1
|
Deluigi J, Bachofen C, Didion-Gency M, Gisler J, Mas E, Mekarni L, Poretti A, Schaub M, Vitasse Y, Grossiord C. Prolonged warming and drought reduce canopy-level net carbon uptake in beech and oak saplings despite photosynthetic and respiratory acclimation. THE NEW PHYTOLOGIST 2025; 246:2015-2028. [PMID: 40178032 DOI: 10.1111/nph.70111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/12/2025] [Indexed: 04/05/2025]
Abstract
Tree net carbon (C) uptake may decrease under global warming, as higher temperatures constrain photosynthesis while simultaneously increasing respiration. Thermal acclimation might mitigate this negative effect, but its capacity to do so under concurrent soil drought remains uncertain. Using a 5-yr open-top chamber experiment, we determined acclimation of leaf-level photosynthesis (thermal optimum Topt and rate Aopt) and respiration (rate at 25°C R25 and thermal sensitivity Q10) to chronic +5°C warming, soil drought, and their combination in beech (Fagus sylvatica L.) and oak (Quercus pubescens Willd.) saplings. Process-based modeling was used to evaluate acclimation impacts on canopy-level net C uptake (Atot). Prolonged warming increased Topt by 3.03-2.66°C, but only by 1.58-0.31°C when combined with soil drought, and slightly reduced R25 and Q10. By contrast, drought reduced Topt (-1.93°C in oak), Aopt (c. 50%), and slightly reduced R25 and Q10 (in beech). Mainly because of reduced leaf area, Atot decreased by 47-84% with warming (in beech) and drought, but without additive effects when combined. Our results suggest that, despite photosynthetic and respiratory acclimation to warming and soil drought, canopy-level net C uptake will decline in a persistently hotter and drier climate, primarily due to the prevalent impact of leaf area reduction.
Collapse
Affiliation(s)
- Janisse Deluigi
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-1015, Lausanne, Switzerland
| | - Christoph Bachofen
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-1015, Lausanne, Switzerland
| | - Margaux Didion-Gency
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-1015, Lausanne, Switzerland
- Ecological and Forestry Applications Research Center CREAF, E-08193, Cerdanyola-del-Vallès, Spain
| | - Jonas Gisler
- Forest Dynamics Research Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903, Birmensdorf, Switzerland
| | - Eugénie Mas
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-1015, Lausanne, Switzerland
- Forest Global Earth Observatory (ForestGEO), Smithsonian Tropical Research Institute (STRI), DC-20560, Washington, DC, USA
| | - Laura Mekarni
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-1015, Lausanne, Switzerland
| | - Alvaro Poretti
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-1015, Lausanne, Switzerland
| | - Marcus Schaub
- Forest Dynamics Research Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903, Birmensdorf, Switzerland
| | - Yann Vitasse
- Forest Dynamics Research Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903, Birmensdorf, Switzerland
| | - Charlotte Grossiord
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-1015, Lausanne, Switzerland
| |
Collapse
|
2
|
Wang Z, Wang X, Han B, Liu D, Wang C. Balance between carbon gain and loss in warmer environments: impacts on photosynthesis and leaf respiration in four temperate tree species. TREE PHYSIOLOGY 2024; 44:tpae070. [PMID: 38905287 DOI: 10.1093/treephys/tpae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/31/2024] [Accepted: 06/20/2024] [Indexed: 06/23/2024]
Abstract
The temperature sensitivities of photosynthesis and respiration remain a key uncertainty in predicting how forests will respond to climate warming. We grew seedlings of four temperate tree species, including Betula platyphylla, Fraxinus mandshurica, Juglans mandshurica and Tilia amurensis, at three temperature regimes (ambient, +2 °C, and +4 °C in daytime air temperature). We investigated net photosynthesis (Anet25), maximum rate of RuBP-carboxylation (Vcmax25) and RuBP-regeneration (Jmax25), stomatal conductance (gs25), mesophyll conductance (gm25), and leaf respiration (Rleaf) in dark (Rdark25) and in light (Rlight25) at 25 °C in all species. Additionally, we examined the temperature sensitivities of Anet, Vcmax, Jmax, Rdark and Rlight in F. mandshurica. Our findings showed that the warming-induced decreases in Anet25, Vcmax25 and Jmax25 were more prevalent in the late-successional species T. amurensis. Warming had negative impacts on gs25 in all species. Overall, Anet25 was positively correlated with Vcmax25 and Jmax25 across all growth temperatures. However, a positive correlation between Anet25 and gs25 was observed only under warming conditions, and gs25 was negatively associated with vapor pressure deficit. This implies that the vapor pressure deficit-induced decrease in gs25 was responsible for the decline in Anet25 at higher temperatures. The optimum temperature of Anet in F. mandshurica increased by 0.59 °C per 1.0 °C rise in growth temperature. While +2 °C elevated the thermal optima of Jmax, it did not affect the other temperature sensitivity parameters of Vcmax and Jmax. Rdark25 was not affected by warming in any species, and Rlight25 was stimulated in T. amurensis. The temperature response curves of Rdark and Rlight in F. mandshurica were not altered by warming, implying a lack of thermal acclimation. The ratios of Rdark25 and Rlight25 to Anet25 and Vcmax25 in T. amurensis increased with warming. These results suggest that Anet and Rleaf did not acclimate to warming synchronously in these temperate tree species.
Collapse
Affiliation(s)
- Zhaoguo Wang
- School of Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Xiaochun Wang
- School of Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Bingxin Han
- School of Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Di Liu
- School of Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Chuankuan Wang
- School of Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| |
Collapse
|
3
|
Bruhn D, Povlsen P, Gardner A, Mercado LM. Instantaneous Q 10 of night-time leaf respiratory CO 2 efflux - measurement and analytical protocol considerations. THE NEW PHYTOLOGIST 2024; 243:23-28. [PMID: 38600045 DOI: 10.1111/nph.19753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 03/26/2024] [Indexed: 04/12/2024]
Abstract
The temperature sensitivity (e.g. Q10) of night-time leaf respiratory CO2 efflux (RCO2) is a fundamental aspect of leaf physiology. The Q10 typically exhibits a dependence on measurement temperature, and it is speculated that this is due to temperature-dependent shifts in the relative control of leaf RCO2. Two decades ago, a review hypothesized that this mechanistically caused change in values of Q10 is predictable across plant taxa and biomes. Here, we discuss the most appropriate measuring protocol among existing data and for future data collection, to form the foundation of a future mechanistic understanding of Q10 of leaf RCO2 at different temperature ranges. We do this primarily via a review of existing literature on Q10 of night-time RCO2 and only supplement this to a lesser degree with our own original data. Based on mechanistic considerations, we encourage that instantaneous Q10 of leaf RCO2 to represent night-time should be measured: only at night-time; only in response to short-term narrow temperature variation (e.g. max. 10°C) to represent a given midpoint temperature at a time; in response to as many temperatures as possible within the chosen temperature range; and on still attached leaves.
