1
|
Wieczorek K, Bell CA. Exploited mutualism: the reciprocal effects of plant parasitic nematodes on the mechanisms underpinning plant-mutualist interactions. THE NEW PHYTOLOGIST 2025; 246:2435-2439. [PMID: 40178031 PMCID: PMC12095971 DOI: 10.1111/nph.70125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 03/18/2025] [Indexed: 04/05/2025]
Abstract
We are quickly gaining insights into the mechanisms and functions of plant-mutualist relationships with the common overarching aim of exploiting them to enhance food security and crop resilience. There is a growing mass of research describing various benefits of plant-mutualistic fungi, including increased nutrition, yields, and tolerance to biotic and abiotic factors. The bulk of this research has been focused on arbuscular mycorrhiza; however, there is now an expansion toward other plant mutualistic fungi. Contrary to the established 'mycorrhizal induced resistance' principle, increasing evidence shows that certain plant pests and pathogens may, in fact, exploit the benefits that mutualists provide their hosts, resulting in enhanced pathogenicity and reduced mutualist-derived benefits. In this Viewpoint, we propose that studying plant mutualistic fungi under controlled artificial conditions indeed provides in-depth knowledge but may mislead long-term applications as it does not accurately reflect multi-symbiont scenarios that occur in natura. We summarize the reciprocal impacts of plant pests, such as plant parasitic nematodes, on plant-fungal mutualisms and highlight how glasshouse experiments often yield contradictory results. We emphasize the need for collaborative efforts to increase the granularity of experimental systems, better reflecting natural environments to gain holistic insights into mutualist functions before applying them in sustainable crop protection strategies.
Collapse
Affiliation(s)
- Krzysztof Wieczorek
- Department of Agricultural Sciences, Institute of Plant ProtectionUniversity of Natural Resources and Life Sciences, Vienna3430Tulln an der DonauAustria
| | - Chris A. Bell
- School of Biology, Faculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
| |
Collapse
|
2
|
Sadras VO, Hayman PT. The causal arrows from genotype, environment, and management to plant phenotype are double headed. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:917-930. [PMID: 39545971 PMCID: PMC11850972 DOI: 10.1093/jxb/erae455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 11/13/2024] [Indexed: 11/17/2024]
Abstract
Cause-and-effect arrows are drawn from genotype (G), environment (E), and agronomic management (M) to the plant phenotype in crop stands in a useful but incomplete framework that informs research questions, experimental design, statistical analysis, data interpretation, modelling, and breeding and agronomic applications. Here we focus on the overlooked bidirectionality of these arrows. The phenotype-to-genotype arrow includes increased mutation rates in stressed phenotypes, relative to basal rates. From a developmental viewpoint, the phenotype modulates gene expression, returning multiple cellular phenotypes with a common genome. The phenotype-to-environment arrow is captured in the process of niche construction, which spans from persistent and global to transient and local. Research on crop rotations recognizes the influence of the phenotype on the environment but is divorced from niche construction theory. The phenotype-to-management arrow involves, for example, a diseased crop that may trigger fungicide treatment. Making explicit the bidirectionality of the arrows in the G×E×M framework contributes to narrowing the gap between data-driven technologies and integrative theory, and is an invitation to think cautiously of the internal teleonomy of plants in contrast to the view of the phenotype as the passive end of the arrows in the current framework.
Collapse
Affiliation(s)
- Victor O Sadras
- South Australian Research and Development Institute; School of Agriculture, Food and Wine, The University of Adelaide; College of Science and Engineering, Flinders University, Adelaide, Australia
| | - Peter T Hayman
- South Australian Research and Development Institute; School of Agriculture, Food and Wine, The University of Adelaide; College of Science and Engineering, Flinders University, Adelaide, Australia
| |
Collapse
|
3
|
Oladele S, Gould I, Varga S. Is arbuscular mycorrhizal fungal addition beneficial to potato systems? A meta-analysis. MYCORRHIZA 2024; 35:5. [PMID: 39680220 PMCID: PMC11649713 DOI: 10.1007/s00572-024-01178-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/16/2024] [Indexed: 12/17/2024]
Abstract
The application of arbuscular mycorrhizal (AM) fungi has been reported to confer multiple agronomic benefits to crop plants including cereals, vegetables, and fruit trees, as well as to improve soil structure and health. In this study, we conducted a meta-analysis to investigate whether AM fungal addition enhances potato yield. We further examined whether several experimental conditions (type of experiment, inoculation method, and source of AM fungi) and potato cultivar may explain the outcomes. We calculated the effect sizes of seven plant parameters by including a total of 106 independent pot and field experimental studies from 37 peer reviewed publications. Our results show that the addition of AM fungi has an overall positive effect on all potato plant parameters included in our analyses except for aboveground plant biomass. Potato cultivar was the main significant moderator explaining our findings, with some cultivars benefiting more from AM fungal presence than others. Our findings agree with several other global meta-analyses reporting positive effects of AM fungi on other important crops and highlights the potential application of these fungal symbionts in potato agro-ecosystems.
Collapse
Affiliation(s)
- Segun Oladele
- School of Natural Sciences, University of Lincoln, Lincoln, LN6 7TS, UK
- Lincoln Institute for Agri-food Technology, University of Lincoln, Lincoln, LN6 7TS, UK
| | - Iain Gould
- Lincoln Institute for Agri-food Technology, University of Lincoln, Lincoln, LN6 7TS, UK
| | - Sandra Varga
- School of Natural Sciences, University of Lincoln, Lincoln, LN6 7TS, UK.
| |
Collapse
|
4
|
Seeliger M, Hilton S, Muscatt G, Walker C, Bass D, Albornoz F, Standish RJ, Gray ND, Mercy L, Rempelos L, Schneider C, Ryan MH, Bilsborrow PE, Bending GD. New fungal primers reveal the diversity of Mucoromycotinian arbuscular mycorrhizal fungi and their response to nitrogen application. ENVIRONMENTAL MICROBIOME 2024; 19:71. [PMID: 39294800 PMCID: PMC11411812 DOI: 10.1186/s40793-024-00617-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 09/09/2024] [Indexed: 09/21/2024]
Abstract
BACKGROUND Arbuscular mycorrhizas (AM) are the most widespread terrestrial symbiosis and are both a key determinant of plant health and a major contributor to ecosystem processes through their role in biogeochemical cycling. Until recently, it was assumed that the fungi which form AM comprise the subphylum Glomeromycotina (G-AMF), and our understanding of the diversity and ecosystem roles of AM is based almost exclusively on this group. However recent evidence shows that fungi which form the distinctive 'fine root endophyte' (FRE) AM morphotype are members of the subphylum Mucoromycotina (M-AMF), so that AM symbioses are actually formed by two distinct groups of fungi. RESULTS We investigated the influence of nitrogen (N) addition and wheat variety on the assembly of AM communities under field conditions. Visual assessment of roots showed co-occurrence of G-AMF and M-AMF, providing an opportunity to compare the responses of these two groups. Existing 'AM' 18S rRNA primers which co-amplify G-AMF and M-AMF were modified to reduce bias against Mucoromycotina, and compared against a new 'FRE' primer set which selectively amplifies Mucoromycotina. Using the AM-primers, no significant effect of either N-addition or wheat variety on G-AMF or M-AMF diversity or community composition was detected. In contrast, using the FRE-primers, N-addition was shown to reduce M-AMF diversity and altered community composition. The ASV which responded to N-addition were closely related, demonstrating a clear phylogenetic signal which was identified only by the new FRE-primers. The most abundant Mucoromycotina sequences we detected belonged to the same Endogonales clades as dominant sequences associated with FRE morphology in Australia, indicating that closely related M-AMF may be globally distributed. CONCLUSIONS The results demonstrate the need to consider both G-AMF and M-AMF when investigating AM communities, and highlight the importance of primer choice when investigating AMF community dynamics.
Collapse
Affiliation(s)
- Mirjam Seeliger
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| | - Sally Hilton
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- Micropathology Ltd, Coventry, CV4 7EZ, UK
| | - George Muscatt
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Christopher Walker
- Royal Botanic Gardens Edinburgh, 21A Inverleith Row, Edinburgh, EH3 5LR, UK
- UWA School of Agriculture and Environment, University of Western Australia, Crawley, WA, 6009, Australia
| | - David Bass
- Centre for Environment, Fisheries, and Aquaculture Science, Barrack Road, The Nothe, Weymouth, DT4 8UB, UK
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Felipe Albornoz
- UWA School of Agriculture and Environment, University of Western Australia, Crawley, WA, 6009, Australia
- Commonwealth Scientific and Industrial Research Organisation, Land and Water, Wembley, WA, Australia
- School of Environmental and Conservation Sciences, Murdoch University, South Street, Murdoch, WA, 6150, Australia
| | - Rachel J Standish
- School of Environmental and Conservation Sciences, Murdoch University, South Street, Murdoch, WA, 6150, Australia
| | - Neil D Gray
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | | | - Leonidas Rempelos
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | | | - Megan H Ryan
- UWA School of Agriculture and Environment, University of Western Australia, Crawley, WA, 6009, Australia
| | - Paul E Bilsborrow
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Gary D Bending
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
5
|
Li Y, Chen H, Gu L, Wu J, Zheng X, Fan Z, Pan D, Li JT, Shu W, Rosendahl S, Wang Y. Domestication of rice may have changed its arbuscular mycorrhizal properties by modifying phosphorus nutrition-related traits and decreasing symbiotic compatibility. THE NEW PHYTOLOGIST 2024; 243:1554-1570. [PMID: 38853449 DOI: 10.1111/nph.19901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024]
Abstract
Modern cultivated rice (Oryza sativa) typically experiences limited growth benefits from arbuscular mycorrhizal (AM) symbiosis. This could be due to the long-term domestication of rice under favorable phosphorus conditions. However, there is limited understanding of whether and how the rice domestication has modified AM properties. This study compared AM properties between a collection of wild (Oryza rufipogon) and domesticated rice genotypes and investigated the mechanisms underlying their differences by analyzing physiological, genomic, transcriptomic, and metabolomic traits critical for AM symbiosis. The results revealed significantly lower mycorrhizal growth responses and colonization intensity in domesticated rice compared to wild rice, and this change of AM properties may be associated with the domestication modifications of plant phosphorus utilization efficiency at physiological and genomic levels. Domestication also resulted in a decrease in the activity of the mycorrhizal phosphorus acquisition pathway, which may be attributed to reduced mycorrhizal compatibility of rice roots by enhancing defense responses like root lignification and reducing carbon supply to AM fungi. In conclusion, rice domestication may have changed its AM properties by modifying P nutrition-related traits and reducing symbiotic compatibility. This study offers new insights for improving AM properties in future rice breeding programs to enhance sustainable agricultural production.
Collapse
Affiliation(s)
- Yingwei Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Hanwen Chen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Ling Gu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jingwen Wu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Xiutan Zheng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Zhilan Fan
- Rice Research Institute, Guangdong Academy of Agricultural Science, Guangzhou, 510640, China
| | - Dajian Pan
- Rice Research Institute, Guangdong Academy of Agricultural Science, Guangzhou, 510640, China
| | - Jin-Tian Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Wensheng Shu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Søren Rosendahl
- Department of Biology, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Yutao Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| |
Collapse
|
6
|
Qian S, Xu Y, Zhang Y, Wang X, Niu X, Wang P. Effect of AMF Inoculation on Reducing Excessive Fertilizer Use. Microorganisms 2024; 12:1550. [PMID: 39203391 PMCID: PMC11356082 DOI: 10.3390/microorganisms12081550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/15/2024] [Accepted: 07/28/2024] [Indexed: 09/03/2024] Open
Abstract
Excessive use of chemical fertilizer is a global concern. Arbuscular mycorrhizal fungi (AMF) are considered a potential solution due to their symbiotic association with crops. This study assessed AMF's effects on maize yield, fertilizer efficiency, plant traits, and soil nutrients under different reduced-fertilizer regimes in medium-low fertility fields. We found that phosphorus supplementation after a 30% fertilizer reduction enhanced AMF's positive impact on grain yield, increasing it by 3.47% with pure chemical fertilizers and 6.65% with mixed fertilizers. The AMF inoculation did not significantly affect the nitrogen and phosphorus fertilizer use efficiency, but significantly increased root colonization and soil mycelium density. Mixed fertilizer treatments with phosphorus supplementation after fertilizer reduction showed greater mycorrhizal effects on plant traits and soil nutrient contents compared to chemical fertilizer treatments. This study highlights that AMF inoculation, closely linked to fertilization regimes, can effectively reduce fertilizer use while sustaining or enhancing maize yields.
