1
|
Yu Q, Xu C, Wu H, Ke Y, Zuo X, Luo W, Ren H, Gu Q, Wang H, Ma W, Knapp AK, Collins SL, Rudgers JA, Luo Y, Hautier Y, Wang C, Wang Z, Jiang Y, Han G, Gao Y, He N, Zhu J, Dong S, Xin X, Yu G, Smith MD, Li L, Han X. Contrasting drought sensitivity of Eurasian and North American grasslands. Nature 2025; 639:114-118. [PMID: 39880953 DOI: 10.1038/s41586-024-08478-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 12/03/2024] [Indexed: 01/31/2025]
Abstract
Extreme droughts generally decrease productivity in grassland ecosystems1-3 with negative consequences for nature's contribution to people4-7. The extent to which this negative effect varies among grassland types and over time in response to multi-year extreme drought remains unclear. Here, using a coordinated distributed experiment that simulated four years of growing-season drought (around 66% rainfall reduction), we compared drought sensitivity within and among six representative grasslands spanning broad precipitation gradients in each of Eurasia and North America-two of the Northern Hemisphere's largest grass-dominated regions. Aboveground plant production declined substantially with drought in the Eurasian grasslands and the effects accumulated over time, while the declines were less severe and more muted over time in the North American grasslands. Drought effects on species richness shifted from positive to negative in Eurasia, but from negative to positive in North America over time. The differing responses of plant production in these grasslands were accompanied by less common (subordinate) plant species declining in Eurasian grasslands but increasing in North American grasslands. Our findings demonstrate the high production sensitivity of Eurasian compared with North American grasslands to extreme drought (43.6% versus 25.2% reduction), and the key role of subordinate species in determining impacts of extreme drought on grassland productivity.
Collapse
Affiliation(s)
- Qiang Yu
- School of Grassland Science, Beijing Forestry University, Beijing, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Chong Xu
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Honghui Wu
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuguang Ke
- National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoan Zuo
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou, China
| | - Wentao Luo
- Liaoning Northwest Grassland Ecosystem National Observation and Research Station; Erguna Forest-Steppe Ecotone Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Haiyan Ren
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Qian Gu
- School of Grassland Science, Beijing Forestry University, Beijing, China
| | - Hongqiang Wang
- National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wang Ma
- Liaoning Northwest Grassland Ecosystem National Observation and Research Station; Erguna Forest-Steppe Ecotone Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Alan K Knapp
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
| | - Scott L Collins
- Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | | | - Yiqi Luo
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Yann Hautier
- Ecology and Biodiversity Group, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Chengjie Wang
- College of Grassland Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhengwen Wang
- Liaoning Northwest Grassland Ecosystem National Observation and Research Station; Erguna Forest-Steppe Ecotone Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Yong Jiang
- School of Life Sciences, Hebei University, Baoding, China
| | - Guodong Han
- College of Grassland Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yingzhi Gao
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology, Ministry of Education, State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun, China
- Key Laboratory of Grassland Resources and Ecology of Western Arid Desert Area of the Ministry of Education, College of Grassland Science, Xinjiang Agricultural University, Urumqi, China
| | - Nianpeng He
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, China
| | - Juntao Zhu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Shikui Dong
- School of Grassland Science, Beijing Forestry University, Beijing, China
| | - Xiaoping Xin
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guirui Yu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Melinda D Smith
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA.
| | - Linghao Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xingguo Han
- School of Life Sciences, Hebei University, Baoding, China.
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Li X, Png GK, Zhang Z, Guo F, Li Y, Li F, Luo S, Ostle NJ, Quinton JN, Schaffner UA, Hou X, Wardle DA, Bardgett RD. Higher Plant Diversity Does Not Moderate the Influence of Changing Rainfall Regimes on Plant-Soil Feedback of a Semi-Arid Grassland. GLOBAL CHANGE BIOLOGY 2025; 31:e70084. [PMID: 40035346 PMCID: PMC11877630 DOI: 10.1111/gcb.70084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 03/05/2025]
Abstract
Climate change is expected to increase the frequency of severe droughts, but it remains unclear whether soil biotic conditioning by plant communities with varying species richness or functional group diversity moderate plant-soil feedback (PSF)-an important ecosystem process driving plant community dynamics-under altered rainfall regimes. We conducted a two-phase PSF experiment to test how plant diversity affects biotic PSF under different rainfall regimes. In Phase 1, we set up mesocosms with 15 plant assemblages composed of two grasses, two forbs and two nitrogen-fixing legumes [one, two, three, or six species from one, two, or three functional group(s)] common to the semi-arid eastern Eurasian Steppe. Mesocosms were subjected to two rainfall amounts (ambient, 50% reduction) crossed with two frequencies (ambient, 50% reduction) for a growing season (~3 months). Conditioned soil from each mesocosm was then used in Phase 2 to inoculate (7% v/v) sterilised mesocosms planted with the same species as in Phase 1 and grown for 8 weeks. Simultaneously, the same plant assemblages were grown in sterilised soil to calculate PSF based on plant biomass measured at the end of Phase 2. Feedback effects differed amongst plant assemblages, but were not significantly altered by reduced rainfall treatments within any plant assemblage. This suggests that the examined interactions between plant and soil microbial communities were resistant to simulated rainfall reductions and that increasing plant diversity did not moderate PSF under altered rainfall regimes. Moreover, increasing plant species richness or functional group diversity did not lessen the magnitude of PSF differences between ambient and reduced rainfall treatments. Collectively, these findings advance our understanding of plant diversity's potential to mitigate climate change effects on PSF, showing that in semi-arid grasslands, higher plant diversity may not moderate PSF responses to altered rainfall regimes and highlighting the importance of considering species-specific traits and interaction stability.
Collapse
Affiliation(s)
- Xiliang Li
- Institute of Grassland ResearchChinese Academy of Agricultural SciencesHohhotChina
| | - G. Kenny Png
- Department of Earth and Environmental SciencesThe University of ManchesterManchesterUK
| | - Zhen Zhang
- Institute of Grassland ResearchChinese Academy of Agricultural SciencesHohhotChina
| | - Fenghui Guo
- Institute of Grassland ResearchChinese Academy of Agricultural SciencesHohhotChina
- The Industrial Crop InstituteShanxi Agriculture UniversityTaiyuanChina
| | - Yuanheng Li
- Institute of Grassland ResearchChinese Academy of Agricultural SciencesHohhotChina
| | - Fang Li
- Institute of Grassland ResearchChinese Academy of Agricultural SciencesHohhotChina
| | - Shan Luo
- Lancaster Environment CentreLancaster UniversityLancasterUK
- Department of Evolution, Ecology and BehaviourUniversity of LiverpoolLiverpoolUK
| | | | | | - Urs A. Schaffner
- Centre for Agriculture and Biosciences InternationalDelémontSwitzerland
| | - Xiangyang Hou
- Institute of Grassland ResearchChinese Academy of Agricultural SciencesHohhotChina
- College of Grassland ScienceShanxi Agriculture UniversityTaiguChina
| | - David A. Wardle
- Department of Ecology and Environmental ScienceUmeå UniversitetUmeåSweden
| | - Richard D. Bardgett
- Department of Earth and Environmental SciencesThe University of ManchesterManchesterUK
- Lancaster Environment CentreLancaster UniversityLancasterUK
| |
Collapse
|
3
|
Avolio ML, Koerner SE. Seven years of chronic fertilization affects how plant functional types respond to drought, but not plant production. Oecologia 2024; 207:14. [PMID: 39706900 DOI: 10.1007/s00442-024-05648-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/25/2024] [Indexed: 12/23/2024]
Abstract
Nitrogen deposition continues to change grassland plant community composition particularly in more mesic systems; however, whether these altered plant communities will respond differently to other global change factors remains to be seen. Here, we explore how nutrient-altered tallgrass prairie responds to drought. Seven years of nutrient treatments (control, nitrogen (N), phosphorus (P), and N + P) resulted in significantly different plant communities. Within this experimental context we imposed a 3-year drought followed by 3 years of recovery from drought. The response of plant functional types depended on the nutrient treatment. During recovery years, C4 grasses recovered in the first year in all treatments but the N + P treatment, where instead annual grasses increased. These differential responses during recovery resulted in greater shifts in community composition in the N + P treatment compared with the controls. Despite the effects on community composition, we found no interaction between nutrient treatment and drought treatment on species richness or evenness and standing biomass during drought or recovery. We found drought induced shifts in plant functional groups led to the composition of previously droughted N + P plot becoming more dominated by annual grasses during the recovery years, likely creating a lasting legacy of drought.
Collapse
Affiliation(s)
- Meghan L Avolio
- Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD, USA.
| | - Sally E Koerner
- Department of Biology, University of North Carolina, Greensboro, Greensboro, NC, USA
| |
Collapse
|
4
|
Ortiz-Colin P, Hulshof CM. Ecotones as Windows into Organismal-to-Biome Scale Responses across Neotropical Forests. PLANTS (BASEL, SWITZERLAND) 2024; 13:2396. [PMID: 39273880 PMCID: PMC11397621 DOI: 10.3390/plants13172396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/17/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024]
Abstract
Tropical forests are incredibly diverse in structure and function. Despite, or perhaps because of, this diversity, tropical biologists often conduct research exclusively in one or perhaps a few forest types. Rarely do we study the ecotone-the interstitial region between forest types. Ecotones are hyper-diverse, dynamic systems that control the flow of energy and organisms between adjacent ecosystems, with their locations determined by species' physiological limits. In this review, we describe how studying ecotones can provide key indicators for monitoring the state of Neotropical forests from organisms to ecosystems. We first describe how ecotones have been studied in the past and summarize our current understanding of tropical ecotones. Next, we provide three example lines of research focusing on the ecological and evolutionary dynamics of the ecotone between tropical dry forests and desert; between tropical dry and rainforests; and between Cerrado and Atlantic rainforests, with the latter being a particularly well-studied ecotone. Lastly, we outline methods and tools for studying ecotones that combine remote sensing, new statistical techniques, and field-based forest dynamics plot data, among others, for understanding these important systems.