Collapse
Affiliation(s)
- Dan Bruhn
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, 9220, Denmark
| | - Peter Povlsen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, 9220, Denmark
| | - Anna Gardner
- Faculty of Environment, Science and Economy, University of Exeter, EX4 4QE, Exeter, UK
- School of Biosciences, University of Birmingham, Birmingham, B14 2TT, UK
| | - Lina M Mercado
- Faculty of Environment, Science and Economy, University of Exeter, EX4 4QE, Exeter, UK
| |
Collapse
|
4
|
Tcherkez G, Abadie C, Dourmap C, Lalande J, Limami AM. Leaf day respiration: More than just catabolic CO 2 production in the light. PLANT, CELL & ENVIRONMENT 2024; 47:2631-2639. [PMID: 38528759 DOI: 10.1111/pce.14904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/08/2024] [Accepted: 03/18/2024] [Indexed: 03/27/2024]
Abstract
Summary statementDay respiration is a net flux resulting from several CO2‐generating and CO2‐fixing reactions, not only related to catabolism but also to anabolism. We review pieces of evidence that decarboxylating reactions are partly fed by carbon sources disconnected from current photosynthesis and how they reflect various metabolic pathways.
Collapse
Affiliation(s)
- Guillaume Tcherkez
- Institut de recherche en horticulture et semences, Université d'Angers, INRAe, Beaucouzé, France
- Research school of biology, ANU College of Science, Australian National University, Canberra, Australia
| | - Cyril Abadie
- Institut de recherche en horticulture et semences, Université d'Angers, INRAe, Beaucouzé, France
- Ecophysiologie et génomique fonctionnelle de la vigne, Institut des Sciences de la Vigne et du Vin, INRAe, Université de Bordeaux, Villenave-d'Ornon, France
| | - Corentin Dourmap
- Institut de recherche en horticulture et semences, Université d'Angers, INRAe, Beaucouzé, France
| | - Julie Lalande
- Institut de recherche en horticulture et semences, Université d'Angers, INRAe, Beaucouzé, France
| | - Anis M Limami
- Institut de recherche en horticulture et semences, Université d'Angers, INRAe, Beaucouzé, France
| |
Collapse
|
5
|
Zheng DM, Wang X, Liu Q, Sun YR, Ma WT, Li L, Yang Z, Tcherkez G, Adams MA, Yang Y, Gong XY. Temperature responses of leaf respiration in light and darkness are similar and modulated by leaf development. THE NEW PHYTOLOGIST 2024; 241:1435-1446. [PMID: 37997699 DOI: 10.1111/nph.19428] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023]
Abstract
Our ability to predict temperature responses of leaf respiration in light and darkness (RL and RDk ) is essential to models of global carbon dynamics. While many models rely on constant thermal sensitivity (characterized by Q10 ), uncertainty remains as to whether Q10 of RL and RDk are actually similar. We measured short-term temperature responses of RL and RDk in immature and mature leaves of two evergreen tree species, Castanopsis carlesii and Ormosia henry in an open field. RL was estimated by the Kok method, the Yin method and a newly developed Kok-iterCc method. When estimated by the Yin and Kok-iterCc methods, RL and RDk had similar Q10 (c. 2.5). The Kok method overestimated both Q10 and the light inhibition of respiration. RL /RDk was not affected by leaf temperature. Acclimation of respiration in summer was associated with a decline in basal respiration but not in Q10 in both species, which was related to changes in leaf nitrogen content between seasons. Q10 of RL and RDk in mature leaves were 40% higher than in immature leaves. Our results suggest similar Q10 values can be used to model RL and RDk while leaf development-associated changes in Q10 require special consideration in future respiration models.
Collapse
Affiliation(s)
- Ding Ming Zheng
- Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, College of Geographical Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Xuming Wang
- Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, College of Geographical Sciences, Fujian Normal University, Fuzhou, 350117, China
- Fujian Sanming Forest Ecosystem National Observation and Research Station, Sanming, 365000, China
- Fujian Provincial Key Laboratory for Plant Eco-Physiology, Fuzhou, 350117, China
| | - Qi Liu
- Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, College of Geographical Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Yan Ran Sun
- Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, College of Geographical Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Wei Ting Ma
- Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, College of Geographical Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Lei Li
- Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, College of Geographical Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Zhijie Yang
- Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, College of Geographical Sciences, Fujian Normal University, Fuzhou, 350117, China
- Fujian Sanming Forest Ecosystem National Observation and Research Station, Sanming, 365000, China
| | - Guillaume Tcherkez
- Research School of Biology, ANU College of Medicine, Biology and Environment, Australian National University, Canberra, ACT, 0200, Australia
- Institut de Recherche en Horticulture et Semences, INRAe, Université d'Angers, 42 rue Georges Morel, 49070, Beaucouzé, France
| | - Mark A Adams
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, VIC, 3122, Australia
| | - Yusheng Yang
- Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, College of Geographical Sciences, Fujian Normal University, Fuzhou, 350117, China
- Fujian Sanming Forest Ecosystem National Observation and Research Station, Sanming, 365000, China
| | - Xiao Ying Gong
- Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, College of Geographical Sciences, Fujian Normal University, Fuzhou, 350117, China
- Fujian Sanming Forest Ecosystem National Observation and Research Station, Sanming, 365000, China
- Fujian Provincial Key Laboratory for Plant Eco-Physiology, Fuzhou, 350117, China
| |
Collapse
|
6
|
Yin X, Amthor JS. Estimating leaf day respiration from conventional gas exchange measurements. THE NEW PHYTOLOGIST 2024; 241:52-58. [PMID: 37858976 DOI: 10.1111/nph.19330] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023]
Abstract
Leaf day respiration (Rd ) strongly influences carbon-use efficiencies of whole plants and the global terrestrial biosphere. It has long been thought that Rd is slower than respiration in the dark at a given temperature, but measuring Rd by gas exchange remains a challenge because leaves in the light are also photosynthesizing. The Kok method and the Laisk method are widely used to estimate Rd . We highlight theoretical limitations of these popular methods, and recent progress toward their improvement by using additional information from chlorophyll fluorescence and by accounting for the photosynthetic reassimilation of respired CO2 . The latest evidence for daytime CO2 and energy release from the oxidative pentose phosphate pathway in chloroplasts appears to be important to understanding Rd .