Collapse
Affiliation(s)
- Siru Qian
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130024, China; (S.Q.); (Y.X.); (X.W.); (X.N.)
| | - Ying Xu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130024, China; (S.Q.); (Y.X.); (X.W.); (X.N.)
| | - Yifei Zhang
- Jilin Provincial Academy of Forestry Sciences, Changchun 130033, China;
| | - Xue Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130024, China; (S.Q.); (Y.X.); (X.W.); (X.N.)
| | - Ximei Niu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130024, China; (S.Q.); (Y.X.); (X.W.); (X.N.)
| | - Ping Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130024, China; (S.Q.); (Y.X.); (X.W.); (X.N.)
| |
Collapse
|
7
|
Mafune KK, Kasson MT, Winkler MKH. Building blocks toward sustainable biofertilizers: variation in arbuscular mycorrhizal spore germination when immobilized with diazotrophic bacteria in biodegradable hydrogel beads. J Appl Microbiol 2024; 135:lxae167. [PMID: 38960411 DOI: 10.1093/jambio/lxae167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/18/2024] [Accepted: 07/02/2024] [Indexed: 07/05/2024]
Abstract
AIM We investigated whether there was interspecies and intraspecies variation in spore germination of 12 strains of arbuscular mycorrhizal fungi when co-entrapped with the diazotrophic plant growth-promoting bacteria, Azospirillum brasilense Sp7 in alginate hydrogel beads. METHODS AND RESULTS Twelve Rhizophagus irregularis, Rhizophagus intraradices, and Funneliformis mosseae strains were separately combined with a live culture of Azospirillum brasilense Sp7. Each fungal-bacterial consortia was supplemented with sodium alginate to a 2% concentration (v/v) and cross-linked in calcium chloride (2% w/v) to form biodegradable hydrogel beads. One hundred beads from each combination (total of 1200) were fixed in solidified modified Strullu and Romand media. Beads were observed for successful spore germination and bacterial growth over 14 days. In all cases, successful growth of A. brasilense was observed. For arbuscular mycorrhizal fungi, interspecies variation in spore germination was observed, with R. intraradices having the highest germination rate (64.3%), followed by R. irregularis (45.5%) and F. mosseae (40.3%). However, a difference in intraspecies germination was only observed among strains of R. irregularis and F. mosseae. Despite having varying levels of germination, even the strains with the lowest potential were still able to establish with the plant host Brachypodium distachyon in a model system. CONCLUSIONS Arbuscular mycorrhizal spore germination varied across strains when co-entrapped with a diazotrophic plant growth-promoting bacteria. This demonstrates that hydrogel beads containing a mixed consortium hold potential as a sustainable biofertilizer and that compatibility tests remain an important building block when aiming to create a hydrogel biofertilizer that encases a diversity of bacteria and fungi. Moving forward, further studies should be conducted to test the efficacy of these hydrogel biofertilizers on different crops across varying climatic conditions in order to optimize their potential.
Collapse
Affiliation(s)
- Korena K Mafune
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98105, United States
| | - Matt T Kasson
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506, United States
| | - Mari-Karoliina H Winkler
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98105, United States
| |
Collapse
|
8
|
Alaux PL, Courty PE, Fréville H, David J, Rocher A, Taschen E. Wheat dwarfing reshapes plant and fungal development in arbuscular mycorrhizal symbiosis. MYCORRHIZA 2024; 34:351-360. [PMID: 38816524 DOI: 10.1007/s00572-024-01150-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/27/2024] [Indexed: 06/01/2024]
Abstract
The introduction of Reduced height (Rht) dwarfing genes into elite wheat varieties has contributed to enhanced yield gain in high input agrosystems by preventing lodging. Yet, how modern selection for dwarfing has affected symbiosis remains poorly documented. In this study, we evaluated the response of both the plant and the arbuscular mycorrhizal fungus to plant genetic variation at a major Quantitative Trait Locus called QTL 4B2, known to harbor a Rht dwarfing gene, when forming the symbiosis. We used twelve inbred genotypes derived from a diversity base broadened durum wheat Evolutionary Pre-breeding Population and genotyped with a high-throughput Single Nucleotide Polymorphism (SNP) genotyping array. In a microcosm setup segregating roots and the extra-radical mycelium, each wheat genotype was grown with or without the presence of Rhizophagus irregularis. To characterize arbuscular mycorrhizal symbiosis, we assessed hyphal density, root colonization, spore production, and plant biomass. Additionally, we split the variation of these variables due either to genotypes or to the Rht dwarfing genes alone. The fungus exhibited greater development in the roots of Dwarf plants compared to non-Dwarf plants, showing increases of 27%, 37% and 51% in root colonization, arbuscules, and vesicles, respectively. In addition, the biomass of the extra-radical fungal structures increased by around 31% in Dwarf plants. The biomass of plant roots decreased by about 43% in mycorrhizal Dwarf plants. Interestingly, extraradical hyphal production was found to be partly genetically determined with no significant effect of Rht, as for plant biomasses. In contrast, variations in root colonization, arbuscules and extraradical spore production were explained by Rht dwarfing genes. Finally, when mycorrhizal, Dwarf plants had significantly lower total P content, pointing towards a less beneficial symbiosis for the plant and increased profit for the fungus. These results highlight the effect of Rht dwarfing genes on both root and fungal development. This calls for further research into the molecular mechanisms governing these effects, as well as changes in plant physiology, and their implications for fostering arbuscular mycorrhizal symbiosis in sustainable agrosystems.
Collapse
Affiliation(s)
- Pierre-Louis Alaux
- UMR 7205, Institut Systématique Evolution Biodiversité, Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, UA, 75005, Paris, France
- Agroécologie, Institut Agro Dijon, CNRS, Université de Bourgogne, INRAE, Dijon, France
- AGAP Institut, Université de Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- UMR Eco & Sols, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Place Viala, 34060, Montpellier cedex 2, Montpellier, France
| | | | - Hélène Fréville
- AGAP Institut, Université de Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Jacques David
- AGAP Institut, Université de Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Aline Rocher
- AGAP Institut, Université de Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Elisa Taschen
- UMR Eco & Sols, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Place Viala, 34060, Montpellier cedex 2, Montpellier, France.
| |
Collapse
|
9
|
Martin FM, van der Heijden MGA. The mycorrhizal symbiosis: research frontiers in genomics, ecology, and agricultural application. THE NEW PHYTOLOGIST 2024; 242:1486-1506. [PMID: 38297461 DOI: 10.1111/nph.19541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/07/2023] [Indexed: 02/02/2024]
Abstract
Mycorrhizal symbioses between plants and fungi are vital for the soil structure, nutrient cycling, plant diversity, and ecosystem sustainability. More than 250 000 plant species are associated with mycorrhizal fungi. Recent advances in genomics and related approaches have revolutionized our understanding of the biology and ecology of mycorrhizal associations. The genomes of 250+ mycorrhizal fungi have been released and hundreds of genes that play pivotal roles in regulating symbiosis development and metabolism have been characterized. rDNA metabarcoding and metatranscriptomics provide novel insights into the ecological cues driving mycorrhizal communities and functions expressed by these associations, linking genes to ecological traits such as nutrient acquisition and soil organic matter decomposition. Here, we review genomic studies that have revealed genes involved in nutrient uptake and symbiosis development, and discuss adaptations that are fundamental to the evolution of mycorrhizal lifestyles. We also evaluated the ecosystem services provided by mycorrhizal networks and discuss how mycorrhizal symbioses hold promise for sustainable agriculture and forestry by enhancing nutrient acquisition and stress tolerance. Overall, unraveling the intricate dynamics of mycorrhizal symbioses is paramount for promoting ecological sustainability and addressing current pressing environmental concerns. This review ends with major frontiers for further research.
Collapse
Affiliation(s)
- Francis M Martin
- Université de Lorraine, INRAE, UMR IAM, Champenoux, 54280, France
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Marcel G A van der Heijden
- Department of Agroecology & Environment, Plant-Soil Interactions, Agroscope, Zürich, 8046, Switzerland
- Department of Plant and Microbial Biology, University of Zürich, Zürich, 8057, Switzerland
| |
Collapse
|
10
|
Peng Z, Johnson NC, Jansa J, Han J, Fang Z, Zhang Y, Jiang S, Xi H, Mao L, Pan J, Zhang Q, Feng H, Fan T, Zhang J, Liu Y. Mycorrhizal effects on crop yield and soil ecosystem functions in a long-term tillage and fertilization experiment. THE NEW PHYTOLOGIST 2024; 242:1798-1813. [PMID: 38155454 DOI: 10.1111/nph.19493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023]
Abstract
It is well understood that agricultural management influences arbuscular mycorrhizal (AM) fungi, but there is controversy about whether farmers should manage for AM symbiosis. We assessed AM fungal communities colonizing wheat roots for three consecutive years in a long-term (> 14 yr) tillage and fertilization experiment. Relationships among mycorrhizas, crop performance, and soil ecosystem functions were quantified. Tillage, fertilizers and continuous monoculture all reduced AM fungal richness and shifted community composition toward dominance of a few ruderal taxa. Rhizophagus and Dominikia were depressed by tillage and/or fertilization, and their abundances as well as AM fungal richness correlated positively with soil aggregate stability and nutrient cycling functions across all or no-tilled samples. In the field, wheat yield was unrelated to AM fungal abundance and correlated negatively with AM fungal richness. In a complementary glasshouse study, wheat biomass was enhanced by soil inoculum from unfertilized, no-till plots while neutral to depressed growth was observed in wheat inoculated with soils from fertilized and conventionally tilled plots. This study demonstrates contrasting impacts of low-input and conventional agricultural practices on AM symbiosis and highlights the importance of considering both crop yield and soil ecosystem functions when managing mycorrhizas for more sustainable agroecosystems.
Collapse
Affiliation(s)
- Zhenling Peng
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Nancy Collins Johnson
- School of Earth and Sustainability, Northern Arizona University, Flagstaff, AZ, 86001, USA
| | - Jan Jansa
- Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14220, Prague, Czech Republic
| | - Jiayao Han
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Zhou Fang
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yali Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Shengjing Jiang
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Hao Xi
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Lin Mao
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Jianbin Pan
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Qi Zhang
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Huyuan Feng
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Tinglu Fan
- Dryland Agriculture Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| | - Jianjun Zhang
- Dryland Agriculture Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| | - Yongjun Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
11
|
Williams A, Sinanaj B, Hoysted GA. Plant-microbe interactions through a lens: tales from the mycorrhizosphere. ANNALS OF BOTANY 2024; 133:399-412. [PMID: 38085925 PMCID: PMC11006548 DOI: 10.1093/aob/mcad191] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 04/12/2024]
Abstract
BACKGROUND The soil microbiome plays a pivotal role in maintaining ecological balance, supporting food production, preserving water quality and safeguarding human health. Understanding the intricate dynamics within the soil microbiome necessitates unravelling complex bacterial-fungal interactions (BFIs). BFIs occur in diverse habitats, such as the phyllosphere, rhizosphere and bulk soil, where they exert substantial influence on plant-microbe associations, nutrient cycling and overall ecosystem functions. In various symbiotic associations, fungi form mycorrhizal connections with plant roots, enhancing nutrient uptake through the root and mycorrhizal pathways. Concurrently, specific soil bacteria, including mycorrhiza helper bacteria, play a pivotal role in nutrient acquisition and promoting plant growth. Chemical communication and biofilm formation further shape plant-microbial interactions, affecting plant growth, disease resistance and nutrient acquisition processes. SCOPE Promoting synergistic interactions between mycorrhizal fungi and soil microbes holds immense potential for advancing ecological knowledge and conservation. However, despite the significant progress, gaps remain in our understanding of the evolutionary significance, perception, functional traits and ecological relevance of BFIs. Here we review recent findings obtained with respect to complex microbial communities - particularly in the mycorrhizosphere - and include the latest advances in the field, outlining their profound impacts on our understanding of ecosystem dynamics and plant physiology and function. CONCLUSIONS Deepening our understanding of plant BFIs can help assess their capabilities with regard to ecological and agricultural safe-guarding, in particular buffering soil stresses, and ensuring sustainable land management practices. Preserving and enhancing soil biodiversity emerge as critical imperatives in sustaining life on Earth amidst pressures of anthropogenic climate change. A holistic approach integrates scientific knowledge on bacteria and fungi, which includes their potential to foster resilient soil ecosystems for present and future generations.