Collapse
Affiliation(s)
- Perla Ortiz-Colin
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Catherine M Hulshof
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
5
|
Suding KN, Collins CG, Hallett LM, Larios L, Brigham LM, Dudney J, Farrer EC, Larson JE, Shackelford N, Spasojevic MJ. Biodiversity in changing environments: An external-driver internal-topology framework to guide intervention. Ecology 2024; 105:e4322. [PMID: 39014865 DOI: 10.1002/ecy.4322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/15/2024] [Accepted: 03/08/2024] [Indexed: 07/18/2024]
Abstract
Accompanying the climate crisis is the more enigmatic biodiversity crisis. Rapid reorganization of biodiversity due to global environmental change has defied prediction and tested the basic tenets of conservation and restoration. Conceptual and practical innovation is needed to support decision making in the face of these unprecedented shifts. Critical questions include: How can we generalize biodiversity change at the community level? When are systems able to reorganize and maintain integrity, and when does abiotic change result in collapse or restructuring? How does this understanding provide a template to guide when and how to intervene in conservation and restoration? To this end, we frame changes in community organization as the modulation of external abiotic drivers on the internal topology of species interactions, using plant-plant interactions in terrestrial communities as a starting point. We then explore how this framing can help translate available data on species abundance and trait distributions to corresponding decisions in management. Given the expectation that community response and reorganization are highly complex, the external-driver internal-topology (EDIT) framework offers a way to capture general patterns of biodiversity that can help guide resilience and adaptation in changing environments.
Collapse
Affiliation(s)
- Katharine N Suding
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, USA
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
| | - Courtney G Collins
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
- Biodiversity Research Centre, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Lauren M Hallett
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
- Department of Biology and Environmental Studies Program, University of Oregon, Eugene, Oregon, USA
| | - Loralee Larios
- Department of Botany & Plant Sciences, University of California Riverside, Riverside, California, USA
| | - Laurel M Brigham
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, USA
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| | - Joan Dudney
- Environmental Studies Program, Santa Barbara, California, USA
- Bren School of Environmental Science & Management, UC Santa Barbara, Santa Barbara, California, USA
| | - Emily C Farrer
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, Louisiana, USA
| | - Julie E Larson
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, USA
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
- USDA Agricultural Research Service, Eastern Oregon Agricultural Research Center, Burns, Oregon, USA
| | - Nancy Shackelford
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
- School of Environmental Studies, University of Victoria, Victoria, British Columbia, Canada
| | - Marko J Spasojevic
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, California, USA
| |
Collapse
|
6
|
Sun Y, Robert CA, Thakur MP. Drought intensity and duration effects on morphological root traits vary across trait type and plant functional groups: a meta-analysis. BMC Ecol Evol 2024; 24:92. [PMID: 38965481 PMCID: PMC11223356 DOI: 10.1186/s12862-024-02275-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/17/2024] [Indexed: 07/06/2024] Open
Abstract
The increasing severity and frequency of drought pose serious threats to plant species worldwide. Yet, we lack a general understanding of how various intensities of droughts affect plant traits, in particular root traits. Here, using a meta-analysis of drought experiments (997 effect sizes from 76 papers), we investigate the effects of various intensities of droughts on some of the key morphological root traits. Our results show that root length, root mean diameter, and root area decline when drought is of severe or extreme intensity, whereas severe drought increases root tissue density. These patterns are most pronounced in trees compared to other plant functional groups. Moreover, the long duration of severe drought decreases root length in grasses and root mean diameter in legumes. The decline in root length and root diameter due to severe drought in trees was independent of drought duration. Our results suggest that morphological root traits respond strongly to increasing intensity of drought, which further depends on drought duration and may vary among plant functional groups. Our meta-analysis highlights the need for future studies to consider the interactive effects of drought intensity and drought duration for a better understanding of variable plant responses to drought.
Collapse
Affiliation(s)
- Yu Sun
- Institute of Ecology and Evolution, University of Bern, Bern, 3012, Switzerland.
| | | | - Madhav P Thakur
- Institute of Ecology and Evolution, University of Bern, Bern, 3012, Switzerland
| |
Collapse
|
7
|
Liu P, Zeng H, Qi L, Degen AA, Boone RB, Luo B, Huang M, Peng Z, Qi T, Wang W, Jing X, Shang Z. Vegetation redistribution is predicted to intensify soil organic carbon loss under future climate changes on the Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:173034. [PMID: 38719061 DOI: 10.1016/j.scitotenv.2024.173034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/02/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Vegetation redistribution may bring unexpected climate-soil carbon cycling in terrestrial biomes. However, whether and how vegetation redistribution alters the soil carbon pool under climate change is still poorly understood on the Tibetan Plateau. Here, we applied the G-Range model to simulate the cover of herbs, shrubs and trees, net primary productivity (NPP) and soil organic carbon density (SOCD) at the depth of 60 cm on Tibetan Plateau for the individual years 2020 and 2060, using climate projection for Representative Concentration Pathways (RCP) 4.5 and RCP8.5 scenarios with the RegCM4.6 model system. Vegetation redistribution was defined as the transitions in bare ground, herbs, shrubs and trees between 2020 and 2060, with approximately 57.9 % (RCP4.5) and 59 % (RCP8.5) of the area will redistribute vegetation over the whole Tibetan Plateau. The vegetation cover will increase by about 2.4 % (RCP4.5) and 1.9 % (RCP8.5), while the NPP and SOCD will decrease by about -14.3 g C m-2 yr-1 and -907 g C m-2 (RCP4.5), and -1.8 g C m-2 yr-1and -920 g C m-2 (RCP8.5). Shrubs and trees will expand in the east, and herbs will expand in the northwest part of the Plateau. These areas are projected to be hotspots with greater SOCD reduction in response to future climate change, and will include lower net plant carbon input due to the negative NPP. Our study indicates that the SOC pool will become a carbon source under increased air temperature and rainfall on the Tibetan Plateau by 2060, especially for the area with vegetation redistribution. These results revealed the potential risk of vegetation redistribution under climate change in alpine ecosystems, indicating the policymakers need to pay attention on the vegetation redistribution to mitigate the soil carbon emission and achieve the goal of carbon neutrality on the Tibetan Plateau.
Collapse
Affiliation(s)
- Peipei Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Haijun Zeng
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Lingyan Qi
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - A Allan Degen
- Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva 8410500, Israel
| | - Randall B Boone
- Department of Ecosystem Science and Sustainability and Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO 80523-1476, USA
| | - Binyu Luo
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Mei Huang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Zhen Peng
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Tianyun Qi
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Wenyin Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Xiaoping Jing
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Zhanhuan Shang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
8
|
Díaz FP, Dussarrat T, Carrasco-Puga G, Colombié S, Prigent S, Decros G, Bernillon S, Cassan C, Flandin A, Guerrero PC, Gibon Y, Rolin D, Cavieres LA, Pétriacq P, Latorre C, Gutiérrez RA. Ecological and metabolic implications of the nurse effect of Maihueniopsis camachoi in the Atacama Desert. THE NEW PHYTOLOGIST 2024; 241:1074-1087. [PMID: 37984856 DOI: 10.1111/nph.19415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023]
Abstract
Plant-plant positive interactions are key drivers of community structure. Yet, the underlying molecular mechanisms of facilitation processes remain unexplored. We investigated the 'nursing' effect of Maihueniopsis camachoi, a cactus that thrives in the Atacama Desert between c. 2800 and 3800 m above sea level. We hypothesised that an important protective factor is thermal amelioration of less cold-tolerant species with a corresponding impact on molecular phenotypes. To test this hypothesis, we compared plant cover and temperatures within the cactus foliage with open areas and modelled the effect of temperatures on plant distribution. We combined eco-metabolomics and machine learning to test the molecular consequences of this association. Multiple species benefited from the interaction with M. camachoi. A conspicuous example was the extended distribution of Atriplex imbricata to colder elevations in association with M. camachoi (400 m higher as compared to plants in open areas). Metabolomics identified 93 biochemical markers predicting the interaction status of A. imbricata with 79% accuracy, independently of year. These findings place M. camachoi as a key species in Atacama plant communities, driving local biodiversity with an impact on molecular phenotypes of nursed species. Our results support the stress-gradient hypothesis and provide pioneer insights into the metabolic consequences of facilitation.