Collapse
Affiliation(s)
- Xinyou Yin
- Centre for Crop Systems Analysis, Department of Plant Sciences, Wageningen University & Research, PO Box 430, 6700 AK, Wageningen, the Netherlands
| | - Jeffrey S Amthor
- Center for Ecosystem Science and Society, Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| |
Collapse
|
7
|
Schmiege SC, Sharkey TD, Walker B, Hammer J, Way DA. Laisk measurements in the nonsteady state: Tests in plants exposed to warming and variable CO2 concentrations. PLANT PHYSIOLOGY 2023; 193:1045-1057. [PMID: 37232396 PMCID: PMC10517191 DOI: 10.1093/plphys/kiad305] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/27/2023]
Abstract
Light respiration (RL) is an important component of plant carbon balance and a key parameter in photosynthesis models. RL is often measured using the Laisk method, a gas exchange technique that is traditionally employed under steady-state conditions. However, a nonsteady-state dynamic assimilation technique (DAT) may allow for more rapid Laisk measurements. In 2 studies, we examined the efficacy of DAT for estimating RL and the parameter Ci* (the intercellular CO2 concentration where Rubisco's oxygenation velocity is twice its carboxylation velocity), which is also derived from the Laisk technique. In the first study, we compared DAT and steady-state RL and Ci* estimates in paper birch (Betula papyrifera) growing under control and elevated temperature and CO2 concentrations. In the second, we compared DAT-estimated RL and Ci* in hybrid poplar (Populus nigra L. × P. maximowiczii A. Henry "NM6") exposed to high or low CO2 concentration pre-treatments. The DAT and steady-state methods provided similar RL estimates in B. papyrifera, and we found little acclimation of RL to temperature or CO2; however, Ci* was higher when measured with DAT compared to steady-state methods. These Ci* differences were amplified by the high or low CO2 pre-treatments. We propose that changes in the export of glycine from photorespiration may explain these apparent differences in Ci*.
Collapse
Affiliation(s)
- Stephanie C Schmiege
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
- Department of Biology, Western University, London, Ontario N6A 5B7, Canada
| | - Thomas D Sharkey
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Berkley Walker
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Julia Hammer
- Department of Biology, Western University, London, Ontario N6A 5B7, Canada
| | - Danielle A Way
- Department of Biology, Western University, London, Ontario N6A 5B7, Canada
- Research School of Biology, The Australian National University, Acton, Australian Capital Territory 2601, Australia
- Nicholas School of the Environment, Duke University, Durham, NC 27710, USA
- Environmental & Climate Sciences Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
8
|
Schmiege SC, Heskel M, Fan Y, Way DA. It's only natural: Plant respiration in unmanaged systems. PLANT PHYSIOLOGY 2023; 192:710-727. [PMID: 36943293 PMCID: PMC10231469 DOI: 10.1093/plphys/kiad167] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 06/01/2023]
Abstract
Respiration plays a key role in the terrestrial carbon cycle and is a fundamental metabolic process in all plant tissues and cells. We review respiration from the perspective of plants that grow in their natural habitat and how it is influenced by wide-ranging elements at different scales, from metabolic substrate availability to shifts in climate. Decades of field-based measurements have honed our understanding of the biological and environmental controls on leaf, root, stem, and whole-organism respiration. Despite this effort, there remain gaps in our knowledge within and across species and ecosystems, especially in more challenging-to-measure tissues like roots. Recent databases of respiration rates and associated leaf traits from species representing diverse biomes, plant functional types, and regional climates have allowed for a wider-lens view at modeling this important CO2 flux. We also re-analyze published data sets to show that maximum leaf respiration rates (Rmax) in species from around the globe are related both to leaf economic traits and environmental variables (precipitation and air temperature), but that root respiration does not follow the same latitudinal trends previously published for leaf data. We encourage the ecophysiological community to continue to expand their study of plant respiration in tissues that are difficult to measure and at the whole plant and ecosystem levels to address outstanding questions in the field.
Collapse
Affiliation(s)
- Stephanie C Schmiege
- Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biology, Western University, N6A 3K7, London, ON, Canada
| | - Mary Heskel
- Department of Biology, Macalester College, Saint Paul, MN, USA 55105
| | - Yuzhen Fan
- Research School of Biology, The Australian National University, Acton, ACT, Australia
| | - Danielle A Way
- Department of Biology, Western University, N6A 3K7, London, ON, Canada
- Research School of Biology, The Australian National University, Acton, ACT, Australia
- Environmental & Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, USA
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| |
Collapse
|
9
|
Zheng H, Bai Y, Li X, Song H, Cai M, Cheng Z, Mu S, Li J, Gao J. Photosynthesis, Phytohormone Signaling and Sugar Catabolism in the Culm Sheaths of Phyllostachys edulis. PLANTS (BASEL, SWITZERLAND) 2022; 11:2866. [PMID: 36365317 PMCID: PMC9655093 DOI: 10.3390/plants11212866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/17/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Culm sheaths play an important role in supporting and protecting bamboo shoots during the growth and development period. The physiological and molecular functions of bamboo sheaths during the growth of bamboo shoots remain unclear. In this study, we investigated the morphological anatomy of culm sheaths, photosynthesis in sheath blades, storage and distribution of sugars, and the transcriptome of the sheath. Respiration in the base of the culm sheath was higher than that in the sheath blades; chloroplasts matured with the development of the sheath blades, the fluorescence efficiency Fv/Fm value increased from 0.3 to 0.82; and sucrose and hexose accumulated in the sheath blade and the culm sheath. The sucrose, glucose, and fructose contents of the middle sheath blades were 10.66, 5.73, and 8.84 mg/g FW, respectively. Starches accumulated in parenchymal cells close to vascular bundles. Genes related to the plant hormone signaling pathway and sugar catabolism were highly expressed in the culm sheath base. These findings provide a research basis for further understanding the possible role of bamboo sheaths in the growth and development of bamboo shoots.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jian Gao
- Correspondence: ; Tel.: +86-010-8478-9801
| |
Collapse
|
10
|
Zheng T, Yu Y, Kang H. Short-term elevated temperature and CO 2 promote photosynthetic induction in the C 3 plant Glycine max, but not in the C 4 plant Amaranthus tricolor. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:995-1007. [PMID: 35908799 DOI: 10.1071/fp21363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
The continuous increases of atmospheric temperature and CO2 concentration will impact global photosynthesis. However, there are few studies considering the interaction of elevated temperature (eT) and elevated CO2 (eCO2 ) on dynamic photosynthesis, particularly for C4 species. We examine dynamic photosynthesis under four different temperature and [CO2 ] treatments: (1) 400ppm×28°C (CT); (2) 400ppm×33°C (CT+); (3) 800ppm×28°C (C+T); and (4) 800ppm×33°C (C+T+). In Glycine max L., the time required to reach 50% (T 50%A ) and 90% (T 90%A ) of full photosynthetic induction was smaller under the CT+, C+T, and C+T+ treatments than those under the CT treatment. In Amaranthus tricolor L., however, neither T 50%A nor T 90%A was not significantly affected by eT or eCO2 . In comparison with the CT treatment, the achieved carbon gain was increased by 58.3% (CT+), 112% (C+T), and 136.6% (C+T+) in G. max and was increased by 17.1% (CT+), 2.6% (C+T) and 56.9% (C+T+) in A. tricolor . The increases of achieved carbon gain in G. max were attributable to both improved photosynthetic induction efficiency (IE) and enhanced steady-state photosynthesis, whereas those in A. tricolor were attributable to enhanced steady-state photosynthesis.