Collapse
Affiliation(s)
- Alex Williams
- Plants, Photosynthesis and Soil, School of Bioscience, University of Sheffield, Sheffield, S10 2TN, UK
| | - Besiana Sinanaj
- Plants, Photosynthesis and Soil, School of Bioscience, University of Sheffield, Sheffield, S10 2TN, UK
| | - Grace A Hoysted
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
12
|
Wang C, Kuzyakov Y. Rhizosphere engineering for soil carbon sequestration. TRENDS IN PLANT SCIENCE 2024; 29:447-468. [PMID: 37867041 DOI: 10.1016/j.tplants.2023.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/10/2023] [Accepted: 09/30/2023] [Indexed: 10/24/2023]
Abstract
The rhizosphere is the central hotspot of water and nutrient uptake by plants, rhizodeposition, microbial activities, and plant-soil-microbial interactions. The plasticity of plants offers possibilities to engineer the rhizosphere to mitigate climate change. We define rhizosphere engineering as targeted manipulation of plants, soil, microorganisms, and management to shift rhizosphere processes for specific aims [e.g., carbon (C) sequestration]. The rhizosphere components can be engineered by agronomic, physical, chemical, biological, and genomic approaches. These approaches increase plant productivity with a special focus on C inputs belowground, increase microbial necromass production, protect organic compounds and necromass by aggregation, and decrease C losses. Finally, we outline multifunctional options for rhizosphere engineering: how to boost C sequestration, increase soil health, and mitigate global change effects.
Collapse
Affiliation(s)
- Chaoqun Wang
- Biogeochemistry of Agroecosystems, University of Goettingen, 37077 Goettingen, Germany.
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, University of Goettingen, 37077 Goettingen, Germany.
| |
Collapse
|
13
|
Calderon RB, Dangi SR. Arbuscular Mycorrhizal Fungi and Rhizobium Improve Nutrient Uptake and Microbial Diversity Relative to Dryland Site-Specific Soil Conditions. Microorganisms 2024; 12:667. [PMID: 38674611 PMCID: PMC11052256 DOI: 10.3390/microorganisms12040667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) and rhizobium play a significant role in plant symbiosis. However, their influence on the rhizosphere soil microbiome associated with nutrient acquisition and soil health is not well defined in the drylands of Montana (MT), USA. This study investigated the effect of microbial inoculants as seed treatment on pea yield, nutrient uptake, potential microbial functions, and rhizosphere soil microbial communities using high-throughput sequencing of 16S and ITS rRNA genes. The experiment was conducted under two contrasting dryland conditions with four treatments: control, single inoculation with AMF or Rhizobium, and dual inoculations of AMF and Rhizobium (AMF+Rhizobium). Our findings revealed that microbial inoculation efficacy was site-specific. AMF+Rhizobium synergistically increased grain yield at Sidney dryland field site (DFS) 2, while at Froid site, DFS 1, AMF improved plant resilience to acidic soil but contributed a marginal yield under non-nutrient limiting conditions. Across dryland sites, the plants' microbial dependency on AMF+Rhizobium (12%) was higher than single inoculations of AMF (8%) or Rhizobium (4%) alone. Variations in microbial community structure and composition indicate a site-specific response to AMF and AMF+Rhizobium inoculants. Overall, site-specific factors significantly influenced plant nutrient uptake, microbial community dynamics, and functional potential. It underscores the need for tailored management strategies that consider site-specific characteristics to optimize benefits from microbial inoculation.
Collapse
Affiliation(s)
- Rosalie B. Calderon
- Agricultural Research Service, Northern Plains Agricultural Research Laboratory, USDA, 1500 N Central Avenue, Sidney, MT 59270, USA
| | - Sadikshya R. Dangi
- Correspondence: (R.B.C.); (S.R.D.); Tel.: +1-(406)-433-9479 (R.B.C.); +1-(406)-433-9490 (S.R.D.); Fax: +1-(406)-433-5038 (R.B.C. & S.R.D.)
| |
Collapse
|
14
|
Zandalinas SI, Peláez-Vico MÁ, Sinha R, Pascual LS, Mittler R. The impact of multifactorial stress combination on plants, crops, and ecosystems: how should we prepare for what comes next? THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1800-1814. [PMID: 37996968 DOI: 10.1111/tpj.16557] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/27/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023]
Abstract
The complexity of environmental conditions encountered by plants in the field, or in nature, is gradually increasing due to anthropogenic activities that promote global warming, climate change, and increased levels of pollutants. While in the past it seemed sufficient to study how plants acclimate to one or even two different stresses affecting them simultaneously, the complex conditions developing on our planet necessitate a new approach of studying stress in plants: Acclimation to multiple stress conditions occurring concurrently or consecutively (termed, multifactorial stress combination [MFSC]). In an initial study of the plant response to MFSC, conducted with Arabidopsis thaliana seedlings subjected to an MFSC of six different abiotic stresses, it was found that with the increase in the number and complexity of different stresses simultaneously impacting a plant, plant growth and survival declined, even if the effects of each stress involved in such MFSC on the plant was minimal or insignificant. In three recent studies, conducted with different crop plants, MFSC was found to have similar effects on a commercial rice cultivar, a maize hybrid, tomato, and soybean, causing significant reductions in growth, biomass, physiological parameters, and/or yield traits. As the environmental conditions on our planet are gradually worsening, as well as becoming more complex, addressing MFSC and its effects on agriculture and ecosystems worldwide becomes a high priority. In this review, we address the effects of MFSC on plants, crops, agriculture, and different ecosystems worldwide, and highlight potential avenues to enhance the resilience of crops to MFSC.
Collapse
Affiliation(s)
- Sara I Zandalinas
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I, Av. de Vicent Sos Baynat, s/n, Castelló de la Plana, 12071, Spain
| | - María Ángeles Peláez-Vico
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, 65211, USA
| | - Ranjita Sinha
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, 65211, USA
| | - Lidia S Pascual
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I, Av. de Vicent Sos Baynat, s/n, Castelló de la Plana, 12071, Spain
| | - Ron Mittler
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, 65211, USA
- Department of Surgery, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center University of Missouri, 1201 Rollins St, Columbia, Missouri, 65201, USA
| |
Collapse
|
15
|
Fontaine S, Abbadie L, Aubert M, Barot S, Bloor JMG, Derrien D, Duchene O, Gross N, Henneron L, Le Roux X, Loeuille N, Michel J, Recous S, Wipf D, Alvarez G. Plant-soil synchrony in nutrient cycles: Learning from ecosystems to design sustainable agrosystems. GLOBAL CHANGE BIOLOGY 2024; 30:e17034. [PMID: 38273527 DOI: 10.1111/gcb.17034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/14/2023] [Indexed: 01/27/2024]
Abstract
Redesigning agrosystems to include more ecological regulations can help feed a growing human population, preserve soils for future productivity, limit dependency on synthetic fertilizers, and reduce agriculture contribution to global changes such as eutrophication and warming. However, guidelines for redesigning cropping systems from natural systems to make them more sustainable remain limited. Synthetizing the knowledge on biogeochemical cycles in natural ecosystems, we outline four ecological systems that synchronize the supply of soluble nutrients by soil biota with the fluctuating nutrient demand of plants. This synchrony limits deficiencies and excesses of soluble nutrients, which usually penalize both production and regulating services of agrosystems such as nutrient retention and soil carbon storage. In the ecological systems outlined, synchrony emerges from plant-soil and plant-plant interactions, eco-physiological processes, soil physicochemical processes, and the dynamics of various nutrient reservoirs, including soil organic matter, soil minerals, atmosphere, and a common market. We discuss the relative importance of these ecological systems in regulating nutrient cycles depending on the pedoclimatic context and on the functional diversity of plants and microbes. We offer ideas about how these systems could be stimulated within agrosystems to improve their sustainability. A review of the latest advances in agronomy shows that some of the practices suggested to promote synchrony (e.g., reduced tillage, rotation with perennial plant cover, crop diversification) have already been tested and shown to be effective in reducing nutrient losses, fertilizer use, and N2 O emissions and/or improving biomass production and soil carbon storage. Our framework also highlights new management strategies and defines the conditions for the success of these nature-based practices allowing for site-specific modifications. This new synthetized knowledge should help practitioners to improve the long-term productivity of agrosystems while reducing the negative impact of agriculture on the environment and the climate.
Collapse
Affiliation(s)
- Sébastien Fontaine
- INRAE, VetAgro Sup, Université Clermont Auvergne, UMR Ecosystème Prairial, Clermont-Ferrand, France
| | - Luc Abbadie
- UPEC, CNRS, IRD, INRAE, Institut d'écologie et des sciences de l'environnement, IEES, Sorbonne Université, Paris, France
| | - Michaël Aubert
- UNIROUEN, INRAE, ECODIV-Rouen, Normandie Univ, Rouen, France
| | - Sébastien Barot
- UPEC, CNRS, IRD, INRAE, Institut d'écologie et des sciences de l'environnement, IEES, Sorbonne Université, Paris, France
| | - Juliette M G Bloor
- INRAE, VetAgro Sup, Université Clermont Auvergne, UMR Ecosystème Prairial, Clermont-Ferrand, France
| | | | - Olivier Duchene
- ISARA, Research Unit Agroecology and Environment, Lyon, France
| | - Nicolas Gross
- INRAE, VetAgro Sup, Université Clermont Auvergne, UMR Ecosystème Prairial, Clermont-Ferrand, France
| | | | - Xavier Le Roux
- INRAE UMR 1418, CNRS UMR 5557, VetAgroSup, Microbial Ecology Centre LEM, Université de Lyon, Villeurbanne, France
| | - Nicolas Loeuille
- UPEC, CNRS, IRD, INRAE, Institut d'écologie et des sciences de l'environnement, IEES, Sorbonne Université, Paris, France
| | - Jennifer Michel
- Plant Sciences, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Sylvie Recous
- INRAE, FARE, Université de Reims Champagne-Ardenne, Reims, France
| | - Daniel Wipf
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université de Bourgogne Franche-Comté, Dijon, France
| | - Gaël Alvarez
- INRAE, VetAgro Sup, Université Clermont Auvergne, UMR Ecosystème Prairial, Clermont-Ferrand, France
| |
Collapse
|
16
|
Liu Y, Cordero I, Bardgett RD. Defoliation and fertilisation differentially moderate root trait effects on soil abiotic and biotic properties. THE JOURNAL OF ECOLOGY 2023; 111:2733-2749. [PMID: 38516387 PMCID: PMC10952586 DOI: 10.1111/1365-2745.14215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 09/15/2023] [Indexed: 03/23/2024]
Abstract
Root functional traits are known to influence soil properties that underpin ecosystem functioning. Yet few studies have explored how root traits simultaneously influence physical, chemical, and biological properties of soil, or how these responses are modified by common grassland perturbations that shape roots, such as defoliation and fertilisation.Here, we explored how root traits of a wide range of grassland plant species with contrasting resource acquisition strategies (i.e. conservative vs. exploitative strategy plant species) respond to defoliation and fertilisation individually and in combination, and examined cascading impacts on a range of soil abiotic and biotic properties that underpin ecosystem functioning.We found that the amplitude of the response of root traits to defoliation and fertilisation varied among plant species, in most cases independently of plant resource acquisition strategies. However, the direction of the root trait responses (increase or decrease) to perturbations was consistent across all plant species, with defoliation and fertilisation exerting opposing effects on root traits. Specific root length increased relative to non-perturbed control in response to defoliation, while root biomass, root mass density, and root length density decreased. Fertilisation induced the opposite responses. We also found that both defoliation and fertilisation individually enhanced the role of root traits in regulating soil biotic and abiotic properties, especially soil aggregate stability. Synthesis: Our results indicate that defoliation and fertilisation, two common grassland perturbations, have contrasting impacts on root traits of grassland plant species, with direct and indirect short-term consequences for a wide range of soil abiotic and biotic properties that underpin ecosystem functioning.
Collapse
Affiliation(s)
- Yan Liu
- Department of Earth and Environmental SciencesThe University of ManchesterManchesterUK
| | - Irene Cordero
- Department of Earth and Environmental SciencesThe University of ManchesterManchesterUK
- Department of Community EcologySwiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
| | - Richard D. Bardgett
- Department of Earth and Environmental SciencesThe University of ManchesterManchesterUK
| |
Collapse
|
17
|
Rehman S, Bahadur S, Xia W. An overview of floral regulatory genes in annual and perennial plants. Gene 2023; 885:147699. [PMID: 37567454 DOI: 10.1016/j.gene.2023.147699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/31/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
The floral initiation in angiosperms is a complex process influenced by endogenous and exogenous signals. With this approach, we aim to provide a comprehensive review to integrate this complex floral regulatory process and summarize the regulatory genes and their functions in annuals and perennials. Seven primary paths leading to flowering have been discovered in Arabidopsis under several growth condition that include; photoperiod, ambient temperature, vernalization, gibberellins, autonomous, aging and carbohydrates. These pathways involve a series of interlinked signaling pathways that respond to both internal and external signals, such as light, temperature, hormones, and developmental cues, to coordinate the expression of genes that are involved in flower development. Among them, the photoperiodic pathway was the most important and conserved as some of the fundamental loci and mechanisms are shared even by closely related plant species. The activation of floral regulatory genes such as FLC, FT, LFY, and SOC1 that determine floral meristem identity and the transition to the flowering stage result from the merging of these pathways. Recent studies confirmed that alternative splicing, antisense RNA and epigenetic modification play crucial roles by regulating the expression of genes related to blooming. In this review, we documented recent progress in the floral transition time in annuals and perennials, with emphasis on the specific regulatory mechanisms along with the application of various molecular approaches including overexpression studies, RNA interference and Virus-induced flowering. Furthermore, the similarities and differences between annual and perennial flowering will aid significant contributions to the field by elucidating the mechanisms of perennial plant development and floral initiation regulation.