Collapse
Affiliation(s)
- Francisca P Díaz
- Instituto de Geografía, Pontificia Universidad Católica de Valparaíso, 2362807, Valparaíso, Chile
- Institute of Ecology and Biodiversity, Chile (IEB), Las Palmeras 3425, Ñuñoa, 7800003, Santiago, Chile
- ANID Millennium Institute Center for Genome Regulation and ANID Millennium Institute for Integrative Biology (iBio), Libertador Bernardo O'Higgins 340, 8331150, Santiago, Chile
| | - Thomas Dussarrat
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Libertador Bernardo O'Higgins 340, 8331150, Santiago, Chile
- Univ. Bordeaux, INRAE, UMR1332 BFP, 33882, Villenave d'Ornon, France
| | - Gabriela Carrasco-Puga
- ANID Millennium Institute Center for Genome Regulation and ANID Millennium Institute for Integrative Biology (iBio), Libertador Bernardo O'Higgins 340, 8331150, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Libertador Bernardo O'Higgins 340, 8331150, Santiago, Chile
| | - Sophie Colombié
- Univ. Bordeaux, INRAE, UMR1332 BFP, 33882, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140, Villenave d'Ornon, France
| | - Sylvain Prigent
- Univ. Bordeaux, INRAE, UMR1332 BFP, 33882, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140, Villenave d'Ornon, France
| | - Guillaume Decros
- Univ. Bordeaux, INRAE, UMR1332 BFP, 33882, Villenave d'Ornon, France
| | - Stéphane Bernillon
- Univ. Bordeaux, INRAE, UMR1332 BFP, 33882, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140, Villenave d'Ornon, France
| | - Cédric Cassan
- Univ. Bordeaux, INRAE, UMR1332 BFP, 33882, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140, Villenave d'Ornon, France
| | - Amélie Flandin
- Univ. Bordeaux, INRAE, UMR1332 BFP, 33882, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140, Villenave d'Ornon, France
| | - Pablo C Guerrero
- Institute of Ecology and Biodiversity, Chile (IEB), Las Palmeras 3425, Ñuñoa, 7800003, Santiago, Chile
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, 7800003, Concepción, Chile
- Instituto Milenio Biodiversidad de Ecosistemas Antárticos y Subantárticos, 8331150, Santiago, Chile
| | - Yves Gibon
- Univ. Bordeaux, INRAE, UMR1332 BFP, 33882, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140, Villenave d'Ornon, France
| | - Dominique Rolin
- Univ. Bordeaux, INRAE, UMR1332 BFP, 33882, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140, Villenave d'Ornon, France
| | - Lohengrin A Cavieres
- Institute of Ecology and Biodiversity, Chile (IEB), Las Palmeras 3425, Ñuñoa, 7800003, Santiago, Chile
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, 7800003, Concepción, Chile
| | - Pierre Pétriacq
- Univ. Bordeaux, INRAE, UMR1332 BFP, 33882, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140, Villenave d'Ornon, France
| | - Claudio Latorre
- Institute of Ecology and Biodiversity, Chile (IEB), Las Palmeras 3425, Ñuñoa, 7800003, Santiago, Chile
- Departamento de Ecología, Pontificia Universidad Católica de Chile, Libertador Bernardo O'Higgins 340, 8331150, Santiago, Chile
| | - Rodrigo A Gutiérrez
- Institute of Ecology and Biodiversity, Chile (IEB), Las Palmeras 3425, Ñuñoa, 7800003, Santiago, Chile
- ANID Millennium Institute Center for Genome Regulation and ANID Millennium Institute for Integrative Biology (iBio), Libertador Bernardo O'Higgins 340, 8331150, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Libertador Bernardo O'Higgins 340, 8331150, Santiago, Chile
| |
Collapse
|
9
|
Huynh A, Aguirre BA, English J, Guzman D, Wright AJ. Atmospheric drying and soil drying: Differential effects on grass community composition. GLOBAL CHANGE BIOLOGY 2024; 30:e17106. [PMID: 38273553 DOI: 10.1111/gcb.17106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 01/27/2024]
Abstract
Global surface temperatures are projected to increase in the future; this will modify regional precipitation regimes and increase global atmospheric drying. Despite many drought studies examining the consequences of reduced precipitation, there are few experimental studies exploring plant responses to atmospheric drying via relative humidity and vapor pressure deficit (VPD). We examined eight native California perennial grass species grown in pots in a greenhouse in Los Angeles, California for 34 weeks. All pots were well-watered for 21 weeks, at which point we reduced watering to zero and recorded daily growth and dormancy for 3 weeks. We used this information to better understand the drought tolerance of our species in a larger soil drying × atmospheric drying experiment. In this larger experiment, we grew all eight species together in outdoor mesocosms and measured changes in community composition after 4 years of growth. Soil drying in our small pot experiment mirrored compositional shifts in the larger experiment. Namely, our most drought-tolerant species in our pot experiment was Poa secunda, due to a summer dormancy strategy. Similarly, the grass community shifted toward P. secunda in the driest soils as P. secunda was mostly unaffected by either soil drying or atmospheric drying. We found that some species responded strongly to soil drying (Elymus glaucus, Festuca idahoensis, and Hordeum b. californicum), while others responded strongly to atmospheric drying (Bromus carinatus and Stipa cernua). As result, community composition shifted in different and interacting ways in response to soil drying, atmospheric drying, and their combination. Further study of community responses to increasing atmospheric aridity is an essential next step to predicting the future consequences of climate change.
Collapse
Affiliation(s)
- A Huynh
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, USA
| | - B A Aguirre
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - J English
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - D Guzman
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, USA
| | - A J Wright
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, USA
| |
Collapse
|
10
|
Martínez-Vilalta J, García-Valdés R, Jump A, Vilà-Cabrera A, Mencuccini M. Accounting for trait variability and coordination in predictions of drought-induced range shifts in woody plants. THE NEW PHYTOLOGIST 2023; 240:23-40. [PMID: 37501525 DOI: 10.1111/nph.19138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/20/2023] [Indexed: 07/29/2023]
Abstract
Functional traits offer a promising avenue to improve predictions of species range shifts under climate change, which will entail warmer and often drier conditions. Although the conceptual foundation linking traits with plant performance and range shifts appears solid, the predictive ability of individual traits remains generally low. In this review, we address this apparent paradox, emphasizing examples of woody plants and traits associated with drought responses at the species' rear edge. Low predictive ability reflects the fact not only that range dynamics tend to be complex and multifactorial, as well as uncertainty in the identification of relevant traits and limited data availability, but also that trait effects are scale- and context-dependent. The latter results from the complex interactions among traits (e.g. compensatory effects) and between them and the environment (e.g. exposure), which ultimately determine persistence and colonization capacity. To confront this complexity, a more balanced coverage of the main functional dimensions involved (stress tolerance, resource use, regeneration and dispersal) is needed, and modelling approaches must be developed that explicitly account for: trait coordination in a hierarchical context; trait variability in space and time and its relationship with exposure; and the effect of biotic interactions in an ecological community context.
Collapse
Affiliation(s)
- Jordi Martínez-Vilalta
- CREAF, E08193, Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
- Universitat Autònoma de Barcelona, E08193, Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
| | - Raúl García-Valdés
- CREAF, E08193, Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
- Forest Science and Technology Centre of Catalonia (CTFC), E25280, Solsona, Spain
- Department of Biology, Geology, Physics and Inorganic Chemistry, School of Experimental Sciences and Technology, Rey Juan Carlos University, E28933, Móstoles, Madrid, Spain
| | - Alistair Jump
- Biological and Environmental Sciences, University of Stirling, FK9 4LA, Stirling, UK
| | - Albert Vilà-Cabrera
- CREAF, E08193, Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
- Biological and Environmental Sciences, University of Stirling, FK9 4LA, Stirling, UK
| | - Maurizio Mencuccini
- CREAF, E08193, Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
- ICREA, Pg. Lluís Companys 23, E08010, Barcelona, Spain
| |
Collapse
|
11
|
Ng M, McCormick A, Utz RM, Heberling JM. Herbarium specimens reveal century-long trait shifts in poison ivy due to anthropogenic CO 2 emissions. AMERICAN JOURNAL OF BOTANY 2023; 110:e16225. [PMID: 37551738 DOI: 10.1002/ajb2.16225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/09/2023]
Abstract
PREMISE Previous experimental studies have shown that poison ivy (Toxicodendron radicans; Anacardicaceae) responds to elevated CO2 with increased leaf production, water-use efficiency, and toxicity (allergenic urushiol). However, long-term field data suggest no increase in poison ivy abundance over time. Using herbarium specimens, we examined whether poison ivy and other species shifted leaf traits under natural conditions with increasing atmospheric CO2 (pCO2 ) over the past century. METHODS We measured stomatal density, leaf area, leaf N, leaf C:N, leaf carbon isotope discrimination (Δleaf ), and intrinsic water-use efficiency (iWUE) from 327 specimens collected from 1838 to 2020 across Pennsylvania. We compared poison ivy's responses to two evolutionarily related tree species, Toxicodendron vernix and Rhus typhina (Anacardiacae) and one ecological analog, Parthenocissus quinquefolia (Vitaceae), a common co-occurring liana. RESULTS Stomatal density significantly decreased (P < 0.05) in poison ivy and the ecologically similar liana P. quinquefolia over the past century, but did not change in the related trees T. vernix and R. typhina. None of these species showed significant trends in changes in leaf N or C:N. Surprisingly, in poison ivy, but not the other species, Δleaf increased with increased pCO2 , corresponding to significant declines in iWUE over time. CONCLUSIONS In contrast to the results of short-term experimental studies, iWUE decreased in poison ivy over the last century. Trait responses to pCO2 varied by species. Herbarium specimens suggest that realized long-term plant physiological responses to increased CO2 may not be reflected in short-term experimental growth studies, highlighting the value of collections.
Collapse
Affiliation(s)
- Molly Ng
- Section of Botany, Carnegie Museum of Natural History, Pittsburgh, PA 15213, USA
| | - Alyssa McCormick
- Falk School of Sustainability, Chatham University, Gibsonia, PA 15044, USA
| | - Ryan M Utz
- Falk School of Sustainability, Chatham University, Gibsonia, PA 15044, USA
| | - J Mason Heberling
- Section of Botany, Carnegie Museum of Natural History, Pittsburgh, PA 15213, USA
| |
Collapse
|
12
|
Akin-Fajiye M, Ploughe LW, Greenall A, Fraser LH. Winner and losers: examining biotic interactions in forbs and grasses in response to changes in water and temperature in a semi-arid grassland. AOB PLANTS 2023; 15:plad017. [PMID: 37197710 PMCID: PMC10184435 DOI: 10.1093/aobpla/plad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 04/22/2023] [Indexed: 05/19/2023]
Abstract
Warming and changing water amount can alter the outcome of biotic interactions in native and exotic plants between facilitation and competition. Exotic plants may adapt better to changing environmental conditions, such that they may compete better than native plants. We conducted competition trials for four plant species, two exotic forbs (Centaurea stoebe and Linaria vulgaris) and two grasses (exotic Poa compressa and native Pseudoroegneria spicata), commonly found in Southern interior British Columbia. We compared the effects of warming and changing water on target plant shoot and root biomass, and on pair-wise competitive interactions among all four species. We quantified interactions using the Relative Interaction Intensity index, which has values from -1 (complete competition) to +1 (complete facilitation). C. stoebe biomass was highest under low water and no competition. Facilitation of C. stoebe was found under high water and low temperatures but shifted to competition under low water and/or warming. Competition in L. vulgaris decreased due to reduced water and increased due to warming. Grasses were less competitively suppressed by warming but more competitively suppressed by reduced water input. The response of exotic plants to climate change can differ by plant species, moving in opposite directions for both forbs, but grasses appear to respond similarly. This has consequences for grasses and exotic plants in semi-arid grasslands.