Collapse
Affiliation(s)
- Tianyu Zheng
- Department of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China
| | - Yuan Yu
- Department of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China
| | - Huixing Kang
- Department of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China
| |
Collapse
|
11
|
Faber AH, Griffin KL, Tjoelker MG, Pagter M, Yang J, Bruhn D. Consistent diurnal pattern of leaf respiration in the light among contrasting species and climates. THE NEW PHYTOLOGIST 2022; 236:71-85. [PMID: 35727175 PMCID: PMC9544685 DOI: 10.1111/nph.18330] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/12/2022] [Indexed: 05/02/2023]
Abstract
Leaf daytime respiration (leaf respiration in the light, RL ) is often assumed to constitute a fixed fraction of leaf dark respiration (RD ) (i.e. a fixed light inhibition of respiration (RD )) and vary diurnally due to temperature fluctuations. These assumptions were tested by measuring RL , RD and the light inhibition of RD in the field at a constant temperature using the Kok method. Measurements were conducted diurnally on 21 different species: 13 deciduous, four evergreen and four herbaceous from humid continental and humid subtropical climates. RL and RD showed significant diurnal variations and the diurnal pattern differed in trajectory and magnitude between climates, but not between plant functional types (PFTs). The light inhibition of RD varied diurnally and differed between climates and in trajectory between PFTs. The results highlight the entrainment of leaf daytime respiration to the diurnal cycle and that time of day should be accounted for in studies seeking to examine the environmental and biological drivers of leaf daytime respiration.
Collapse
Affiliation(s)
- Andreas H. Faber
- Department of Chemistry and BioscienceAalborg UniversityFredrik Bajers Vej 7H9220AalborgDenmark
| | - Kevin L. Griffin
- Department of Earth and Environmental SciencesColumbia UniversityPalisadesNY10964USA
- Department of Ecology, Evolution and Environmental BiologyColumbia UniversityNew YorkNY10027USA
- Lamont‐Doherty Earth ObservatoryColumbia UniversityPalisadesNY10964USA
| | - Mark G. Tjoelker
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNSW2750Australia
| | - Majken Pagter
- Department of Chemistry and BioscienceAalborg UniversityFredrik Bajers Vej 7H9220AalborgDenmark
| | - Jinyan Yang
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNSW2750Australia
| | - Dan Bruhn
- Department of Chemistry and BioscienceAalborg UniversityFredrik Bajers Vej 7H9220AalborgDenmark
| |
Collapse
|
12
|
Fang L, Yin X, van der Putten PEL, Martre P, Struik PC. Drought exerts a greater influence than growth temperature on the temperature response of leaf day respiration in wheat (Triticum aestivum). PLANT, CELL & ENVIRONMENT 2022; 45:2062-2077. [PMID: 35357701 PMCID: PMC9324871 DOI: 10.1111/pce.14324] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/21/2022] [Accepted: 03/26/2022] [Indexed: 05/22/2023]
Abstract
We assessed how the temperature response of leaf day respiration (Rd ) in wheat responded to contrasting water regimes and growth temperatures. In Experiment 1, well-watered and drought-stressed conditions were imposed on two genotypes; in Experiment 2, the two water regimes combined with high (HT), medium (MT) and low (LT) growth temperatures were imposed on one of the genotypes. Rd was estimated from simultaneous gas exchange and chlorophyll fluorescence measurements at six leaf temperatures (Tleaf ) for each treatment, using the Yin method for nonphotorespiratory conditions and the nonrectangular hyperbolic fitting method for photorespiratory conditions. The two genotypes responded similarly to growth and measurement conditions. Estimates of Rd for nonphotorespiratory conditions were generally higher than those for photorespiratory conditions, but their responses to Tleaf were similar. Under well-watered conditions, Rd and its sensitivity to Tleaf slightly acclimated to LT, but did not acclimate to HT. Temperature sensitivities of Rd were considerably suppressed by drought, and the suppression varied among growth temperatures. Thus, it is necessary to quantify interactions between drought and growth temperature for reliably modelling Rd under climate change. Our study also demonstrated that the Kok method, one of the currently popular methods for estimating Rd , underestimated Rd significantly.