Collapse
Affiliation(s)
- Shazia Rehman
- Sanya Nanfan Research Institution, Hainan University, Haikou 572025, China; College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Saraj Bahadur
- College of Forestry, Hainan University, Haikou 570228 China
| | - Wei Xia
- Sanya Nanfan Research Institution, Hainan University, Haikou 572025, China; College of Tropical Crops, Hainan University, Haikou 570228, China.
| |
Collapse
|
18
|
Li M, Perez-Limón S, Ramírez-Flores MR, Barrales-Gamez B, Meraz-Mercado MA, Ziegler G, Baxter I, Olalde-Portugal V, Sawers RJH. Mycorrhizal status and host genotype interact to shape plant nutrition in field grown maize (Zea mays ssp. mays). MYCORRHIZA 2023; 33:345-358. [PMID: 37851276 PMCID: PMC10752836 DOI: 10.1007/s00572-023-01127-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/13/2023] [Indexed: 10/19/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) establish symbioses with the major cereal crops, providing plants with increased access to nutrients while enhancing their tolerance to toxic heavy metals. However, not all plant varieties benefit equally from this association. In this study, we used quantitative trait loci (QTL) mapping to evaluate the combined effect of host genotypic variation (G) and AMF across 141 genotypes on the concentration of 20 mineral elements in the leaves and grain of field grown maize (Zea mays spp. mays). Our mapping design included selective incorporation of a castor AMF-incompatibility mutation, allowing estimation of AMF, QTL and QTLxAMF effects by comparison of mycorrhizal and non-mycorrhizal plants. Overall, AMF compatibility was associated with higher concentrations of boron (B), copper (Cu), molybdenum (Mo), phosphorus (P), selenium (Se) and zinc (Zn) and lower concentrations of arsenic (As), iron (Fe), magnesium (Mg), manganese (Mn), potassium (K) and strontium (Sr). In addition to effects on individual elements, pairwise correlation matrices for element concentration differed between mycorrhizal and non-mycorrhizal plants. We mapped 22 element QTLs, including 18 associated with QTLxAMF effects that indicate plant genotype-specific differences in the impact of AMF on the host ionome. Although there is considerable interest in AMF as biofertilizers, it remains challenging to estimate the impact of AMF in the field. Our design illustrates an effective approach for field evaluation of AMF effects. Furthermore, we demonstrate the capacity of the ionome to reveal host genotype-specific variation in the impact of AMF on plant nutrition.
Collapse
Affiliation(s)
- Meng Li
- Department of Plant Science, The Pennsylvania State University, State College, PA, 16802, USA
| | - Sergio Perez-Limón
- Department of Plant Science, The Pennsylvania State University, State College, PA, 16802, USA
| | - M Rosario Ramírez-Flores
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados (CINVESTAV-IPN), Irapuato, Guanajuato, 36821, México
- Bioscience Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37830, USA
| | - Benjamín Barrales-Gamez
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados (CINVESTAV-IPN), Irapuato, Guanajuato, 36821, México
- Postgrado en Recursos Genéticos y Productividad-Genética, Campus Montecillo, Colegio de Postgraduados, Montecillo, Texcoco, Edo. de México, 56230, México
| | - Marco Antonio Meraz-Mercado
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados (CINVESTAV-IPN), Irapuato, Guanajuato, 36821, México
| | - Gregory Ziegler
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Ivan Baxter
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Víctor Olalde-Portugal
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados (CINVESTAV-IPN), Irapuato, Guanajuato, 36821, México
| | - Ruairidh J H Sawers
- Department of Plant Science, The Pennsylvania State University, State College, PA, 16802, USA.
| |
Collapse
|
19
|
Silva AMM, Feiler HP, Lacerda-Júnior GV, Fernandes-Júnior PI, de Tarso Aidar S, de Araújo VAVP, Matteoli FP, de Araújo Pereira AP, de Melo IS, Cardoso EJBN. Arbuscular mycorrhizal fungi associated with the rhizosphere of an endemic terrestrial bromeliad and a grass in the Brazilian neotropical dry forest. Braz J Microbiol 2023; 54:1955-1967. [PMID: 37410249 PMCID: PMC10485230 DOI: 10.1007/s42770-023-01058-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/19/2023] [Indexed: 07/07/2023] Open
Abstract
Arbuscular mycorrhizal fungi form symbiotic associations with 80-90% of all known plants, allowing the fungi to acquire plant-synthesized carbon, and confer an increased capacity for nutrient uptake by plants, improving tolerance to abiotic and biotic stresses. We aimed at characterizing the mycorrhizal community in the rhizosphere of Neoglaziovia variegata (so-called `caroa`) and Tripogonella spicata (so-called resurrection plant), using high-throughput sequencing of the partial 18S rRNA gene. Both plants are currently undergoing a bioprospecting program to find microbes with the potential of helping plants tolerate water stress. Sampling was carried out in the Caatinga biome, a neotropical dry forest, located in northeastern Brazil. Illumina MiSeq sequencing of 37 rhizosphere samples (19 for N. variegata and 18 for T. spicata) revealed a distinct mycorrhizal community between the studied plants. According to alpha diversity analyses, T. spicata showed the highest richness and diversity based on the Observed ASVs and the Shannon index, respectively. On the other hand, N. variegata showed higher modularity of the mycorrhizal network compared to T. spicata. The four most abundant genera found (higher than 10%) were Glomus, Gigaspora, Acaulospora, and Scutellospora, with Glomus being the most abundant in both plants. Nonetheless, Gigaspora, Diversispora, and Ambispora were found only in the rhizosphere of N. variegata, whilst Scutellospora, Paraglomus, and Archaeospora were exclusive to the rhizosphere of T. spicata. Therefore, the community of arbuscular mycorrhizal fungi of the rhizosphere of each plant encompasses a unique composition, structure and modularity, which can differentially assist them in the hostile environment.
Collapse
Affiliation(s)
- Antonio Marcos Miranda Silva
- “Luiz de Queiroz” College of Agriculture, Soil Science Department, University of São Paulo, Piracicaba, São Paulo 13418-900 Brazil
| | | | | | | | - Saulo de Tarso Aidar
- Brazilian Agricultural Research Corporation, Embrapa Semiárido, Petrolina, , Pernambuco 56302-970 Brazil
| | | | - Filipe Pereira Matteoli
- Faculty of Sciences, Department of Biological Sciences, Laboratory of Microbial Bioinformatics, São Paulo State University, Bauru, 17033-360 Brazil
| | | | - Itamar Soares de Melo
- Brazilian Agricultural Research Corporation, Embrapa Meio Ambiente, Jaguariúna, São Paulo 13918-110 Brazil
| | | |
Collapse
|
20
|
Koziol L, Bever JD. Crop Productivity Boosters: Native Mycorrhizal Fungi from an Old-Growth Grassland Benefits Tomato ( Solanum lycopersicum) and Pepper ( Capsicum annuum) Varieties in Organically Farmed Soils. Microorganisms 2023; 11:2012. [PMID: 37630572 PMCID: PMC10457834 DOI: 10.3390/microorganisms11082012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
This paper investigates the response of five tomato and five pepper varieties to native arbuscular mycorrhizal (AM) fungal inoculation in an organic farming system. The field experiment was conducted across a growing season at a working organic farm in Lawrence, KS, USA. The researchers hypothesized that native AM fungi inoculation would improve crop biomass production for both crop species, but that the magnitude of response would depend on crop cultivar. The results showed that both crops were significantly positively affected by inoculation. AM fungal inoculation consistently improved total pepper biomass throughout the experiment (range of +2% to +8% depending on the harvest date), with a +3.7% improvement at the final harvest for inoculated plants. An interaction between pepper variety and inoculation treatment was sometimes observed, indicating that some pepper varieties were more responsive to AM fungi than others. Beginning at the first harvest, tomatoes showed a consistent positive response to AM fungal inoculation among varieties. Across the experiment, AM fungi-inoculated tomatoes had +10% greater fruit biomass, which was driven by a +20% increase in fruit number. The study highlights the potential benefits of using native AM fungi as a soil amendment in organic farmed soils to improve pepper and tomato productivity.
Collapse
Affiliation(s)
- Liz Koziol
- Kansas Biological Station and Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66047, USA
| | | |
Collapse
|
21
|
Vahter T, Lillipuu EM, Oja J, Öpik M, Vasar M, Hiiesalu I. Do commercial arbuscular mycorrhizal inoculants contain the species that they claim? MYCORRHIZA 2023; 33:211-220. [PMID: 36786883 DOI: 10.1007/s00572-023-01105-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/08/2023] [Indexed: 06/08/2023]
Abstract
The use of arbuscular mycorrhizal (AM) fungal inoculants as a means to promote plant growth is gaining momentum worldwide. Although there is an increasing number of commercial products available for various applications, the quality of these remains uncertain. We determined the AM fungal species composition in eleven inoculants from four producers by using DNA metabarcoding and compared them to the AM fungal species declared on the product labels. Our DNA metabarcoding of the inoculants revealed a concerning discrepancy between the declared and detected AM fungal species compositions of the products. While nine products contained at least one declared species, two did not contain any matching species and all inoculants but one contained additional species not declared on the product label. These findings highlight the need for better guidelines and industry standards to ensure consumer protection in the AM fungal inoculum market. Additionally, we call for caution when using commercial AM fungal inoculants in scientific experiments without confirmatory information about their species composition.
Collapse
Affiliation(s)
- Tanel Vahter
- Institute of Ecology and Earth Sciences, University of Tartu, 2 J. Liivi Street, 50409, Tartu, Estonia.
| | - Epp Maria Lillipuu
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic
| | - Jane Oja
- Institute of Ecology and Earth Sciences, University of Tartu, 2 J. Liivi Street, 50409, Tartu, Estonia
| | - Maarja Öpik
- Institute of Ecology and Earth Sciences, University of Tartu, 2 J. Liivi Street, 50409, Tartu, Estonia
| | - Martti Vasar
- Institute of Ecology and Earth Sciences, University of Tartu, 2 J. Liivi Street, 50409, Tartu, Estonia
| | - Inga Hiiesalu
- Institute of Ecology and Earth Sciences, University of Tartu, 2 J. Liivi Street, 50409, Tartu, Estonia
| |
Collapse
|
22
|
Huang S, Gill S, Ramzan M, Ahmad MZ, Danish S, Huang P, Al Obaid S, Alharbi SA. Uncovering the impact of AM fungi on wheat nutrient uptake, ion homeostasis, oxidative stress, and antioxidant defense under salinity stress. Sci Rep 2023; 13:8249. [PMID: 37217569 DOI: 10.1038/s41598-023-35148-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/13/2023] [Indexed: 05/24/2023] Open
Abstract
The growth of wheat (Triticum aestivum) is constrained by soil salinity, although some fungal species have been shown to enhance production in saline environments. The yield of grain crops is affected by salt stress, and this study aimed to investigate how arbuscular mycorrhizal fungus (AMF) mitigates salt stress. An experiment was conducted to assess the impact of AMF on wheat growth and yield in conditions of 200 mM salt stress. Wheat seeds were coated with AMF at a rate of 0.1 g (108 spores) during sowing. The results of the experiment demonstrated that AMF inoculation led to a significant improvement in the growth attributes of wheat, including root and shoot length, fresh and dry weight of root and shoot. Furthermore, a significant increase in chlorophyll a, b, total, and carotenoids was observed in the S2 AMF treatment, validating the effectiveness of AMF in enhancing wheat growth under salt stress conditions. Additionally, AMF application reduced the negative effects of salinity stress by increasing the uptake of micronutrients such as Zn, Fe, Cu, and Mn while regulating the uptake of Na (decrease) and K (increase) under salinity stress. In conclusion, this study confirms that AMF is a successful strategy for reducing the negative effects of salt stress on wheat growth and yield. However, further investigations are recommended at the field level under different cereal crops to establish AMF as a more effective amendment for the alleviation of salinity stress in wheat.
