfide (H2S), as well as several transcription factors and small RNAs. Mineral nutrients, including macro and microelements, are determinant factors for plant growth and development and are, currently, recognized as potential signal molecules. This review aims to highlight the role of nutrients, particularly calcium, potassium, magnesium, nitrogen, phosphorus, and iron as signaling components with special attention to the mechanism of response against stress conditions.
Collapse
Affiliation(s)
- Hayet Houmani
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), C/Profesor Albareda, 1, 18008, Granada, Spain; Laboratory of Extremophile Plants, Center of Biotechnology of Borj Cedria, PO Box 901, 2050, Hammam-Lif, Tunisia
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), C/Profesor Albareda, 1, 18008, Granada, Spain.
| |
Collapse
|
49
|
Yan C, Gao Q, Yang M, Shao Q, Xu X, Zhang Y, Luan S. Ca 2+/calmodulin-mediated desensitization of glutamate receptors shapes plant systemic wound signalling and anti-herbivore defence. NATURE PLANTS 2024; 10:145-160. [PMID: 38168609 DOI: 10.1038/s41477-023-01578-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 10/30/2023] [Indexed: 01/05/2024]
Abstract
Plants rely on systemic signalling mechanisms to establish whole-body defence in response to insect and nematode attacks. GLUTAMATE RECEPTOR-LIKE (GLR) genes have been implicated in long-distance transmission of wound signals to initiate the accumulation of the defence hormone jasmonate (JA) at undamaged distal sites. The systemic signalling entails the activation of Ca2+-permeable GLR channels by wound-released glutamate, triggering membrane depolarization and cytosolic Ca2+ influx throughout the whole plant. The systemic electrical and calcium signals rapidly dissipate to restore the resting state, partially due to desensitization of the GLR channels. Here we report the discovery of calmodulin-mediated, Ca2+-dependent desensitization of GLR channels, revealing a negative feedback loop in the orchestration of plant systemic wound responses. A CRISPR-engineered GLR3.3 allele with impaired desensitization showed prolonged systemic electrical signalling and Ca2+ waves, leading to enhanced plant defence against herbivores. Moreover, this Ca2+/calmodulin-mediated desensitization of GLR channels is a highly conserved mechanism in plants, providing a potential target for engineering anti-herbivore defence in crops.
Collapse
Affiliation(s)
- Chun Yan
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Qifei Gao
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Mai Yang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Qiaolin Shao
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Xiaopeng Xu
- School of Engineering Medicine, Beihang University, Beijing, China
| | - Yongbiao Zhang
- School of Engineering Medicine, Beihang University, Beijing, China
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
50
|
Lindberg S, Premkumar A. Ion Changes and Signaling under Salt Stress in Wheat and Other Important Crops. PLANTS (BASEL, SWITZERLAND) 2023; 13:46. [PMID: 38202354 PMCID: PMC10780558 DOI: 10.3390/plants13010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024]
Abstract
High concentrations of sodium (Na+), chloride (Cl-), calcium (Ca2+), and sulphate (SO42-) are frequently found in saline soils. Crop plants cannot successfully develop and produce because salt stress impairs the uptake of Ca2+, potassium (K+), and water into plant cells. Different intracellular and extracellular ionic concentrations change with salinity, including those of Ca2+, K+, and protons. These cations serve as stress signaling molecules in addition to being essential for ionic homeostasis and nutrition. Maintaining an appropriate K+:Na+ ratio is one crucial plant mechanism for salt tolerance, which is a complicated trait. Another important mechanism is the ability for fast extrusion of Na+ from the cytosol. Ca2+ is established as a ubiquitous secondary messenger, which transmits various stress signals into metabolic alterations that cause adaptive responses. When plants are under stress, the cytosolic-free Ca2+ concentration can rise to 10 times or more from its resting level of 50-100 nanomolar. Reactive oxygen species (ROS) are linked to the Ca2+ alterations and are produced by stress. Depending on the type, frequency, and intensity of the stress, the cytosolic Ca2+ signals oscillate, are transient, or persist for a longer period and exhibit specific "signatures". Both the influx and efflux of Ca2+ affect the length and amplitude of the signal. According to several reports, under stress Ca2+ alterations can occur not only in the cytoplasm of the cell but also in the cell walls, nucleus, and other cell organelles and the Ca2+ waves propagate through the whole plant. Here, we will focus on how wheat and other important crops absorb Na+, K+, and Cl- when plants are under salt stress, as well as how Ca2+, K+, and pH cause intracellular signaling and homeostasis. Similar mechanisms in the model plant Arabidopsis will also be considered. Knowledge of these processes is important for understanding how plants react to salinity stress and for the development of tolerant crops.
Collapse
Affiliation(s)
- Sylvia Lindberg
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-114 18 Stockholm, Sweden
| | - Albert Premkumar
- Bharathiyar Group of Institutes, Guduvanchery 603202, Tamilnadu, India;
| |
Collapse
|