Collapse
Affiliation(s)
| | - Laura W Ploughe
- Department of Natural Resource Science, 805 TRU Way, Thompson Rivers University, Kamloops, BC, Canada V2C 0C8
| | - Amber Greenall
- Department of Natural Resource Science, 805 TRU Way, Thompson Rivers University, Kamloops, BC, Canada V2C 0C8
| | - Lauchlan H Fraser
- Department of Natural Resource Science, 805 TRU Way, Thompson Rivers University, Kamloops, BC, Canada V2C 0C8
| |
Collapse
|
13
|
Liu M, Wang J, Zhao W, Korpelainen H, Li C. Females face more positive plant-soil feedback and intersexual competition under adequate nitrogen conditions compared to males in Populus cathayana. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162479. [PMID: 36858242 DOI: 10.1016/j.scitotenv.2023.162479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/09/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Plant-soil feedback (PSF) and competition influence plant performance, community structure and functions. However, how nutrient availability affects the interaction of PSF, sexual competition and coexistence in dioecious plants is poorly understood. In this study, the strengths of PSF and sexual competition, and their responses to nutrient availability were assessed in dioecious Populus cathayana using a garden experiment. We found that PSF reduced but did not eliminate the inequal sexual competition at low nitrogen (N) availability. Intersexual competition and nutrient limitation induced more negative PSF, which promoted sexual coexistence. PSF and competition were rather related to sexual dimorphism. Female plants experience more positive PSF and intersexual competition under adequate N conditions compared to males; the contrary was true with low N supply. Furthermore, the stability of root exudate networks and soil nutrient availability reflects the possibility of sexual coexistence regulated by PSF. Intersexual interaction promote more stable root exudate profiles and more saccharide secretion at low N supply. Meanwhile, the increased soil N and P mineralization in females with cultivated males explained the possible coexistence between females and males at low nutrient availability. Thus, these results indicate that soil biota can mitigate differences in sexual competitiveness and improve the stability of root exudate networks, consequently promoting sexual coexistence at low nutrient availability.
Collapse
Affiliation(s)
- Miao Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Junhua Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Wenting Zhao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Helena Korpelainen
- Department of Agricultural Sciences, Viikki Plant Science Centre, P.O. Box 27, FI-00014 University of Helsinki, Finland
| | - Chunyang Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
14
|
Barkaoui K, Volaire F. Drought survival and recovery in grasses: Stress intensity and plant-plant interactions impact plant dehydration tolerance. PLANT, CELL & ENVIRONMENT 2023; 46:1489-1503. [PMID: 36655754 DOI: 10.1111/pce.14543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/07/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Plant dehydration tolerance confers drought survival in grasses, but the mortality thresholds according to soil water content (SWC), vapour pressure deficit (VPD) and plant-plant interactions are little explored. We compared the dehydration dynamics of leaf meristems, which are the key surviving organs, plant mortality, and recovery of Mediterranean and temperate populations of two perennial grass species, Dactylis glomerata and Festuca arundinacea, grown in monocultures and mixtures under a low-VPD (1.5 kPa) versus a high-VPD drought (2.2 kPa). The lethal drought index (LD50 ), that is, SWC associated with 50% plant mortality, ranged from 2.87% (ψs = -1.68 MPa) to 2.19% (ψs = -4.47 MPa) and reached the lowest values under the low-VPD drought. Populations of D. glomerata were more dehydration-tolerant (lower LD50 ), survived and recovered better than F. arundinacea populations. Plant-plant interactions modified dehydration tolerance and improved post-drought recovery in mixtures compared with monocultures. Water content as low as 20.7%-36.1% in leaf meristems allowed 50% of plants to survive. We conclude that meristem dehydration causes plant mortality and that drought acclimation can increase dehydration tolerance. Genetic diversity, acclimation and plant-plant interactions are essential sources of dehydration tolerance variability to consider when predicting drought-induced mortality.
Collapse
Affiliation(s)
- Karim Barkaoui
- CIRAD, UMR ABSys, F-34398 Montpellier, France
- ABSys, Univ Montpellier, CIHEAM-IAMM, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Florence Volaire
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, INRAE, Montpellier, France
| |
Collapse
|
15
|
Cosme M. Mycorrhizas drive the evolution of plant adaptation to drought. Commun Biol 2023; 6:346. [PMID: 36997637 PMCID: PMC10063553 DOI: 10.1038/s42003-023-04722-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 03/14/2023] [Indexed: 04/03/2023] Open
Abstract
Plant adaptation to drought facilitates major ecological transitions, and will likely play a vital role under looming climate change. Mycorrhizas, i.e. strategic associations between plant roots and soil-borne symbiotic fungi, can exert strong influence on the tolerance to drought of extant plants. Here, I show how mycorrhizal strategy and drought adaptation have been shaping one another throughout the course of plant evolution. To characterize the evolutions of both plant characters, I applied a phylogenetic comparative method using data of 1,638 extant species globally distributed. The detected correlated evolution unveiled gains and losses of drought tolerance occurring at faster rates in lineages with ecto- or ericoid mycorrhizas, which were on average about 15 and 300 times faster than in lineages with the arbuscular mycorrhizal and naked root (non-mycorrhizal alone or with facultatively arbuscular mycorrhizal) strategy, respectively. My study suggests that mycorrhizas can play a key facilitator role in the evolutionary processes of plant adaptation to critical changes in water availability across global climates.
Collapse
Affiliation(s)
- Marco Cosme
- Mycology, Earth and Life Institute, Université Catholique de Louvain, Croix du sud 2, 1348, Louvain‑la‑Neuve, Belgium.
| |
Collapse
|
16
|
Mandakovic D, Aguado-Norese C, García-Jiménez B, Hodar C, Maldonado JE, Gaete A, Latorre M, Wilkinson MD, Gutiérrez RA, Cavieres LA, Medina J, Cambiazo V, Gonzalez M. Testing the stress gradient hypothesis in soil bacterial communities associated with vegetation belts in the Andean Atacama Desert. ENVIRONMENTAL MICROBIOME 2023; 18:24. [PMID: 36978149 PMCID: PMC10052861 DOI: 10.1186/s40793-023-00486-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Soil microorganisms are in constant interaction with plants, and these interactions shape the composition of soil bacterial communities by modifying their environment. However, little is known about the relationship between microorganisms and native plants present in extreme environments that are not affected by human intervention. Using high-throughput sequencing in combination with random forest and co-occurrence network analyses, we compared soil bacterial communities inhabiting the rhizosphere surrounding soil (RSS) and the corresponding bulk soil (BS) of 21 native plant species organized into three vegetation belts along the altitudinal gradient (2400-4500 m a.s.l.) of the Talabre-Lejía transect (TLT) in the slopes of the Andes in the Atacama Desert. We assessed how each plant community influenced the taxa, potential functions, and ecological interactions of the soil bacterial communities in this extreme natural ecosystem. We tested the ability of the stress gradient hypothesis, which predicts that positive species interactions become increasingly important as stressful conditions increase, to explain the interactions among members of TLT soil microbial communities. RESULTS Our comparison of RSS and BS compartments along the TLT provided evidence of plant-specific microbial community composition in the RSS and showed that bacterial communities modify their ecological interactions, in particular, their positive:negative connection ratios in the presence of plant roots at each vegetation belt. We also identified the taxa driving the transition of the BS to the RSS, which appear to be indicators of key host-microbial relationships in the rhizosphere of plants in response to different abiotic conditions. Finally, the potential functions of the bacterial communities also diverge between the BS and the RSS compartments, particularly in the extreme and harshest belts of the TLT. CONCLUSIONS In this study, we identified taxa of bacterial communities that establish species-specific relationships with native plants and showed that over a gradient of changing abiotic conditions, these relationships may also be plant community specific. These findings also reveal that the interactions among members of the soil microbial communities do not support the stress gradient hypothesis. However, through the RSS compartment, each plant community appears to moderate the abiotic stress gradient and increase the efficiency of the soil microbial community, suggesting that positive interactions may be context dependent.