Collapse
Affiliation(s)
- Shoucheng Huang
- College of Life and Health Science, Anhui Science and Technology University, Fengyang, 233100, China
| | - Sidra Gill
- Department of Botany, Faculty of Chemical and Biological Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Musarrat Ramzan
- Department of Botany, Faculty of Chemical and Biological Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.
| | - Muhammad Zaheer Ahmad
- Dr. M. Ajmal Khan, Insititute of Sustainable Halophytes Utilization, University of Karachi, Karachi, Pakistan
| | - Subhan Danish
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan.
| | - Ping Huang
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu, 233000, China
| | - Sami Al Obaid
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
23
|
Lu Q, Bunn R, Whitney E, Feng Y, DeVetter LW, Tao H. Arbuscular mycorrhizae influence raspberry growth and soil fertility under conventional and organic fertilization. Front Microbiol 2023; 14:1083319. [PMID: 37260690 PMCID: PMC10227501 DOI: 10.3389/fmicb.2023.1083319] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 04/25/2023] [Indexed: 06/02/2023] Open
Abstract
Introduction Introducing beneficial soil biota such as arbuscular mycorrhizal fungi (AMF) to agricultural systems may improve plant performance and soil fertility. However, whether bioinocula species composition affects plant growth and soil fertility, and whether fertilizer source influences AMF colonization have not been well characterized. The objectives of this research were to: (1) assess if AMF bioinocula of different species compositions improve raspberry (Rubus idaeus L.) performance and characteristics of soil fertility and (2) evaluate the impact of fertilizer source on AMF colonization. Methods Five bioinocula with different AMF species compositions and three fertilizer sources were applied to tissue culture raspberry transplants in a randomized complete block design with eight replicates. Plants were grown in a greenhouse for 14 weeks and plant growth, tissue nutrient concentrations, soil fertility, and AMF root colonization were measured. Results Shoot K and Zn concentrations as well as soil pH and K concentration increased in the Commercial Mix 1 treatment (Glomus, Gigaspora, and Paraglomus AMF species) compared to the non-inoculated control. RFI (raspberry field bioinoculum; uncharacterized AMF and other microbiota) increased soil organic matter (SOM), estimated nitrogen release (ENR), and soil copper (Cu) concentration compared to the non-inoculated control. Furthermore, plants receiving the Mix 1 or RFI treatments, which include more AMF species, had greater AMF root colonization than the remaining treatments. Plants receiving organic fertilizer had significantly greater AMF colonization than conventionally fertilized plants. Conclusion Taken together, our data indicate that coupling organic fertilizers and bioinocula that include diverse AMF species may enhance raspberry growth and soil fertility.
Collapse
Affiliation(s)
- Qianwen Lu
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, United States
| | - Rebecca Bunn
- Department of Environmental Sciences, Western Washington University, Bellingham, WA, United States
| | - Erika Whitney
- Department of Environmental Sciences, Western Washington University, Bellingham, WA, United States
| | - Yuanyuan Feng
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Lisa Wasko DeVetter
- Northwestern Washington Research and Extension Center, Washington State University, Mount Vernon, WA, United States
| | - Haiying Tao
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
24
|
Silverstein MR, Segrè D, Bhatnagar JM. Environmental microbiome engineering for the mitigation of climate change. GLOBAL CHANGE BIOLOGY 2023; 29:2050-2066. [PMID: 36661406 DOI: 10.1111/gcb.16609] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/15/2022] [Indexed: 05/28/2023]
Abstract
Environmental microbiome engineering is emerging as a potential avenue for climate change mitigation. In this process, microbial inocula are introduced to natural microbial communities to tune activities that regulate the long-term stabilization of carbon in ecosystems. In this review, we outline the process of environmental engineering and synthesize key considerations about ecosystem functions to target, means of sourcing microorganisms, strategies for designing microbial inocula, methods to deliver inocula, and the factors that enable inocula to establish within a resident community and modify an ecosystem function target. Recent work, enabled by high-throughput technologies and modeling approaches, indicate that microbial inocula designed from the top-down, particularly through directed evolution, may generally have a higher chance of establishing within existing microbial communities than other historical approaches to microbiome engineering. We address outstanding questions about the determinants of inocula establishment and provide suggestions for further research about the possibilities and challenges of environmental microbiome engineering as a tool to combat climate change.
Collapse
Affiliation(s)
- Michael R Silverstein
- Bioinformatics Program, Boston University, Boston, Massachusetts, USA
- Biological Design Center, Boston University, Boston, Massachusetts, USA
| | - Daniel Segrè
- Bioinformatics Program, Boston University, Boston, Massachusetts, USA
- Biological Design Center, Boston University, Boston, Massachusetts, USA
- Department of Biology, Boston University, Boston, Massachusetts, USA
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Department of Physics, Boston University, Boston, Massachusetts, USA
| | - Jennifer M Bhatnagar
- Bioinformatics Program, Boston University, Boston, Massachusetts, USA
- Department of Biology, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
25
|
Heuck MK, Birnbaum C, Frew A. Friends to the rescue: using arbuscular mycorrhizal fungi to future-proof Australian agriculture. MICROBIOLOGY AUSTRALIA 2023. [DOI: 10.1071/ma23002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
With a rising global population and the challenges of climate change, there is an increasing need to find solutions to maintain crop yields in an ecologically sustainable way. Although many studies have focussed on this issue, comparatively few are conducted in the southern hemisphere. This is worrisome because the geographical and geomorphological conditions within Australia differ greatly from the northern hemisphere. To ensure food security, approaches can rely on conventional agricultural methods as well as commercial arbuscular mycorrhizal (AM) fungal inoculants. Both approaches lack the capacity to be successful in the long term or could have unknown negative effects on the naturally occurring microbial communities. We advocate for a sustainable and holistic approach that combines the effective management of functionally diverse AM fungal communities with precision farming techniques while integrating landscape elements into agricultural fields. In addition, landowners and scientists should collaborate and communicate their work with industry and government to take forward the shift to a more-sustainable agriculture. In this way, we will be better able to secure our food production while restoring our soil ecosystems.
Collapse
|
26
|
Pang J, Ryan MH, Wen Z, Lambers H, Liu Y, Zhang Y, Tueux G, Jenkins S, Mickan B, Wong WS, Yong JWH, Siddique KHM. Enhanced nodulation and phosphorus acquisition from sparingly-soluble iron phosphate upon treatment with arbuscular mycorrhizal fungi in chickpea. PHYSIOLOGIA PLANTARUM 2023; 175:e13873. [PMID: 36762694 DOI: 10.1111/ppl.13873] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/23/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The coordination/trade-off among below-ground strategies for phosphorus (P) acquisition, including root morphology, carboxylate exudation and colonisation by arbuscular mycorrhizal fungi (AMF), is not well understood. This is the first study investigating the relationships between root nodulation, morphology, carboxylates and colonisation by an indigenous community of AMF under varying P levels and source. Two chickpea genotypes with contrasting amounts of rhizosheath carboxylates were grown in pots at six P levels (from 0 to 160 μg g-1 ) as KH2 PO4 (KP, highly soluble) or FePO4 (FeP, sparingly soluble), with or without AMF (±AMF) treatment. Under both FeP and KP, the presence of AMF inhibited shoot growth and shoot branching, decreased total root length and specific root length, increased mean root diameter and root tissue density and reduced carboxylates. However, the role of AMF in acquiring P differed between the two P sources, with the enhanced P acquisition under FeP while not under KP. Co-inoculation of AMF and rhizobia enhanced nodulation under FeP, but not under KP. Our results suggest that the effects of AMF on shoot branching were mediated by cytokinins as the reduced shoot branching in FeP40 and KP40 under +AMF relative to -AMF coincided with a decreased concentration of cytokinins in xylem sap for both genotypes.
Collapse
Affiliation(s)
- Jiayin Pang
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
- School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia, Australia
| | - Megan H Ryan
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
- School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia, Australia
| | - Zhihui Wen
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
- School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Department of Plant Nutrition, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Hans Lambers
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
- School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Yifei Liu
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
- College of Land and Environment, National Key Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shenyang Agricultural University, Shenyang, China
| | - Yi Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Guillaume Tueux
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
- Ecole d'Ingénieurs de PURPAN, Toulouse, France
| | - Sasha Jenkins
- School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia, Australia
| | - Bede Mickan
- School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia, Australia
| | - Wei San Wong
- School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
- School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
27
|
Boussageon R, van Tuinen D, Lapadatescu C, Trépanier M, Vermersch E, Wipf D, Courty PE. Effects of field inoculation of potato tubers with the arbuscular mycorrhizal fungus Rhizophagus irregularis DAOM 197,198 are cultivar dependent. Symbiosis 2023. [DOI: 10.1007/s13199-023-00908-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
28
|
Moukarzel R, Ridgway HJ, Waller L, Guerin-Laguette A, Cripps-Guazzone N, Jones EE. Soil Arbuscular Mycorrhizal Fungal Communities Differentially Affect Growth and Nutrient Uptake by Grapevine Rootstocks. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02160-z. [PMID: 36538089 DOI: 10.1007/s00248-022-02160-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) deliver potentially significant services in sustainable agricultural ecosystems, yet we still lack evidence showing how AMF abundance and/or community composition can benefit crops. In this study, we manipulated AMF communities in grapevine rootstock and measured plant growth and physiological responses. Glasshouse experiments were set up to determine the interaction between rootstock variety and different AMF communities, using AMF communities originating under their own (i.e., "home") soil and other rootstocks' (i.e., "away") soil. The results revealed that specific AMF communities had differential effects on grapevine rootstock growth and nutrient uptake. It was demonstrated that a rootstock generally performed better in the presence of its own AMF community. This study also showed that AMF spore diversity and the relative abundance of certain species is an important factor as, when present in equal abundance, competition between species was indicated to occur, resulting in a reduction in the positive growth outcomes. Moreover, there was a significant difference between the communities with some AMF communities increasing plant growth and nutrient uptake compared with others. The outcomes also demonstrated that some AMF communities indirectly influenced the chlorophyll content in grapevine leaves through the increase of specific nutrients such as K, Mn, and Zn. The findings also indicated that some AMF species may deliver particular benefits to grapevine plants. This work has provided an improved understanding of community level AMF-grapevine interaction and delivered an increased knowledge of the ecosystem services they provide which will benefit the wine growers and the viticulture industry.
Collapse
Affiliation(s)
- Romy Moukarzel
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, 7647, Canterbury, New Zealand.
| | - Hayley J Ridgway
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, 7647, Canterbury, New Zealand
- Plant & Food Research, Canterbury Agriculture & Science Centre, Gerald St, Lincoln, 7608, New Zealand
| | - Lauren Waller
- Bio-Protection Research Centre, Lincoln University, Lincoln, 7647, Canterbury, New Zealand
| | | | - Natalia Cripps-Guazzone
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, 7647, Canterbury, New Zealand
| | - E Eirian Jones
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, 7647, Canterbury, New Zealand
| |
Collapse
|
29
|
Hao Z, Dong Z, Han S, Zhang A. Effects of biochar and arbuscular mycorrhizal fungi on winter wheat growth and soil N 2O emissions in different phosphorus environments. FRONTIERS IN PLANT SCIENCE 2022; 13:1069627. [PMID: 36589067 PMCID: PMC9795251 DOI: 10.3389/fpls.2022.1069627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION Promoting crop growth and regulating denitrification process are two main ways to reduce soil N2O emissions in agricultural systems. However, how biochar and arbuscular mycorrhizal fungi (AMF) can regulate crop growth and denitrification in soils with different phosphorus (P) supplies to influence N2O emission remains largely unknown. METHOD Here, an eight-week greenhouse and one-year field experiments biochar and/or AMF (only in greenhouse experiment) additions under low and high P environments were conducted to characterize the effects on wheat (Triticum aestivum L.) growth and N2O emission. RESULTS With low P supply, AMF addition decreased leaf Mn concentration (indicates carboxylate-releasing P-acquisition strategies), whereas biochar addition increased leaf Mn concentration, suggesting biochar and AMF addition regulated root morphological and physiological traits to capture P. Compared with low P supply, the high P significantly promoted wheat growth (by 16-34%), nutrient content (by 33-218%) and yield (by 33-41%), but suppressed soil N2O emissions (by 32-95%). Biochar and/or AMF addition exhibited either no or negative effects on wheat biomass and nutrient content in greenhouse, and biochar addition promoted wheat yield only under high P environment in field. However, biochar and/or AMF addition decreased soil N2O emissions by 24-93% and 32% in greenhouse and field experiments, respectively. This decrease was associated mainly with the diminished abundance of N2O-producing denitrifiers (nirK and nirS types, by 17-59%, respectively) and the increased abundance of N2O-consuming denitrifiers (nosZ type, by 35-65%), and also with the increased wheat nutrient content, yield and leaf Mn concentration. DISCUSSION These findings suggest that strengthening the plant-soil-microbe interactions can mitigate soil N2O emissions via manipulating plant nutrient acquisition and soil denitrification.