Collapse
Affiliation(s)
- Liang Fang
- Department of Plant Sciences, Centre for Crop Systems AnalysisWageningen University & ResearchWageningenThe Netherlands
| | - Xinyou Yin
- Department of Plant Sciences, Centre for Crop Systems AnalysisWageningen University & ResearchWageningenThe Netherlands
| | - Peter E. L. van der Putten
- Department of Plant Sciences, Centre for Crop Systems AnalysisWageningen University & ResearchWageningenThe Netherlands
| | - Pierre Martre
- LEPSE, Institut Agro SupAgro, INRAE, Univ MontpellierMontpellierFrance
| | - Paul C. Struik
- Department of Plant Sciences, Centre for Crop Systems AnalysisWageningen University & ResearchWageningenThe Netherlands
| |
Collapse
|
13
|
Lyu M, Sun M, Peñuelas J, Sardans J, Sun J, Chen X, Zhong Q, Cheng D. Thermal Acclimation of Foliar Carbon Metabolism in Pinus taiwanensis Along an Elevational Gradient. FRONTIERS IN PLANT SCIENCE 2022; 12:778045. [PMID: 35082808 PMCID: PMC8784779 DOI: 10.3389/fpls.2021.778045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Climate change could negatively alter plant ecosystems if rising temperatures exceed optimal conditions for obtaining carbon. The acclimation of plants to higher temperatures could mitigate this effect, but the potential of subtropical forests to acclimate still requires elucidation. We used space-for-time substitution to determine the photosynthetic and respiratory-temperature response curves, optimal temperature of photosynthesis (T opt), photosynthetic rate at T opt, temperature sensitivity (Q 10), and the rate of respiration at a standard temperature of 25°C (R 25) for Pinus taiwanensis at five elevations (1200, 1400, 1600, 1800, and 2000 m) in two seasons (summer and winter) in the Wuyi Mountains in China. The response of photosynthesis in P. taiwanensis leaves to temperature at the five elevations followed parabolic curves, and the response of respiration to temperature increased with temperature. T opt was higher in summer than winter at each elevation and decreased significantly with increasing elevation. Q 10 decreased significantly with increasing elevation in summer but not winter. These results showed a strong thermal acclimation of foliar photosynthesis and respiration to current temperatures across elevations and seasons, and that R 25 increased significantly with elevation and were higher in winter than summer at each elevation indicating that the global warming can decrease R 25. These results strongly suggest that this thermal acclimation will likely occur in the coming decades under climate change, so the increase in respiration rates of P. taiwanensis in response to climatic warming may be smaller than predicted and thus may not increase atmospheric CO2 concentrations.
Collapse
Affiliation(s)
- Min Lyu
- Key Laboratory of Humid Subtropical Eco-Geographical Processes, Ministry of Education, Fuzhou, China
- Fujian Provincial Key Laboratory of Plant Ecophysiology, Fujian Normal University, Fuzhou, China
- School of Urban and Rural Construction, Shaoyang University, Shaoyang, China
| | - Mengke Sun
- Key Laboratory of Humid Subtropical Eco-Geographical Processes, Ministry of Education, Fuzhou, China
- Fujian Provincial Key Laboratory of Plant Ecophysiology, Fujian Normal University, Fuzhou, China
| | - Josep Peñuelas
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, Catalonia, Spain
| | - Jordi Sardans
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, Catalonia, Spain
| | - Jun Sun
- Key Laboratory of Humid Subtropical Eco-Geographical Processes, Ministry of Education, Fuzhou, China
- Fujian Provincial Key Laboratory of Plant Ecophysiology, Fujian Normal University, Fuzhou, China
| | - Xiaoping Chen
- Key Laboratory of Humid Subtropical Eco-Geographical Processes, Ministry of Education, Fuzhou, China
- Fujian Provincial Key Laboratory of Plant Ecophysiology, Fujian Normal University, Fuzhou, China
| | - Quanlin Zhong
- Key Laboratory of Humid Subtropical Eco-Geographical Processes, Ministry of Education, Fuzhou, China
- Fujian Provincial Key Laboratory of Plant Ecophysiology, Fujian Normal University, Fuzhou, China
| | - Dongliang Cheng
- Key Laboratory of Humid Subtropical Eco-Geographical Processes, Ministry of Education, Fuzhou, China
- Fujian Provincial Key Laboratory of Plant Ecophysiology, Fujian Normal University, Fuzhou, China
| |
Collapse
|
14
|
Kang H, Zhu T, Zhang Y, Ke X, Sun W, Hu Z, Zhu X, Shen H, Huang Y, Tang Y. Elevated CO 2 Enhances Dynamic Photosynthesis in Rice and Wheat. FRONTIERS IN PLANT SCIENCE 2021; 12:727374. [PMID: 34659292 PMCID: PMC8517259 DOI: 10.3389/fpls.2021.727374] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Crops developed under elevated carbon dioxide (eCO2) exhibit enhanced leaf photosynthesis under steady states. However, little is known about the effect of eCO2 on dynamic photosynthesis and the relative contribution of the short-term (substrate) and long-term (acclimation) effects of eCO2. We grew an Oryza sativa japonica cultivar and a Triticum aestivum cultivar under 400 μmol CO2 mol-1 air (ambient, A) and 600 μmol CO2 mol-1 air (elevated, E). Regardless of growth [CO2], the photosynthetic responses to the sudden increase and decrease in light intensity were characterized under 400 (a) or 600 μmol CO2 mol-1 air (e). The Aa, Ae, Ea, and Ee treatments were employed to quantify the acclimation effect (Ae vs. Ee and Aa vs. Ea) and substrate effect (Aa vs. Ae and Ea vs. Ee). In comparison with the Aa treatment, both the steady-state photosynthetic rate (P N) and induction state (IS) were higher under the Ae and Ee treatments but lower under the Ea treatment in both species. However, IS reached at the 60 sec after the increase in light intensity, the time required for photosynthetic induction, and induction efficiency under Ae and Ee treatment did not differ significantly from those under Aa treatment. The substrate effect increased the accumulative carbon gain (ACG) during photosynthetic induction by 45.5% in rice and by 39.3% in wheat, whereas the acclimation effect decreased the ACG by 18.3% in rice but increased it by 7.5% in wheat. Thus, eCO2, either during growth or at measurement, enhances the dynamic photosynthetic carbon gain in both crop species. This indicates that photosynthetic carbon loss due to an induction limitation may be reduced in the future, under a high-CO2 world.