Collapse
Affiliation(s)
- Dinka Mandakovic
- Millennium Institute Center for Genome Regulation, Santiago, Chile
- Bioinformatic and Gene Expression Laboratory, INTA-Universidad de Chile, Santiago, Chile
- GEMA Center for Genomics, Ecology and Environment, Universidad Mayor, Santiago, Chile
| | - Constanza Aguado-Norese
- Millennium Institute Center for Genome Regulation, Santiago, Chile
- Bioinformatic and Gene Expression Laboratory, INTA-Universidad de Chile, Santiago, Chile
| | - Beatriz García-Jiménez
- Center for Plant Biotechnology and Genomics, Universidad Politécnica de Madrid (UPM)/Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)-CSIC, Madrid, Spain
- Present Address: Biome Makers Inc., West Sacramento, CA USA
| | - Christian Hodar
- Millennium Institute Center for Genome Regulation, Santiago, Chile
- Bioinformatic and Gene Expression Laboratory, INTA-Universidad de Chile, Santiago, Chile
| | - Jonathan E. Maldonado
- Millennium Institute Center for Genome Regulation, Santiago, Chile
- Bioinformatic and Gene Expression Laboratory, INTA-Universidad de Chile, Santiago, Chile
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, 9170022 Santiago, Chile
| | - Alexis Gaete
- Millennium Institute Center for Genome Regulation, Santiago, Chile
- Bioinformatic and Gene Expression Laboratory, INTA-Universidad de Chile, Santiago, Chile
| | - Mauricio Latorre
- Millennium Institute Center for Genome Regulation, Santiago, Chile
- Laboratorio de Bioingeniería, Instituto de Ciencias de La Ingeniería, Universidad de O’Higgins, Rancagua, Chile
| | - Mark D. Wilkinson
- Center for Plant Biotechnology and Genomics, Universidad Politécnica de Madrid (UPM)/Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)-CSIC, Madrid, Spain
| | - Rodrigo A. Gutiérrez
- Millennium Institute Center for Genome Regulation, Santiago, Chile
- Instituto de Biología Integrativa, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Lohengrin A. Cavieres
- Instituto de Ecología y Biodiversidad (IEB), 4070386 Concepción, Chile
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, 4070386 Concepción, Chile
| | - Joaquín Medina
- Center for Plant Biotechnology and Genomics, Universidad Politécnica de Madrid (UPM)/Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)-CSIC, Madrid, Spain
| | - Verónica Cambiazo
- Millennium Institute Center for Genome Regulation, Santiago, Chile
- Bioinformatic and Gene Expression Laboratory, INTA-Universidad de Chile, Santiago, Chile
| | - Mauricio Gonzalez
- Millennium Institute Center for Genome Regulation, Santiago, Chile
- Bioinformatic and Gene Expression Laboratory, INTA-Universidad de Chile, Santiago, Chile
| |
Collapse
|
17
|
Falik O, Novoplansky A. Interspecific Drought Cuing in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:1200. [PMID: 36904059 PMCID: PMC10007240 DOI: 10.3390/plants12051200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/17/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Plants readily communicate with their pollinators, herbivores, symbionts, and the predators and pathogens of their herbivores. We previously demonstrated that plants could exchange, relay, and adaptively utilize drought cues from their conspecific neighbors. Here, we studied the hypothesis that plants can exchange drought cues with their interspecific neighbors. Triplets of various combinations of split-root Stenotaphrum secundatum and Cynodon dactylon plants were planted in rows of four pots. One root of the first plant was subjected to drought while its other root shared its pot with one of the roots of an unstressed target neighbor, which, in turn, shared its other pot with an additional unstressed target neighbor. Drought cuing and relayed cuing were observed in all intra- and interspecific neighbor combinations, but its strength depended on plant identity and position. Although both species initiated similar stomatal closure in both immediate and relayed intraspecific neighbors, interspecific cuing between stressed plants and their immediate unstressed neighbors depended on neighbor identity. Combined with previous findings, the results suggest that stress cuing and relay cuing could affect the magnitude and fate of interspecific interactions, and the ability of whole communities to endure abiotic stresses. The findings call for further investigation into the mechanisms and ecological implications of interplant stress cuing at the population and community levels.
Collapse
Affiliation(s)
- Omer Falik
- Achva Academic College, Arugot 7980400, Israel
- Mitrani Department of Desert Ecology, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel
| | - Ariel Novoplansky
- Mitrani Department of Desert Ecology, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel
| |
Collapse
|
18
|
Consumer pressure and supplemental pollination mediate shrub facilitation of a native annual desert plant. Oecologia 2023; 201:489-498. [PMID: 36607452 DOI: 10.1007/s00442-022-05309-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 12/26/2022] [Indexed: 01/07/2023]
Abstract
Shrubs are important factors in the assembly of desert plant and animal communities. By providing shelter and resources to other plants and animals, shrubs can change plant-animal interactions including those with consumers and pollinators. Here, we test the hypothesis that shrubs facilitate the reproduction of other desert plants by influencing pollination and compensation for consumer pressure. We used the known benefactor Larrea tridentata as our focal shrub species and the flowering annual Malacothrix glabrata as a potential protege in the Mojave Desert. We tested the effects of facilitation (shrub microsite), consumer pressure (both artificial folivory and florivory), and pollination (ambient or supplemented) on flower and seed production of the annual M. glabrata. We found that floral production and seed mass were similar between microsites but that pollen was limited under shrubs in the absence of any other manipulation. Plants under shrubs produced more flowers and seeds than in the open when folivory and florivory treatments were applied. Malacothrix glabrata experienced a cost to association with L. tridentata in terms of pollen limitation but plants were better able to compensate for consumer pressure under shrubs through increased flower and seed production when damaged. Therefore, association with shrubs involves a reproductive trade-off between costs to pollination and benefits to compensation for consumer pressure.
Collapse
|
19
|
Ingrisch J, Umlauf N, Bahn M. Functional thresholds alter the relationship of plant resistance and recovery to drought. Ecology 2023; 104:e3907. [PMID: 36314950 PMCID: PMC10078541 DOI: 10.1002/ecy.3907] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/13/2022] [Accepted: 08/29/2022] [Indexed: 02/03/2023]
Abstract
The ecological consequences of future droughts are difficult to predict due to a limited understanding of the nonlinear responses of plants to increasing drought intensity, which can change abruptly when critical thresholds of drought intensity are crossed. Drought responses are composed of resistance and postdrought recovery. Although it is well established that higher drought intensity increases the impact and, thus, reduces plant resistance, less is known about how drought intensity affects recovery and how resistance and recovery are related. In this study, we tested the hypothesis that resistance, recovery, and their relationship change abruptly upon crossing critical thresholds of drought intensity. We exposed mesocosms of two monospecific stands of the common grassland species Dactylis glomerata and Plantago lanceolata to a large gradient of drought intensity and quantified the resistance and recovery of multiple measures of plant productivity, including gross-primary productivity, vegetative height, Normalized Difference Vegetation Index, and aboveground biomass production. Drought intensity had nonlinear and contrasting effects on plant productivity during drought and recovery, which differed between the two species. Increasing drought intensity decreased the resistance of plant productivity and caused rapid compensatory growth during postdrought recovery, the degree of which was highly dependent on drought intensity. Across multiple response parameters two thresholds of drought intensity emerged, upon which we observed abrupt changes in plant resistance and recovery, as well as their relationship. We conclude that across gradients of drought intensity resistance and recovery are tightly coupled and that both the magnitude and the direction of drought effects on resistance and recovery can change abruptly upon specific thresholds of stress intensity. These findings highlight the urgent need to account for nonlinear responses of resistance and recovery to drought intensity as critical drivers of productivity in a changing climate.
Collapse
Affiliation(s)
| | - Nikolaus Umlauf
- Department of StatisticsUniversity of InnsbruckInnsbruckAustria
| | - Michael Bahn
- Department of EcologyUniversity of InnsbruckInnsbruckAustria
| |
Collapse
|
20
|
Jing Y, Liu C, Liu B, Pei T, Zhan M, Li C, Wang D, Li P, Ma F. Overexpression of the FERONIA receptor kinase MdMRLK2 confers apple drought tolerance by regulating energy metabolism and free amino acids production. TREE PHYSIOLOGY 2023; 43:154-168. [PMID: 35972799 DOI: 10.1093/treephys/tpac100] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Drought is a major abiotic stress limiting the growth and production of apple trees worldwide. The receptor-like kinase FERONIA is involved in plant growth, development and stress responses; however, the function of FERONIA in apple under drought stress remains unclear. Here, the FERONIA receptor kinase gene MdMRLK2 from apple (Malus domestica) was shown to encode a plasma membrane-localized transmembrane protein and was significantly induced by abscisic acid and drought treatments. 35S::MdMRLK2 apple plants showed less photosystem damage and higher photosynthetic rates compared with wild-type (WT) plants, after withholding water for 7 days. 35S::MdMRLK2 apple plants also had enhanced energy levels, activated caspase activity and more free amino acids, than the WT, under drought conditions. By performing yeast two-hybrid screening, glyceraldehyde-3-phosphate dehydrogenase and MdCYS4, a member of cystatin, were identified as MdMRLK2 interaction partners. Moreover, under drought conditions, the 35S::MdMRLK2 apple plants were characterized by higher abscisic acid (ABA) content. Overall, these findings demonstrated that MdMRLK2 regulates apple drought tolerance, probably via regulating levels of energetic matters, free amino acids and ABA.
Collapse
Affiliation(s)
- Yuanyuan Jing
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Changhai Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Bingbing Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tingting Pei
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Minghui Zhan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chunrong Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Duanni Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Pengmin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
21
|
Sadiqi SSJ, Hong EM, Nam WH, Kim T. Review: An integrated framework for understanding ecological drought and drought resistance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157477. [PMID: 35870577 DOI: 10.1016/j.scitotenv.2022.157477] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Droughts are a frequent natural phenomenon that has amplified globally in the 21st century and are projected to become more common and extreme in the future. Consequently, this affects the progress of drought indices and frameworks to categorize drought conditions. Several drought-related indices and variables are required to capture different features of complex drought conditions. Therefore, we explained the signs of progress of ecological drought that were ecologically expressive to promote the integration between the research on and identification of water scarcity situations and analyzed different frameworks to synthesize the drought effects on species and ecosystems. Notably, we present an inclusive review of an integrated framework for an ecological drought. The ecological drought framework affords the advantage of improved methodologies for assessing ecological drought. This is supported by research on water-limited ecosystems that incorporated several drought-related elements and indicators to produce an integrated drought framework. In this framework, we combined multiple studies on drought recovery, early warning signs, and the effects of land management interferences, along with a schematic representation of a new extension of the framework into ecological systems, to contribute to the success and long-term sustainability of ecological drought adaptation, as well as on-the-ground examples of climate-informed ecological drought management in action for an integrated framework for ecological drought. This study provides an integrated approach to the understanding of ecological drought in line with accelerated scientific advancement to promote persistence and plan for a future that irretrievably exceeds the ecosystem thresholds and new multivariate drought indices.