Collapse
|
30
|
Yang H, Fang C, Li Y, Wu Y, Fransson P, Rillig MC, Zhai S, Xie J, Tong Z, Zhang Q, Sheteiwy MS, Li F, Weih M. Temporal complementarity between roots and mycorrhizal fungi drives wheat nitrogen use efficiency. THE NEW PHYTOLOGIST 2022; 236:1168-1181. [PMID: 35927946 DOI: 10.1111/nph.18419] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Improving nitrogen (N) use efficiency (NUE) to reduce the application of N fertilisers in a way that benefits the environment and reduces farmers' costs is an ongoing objective for sustainable wheat production. However, whether and how arbuscular mycorrhizal fungi (AMF) affect NUE in wheat is still not well explored. Three independent but complementary experiments were conducted to decipher the contribution of roots and AMF to the N uptake and utilisation efficiency in wheat. We show a temporal complementarity pattern between roots and AMF in shaping NUE of wheat. Pre-anthesis N uptake efficiency mainly depends on root functional traits, but the efficiency to utilise the N taken up during pre-anthesis for producing grains (EN,g ) is strongly affected by AMF, which might increase the uptake of phosphorus and thereby improve photosynthetic carbon assimilation. Root association with AMF reduced the N remobilisation efficiency in varieties with high EN,g ; whilst the overall grain N concentration increased, due to a large improvement in post-anthesis N uptake supported by AMF and/or other microbes. The findings provide evidence for the importance of managing AMF in agroecosystems, and an opportunity to tackle the contradiction between maximising grain yield and protein concentration in wheat breeding.
Collapse
Affiliation(s)
- Haishui Yang
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Key Laboratory for Information Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chun Fang
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yifan Li
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yongcheng Wu
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Petra Fransson
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden
| | - Matthias C Rillig
- Institut für Biologie, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195, Berlin, Germany
| | - Silong Zhai
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Junjie Xie
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zongyi Tong
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qian Zhang
- Research Institute of Forestry, Chinese Academy of Forestry, No. 1, Dongxiaofu, Xiangshan Road, Haidian District, Beijing, 100091, China
| | - Mohamed S Sheteiwy
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt
| | - Fengmin Li
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Martin Weih
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden
| |
Collapse
|
31
|
Whyle RL, Trowbridge AM, Jamieson MA. Genotype, mycorrhizae, and herbivory interact to shape strawberry plant functional traits. FRONTIERS IN PLANT SCIENCE 2022; 13:964941. [PMID: 36388560 PMCID: PMC9644214 DOI: 10.3389/fpls.2022.964941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) and herbivores are ubiquitous biotic agents affecting plant fitness. While individual effects of pairwise interactions have been well-studied, less is known about how species interactions above and belowground interact to influence phenotypic plasticity in plant functional traits, especially phytochemicals. We hypothesized that mycorrhizae would mitigate negative herbivore effects by enhancing plant physiology and reproductive traits. Furthermore, we expected genotypic variation would influence functional trait responses to these biotic agents. To test these hypotheses, we conducted a manipulative field-based experiment with three strawberry (Fragaria x ananassa) genotypes to evaluate plant phenotypic plasticity in multiple functional traits. We used a fully-crossed factorial design in which plants from each genotype were exposed to mycorrhizal inoculation, herbivory, and the combined factors to examine effects on plant growth, reproduction, and floral volatile organic compounds (VOCs). Genotype and herbivory were key determinants of phenotypic variation, especially for plant physiology, biomass allocation, and floral volatiles. Mycorrhizal inoculation increased total leaf area, but only in plants that received no herbivory, and also enhanced flower and fruit numbers across genotypes and herbivory treatments. Total fruit biomass increased for one genotype, with up to 30-40% higher overall yield depending on herbivory. Herbivory altered floral volatile profiles and increased total terpenoid emissions. The effects of biotic treatments, however, were less important than the overall influence of genotype on floral volatile composition and emissions. This study demonstrates how genotypic variation affects plant phenotypic plasticity to herbivory and mycorrhizae, playing a key role in shaping physiological and phytochemical traits that directly and indirectly influence productivity.
Collapse
Affiliation(s)
- Robert L. Whyle
- Department of Biological Sciences, Oakland University, Rochester, MI, United States
| | - Amy M. Trowbridge
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, United States
| | - Mary A. Jamieson
- Department of Biological Sciences, Oakland University, Rochester, MI, United States
| |
Collapse
|
32
|
Hui J, An X, Li Z, Neuhäuser B, Ludewig U, Wu X, Schulze WX, Chen F, Feng G, Lambers H, Zhang F, Yuan L. The mycorrhiza-specific ammonium transporter ZmAMT3;1 mediates mycorrhiza-dependent nitrogen uptake in maize roots. THE PLANT CELL 2022; 34:4066-4087. [PMID: 35880836 PMCID: PMC9516061 DOI: 10.1093/plcell/koac225] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
Most plant species can form symbioses with arbuscular mycorrhizal fungi (AMFs), which may enhance the host plant's acquisition of soil nutrients. In contrast to phosphorus nutrition, the molecular mechanism of mycorrhizal nitrogen (N) uptake remains largely unknown, and its physiological relevance is unclear. Here, we identified a gene encoding an AMF-inducible ammonium transporter, ZmAMT3;1, in maize (Zea mays) roots. ZmAMT3;1 was specifically expressed in arbuscule-containing cortical cells and the encoded protein was localized at the peri-arbuscular membrane. Functional analysis in yeast and Xenopus oocytes indicated that ZmAMT3;1 mediated high-affinity ammonium transport, with the substrate NH4+ being accessed, but likely translocating uncharged NH3. Phosphorylation of ZmAMT3;1 at the C-terminus suppressed transport activity. Using ZmAMT3;1-RNAi transgenic maize lines grown in compartmented pot experiments, we demonstrated that substantial quantities of N were transferred from AMF to plants, and 68%-74% of this capacity was conferred by ZmAMT3;1. Under field conditions, the ZmAMT3;1-dependent mycorrhizal N pathway contributed >30% of postsilking N uptake. Furthermore, AMFs downregulated ZmAMT1;1a and ZmAMT1;3 protein abundance and transport activities expressed in the root epidermis, suggesting a trade-off between mycorrhizal and direct root N-uptake pathways. Taken together, our results provide a comprehensive understanding of mycorrhiza-dependent N uptake in maize and present a promising approach to improve N-acquisition efficiency via plant-microbe interactions.
Collapse
Affiliation(s)
- Jing Hui
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing, 100193, China
| | - Xia An
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing, 100193, China
| | - Zhibo Li
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing, 100193, China
| | - Benjamin Neuhäuser
- Department of Nutritional Crop Physiology, Institute of Crop Science, University of Hohenheim, Stuttgart, 70593, Germany
| | - Uwe Ludewig
- Department of Nutritional Crop Physiology, Institute of Crop Science, University of Hohenheim, Stuttgart, 70593, Germany
| | - Xuna Wu
- Department of Plant Systems Biology, Institute for Physiology and Biotechnology of Plants, University of Hohenheim, Stuttgart, 70593, Germany
| | - Waltraud X Schulze
- Department of Plant Systems Biology, Institute for Physiology and Biotechnology of Plants, University of Hohenheim, Stuttgart, 70593, Germany
| | - Fanjun Chen
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing, 100193, China
| | - Gu Feng
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing, 100193, China
| | - Hans Lambers
- School of Biological Science and Institute of Agriculture, University of Western Australia, Perth, WA6009, Australia
| | - Fusuo Zhang
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing, 100193, China
| | | |
Collapse
|
33
|
The Potential Applications of Commercial Arbuscular Mycorrhizal Fungal Inoculants and Their Ecological Consequences. Microorganisms 2022; 10:microorganisms10101897. [PMID: 36296173 PMCID: PMC9609176 DOI: 10.3390/microorganisms10101897] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/18/2022] Open
Abstract
Arbuscular mycorrhizal fungal (AMF) inoculants are sustainable biological materials that can provide several benefits to plants, especially in disturbed agroecosystems and in the context of phytomanagement interventions. However, it is difficult to predict the effectiveness of AMF inoculants and their impacts on indigenous AMF communities under field conditions. In this review, we examined the literature on the possible outcomes following the introduction of AMF-based inoculants in the field, including their establishment in soil and plant roots, persistence, and effects on the indigenous AMF community. Most studies indicate that introduced AMF can persist in the target field from a few months to several years but with declining abundance (60%) or complete exclusion (30%). Further analysis shows that AMF inoculation exerts both positive and negative impacts on native AMF species, including suppression (33%), stimulation (38%), exclusion (19%), and neutral impacts (10% of examined cases). The factors influencing the ecological fates of AMF inoculants, such as the inherent properties of the inoculum, dosage and frequency of inoculation, and soil physical and biological factors, are further discussed. While it is important to monitor the success and downstream impacts of commercial inoculants in the field, the sampling method and the molecular tools employed to resolve and quantify AMF taxa need to be improved and standardized to eliminate bias towards certain AMF strains and reduce discrepancies among studies. Lastly, inoculant producers must focus on selecting strains with a higher chance of success in the field, and having little or negligible downstream impacts.
Collapse
|
34
|
Edlinger A, Garland G, Hartman K, Banerjee S, Degrune F, García-Palacios P, Hallin S, Valzano-Held A, Herzog C, Jansa J, Kost E, Maestre FT, Pescador DS, Philippot L, Rillig MC, Romdhane S, Saghaï A, Spor A, Frossard E, van der Heijden MGA. Agricultural management and pesticide use reduce the functioning of beneficial plant symbionts. Nat Ecol Evol 2022; 6:1145-1154. [PMID: 35798840 PMCID: PMC7613230 DOI: 10.1038/s41559-022-01799-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 05/11/2022] [Indexed: 01/04/2023]
Abstract
Phosphorus (P) acquisition is key for plant growth. Arbuscular mycorrhizal fungi (AMF) help plants acquire P from soil. Understanding which factors drive AMF-supported nutrient uptake is essential to develop more sustainable agroecosystems. Here we collected soils from 150 cereal fields and 60 non-cropped grassland sites across a 3,000 km trans-European gradient. In a greenhouse experiment, we tested the ability of AMF in these soils to forage for the radioisotope 33P from a hyphal compartment. AMF communities in grassland soils were much more efficient in acquiring 33P and transferred 64% more 33P to plants compared with AMF in cropland soils. Fungicide application best explained hyphal 33P transfer in cropland soils. The use of fungicides and subsequent decline in AMF richness in croplands reduced 33P uptake by 43%. Our results suggest that land-use intensity and fungicide use are major deterrents to the functioning and natural nutrient uptake capacity of AMF in agroecosystems.
Collapse
Affiliation(s)
- Anna Edlinger
- Agroscope, Division of Agroecology and Environment, Plant-Soil Interactions Group, Zürich, Switzerland
- Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
| | - Gina Garland
- Agroscope, Division of Agroecology and Environment, Plant-Soil Interactions Group, Zürich, Switzerland
| | - Kyle Hartman
- Agroscope, Division of Agroecology and Environment, Plant-Soil Interactions Group, Zürich, Switzerland
| | - Samiran Banerjee
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, USA
| | - Florine Degrune
- Freie Universität Berlin, Institute of Biology, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
- Soil Science and Environment Group, Changins, University of Applied Sciences and Arts Western Switzerland, Nyon, Switzerland
| | - Pablo García-Palacios
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Sara Hallin
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Alain Valzano-Held
- Agroscope, Division of Agroecology and Environment, Plant-Soil Interactions Group, Zürich, Switzerland
| | - Chantal Herzog
- Agroscope, Division of Agroecology and Environment, Plant-Soil Interactions Group, Zürich, Switzerland
- Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
| | - Jan Jansa
- Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Elena Kost
- Agroscope, Division of Agroecology and Environment, Plant-Soil Interactions Group, Zürich, Switzerland
| | - Fernando T Maestre
- Instituto Multidisciplinar para el Estudio del Medio 'Ramón Margalef', Universidad de Alicante, Alicante, Spain
- Departamento de Ecología, Universidad de Alicante, Alicante, Spain
| | - David Sánchez Pescador
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Móstoles, Madrid, Spain
| | - Laurent Philippot
- Department of Agroecology, University Bourgogne Franche Comte, INRAE, AgroSup Dijon, Dijon, France
| | - Matthias C Rillig
- Freie Universität Berlin, Institute of Biology, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Sana Romdhane
- Department of Agroecology, University Bourgogne Franche Comte, INRAE, AgroSup Dijon, Dijon, France
| | - Aurélien Saghaï
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ayme Spor
- Department of Agroecology, University Bourgogne Franche Comte, INRAE, AgroSup Dijon, Dijon, France
| | - Emmanuel Frossard
- ETH Zürich, Institute of Agricultural Sciences, Group of Plant Nutrition, Lindau, Switzerland
| | - Marcel G A van der Heijden
- Agroscope, Division of Agroecology and Environment, Plant-Soil Interactions Group, Zürich, Switzerland.
- Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
35
|
Sweeney CJ, Bottoms M, Ellis S, Ernst G, Kimmel S, Loutseti S, Schimera A, Carniel LSC, Sharples A, Staab F, Marx MT. Arbuscular Mycorrhizal Fungi and the Need for a Meaningful Regulatory Plant Protection Product Testing Strategy. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:1808-1823. [PMID: 35678214 PMCID: PMC9543394 DOI: 10.1002/etc.5400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/23/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) perform key soil ecosystem services and, because of their symbiotic relationship with plant roots, may be exposed to the plant protection products (PPPs) applied to soils and crops. In 2017, the European Food Safety Authority (EFSA) released a scientific opinion addressing the state of the science on risk assessment of PPPs for in-soil organisms, recommending the inclusion of AMF ecotoxicological testing in the PPP regulatory process. However, it is not clear how this can be implemented in a tiered, robust, and ecologically relevant manner. Through a critical review of current literature, we examine the recommendations made within the EFSA report and the methodologies available to integrate AMF into the PPP risk assessment and provide perspective and commentary on their agronomic and ecological relevance. We conclude that considerable research questions remain to be addressed prior to the inclusion of AMF into the in-soil organism risk assessment, many of which stem from the unique challenges associated with including an obligate symbiont within the PPP risk assessment. Finally, we highlight critical knowledge gaps and the further research required to enable development of relevant, reliable, and robust scientific tests alongside pragmatic and scientifically sound guidance to ensure that any future risk-assessment paradigm is adequately protective of the ecosystem services it aims to preserve. Environ Toxicol Chem 2022;41:1808-1823. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
| | - Melanie Bottoms
- Syngenta, Jealott's Hill International Research Centre BracknellBracknellBerkshireUK
| | - Sian Ellis
- Corteva AgriscienceAbingdonOxfordshireUK
| | | | | | - Stefania Loutseti
- Syngenta, Jealott's Hill International Research Centre BracknellBracknellBerkshireUK
| | | | | | | | | | | |
Collapse
|
36
|
Watts-Williams SJ. Track and trace: how soil labelling techniques have revealed the secrets of resource transport in the arbuscular mycorrhizal symbiosis. MYCORRHIZA 2022; 32:257-267. [PMID: 35596782 PMCID: PMC9184364 DOI: 10.1007/s00572-022-01080-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi colonise plant roots, and by doing so forge the 'mycorrhizal uptake pathway(s)' (MUP) that provide passageways for the trade of resources across a specialised membrane at the plant-fungus interface. The transport of nutrients such as phosphorus (P), nitrogen and zinc from the fungus, and carbon from the plant, via the MUP have mostly been quantified using stable or radioactive isotope labelling of soil in a specialised hyphae-only compartment. Recent advances in the study of AM fungi have used tracing studies to better understand how the AM association will function in a changing climate, the extent to which the MUP can contribute to P uptake by important crops, and how AM fungi trade resources in interaction with plants, other AM fungi, and friend and foe in the soil microbiome. The existing work together with well-designed future experiments will provide a valuable assessment of the potential for AM fungi to play a role in the sustainability of managed and natural systems in a changing climate.
Collapse
Affiliation(s)
- Stephanie J Watts-Williams
- The Waite Research Institute and School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, South Australia, 5064, Australia.
| |
Collapse
|
37
|
Chen J, Li J, Yang Y, Wang Y, Zhang Y, Wang P. Effects of Conventional and Organic Agriculture on Soil Arbuscular Mycorrhizal Fungal Community in Low-Quality Farmland. Front Microbiol 2022; 13:914627. [PMID: 35756026 PMCID: PMC9218867 DOI: 10.3389/fmicb.2022.914627] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Arbuscular mycorrhizal (AM) fungi have promising applications in low-quality farmlands all over the world, but research on their responses to conventional and organic farming systems in low-quality soil is limited. We hypothesized that the colonization activity and community diversity of AM fungi in conventional farming systems may not be lower than in organic farming on low-quality farmlands where beneficial symbiosis is required. We collected soil and maize root samples from medium to low fertility farmlands with conventional or organic farming systems in western Jilin Province, China. The colonization percentage and intensity, taxonomic and phylogenetic diversity, community composition of soil AM fungi, and soil factors were detected and compared between the two farming systems. The colonization intensity and operational taxonomic unit (OTU) taxonomic diversity on conventional farms were higher than on organic farms. Glomus was the most common genus on conventional farms, whereas Paraglomus and Glomus were the most common on organic farms. We also found a simpler AM fungal network structure with lower OTU phylogenetic diversity on conventional farms. Our findings suggested that though the conventional farming system resulted in different compositions and simpler structures of soil AM fungal community, there are potential diverse OTU resources currently present on conventional farms. This work has potential impacts on understanding the influence of different farming systems on soil AM fungi in low-quality farmlands and the development of efficient mycorrhizal inoculant production.
Collapse
Affiliation(s)
- Jiawei Chen
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, China
| | - Jianwei Li
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, China
| | - Yurong Yang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, China
| | - Yimei Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, China
| | - Yifei Zhang
- Jilin Provincial Academy of Forestry Sciences, Changchun, China
| | - Ping Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, China
| |
Collapse
|
38
|
Oburger E, Schmidt H, Staudinger C. Harnessing belowground processes for sustainable intensification of agricultural systems. PLANT AND SOIL 2022; 478:177-209. [PMID: 36277079 PMCID: PMC9579094 DOI: 10.1007/s11104-022-05508-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/18/2022] [Indexed: 06/16/2023]
Abstract
Increasing food demand coupled with climate change pose a great challenge to agricultural systems. In this review we summarize recent advances in our knowledge of how plants, together with their associated microbiota, shape rhizosphere processes. We address (molecular) mechanisms operating at the plant-microbe-soil interface and aim to link this knowledge with actual and potential avenues for intensifying agricultural systems, while at the same time reducing irrigation water, fertilizer inputs and pesticide use. Combining in-depth knowledge about above and belowground plant traits will not only significantly advance our mechanistic understanding of involved processes but also allow for more informed decisions regarding agricultural practices and plant breeding. Including belowground plant-soil-microbe interactions in our breeding efforts will help to select crops resilient to abiotic and biotic environmental stresses and ultimately enable us to produce sufficient food in a more sustainable agriculture in the upcoming decades.
Collapse
Affiliation(s)
- Eva Oburger
- Department of Forest and Soil Science, Institute of Soil Research, University of Natural Resources and Life Sciences, Konrad Lorenzstrasse 24, 3430 Tulln an der Donau, Austria
| | - Hannes Schmidt
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Christiana Staudinger
- Department of Forest and Soil Science, Institute of Soil Research, University of Natural Resources and Life Sciences, Konrad Lorenzstrasse 24, 3430 Tulln an der Donau, Austria
- Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama 1-7-1, Higashi-Hiroshima, Japan
| |
Collapse
|
39
|
Arbuscular mycorrhizae: natural modulators of plant–nutrient relation and growth in stressful environments. Arch Microbiol 2022; 204:264. [DOI: 10.1007/s00203-022-02882-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 03/20/2022] [Accepted: 03/28/2022] [Indexed: 11/02/2022]
|
40
|
Saia S, Jansa J. Editorial: Arbuscular Mycorrhizal Fungi: The Bridge Between Plants, Soils, and Humans. FRONTIERS IN PLANT SCIENCE 2022; 13:875958. [PMID: 35444670 PMCID: PMC9014169 DOI: 10.3389/fpls.2022.875958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Sergio Saia
- Department of Veterinary Science, University of Pisa, Pisa, Italy
| | - Jan Jansa
- Czech Academy of Sciences, Institute of Microbiology, Prague, Czechia
| |
Collapse
|
41
|
Thirkell TJ, Grimmer M, James L, Pastok D, Allary T, Elliott A, Paveley N, Daniell T, Field KJ. Variation in mycorrhizal growth response among a spring wheat mapping population shows potential to breed for symbiotic benefit. Food Energy Secur 2022; 11:e370. [PMID: 35865673 PMCID: PMC9286679 DOI: 10.1002/fes3.370] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 11/09/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022] Open
Affiliation(s)
- Tom J. Thirkell
- Plants, Photosynthesis and Soil School of Biosciences University of Sheffield Sheffield UK
| | | | | | - Daria Pastok
- School of Biology Centre for Plant Sciences University of Leeds Leeds UK
| | - Théa Allary
- Plants, Photosynthesis and Soil School of Biosciences University of Sheffield Sheffield UK
| | - Ashleigh Elliott
- School of Biology Centre for Plant Sciences University of Leeds Leeds UK
| | | | - Tim Daniell
- Plants, Photosynthesis and Soil School of Biosciences University of Sheffield Sheffield UK
| | - Katie J. Field
- Plants, Photosynthesis and Soil School of Biosciences University of Sheffield Sheffield UK
| |
Collapse
|
42
|
Kirkman ER, Hilton S, Sethuraman G, Elias DMO, Taylor A, Clarkson J, Soh AC, Bass D, Ooi GT, McNamara NP, Bending GD. Diversity and Ecological Guild Analysis of the Oil Palm Fungal Microbiome Across Root, Rhizosphere, and Soil Compartments. Front Microbiol 2022; 13:792928. [PMID: 35222328 PMCID: PMC8874247 DOI: 10.3389/fmicb.2022.792928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/18/2022] [Indexed: 11/14/2022] Open
Abstract
The rhizosphere microbiome is a major determinant of plant health, which can interact with the host directly and indirectly to promote or suppress productivity. Oil palm is one of the world’s most important crops, constituting over a third of global vegetable oil production. Currently there is little understanding of the oil palm microbiome and its contribution to plant health and productivity, with existing knowledge based almost entirely on culture dependent studies. We investigated the diversity and composition of the oil palm fungal microbiome in the bulk soil, rhizosphere soil, and roots of 2-, 18-, and 35-year old plantations in Selangor, Malaysia. The fungal community showed substantial variation between the plantations, accounting for 19.7% of community composition, with compartment (root, rhizosphere soil, and bulk soil), and soil properties (pH, C, N, and P) contributing 6.5 and 7.2% of community variation, respectively. Rhizosphere soil and roots supported distinct communities compared to the bulk soil, with significant enrichment of Agaricomycetes, Glomeromycetes, and Lecanoromycetes in roots. Several putative plant pathogens were abundant in roots in all the plantations, including taxa related to Prospodicola mexicana and Pleurostoma sp. The mycorrhizal status and dependency of oil palm has yet to be established, and using 18S rRNA primers we found considerable between-site variation in Glomeromycotinian community composition, accounting for 31.2% of variation. There was evidence for the selection of Glomeromycotinian communities in oil palm roots in the older plantations but compartment had a weak effect on community composition, accounting for 3.9% of variation, while soil variables accounted for 9% of community variation. While diverse Mucoromycotinian fungi were detected, they showed very low abundance and diversity within roots compared to bulk soil, and were not closely related to taxa which have been linked to fine root endophyte mycorrhizal morphology. Many of the fungal sequences showed low similarity to established genera, indicating the presence of substantial novel diversity with significance for plant health within the oil palm microbiome.
Collapse
Affiliation(s)
- Eleanor R. Kirkman
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Sally Hilton
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Gomathy Sethuraman
- Crops for the Future Research Centre, Semenyih, Malaysia
- Faculty of Science, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Dafydd M. O. Elias
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Bailrigg, United Kingdom
| | - Andrew Taylor
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - John Clarkson
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Aik Chin Soh
- Crops for the Future Research Centre, Semenyih, Malaysia
| | - David Bass
- Department of Life Sciences, Natural History Museum, London, United Kingdom
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, United Kingdom
| | - Gin Teng Ooi
- Crops for the Future Research Centre, Semenyih, Malaysia
| | - Niall P. McNamara
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Bailrigg, United Kingdom
| | - Gary D. Bending
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- *Correspondence: Gary D. Bending,
| |
Collapse
|
43
|
Qiu Q, Bender SF, Mgelwa AS, Hu Y. Arbuscular mycorrhizal fungi mitigate soil nitrogen and phosphorus losses: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150857. [PMID: 34626638 DOI: 10.1016/j.scitotenv.2021.150857] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/03/2021] [Accepted: 10/03/2021] [Indexed: 05/25/2023]
Abstract
Nutrient loss from terrestrial ecosystems via leaching and gaseous emissions is increasingly threatening global environmental and human health. Although arbuscular mycorrhizal fungi (AMF) have been shown to regulate soil N and P losses, a comprehensive quantitative overview of their influences on the losses of these soil nutrients across global scales is currently lacking. This study used a meta-analysis of 322 observations from 36 studies to assess the effect of AMF inoculum on 11 variables related to the loss of soil N and P. We found that the presence of AMF significantly reduced soil N and P losses, with the most pronounced reduction occurring in soil NO3--N (-32%), followed by total P (-21%), available P (-16%) and N2O (-10%). However, the mitigation effects of AMF on soil N and P loss were dependent on the identity of AMF inoculum, plant type and soil biotic and abiotic factors. Generally, the mitigation effects of AMF increased with increasing AMF root colonization rate, microbial diversity of inoculants, soil organic carbon (SOC) content and experimental duration as well as with decreasing soil sand contents and soil N and P availability. Overall, this meta-analysis highlights the importance of AMF inoculation in mitigating N and P nutrient loss and environmental pollution for terrestrial ecosystem sustainability.