Collapse
Affiliation(s)
- Huixing Kang
- Key Laboratory for Earth Surface Processes of Ministry of Education, Department of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Ting Zhu
- Key Laboratory for Earth Surface Processes of Ministry of Education, Department of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yan Zhang
- Key Laboratory for Earth Surface Processes of Ministry of Education, Department of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Xinran Ke
- Key Laboratory for Earth Surface Processes of Ministry of Education, Department of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Wenjuan Sun
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Zhenghua Hu
- School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, China
| | - Xinguang Zhu
- Center of Excellence for Molecular Plant Sciences, State Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences, Shanghai, China
| | - Haihua Shen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yao Huang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yanhong Tang
- Key Laboratory for Earth Surface Processes of Ministry of Education, Department of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China
| |
Collapse
|
15
|
Slot M, Rifai SW, Winter K. Photosynthetic plasticity of a tropical tree species, Tabebuia rosea, in response to elevated temperature and [CO 2 ]. PLANT, CELL & ENVIRONMENT 2021; 44:2347-2364. [PMID: 33759203 DOI: 10.1111/pce.14049] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
Atmospheric and climate change will expose tropical forests to conditions they have not experienced in millions of years. To better understand the consequences of this change, we studied photosynthetic acclimation of the neotropical tree species Tabebuia rosea to combined 4°C warming and twice-ambient (800 ppm) CO2 . We measured temperature responses of the maximum rates of ribulose 1,5-bisphosphate carboxylation (VCMax ), photosynthetic electron transport (JMax ), net photosynthesis (PNet ), and stomatal conductance (gs ), and fitted the data using a probabilistic Bayesian approach. To evaluate short-term acclimation plants were then switched between treatment and control conditions and re-measured after 1-2 weeks. Consistent with acclimation, the optimum temperatures (TOpt ) for VCMax , JMax and PNet were 1-5°C higher in treatment than in control plants, while photosynthetic capacity (VCMax , JMax , and PNet at TOpt ) was 8-25% lower. Likewise, moving control plants to treatment conditions moderately increased temperature optima and decreased photosynthetic capacity. Stomatal density and sensitivity to leaf-to-air vapour pressure deficit were not affected by growth conditions, and treatment plants did not exhibit stronger stomatal limitations. Collectively, these results illustrate the strong photosynthetic plasticity of this tropical tree species as even fully developed leaves of saplings transferred to extreme conditions partially acclimated.
Collapse
Affiliation(s)
- Martijn Slot
- Smithsonian Tropical Research Institute, Ancón, Republic of Panama
| | - Sami W Rifai
- School of Geography and the Environment, Environmental Change Institute, University of Oxford, Oxford, Oxon, UK
- ARC Centre of Excellence for Climate Extremes, University of New South Wales, Sydney, New South Wales, Australia
| | - Klaus Winter
- Smithsonian Tropical Research Institute, Ancón, Republic of Panama
| |
Collapse
|
16
|
Scafaro AP, Fan Y, Posch BC, Garcia A, Coast O, Atkin OK. Responses of leaf respiration to heatwaves. PLANT, CELL & ENVIRONMENT 2021; 44:2090-2101. [PMID: 33534189 DOI: 10.1111/pce.14018] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
Mitochondrial respiration (R) is central to plant physiology and responds dynamically to daily short-term temperature changes. In the longer-term, changes in energy demand and membrane fluidity can decrease leaf R at a common temperature and increase the temperature at which leaf R peaks (Tmax ). However, leaf R functionality is more susceptible to short-term heatwaves. Catalysis increases with rising leaf temperature, driving faster metabolism and leaf R demand, despite declines in photosynthesis restricting assimilate supply and growth. Proteins denature as temperatures increase further, adding to maintenance costs. Excessive heat also inactivates respiratory enzymes, with a concomitant limitation on the capacity of the R system. These competing push-and-pull factors are responsible for the diminishing acceleration in leaf R rate as temperature rises. Under extreme heat, membranes become overly fluid, and enzymes such as the cytochrome c oxidase are impaired. Such changes can lead to over-reduction of the energy system culminating in reactive oxygen species production. This ultimately leads to the total breakdown of leaf R, setting the limit of leaf survival. Understanding the heat stress responses of leaf R is imperative, given the continued rise in frequency and intensity of heatwaves and the importance of R for plant fitness and survival.
Collapse
Affiliation(s)
- Andrew P Scafaro
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Yuzhen Fan
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Bradley C Posch
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Andres Garcia
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Onoriode Coast
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
- Natural Resources Institute, Agriculture, Health and Environment Department, University of Greenwich, Kent, UK
| | - Owen K Atkin
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
17
|
Tcherkez G, Atkin OK. Unravelling mechanisms and impacts of day respiration in plant leaves: an introduction to a Virtual Issue. THE NEW PHYTOLOGIST 2021; 230:5-10. [PMID: 33650185 DOI: 10.1111/nph.17164] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Affiliation(s)
- Guillaume Tcherkez
- Division of Plant Sciences, Research School of Biology, ANU College of Science, Australian National University, Canberra, ACT, 2601, Australia
| | - Owen K Atkin
- Division of Plant Sciences, Research School of Biology, ANU College of Science, Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
18
|
Gimeno TE, Campany CE, Drake JE, Barton CVM, Tjoelker MG, Ubierna N, Marshall JD. Whole-tree mesophyll conductance reconciles isotopic and gas-exchange estimates of water-use efficiency. THE NEW PHYTOLOGIST 2021; 229:2535-2547. [PMID: 33217000 DOI: 10.1111/nph.17088] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 11/07/2020] [Indexed: 06/11/2023]
Abstract
Photosynthetic water-use efficiency (WUE) describes the link between terrestrial carbon (C) and water cycles. Estimates of intrinsic WUE (iWUE) from gas exchange and C isotopic composition (δ13 C) differ due to an internal conductance in the leaf mesophyll (gm ) that is variable and seldom computed. We present the first direct estimates of whole-tree gm , together with iWUE from whole-tree gas exchange and δ13 C of the phloem (δ13 Cph ). We measured gas exchange, online 13 C-discrimination, and δ13 Cph monthly throughout spring, summer, and autumn in Eucalyptus tereticornis grown in large whole-tree chambers. Six trees were grown at ambient temperatures and six at a 3°C warmer air temperature; a late-summer drought was also imposed. Drought reduced whole-tree gm . Warming had few direct effects, but amplified drought-induced reductions in whole-tree gm . Whole-tree gm was similar to leaf gm for these same trees. iWUE estimates from δ13 Cph agreed with iWUE from gas exchange, but only after incorporating gm . δ13 Cph was also correlated with whole-tree 13 C-discrimination, but offset by -2.5 ± 0.7‰, presumably due to post-photosynthetic fractionations. We conclude that δ13 Cph is a good proxy for whole-tree iWUE, with the caveats that post-photosynthetic fractionations and intrinsic variability of gm should be incorporated to provide reliable estimates of this trait in response to abiotic stress.