Collapse
Affiliation(s)
- Sayed Shah Jan Sadiqi
- Department of Environment Science, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Eun-Mi Hong
- School of Natural Resources and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Won-Ho Nam
- School of Social Safety and Systems Engineering, Hankyong National University, Anseong 17579, Republic of Korea; Institute of Agricultural Environmental Science, Hankyong National University, Anseong 17579, Republic of Korea; National Agricultural Water Research Center, Hankyong National University, Anseong 17579, Republic of Korea.
| | - Taegon Kim
- Department of Smart Farm, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| |
Collapse
|
22
|
Harvey JA, Tougeron K, Gols R, Heinen R, Abarca M, Abram PK, Basset Y, Berg M, Boggs C, Brodeur J, Cardoso P, de Boer JG, De Snoo GR, Deacon C, Dell JE, Desneux N, Dillon ME, Duffy GA, Dyer LA, Ellers J, Espíndola A, Fordyce J, Forister ML, Fukushima C, Gage MJG, García‐Robledo C, Gely C, Gobbi M, Hallmann C, Hance T, Harte J, Hochkirch A, Hof C, Hoffmann AA, Kingsolver JG, Lamarre GPA, Laurance WF, Lavandero B, Leather SR, Lehmann P, Le Lann C, López‐Uribe MM, Ma C, Ma G, Moiroux J, Monticelli L, Nice C, Ode PJ, Pincebourde S, Ripple WJ, Rowe M, Samways MJ, Sentis A, Shah AA, Stork N, Terblanche JS, Thakur MP, Thomas MB, Tylianakis JM, Van Baaren J, Van de Pol M, Van der Putten WH, Van Dyck H, Verberk WCEP, Wagner DL, Weisser WW, Wetzel WC, Woods HA, Wyckhuys KAG, Chown SL. Scientists' warning on climate change and insects. ECOL MONOGR 2022. [DOI: 10.1002/ecm.1553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jeffrey A. Harvey
- Department of Terrestrial Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
- Department of Ecological Sciences Vrije Universiteit Amsterdam Amsterdam The Netherlands
| | - Kévin Tougeron
- Earth and Life Institute, Ecology & Biodiversity Université catholique de Louvain Louvain‐la‐Neuve Belgium
- EDYSAN, UMR 7058, Université de Picardie Jules Verne, CNRS Amiens France
| | - Rieta Gols
- Laboratory of Entomology Wageningen University Wageningen The Netherlands
| | - Robin Heinen
- Department of Life Science Systems, School of Life Sciences Technical University of Munich, Terrestrial Ecology Research Group Freising Germany
| | - Mariana Abarca
- Department of Biological Sciences Smith College Northampton Massachusetts USA
| | - Paul K. Abram
- Agriculture and Agri‐Food Canada, Agassiz Research and Development Centre Agassiz British Columbia Canada
| | - Yves Basset
- Smithsonian Tropical Research Institute Panama City Republic of Panama
- Department of Ecology Institute of Entomology, Czech Academy of Sciences Ceske Budejovice Czech Republic
| | - Matty Berg
- Department of Ecological Sciences Vrije Universiteit Amsterdam Amsterdam The Netherlands
- Groningen Institute of Evolutionary Life Sciences University of Groningen Groningen The Netherlands
| | - Carol Boggs
- School of the Earth, Ocean and Environment and Department of Biological Sciences University of South Carolina Columbia South Carolina USA
- Rocky Mountain Biological Laboratory Gothic Colorado USA
| | - Jacques Brodeur
- Institut de recherche en biologie végétale, Département de sciences biologiques Université de Montréal Montréal Québec Canada
| | - Pedro Cardoso
- Laboratory for Integrative Biodiversity Research (LIBRe), Finnish Museum of Natural History Luomus University of Helsinki Helsinki Finland
| | - Jetske G. de Boer
- Department of Terrestrial Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
| | - Geert R. De Snoo
- Department of Terrestrial Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
| | - Charl Deacon
- Department of Conservation Ecology and Entomology, Faculty of AgriSciences Stellenbosch University Stellenbosch South Africa
| | - Jane E. Dell
- Geosciences and Natural Resources Department Western Carolina University Cullowhee North Carolina USA
| | | | - Michael E. Dillon
- Department of Zoology and Physiology and Program in Ecology University of Wyoming Laramie Wyoming USA
| | - Grant A. Duffy
- School of Biological Sciences Monash University Melbourne Victoria Australia
- Department of Marine Science University of Otago Dunedin New Zealand
| | - Lee A. Dyer
- University of Nevada Reno – Ecology, Evolution and Conservation Biology Reno Nevada USA
| | - Jacintha Ellers
- Department of Ecological Sciences Vrije Universiteit Amsterdam Amsterdam The Netherlands
| | - Anahí Espíndola
- Department of Entomology University of Maryland College Park Maryland USA
| | - James Fordyce
- Department of Ecology and Evolutionary Biology University of Tennessee, Knoxville Knoxville Tennessee USA
| | - Matthew L. Forister
- University of Nevada Reno – Ecology, Evolution and Conservation Biology Reno Nevada USA
| | - Caroline Fukushima
- Laboratory for Integrative Biodiversity Research (LIBRe), Finnish Museum of Natural History Luomus University of Helsinki Helsinki Finland
| | | | | | - Claire Gely
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering James Cook University Cairns Queensland Australia
| | - Mauro Gobbi
- MUSE‐Science Museum, Research and Museum Collections Office Climate and Ecology Unit Trento Italy
| | - Caspar Hallmann
- Radboud Institute for Biological and Environmental Sciences Radboud University Nijmegen The Netherlands
| | - Thierry Hance
- Earth and Life Institute, Ecology & Biodiversity Université catholique de Louvain Louvain‐la‐Neuve Belgium
| | - John Harte
- Energy and Resources Group University of California Berkeley California USA
| | - Axel Hochkirch
- Department of Biogeography Trier University Trier Germany
- IUCN SSC Invertebrate Conservation Committee
| | - Christian Hof
- Department of Life Science Systems, School of Life Sciences Technical University of Munich, Terrestrial Ecology Research Group Freising Germany
| | - Ary A. Hoffmann
- Bio21 Institute, School of BioSciences University of Melbourne Melbourne Victoria Australia
| | - Joel G. Kingsolver
- Department of Biology University of North Carolina Chapel Hill North Carolina USA
| | - Greg P. A. Lamarre
- Smithsonian Tropical Research Institute Panama City Republic of Panama
- Department of Ecology Institute of Entomology, Czech Academy of Sciences Ceske Budejovice Czech Republic
| | - William F. Laurance
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering James Cook University Cairns Queensland Australia
| | - Blas Lavandero
- Laboratorio de Control Biológico Universidad de Talca Talca Chile
| | - Simon R. Leather
- Center for Integrated Pest Management Harper Adams University Newport UK
| | - Philipp Lehmann
- Department of Zoology Stockholm University Stockholm Sweden
- Zoological Institute and Museum University of Greifswald Greifswald Germany
| | - Cécile Le Lann
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] ‐ UMR 6553 Rennes France
| | | | - Chun‐Sen Ma
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests Institute of Plant Protection, Chinese Academy of Agricultural Sciences Beijing China
| | - Gang Ma
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests Institute of Plant Protection, Chinese Academy of Agricultural Sciences Beijing China
| | | | | | - Chris Nice
- Department of Biology Texas State University San Marcos Texas USA
| | - Paul J. Ode
- Department of Agricultural Biology Colorado State University Fort Collins Colorado USA
- Graduate Degree Program in Ecology Colorado State University Fort Collins Colorado USA
| | - Sylvain Pincebourde
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS Université de Tours Tours France
| | - William J. Ripple
- Department of Forest Ecosystems and Society Oregon State University Oregon USA
| | - Melissah Rowe
- Netherlands Institute of Ecology (NIOO‐KNAW) Department of Animal Ecology Wageningen The Netherlands
| | - Michael J. Samways
- Department of Conservation Ecology and Entomology, Faculty of AgriSciences Stellenbosch University Stellenbosch South Africa
| | - Arnaud Sentis
- INRAE, Aix‐Marseille University, UMR RECOVER Aix‐en‐Provence France
| | - Alisha A. Shah
- W.K. Kellogg Biological Station, Department of Integrative Biology Michigan State University East Lansing Michigan USA
| | - Nigel Stork
- Centre for Planetary Health and Food Security, School of Environment and Science Griffith University Nathan Queensland Australia
| | - John S. Terblanche
- Department of Conservation Ecology and Entomology, Faculty of AgriSciences Stellenbosch University Stellenbosch South Africa
| | - Madhav P. Thakur
- Institute of Ecology and Evolution University of Bern Bern Switzerland
| | - Matthew B. Thomas
- York Environmental Sustainability Institute and Department of Biology University of York York UK
| | - Jason M. Tylianakis
- Bioprotection Aotearoa, School of Biological Sciences University of Canterbury Christchurch New Zealand
| | - Joan Van Baaren
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] ‐ UMR 6553 Rennes France
| | - Martijn Van de Pol
- Netherlands Institute of Ecology (NIOO‐KNAW) Department of Animal Ecology Wageningen The Netherlands
- College of Science and Engineering James Cook University Townsville Queensland Australia
| | - Wim H. Van der Putten
- Department of Terrestrial Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
| | - Hans Van Dyck
- Earth and Life Institute, Ecology & Biodiversity Université catholique de Louvain Louvain‐la‐Neuve Belgium
| | | | - David L. Wagner
- Ecology and Evolutionary Biology University of Connecticut Storrs Connecticut USA
| | - Wolfgang W. Weisser
- Department of Life Science Systems, School of Life Sciences Technical University of Munich, Terrestrial Ecology Research Group Freising Germany
| | - William C. Wetzel
- Department of Entomology, Department of Integrative Biology, and Ecology, Evolution, and Behavior Program Michigan State University East Lansing Michigan USA
| | - H. Arthur Woods
- Division of Biological Sciences University of Montana Missoula Montana USA
| | - Kris A. G. Wyckhuys
- Chrysalis Consulting Hanoi Vietnam
- China Academy of Agricultural Sciences Beijing China
| | - Steven L. Chown
- Securing Antarctica's Environmental Future, School of Biological Sciences Monash University Melbourne Victoria Australia
| |