Collapse
Affiliation(s)
- Qingyan Qiu
- Forest Ecology & Stable Isotope Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - S Franz Bender
- Plant-Soil-Interactions, Agroscope, Reckenholzstrasse 191, CH-8046 Zürich, Switzerland; University of Zürich, Department of Plant and Microbial Biology, Zollikerstrasse 107, CH-8008 Zürich, Switzerland
| | - Abubakari Said Mgelwa
- College of Natural Resources Management & Tourism, Mwalimu Julius K. Nyerere University of Agriculture & Technology, P.O. Box 976, Musoma, Tanzania; CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Yalin Hu
- Forest Ecology & Stable Isotope Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
44
|
Wu S, Shi Z, Chen X, Gao J, Wang X. Arbuscular mycorrhizal fungi increase crop yields by improving biomass under rainfed condition: a meta-analysis. PeerJ 2022; 10:e12861. [PMID: 35178300 PMCID: PMC8815364 DOI: 10.7717/peerj.12861] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 01/09/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Rainfed agriculture plays key role in ensuring food security and maintain ecological balance. Especially in developing areas, most grain food are produced rainfed agricultural ecosystem. Therefore, the increase of crop yields in rainfed agricultural ecosystem becomes vital as well as ensuring global food security. METHODS The potential roles of arbuscular mycorrhizal fungi (AMF) in improving crop yields under rainfed condition were explored based on 546 pairs of observations published from 1950 to 2021. RESULTS AMF inoculation increased 23.0% crop yields based on 13 popular crops under rainfed condition. Not only was crop biomass of shoot and root increased 24.2% and 29.6% by AMF inocula, respectively but also seed number and pod/fruit number per plant were enhanced markedly. Further, the effect of AMF on crop yields depended on different crop groups. AMF improved more yield of N-fixing crops than non-N-fixing crops. The effect of AMF changed between grain and non-grain crops with the effect size of 0.216 and 0.352, respectively. AMF inoculation enhances stress resistance and photosynthesis of host crop in rainfed agriculture. CONCLUSION AMF increased crop yields by enhancing shoot biomass due to the improvement of plant nutrition, photosynthesis, and stress resistance in rainfed field. Our findings provide a new view for understanding the sustainable productivity in rainfed agroecosystem, which enriched the theory of AMF functional diversity. This study provided a theoretical and technical way for sustainable production under rainfed agriculture.
Collapse
Affiliation(s)
- Shanwei Wu
- College of Agriculture, Henan University of Science and Technology, Luoyang, Henan Province, China
- Henan Engineering Research Center of Human Settlements, Luoyang, Henan Province, China
- Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang, Henan Province, China
| | - Zhaoyong Shi
- College of Agriculture, Henan University of Science and Technology, Luoyang, Henan Province, China
- Henan Engineering Research Center of Human Settlements, Luoyang, Henan Province, China
- Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang, Henan Province, China
| | - Xianni Chen
- College of Agriculture, Henan University of Science and Technology, Luoyang, Henan Province, China
- Henan Engineering Research Center of Human Settlements, Luoyang, Henan Province, China
- Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang, Henan Province, China
| | - Jiakai Gao
- College of Agriculture, Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Xugang Wang
- College of Agriculture, Henan University of Science and Technology, Luoyang, Henan Province, China
| |
Collapse
|
45
|
Albornoz FE, Ryan MH, Bending GD, Hilton S, Dickie IA, Gleeson DB, Standish RJ. Agricultural land-use favours Mucoromycotinian, but not Glomeromycotinian, arbuscular mycorrhizal fungi across ten biomes. THE NEW PHYTOLOGIST 2022; 233:1369-1382. [PMID: 34618929 DOI: 10.1111/nph.17780] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/19/2021] [Indexed: 05/26/2023]
Abstract
Globally, agricultural land-use negatively affects soil biota that contribute to ecosystem functions such as nutrient cycling, yet arbuscular mycorrhizal fungi (AMF) are promoted as essential components of agroecosystems. Arbuscular mycorrhizal fungi include Glomeromycotinian AMF (G-AMF) and the arbuscule-producing fine root endophytes, recently re-classified into the Endogonales order within Mucoromycotina. The correct classification of Mucoromycotinian AMF (M-AMF) and the availability of new molecular tools can guide research to better the understanding of their diversity and ecology. To investigate the impact on G-AMF and M-AMF of agricultural land-use at a continental scale, we sampled DNA from paired farm and native sites across 10 Australian biomes. Glomeromycotinian AMF were present in both native and farm sites in all biomes. Putative M-AMF were favoured by farm sites, rare or absent in native sites, and almost entirely absent in tropical biomes. Temperature, rainfall, and soil pH were strong drivers of richness and community composition of both groups, and plant richness was an important mediator. Both fungal groups occupy different, but overlapping, ecological niches, with M-AMF thriving in temperate agricultural landscapes. Our findings invite exploration of the origin and spread of M-AMF and continued efforts to resolve the phylogeny of this newly reclassified group of AMF.
Collapse
Affiliation(s)
- Felipe E Albornoz
- Commonwealth Scientific and Industrial Research Organisation, Land and Water, Wembley, WA, 6913, Australia
- Institute of Agriculture, UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Hwy, Crawley (Perth), WA, 6009, Australia
| | - Megan H Ryan
- Institute of Agriculture, UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Hwy, Crawley (Perth), WA, 6009, Australia
| | - Gary D Bending
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Sally Hilton
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Ian A Dickie
- Bio-Protection Research Centre, School of Biological Science, University of Canterbury, Christchurch, 8041, New Zealand
| | - Deirdre B Gleeson
- Institute of Agriculture, UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Hwy, Crawley (Perth), WA, 6009, Australia
| | - Rachel J Standish
- Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
| |
Collapse
|
46
|
Cofré N, Marro N, Grilli G, Soteras F. Arbuscular Mycorrhizal Fungi in Agroecosystems of East-Central Argentina: Two Agricultural Practices Effects on Taxonomic Groups. Fungal Biol 2022. [DOI: 10.1007/978-3-031-12994-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
47
|
Thanni B, Merckx R, De Bauw P, Boeraeve M, Peeters G, Hauser S, Honnay O. Spatial variability and environmental drivers of cassava-arbuscular mycorrhiza fungi (AMF) associations across Southern Nigeria. MYCORRHIZA 2022; 32:1-13. [PMID: 34981190 PMCID: PMC8786768 DOI: 10.1007/s00572-021-01058-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/16/2021] [Indexed: 06/14/2023]
Abstract
Cassava, forming starch-rich, tuberous roots, is an important staple crop in smallholder farming systems in sub-Saharan Africa. Its relatively good tolerance to drought and nutrient-poor soils may be partly attributed to the crop's association with arbuscular mycorrhiza fungi (AMF). Yet insights into AMF-community composition and richness of cassava, and knowledge of its environmental drivers are still limited. Here, we sampled 60 cassava fields across three major cassava-growing agro-ecological zones in Nigeria and used a DNA meta-barcoding approach to quantify large-scale spatial variation and evaluate the effects of soil characteristics and common agricultural practices on AMF community composition, richness and Shannon diversity. We identified 515 AMF operational taxonomic units (OTUs), dominated by Glomus, with large variation across agro-ecological zones, and with soil pH explaining most of the variation in AMF community composition. High levels of soil available phosphorus reduced OTU richness without affecting Shannon diversity. Long fallow periods (> 5 years) reduced AMF richness compared with short fallows, whereas both zero tillage and tractor tillage reduced AMF diversity compared with hoe tillage. This study reveals that the symbiotic relationship between cassava and AMF is strongly influenced by soil characteristics and agricultural management and that it is possible to adjust cassava cultivation practices to modify AMF diversity and community structure.
Collapse
Affiliation(s)
- Bolaji Thanni
- Division Soil and Water Management, Department of Earth and Environmental Sciences, KU Leuven, Kasteelpark Arenberg 20, box-3001, 3001, Heverlee, Leuven, Belgium.
- Root and Tuber Agronomy, International Institute of Tropical Agriculture, Ibadan, Nigeria.
| | - Roel Merckx
- Division Soil and Water Management, Department of Earth and Environmental Sciences, KU Leuven, Kasteelpark Arenberg 20, box-3001, 3001, Heverlee, Leuven, Belgium
| | - Pieterjan De Bauw
- Division Soil and Water Management, Department of Earth and Environmental Sciences, KU Leuven, Kasteelpark Arenberg 20, box-3001, 3001, Heverlee, Leuven, Belgium
| | - Margaux Boeraeve
- Department of Biology, Plant Conservation and Population Biology, KU Leuven, B-3001, Leuven, Belgium
| | - Gerrit Peeters
- Department of Biology, Plant Conservation and Population Biology, KU Leuven, B-3001, Leuven, Belgium
| | - Stefan Hauser
- Root and Tuber Agronomy, International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Olivier Honnay
- Department of Biology, Plant Conservation and Population Biology, KU Leuven, B-3001, Leuven, Belgium
| |
Collapse
|
48
|
Raut JK, Baral K, Adhikari MK, Jha PK. Interaction of Mycorrhizal Fungi with Rhizospheric Microbes and Their Mode of Action. Fungal Biol 2022. [DOI: 10.1007/978-3-031-04805-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
49
|
Arbuscular Mycorrhizal Fungi in the Colombian Amazon: A Historical Review. Fungal Biol 2022. [DOI: 10.1007/978-3-031-12994-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
50
|
Yin R, Hao Z, Zhou X, Wu H, Feng Z, Yuan X, Chen B. Ozone does not diminish the beneficial effects of arbuscular mycorrhizas on Medicago sativa L. in a low phosphorus soil. MYCORRHIZA 2022; 32:33-43. [PMID: 34981189 DOI: 10.1007/s00572-021-01059-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/20/2021] [Indexed: 05/12/2023]
Abstract
Enriched surface ozone (O3) can impose harmful effects on plants. Conversely, arbuscular mycorrhizal (AM) symbiosis can enhance plant tolerance to various environmental stresses and facilitate plant growth. The interaction of AM fungi and O3 on plant performance, however, seldom has been investigated. In this study, alfalfa (Medicago sativa L.) was used as a test plant to study the effects of O3 and AM symbiosis on plant physiology and growth under two O3 levels (ambient air and elevated O3 with 60 nmol·mol-1 O3 enrichment) and three AM inoculation treatments (inoculation with exogenous or indigenous AM fungi and non-inoculation control). The results showed that elevated O3 decreased plant net photosynthetic rate and biomass, and increased malondialdehyde concentration, while AM inoculation (with both exogenous and indigenous AM fungi) could promote plant nutrient acquisition and growth irrespective of O3 levels. The positive effects of AM symbiosis on plant nutrient acquisition and antioxidant enzyme (superoxide dismutase and peroxidase) activities were most likely offset by increased stomatal conductance and O3 intake. As a result, AM inoculation and O3 generally showed no significant interactions on plant performance: although elevated O3 did not diminish the beneficial effects of AM symbiosis on alfalfa plants, AM symbiosis also did not alleviate the harmful effects of O3 on plants.
Collapse
Affiliation(s)
- Rongbin Yin
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, No. 18, Shuangqing Road, Beijing, 100085, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Zhipeng Hao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, No. 18, Shuangqing Road, Beijing, 100085, People's Republic of China
| | - Xiang Zhou
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, No. 18, Shuangqing Road, Beijing, 100085, People's Republic of China
- China University of Geosciences, Beijing, 100191, People's Republic of China
| | - Hui Wu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, No. 18, Shuangqing Road, Beijing, 100085, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Zhaozhong Feng
- Institute of Ecology, Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, People's Republic of China
| | - Xiangyang Yuan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, No. 18, Shuangqing Road, Beijing, 100085, People's Republic of China
| | - Baodong Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, No. 18, Shuangqing Road, Beijing, 100085, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|