Collapse
Affiliation(s)
- Teresa E Gimeno
- Basque Centre for Climate Change (BC3), Leioa, 48940, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, 48008, Spain
| | - Courtney E Campany
- Department of Biology, Shepherd University, Shepherdstown, WV, 25443, USA
| | - John E Drake
- Forest and Natural Resources Management, SUNY-ESF, Syracuse, NY, 132110, USA
| | - Craig V M Barton
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Mark G Tjoelker
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Nerea Ubierna
- Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| | - John D Marshall
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), Skogsmarksgränd 17, 907 36, Umeå, Sweden
| |
Collapse
|
19
|
Gauthier PPG, Saenz N, Griffin KL, Way D, Tcherkez G. Is the Kok effect a respiratory phenomenon? Metabolic insight using 13 C labeling in Helianthus annuus leaves. THE NEW PHYTOLOGIST 2020; 228:1243-1255. [PMID: 32564374 DOI: 10.1111/nph.16756] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
The Kok effect is a well-known phenomenon in which the quantum yield of photosynthesis changes abruptly at low light. This effect has often been interpreted as a shift in leaf respiratory metabolism and thus used widely to measure day respiration. However, there is still no formal evidence that the Kok effect has a respiratory origin. Here, both gas exchange and isotopic labeling were carried out on sunflower leaves, using glucose that was 13 C-enriched at specific C-atom positions. Position-specific decarboxylation measurements and NMR analysis of metabolites were used to trace the fate of C-atoms in metabolism. Decarboxylation rates were significant at low light (including above the Kok break point) and increased with decreasing irradiance below 100 µmol photons m-2 s-1 . The variation in several metabolite pools such as malate, fumarate or citrate, and flux calculations suggest the involvement of several decarboxylating pathways in the Kok effect, including the malic enzyme. Our results show that day respiratory CO2 evolution plays an important role in the Kok effect. However, the increase in the apparent quantum yield of photosynthesis below the Kok break point is also probably related to malate metabolism, which participates in maintaining photosynthetic linear electron flow.
Collapse
Affiliation(s)
- Paul P G Gauthier
- Department of Geosciences, Princeton University, Princeton, NJ, 08544, USA
| | - Natalie Saenz
- Department of Chemistry, Columbia University, 3000 Broadway NYC, New York, NY, 10025, USA
| | - Kevin L Griffin
- Department of Ecology, Evolution and Environmental Biology (E3B), Columbia University, 1200 Amsterdam Avenue, New York, NY, 10027, USA
- Department of Earth and Environmental Sciences, Lamont Doherty Earth Observatory, Columbia University, 61 Route 9W, Palisades, NY, 10964, USA
| | - Danielle Way
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5B7, Canada
- Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
- Nicholas School of the Environment, Duke University, Durham, NC, 27710, USA
| | - Guillaume Tcherkez
- Research School of Biology, Joint College of Sciences, Australian National University, Canberra, ACT, 2601, Australia
- Seedling Metabolism and Stress, Institut de Recherche en Horticulture et Semences, INRAE Angers, Université d'Angers, 42 rue Georges Morel, Beaucouzé Cedex, 49780, France
| |
Collapse
|
20
|
Yin X, Niu Y, van der Putten PEL, Struik PC. The Kok effect revisited. THE NEW PHYTOLOGIST 2020; 227:1764-1775. [PMID: 32369617 PMCID: PMC7497127 DOI: 10.1111/nph.16638] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/24/2020] [Indexed: 05/18/2023]
Abstract
The Kok effect refers to the abrupt decrease around the light compensation point in the slope of net photosynthetic rate vs irradiance. Arguably, this switch arises from light inhibition of respiration, allowing the Kok method to estimate day respiration (Rd ). Recent analysis suggests that increasing proportions of photorespiration (quantified as Γ*/Cc , the ratio of CO2 compensation point Γ* to chloroplast CO2 concentration, Cc ) with irradiance explain much of the Kok effect. Also, the Kok method has been modified to account for the decrease in PSII photochemical efficiency (Φ2 ) with irradiance. Using a model that illustrates how varying Rd , Γ*/Cc , Φ2 and proportions of alternative electron transport could engender the Kok effect, we quantified the contribution of these parameters to the Kok effect measured in sunflower across various O2 and CO2 concentrations and various temperatures. Overall, the decreasing Φ2 with irradiance explained c. 12%, and the varying Γ*/Cc explained c. 25%, of the Kok effect. Maximum real light inhibition of Rd was much lower than the inhibition derived from the Kok method, but still increased with photorespiration. Photorespiration had a dual contribution to the Kok effect, one via the varying Γ*/Cc and the other via its participation in light inhibition of Rd .
Collapse
Affiliation(s)
- Xinyou Yin
- Centre for Crop Systems AnalysisDepartment of Plant SciencesWageningen University & ResearchPO Box 430Wageningen6700 AKthe Netherlands
| | - Yuxi Niu
- Centre for Crop Systems AnalysisDepartment of Plant SciencesWageningen University & ResearchPO Box 430Wageningen6700 AKthe Netherlands
| | - Peter E. L. van der Putten
- Centre for Crop Systems AnalysisDepartment of Plant SciencesWageningen University & ResearchPO Box 430Wageningen6700 AKthe Netherlands
| | - Paul C. Struik
- Centre for Crop Systems AnalysisDepartment of Plant SciencesWageningen University & ResearchPO Box 430Wageningen6700 AKthe Netherlands
| |
Collapse
|
21
|
Kang HX, Zhu XG, Yamori W, Tang YH. Concurrent Increases in Leaf Temperature With Light Accelerate Photosynthetic Induction in Tropical Tree Seedlings. FRONTIERS IN PLANT SCIENCE 2020; 11:1216. [PMID: 32849753 PMCID: PMC7427472 DOI: 10.3389/fpls.2020.01216] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/27/2020] [Indexed: 05/30/2023]
Abstract
Leaf temperature changes with incident light intensity, but it is unclear how the concurrent changes influence leaf photosynthesis. We examined the time courses of CO2 gas exchanges and chlorophyll fluorescence of seedling leaves in four tropical tree species in response to lightflecks under three different temperature conditions. The three conditions were two constant temperatures at 30°C (T 30) and 40°C (T 40), and a simulated gradually changing temperature from 30 to 40°C (T dyn). The time required to reach 50% of the full photosynthetic induction under T 40 was similar to, or even larger than, that under T 30. However, the induction of assimilation rate (A) and electron transport rate of photosystem II (ETR II) and Rubisco activation process were generally accelerated under T dyn compared to those at either T 30 or T 40. The acceleration in photosynthetic induction under T dyn was significantly greater in the shade-tolerant species than in the shade-intolerant species. A modified photosynthetic limitation analysis indicated that the acceleration was likely to be mainly due to ETR II at the early stage of photosynthetic induction. The study suggests that concurrent increases in leaf temperature with light may increase leaf carbon gain under highly fluctuating light in tropical tree seedlings, particularly in shade-tolerant species.