Collapse
|
23
|
Liang X, Ma W, Yu Q, Luo W, Wang Z, Lü X, Han X. Conserved responses of nutrient resorption to extreme drought in a grassland: The role of community compositional changes. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiao‐Sa Liang
- Erguna Forest‐Steppe Ecotone Research Station, CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology Chinese Academy of Sciences Shenyang China
- University of Chinese Academy of Sciences Beijing China
| | - Wang Ma
- Erguna Forest‐Steppe Ecotone Research Station, CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology Chinese Academy of Sciences Shenyang China
| | - Qiang Yu
- School of Grassland Science Beijing Forestry University Beijing China
| | - Wen‐Tao Luo
- Erguna Forest‐Steppe Ecotone Research Station, CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology Chinese Academy of Sciences Shenyang China
| | - Zheng‐Wen Wang
- Erguna Forest‐Steppe Ecotone Research Station, CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology Chinese Academy of Sciences Shenyang China
| | - Xiao‐Tao Lü
- Erguna Forest‐Steppe Ecotone Research Station, CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology Chinese Academy of Sciences Shenyang China
| | - Xing‐Guo Han
- Erguna Forest‐Steppe Ecotone Research Station, CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology Chinese Academy of Sciences Shenyang China
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany, Chinese Academy of Sciences Beijing China
| |
Collapse
|
24
|
Chieppa J, Power SA, Nielsen UN, Tissue DT. Plant functional traits affect competitive vigor of pasture grasses during drought and following recovery. Ecosphere 2022. [DOI: 10.1002/ecs2.4156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Jeff Chieppa
- Hawkesbury Institute for the Environment, Hawkesbury Campus Western Sydney University Richmond New South Wales Australia
- Department of Biological Sciences Texas Tech University Lubbock Texas USA
| | - Sally A. Power
- Hawkesbury Institute for the Environment, Hawkesbury Campus Western Sydney University Richmond New South Wales Australia
| | - Uffe N. Nielsen
- Hawkesbury Institute for the Environment, Hawkesbury Campus Western Sydney University Richmond New South Wales Australia
| | - David T. Tissue
- Hawkesbury Institute for the Environment, Hawkesbury Campus Western Sydney University Richmond New South Wales Australia
- Global Centre for Land‐based Innovation Western Sydney University, Hawkesbury Campus Richmond New South Wales Australia
| |
Collapse
|
25
|
Stears AE, Adler PB, Blumenthal DM, Kray JA, Mueller KE, Ocheltree TW, Wilcox KR, Laughlin DC. Water availability dictates how plant traits predict demographic rates. Ecology 2022; 103:e3799. [PMID: 35724968 DOI: 10.1002/ecy.3799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/17/2022] [Accepted: 04/21/2022] [Indexed: 11/08/2022]
Abstract
A major goal in ecology is to make generalizable predictions of organism responses to environmental variation based on their traits. However, straightforward relationships between traits and fitness are rare and likely vary with environmental context. Characterizing how traits mediate demographic responses to the environment may enhance predictions of organism responses to global change. We synthesized 15 years of demographic data and species-level traits in a shortgrass steppe to determine whether the effects of leaf and root traits on growth and survival depend on seasonal water availability. We predicted that (1) species with drought-tolerant traits, such as lower leaf turgor loss point (TLP) and higher leaf and root dry matter content (LDMC and RDMC), would be more likely to survive and grow in drier years due to higher wilting resistance, (2) these traits would not predict fitness in wetter years, and (3) traits that more directly measure physiological mechanisms of water use such as TLP would best predict demographic responses. We found that graminoids with more negative TLP and higher LDMC and RDMC had higher survival rates in drier years. Forbs demonstrated similar yet more variable responses. Graminoids grew larger in wetter years, regardless of traits. However, in both wet and dry years, graminoids with more negative TLP and higher LDMC and RDMC grew larger than less negative TLP and low LDMC and RDMC species. Traits significantly mediated the impact of drought on survival, but not growth, suggesting survival could be a stronger driver of species' drought response in this system. TLP predicted survival in drier years, but easier-to-measure LDMC and RDMC were equal or better predictors. These results advance our understanding of the mechanisms by which drought drives population dynamics, and show that abiotic context determines how traits drive fitness.
Collapse
Affiliation(s)
- Alice E Stears
- Botany Department and Program in Ecology, University of Wyoming, Laramie, WY
| | - Peter B Adler
- Department of Wildland Resources and the Ecology Center, Utah State University, Logan, UT
| | | | - Julie A Kray
- USDA-ARS Rangeland Resources Research Unit, Fort Collins, CO
| | - Kevin E Mueller
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH
| | - Troy W Ocheltree
- Warner College of Natural Resources, Colorado State University, Fort Collins, CO
| | - Kevin R Wilcox
- Department of Ecosystem Science and Management, University of Wyoming, Laramie, WY
| | - Daniel C Laughlin
- Botany Department and Program in Ecology, University of Wyoming, Laramie, WY
| |
Collapse
|
26
|
Xi N, Chen D, Bahn M, Wu H, Chu C, Cadotte MW, Bloor JMG. Drought soil legacy alters drivers of plant diversity-productivity relationships in oldfield systems. SCIENCE ADVANCES 2022; 8:eabn3368. [PMID: 35507655 PMCID: PMC9067920 DOI: 10.1126/sciadv.abn3368] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/16/2022] [Indexed: 05/26/2023]
Abstract
Ecosystem functions are threatened by both recurrent droughts and declines in biodiversity at a global scale, but the drought dependency of diversity-productivity relationships remains poorly understood. Here, we use a two-phase mesocosm experiment with simulated drought and model oldfield communities (360 experimental mesocosms/plant communities) to examine drought-induced changes in soil microbial communities along a plant species richness gradient and to assess interactions between past drought (soil legacies) and subsequent drought on plant diversity-productivity relationships. We show that (i) drought decreases bacterial and fungal richness and modifies relationships between plant species richness and microbial groups; (ii) drought soil legacy increases net biodiversity effects, but responses of net biodiversity effects to plant species richness are unaffected; and (iii) linkages between plant species richness and complementarity/selection effects vary depending on past and subsequent drought. These results provide mechanistic insight into biodiversity-productivity relationships in a changing environment, with implications for the stability of ecosystem function under climate change.
Collapse
Affiliation(s)
- Nianxun Xi
- State Key Laboratory of Biocontrol, School of Life Sciences/School of Ecology, Sun Yat-sen University, Guangzhou 510275, China
| | - Dongxia Chen
- State Key Laboratory of Biocontrol, School of Life Sciences/School of Ecology, Sun Yat-sen University, Guangzhou 510275, China
| | - Michael Bahn
- Department of Ecology, University of Innsbruck, 6020 Innsbruck, Austria
| | - Hangyu Wu
- State Key Laboratory of Biocontrol, School of Life Sciences/School of Ecology, Sun Yat-sen University, Guangzhou 510275, China
| | - Chengjin Chu
- State Key Laboratory of Biocontrol, School of Life Sciences/School of Ecology, Sun Yat-sen University, Guangzhou 510275, China
| | - Marc W. Cadotte
- Department of Biological Sciences, University of Toronto-Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Juliette M. G. Bloor
- Université Clermont Auvergne, INRAE, VetAgro-Sup, UREP, 5 Chemin de Beaulieu, F-63100 Clermont-Ferrand, France
| |
Collapse
|
27
|
Xi N, Crawford KM, De Long JR. Plant landscape abundance and soil fungi modulate drought effects on plant–soil feedbacks. OIKOS 2022. [DOI: 10.1111/oik.08836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nianxun Xi
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan Univ. Haikou China
- School of Ecology, Sun Yat‐sen Univ. Guangzhou China
| | | | | |
Collapse
|
28
|
Castillioni K, Patten MA, Souza L. Precipitation effects on grassland plant performance are lessened by hay harvest. Sci Rep 2022; 12:3282. [PMID: 35228587 PMCID: PMC8885915 DOI: 10.1038/s41598-022-06961-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 12/24/2021] [Indexed: 11/09/2022] Open
Abstract
Climate and human management, such as hay harvest, shape grasslands. With both disturbances co-occurring, understanding how these ecosystems respond to these combined drivers may aid in projecting future changes in grasslands. We used an experimental precipitation gradient combined with mimicked acute hay harvest (clipping once a year) to examine (1) whether hay harvest influences precipitation effects on plant performance (cover and height) and (2) the role of inter-specific responses in influencing plant performance. We found that hay harvest reduced the strength of precipitation effects on plant performance through changes in bare-ground soil cover. Species performance were mainly influenced by change in abiotic factors, often responding negatively, as hay harvest increased bare-ground amount. Conversely, altered precipitation without hay harvest promoted plant species performance through abiotic factors change first, followed by biotic. Most species, including the dominant grass Schizachyrium scoparium, increased their performance with greater leaf area index (proxy for canopy structure). Our experiment demonstrates that plant performance responds directly to abiotic factors with hay harvest, but indirectly without hay harvest. Positive effects of increasing precipitation were likely due to microhabitat amelioration and resource acquisition, thus inclusion of hay harvest as a disturbance lessens positive impacts of biotic variables on species performance to climate change.