Collapse
Affiliation(s)
- Hui-Xing Kang
- Institute of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes of Ministry of Education, Peking University, Beijing, China
| | - Xin-Guang Zhu
- Center of Excellence for Molecular Plant Sciences and State Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences, Shanghai, China
| | - Wataru Yamori
- Institute for Sustainable Agro-Ecosystem Services, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yan-Hong Tang
- Institute of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes of Ministry of Education, Peking University, Beijing, China
| |
Collapse
|
22
|
Berghuijs HNC, Yin X, Ho QT, Retta MA, Nicolaï BM, Struik PC. Using a reaction-diffusion model to estimate day respiration and reassimilation of (photo)respired CO 2 in leaves. THE NEW PHYTOLOGIST 2019; 223:619-631. [PMID: 31002400 PMCID: PMC6618012 DOI: 10.1111/nph.15857] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 04/05/2019] [Indexed: 05/29/2023]
Abstract
Methods using gas exchange measurements to estimate respiration in the light (day respiration R d ) make implicit assumptions about reassimilation of (photo)respired CO2 ; however, this reassimilation depends on the positions of mitochondria. We used a reaction-diffusion model without making these assumptions to analyse datasets on gas exchange, chlorophyll fluorescence and anatomy for tomato leaves. We investigated how R d values obtained by the Kok and the Yin methods are affected by these assumptions and how those by the Laisk method are affected by the positions of mitochondria. The Kok method always underestimated R d . Estimates of R d by the Yin method and by the reaction-diffusion model agreed only for nonphotorespiratory conditions. Both the Yin and Kok methods ignore reassimilation of (photo)respired CO2 , and thus underestimated R d for photorespiratory conditions, but this was less so in the Yin than in the Kok method. Estimates by the Laisk method were affected by assumed positions of mitochondria. It did not work if mitochondria were in the cytosol between the plasmamembrane and the chloroplast envelope. However, mitochondria were found to be most likely between the tonoplast and chloroplasts. Our reaction-diffusion model effectively estimates R d , enlightens the dependence of R d estimates on reassimilation and clarifies (dis)advantages of existing methods.
Collapse
Affiliation(s)
- Herman N. C. Berghuijs
- Centre for Crop Systems AnalysisWageningen University & ResearchDroevendaalsesteeg 16708 PBWageningenthe Netherlands
- Flanders Center of Postharvest Technology/BIOSYST‐MeBioSKatholieke Universiteit LeuvenWillem de Croylaan 42LeuvenB‐3001Belgium
- Department of Crop Production EcologySwedish University of Agricultural SciencesUlls väg 16Uppsala75651Sweden
| | - Xinyou Yin
- Centre for Crop Systems AnalysisWageningen University & ResearchDroevendaalsesteeg 16708 PBWageningenthe Netherlands
| | - Q. Tri Ho
- Flanders Center of Postharvest Technology/BIOSYST‐MeBioSKatholieke Universiteit LeuvenWillem de Croylaan 42LeuvenB‐3001Belgium
- Food Chemistry & Technology DepartmentTeagasc Food Research CentreMoorepark, Fermoy, Co.CorkP61 C996Ireland
| | - Moges A. Retta
- Centre for Crop Systems AnalysisWageningen University & ResearchDroevendaalsesteeg 16708 PBWageningenthe Netherlands
- Flanders Center of Postharvest Technology/BIOSYST‐MeBioSKatholieke Universiteit LeuvenWillem de Croylaan 42LeuvenB‐3001Belgium
| | - Bart M. Nicolaï
- Flanders Center of Postharvest Technology/BIOSYST‐MeBioSKatholieke Universiteit LeuvenWillem de Croylaan 42LeuvenB‐3001Belgium
| | - Paul C. Struik
- Centre for Crop Systems AnalysisWageningen University & ResearchDroevendaalsesteeg 16708 PBWageningenthe Netherlands
| |
Collapse
|
23
|
Li X, Xu C, Li Z, Feng J, Tissue DT, Griffin KL. Late growing season carbon subsidy in native gymnosperms in a northern temperate forest. TREE PHYSIOLOGY 2019; 39:971-982. [PMID: 31086983 DOI: 10.1093/treephys/tpz024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/25/2019] [Accepted: 02/24/2019] [Indexed: 05/05/2023]
Abstract
Evergreen tree species that maintain positive carbon balance during the late growing season may subsidize extra carbon in a mixed forest. To test this concept of 'carbon subsidy', leaf gas exchange characteristics and related leaf traits were measured for three gymnosperm evergreen species (Chamaecyparis thyoides, Tsuga canadensis and Pinus strobus) native to the oak-hickory deciduous forest in northeast USA from March (early Spring) to October (late Autumn) in a single year. All three species were photosynthetically active in Autumn. During the Summer-Autumn transition, photosynthetic capacity (Amax) of T. canadensis and P. strobus increased (T-test, P < 0.001) and was maintained in C. thyoides (T-test, P = 0.49), while dark respiration at 20 °C (Rn) and its thermal sensitivity were generally unchanged for all species (one-way ANOVA, P > 0.05). In Autumn, reductions in mitochondrial respiration rate in the daylight (RL) and the ratio of RL to Rn (RL/Rn) were observed in P. strobus (46.3% and 44.0% compared to Summer, respectively). Collectively, these physiological adjustments resulted in higher ratios of photosynthesis to respiration (A/Rnand A/RL) in Autumn for all species. Across season, photosynthetic biochemistry and respiratory variables were not correlated with prevailing growth temperature. Physiological adjustments allowed all three gymnosperm species to maintain positive carbon balance into late Autumn, suggesting that gymnosperm evergreens may benefit from Autumn warming trends relative to deciduous trees that have already lost their leaves.
Collapse
Affiliation(s)
- Ximeng Li
- College of life and Environmental Science, Minzu University of China, 27 Zhongguancun south Avenue, Beijing, China
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag, Penrith NSW 2751, Australia
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA
| | - Chengyuan Xu
- School of Health, Medical and Applied Sciences, Central Queensland University, Bundaberg QLD, Australia
| | - Zhengzhen Li
- College of life and Environmental Science, Minzu University of China, 27 Zhongguancun south Avenue, Beijing, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, China
| | - Jinchao Feng
- College of life and Environmental Science, Minzu University of China, 27 Zhongguancun south Avenue, Beijing, China
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag, Penrith NSW 2751, Australia
| | - Kevin L Griffin
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA
- Departments of Earth and Environmental Sciences, and Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
| |
Collapse
|