Collapse
|
29
|
Spatial pattern and association of shrub species in gravel hilly and rocky low mountain desert dominated by relict Helianthemum songaricum in China. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
30
|
Abiotic stress-by-competition interactions drive hormone and nutrient changes to regulate Suaeda salsa growth. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
31
|
Bohner T, Diez J. Tree resistance and recovery from drought mediated by multiple abiotic and biotic processes across a large geographic gradient. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:147744. [PMID: 34051506 DOI: 10.1016/j.scitotenv.2021.147744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 06/12/2023]
Abstract
Worldwide, increasing severity of droughts threatens to change forest ecosystem functioning and community structure. Understanding how forest resilience is determined by its two underlying components, resistance and recovery, will help elucidate the mechanisms of drought responses and help inform management strategies. However, drought responses are shaped by complex processes across different scales, including species-specific drought strategies, tree size, competition, local environmental conditions, and the intensity of the drought event. Here, we quantified the reduction in tree growth during drought (an inverse measure of drought resistance) and post-drought recovery for three montane conifers (Abies concolor, Pinus jeffreyi, and Pinus lambertiana) in California. We used tree ring analysis to quantify responses to drought events of varying intensity between 1895 and 2018 across a geographic climatic gradient, to examine the roles of tree size (DBH) and competition (tree density) in mediating drought responses. We found that years of more intense drought corresponded with larger growth reductions and recovery rates were lower following drought years where trees suffered larger reductions. We found little variation among species in their growth reductions during drought events, but significant differences among species in their recovery post-drought. Across the geographic gradient, trees in the driest locations were susceptible to large growth reductions, signaling either strong sensitivity to drought intensity or exposure to the most extreme drought conditions. These growth reductions were not always compensated for by higher recovery rates. We also found that larger trees were more susceptible to drought due to a steeper negative relationship between recovery rates and the intensity of growth reduction during the drought. Contrary to expectations, recovery rates following the most detrimental drought years were higher in denser forests. Our results demonstrate the importance of considering how factors at various spatial and temporal scales affect the different components of drought responses.
Collapse
Affiliation(s)
- Teresa Bohner
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA.
| | - Jeffrey Diez
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| |
Collapse
|
32
|
Haberstroh S, Caldeira MC, Lobo-do-Vale R, Martins JI, Moemken J, Pinto JG, Werner C. Nonlinear plant-plant interactions modulate impact of extreme drought and recovery on a Mediterranean ecosystem. THE NEW PHYTOLOGIST 2021; 231:1784-1797. [PMID: 34076289 DOI: 10.1111/nph.17522] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Interaction effects of different stressors, such as extreme drought and plant invasion, can have detrimental effects on ecosystem functioning and recovery after drought. With ongoing climate change and increasing plant invasion, there is an urgent need to predict the short- and long-term interaction impacts of these stressors on ecosystems. We established a combined precipitation exclusion and shrub invasion (Cistus ladanifer) experiment in a Mediterranean cork oak (Quercus suber) ecosystem with four treatments: (1) Q. suber control; (2) Q. suber with rain exclusion; (3) Q. suber invaded by shrubs; and (4) Q. suber with rain exclusion and shrub invasion. As key parameter, we continuously measured ecosystem water fluxes. In an average precipitation year, the interaction effects of both stressors were neutral. However, the combination of imposed drought and shrub invasion led to amplifying interaction effects during an extreme drought by strongly reducing tree transpiration. Contrarily, the imposed drought reduced the competitiveness of the shrubs in the following recovery period, which buffered the negative effects of shrub invasion on Q. suber. Our results demonstrate the highly dynamic and nonlinear effects of interacting stressors on ecosystems and urges for further investigations on biotic interactions in a context of climate change pressures.
Collapse
Affiliation(s)
- Simon Haberstroh
- Ecosystem Physiology, Faculty of Environment and Natural Resources, University Freiburg, Freiburg, 79110, Germany
- Forest Research Centre, School of Agriculture, University of Lisbon, Lisbon, 1349-017, Portugal
| | - Maria C Caldeira
- Forest Research Centre, School of Agriculture, University of Lisbon, Lisbon, 1349-017, Portugal
| | - Raquel Lobo-do-Vale
- Forest Research Centre, School of Agriculture, University of Lisbon, Lisbon, 1349-017, Portugal
| | - Joana I Martins
- Forest Research Centre, School of Agriculture, University of Lisbon, Lisbon, 1349-017, Portugal
| | - Julia Moemken
- Institute for Meteorology and Climate Research (IMK-TRO), Karlsruhe Institute of Technology (KIT), Karlsruhe, 76131, Germany
| | - Joaquim G Pinto
- Institute for Meteorology and Climate Research (IMK-TRO), Karlsruhe Institute of Technology (KIT), Karlsruhe, 76131, Germany
| | - Christiane Werner
- Ecosystem Physiology, Faculty of Environment and Natural Resources, University Freiburg, Freiburg, 79110, Germany
| |
Collapse
|
33
|
Mseddi K, Alghamdi A, Abdelgadir M, Sharawy S, Chaieb M, Miller T. Phytodiversity distribution in relation to altitudinal gradient in Salma Mountains – Saudi Arabia. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
34
|
Yang G, Roy J, Veresoglou SD, Rillig MC. Soil biodiversity enhances the persistence of legumes under climate change. THE NEW PHYTOLOGIST 2021; 229:2945-2956. [PMID: 33152109 DOI: 10.1111/nph.17065] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
Global environmental change poses threats to plant and soil biodiversity. Yet, whether soil biodiversity loss can further influence plant community's response to global change is still poorly understood. We created a gradient of soil biodiversity using the dilution-to-extinction approach, and investigated the effects of soil biodiversity loss on plant communities during and following manipulations simulating global change disturbances in experimental grassland microcosms. Grass and herb biomass was decreased by drought and promoted by nitrogen deposition, and a fast recovery was observed following disturbances, independently of soil biodiversity loss. Warming promoted herb biomass during and following disturbance only when soil biodiversity was not reduced. However, legumes biomass was suppressed by these disturbances, and there were more detrimental effects with reduced soil biodiversity. Moreover, soil biodiversity loss suppressed the recovery of legumes following these disturbances. Similar patterns were found for the response of plant diversity. The changes in legumes might be partly attributed to the loss of mycorrhizal soil mutualists. Our study shows that soil biodiversity is crucial for legume persistence and plant diversity maintenance when faced with environmental change, highlighting the importance of soil biodiversity as a potential buffering mechanism for plant diversity and community composition in grasslands.
Collapse
Affiliation(s)
- Gaowen Yang
- Institut für Biologie, Freie Universität Berlin, Berlin, D-14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, D-14195, Germany
| | - Julien Roy
- Institut für Biologie, Freie Universität Berlin, Berlin, D-14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, D-14195, Germany
| | - Stavros D Veresoglou
- Institut für Biologie, Freie Universität Berlin, Berlin, D-14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, D-14195, Germany
| | - Matthias C Rillig
- Institut für Biologie, Freie Universität Berlin, Berlin, D-14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, D-14195, Germany
| |
Collapse
|
35
|
Ruttan A, Lortie CJ, Haas SM. Shrubs as magnets for pollination: A test of facilitation and reciprocity in a shrub-annual facilitation system. CURRENT RESEARCH IN INSECT SCIENCE 2021; 1:100008. [PMID: 36003594 PMCID: PMC9387484 DOI: 10.1016/j.cris.2021.100008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 11/22/2022]
Abstract
Insect-pollinated shrub Larrea tridentata increases the pollinator visitation to annuals. The effect of Larrea tridentata on pollinator visitation is inconsistent between years. Wind-pollinated shrub Ambrosia dumosa reduces the visitation duration of flies to annuals. Surrounding annuals reduce the visitation duration of pollinators to the shrub Larrea tridentata.
The magnet species hypothesis proposes that flowering plants that are attractive to pollinators can increase the relative pollination rates of neighbouring plants by acting as ‘magnets.’ Here, we test the hypothesis that insect-pollinated shrub species Larrea tridentata and wind-pollinated shrub species Ambrosia dumosa act as magnets for the pollinator visitation of understory annual plant species in an arid ecosystem. As an extension to the magnet species hypothesis, we propose the double magnet species hypothesis in which we further test for reciprocity by the floral island created in the understory of the benefactor shrubs as an additional pollinator magnet for the shrub itself. We used an annual plant placed near each shrub and the open to measure the effect of shrubs on annuals. The double magnet species hypothesis was tested using L. tridentata with and without surrounding annuals. We measured pollinator visitation and visit duration using video and in-situ observation techniques to test whether shrubs increase pollinator visitation to understory annual plants, if insect-pollinated shrubs act as better pollinator magnets than wind-pollinated shrubs (to determine the effects of the floral resource itself), and whether shrubs with annuals in their understory have higher pollinator visitation rates relative to shrubs without annuals. We found that insect-pollinated shrubs increased the visitation rate and duration of visits by pollinators to their understory plants and that wind-pollinated shrubs decreased the duration of visits of some insect visitors, but these relationships varied between years. While the presence of annuals did not change the visitation rate of all possible pollinators to L. tridentata flowers, they did decrease the visitation duration of specifically bees, indicating a negative reciprocal effect of the understory on pollination. Thus, the concentrated floral resources of flowers on insect-pollinated shrubs can act as a magnet that attract pollinators but that in turn provide a cost to pollination of the shrub. However, while wind-pollinated shrubs may provide other benefits, they may provide a cost to the pollination of their understory. These findings support the magnet species hypothesis as an additional mechanism of facilitation by insect-pollinated shrubs to other plant species within arid ecosystems.
Collapse
|
36
|
Ploughe LW, Carlyle CN, Fraser LH. Priority effects: How the order of arrival of an invasive grass, Bromus tectorum, alters productivity and plant community structure when grown with native grass species. Ecol Evol 2020; 10:13173-13181. [PMID: 33304527 PMCID: PMC7713915 DOI: 10.1002/ece3.6908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/21/2020] [Accepted: 09/18/2020] [Indexed: 11/29/2022] Open
Abstract
Theories and models attempt to explain how and why particular plant species grow together at particular sites or why invasive exotic species dominate plant communities. As local climates change and human-use degrades and disturbs ecosystems, a better understanding of how plant communities assemble is pertinent, particularly when restoring grassland ecosystems that are frequently disturbed. One such community assembly theory is priority effects, which suggests that arrival order of species into a community alters plant-plant interactions and community assembly. Theoretically, priority effects can have lasting effects on ecosystems and will likely be altered as the risk of invasion by exotic species increases. It is difficult to predict how and when priority effects occur, as experimental reconstruction of arrival order is often difficult in adequate detail. As a result, limited experimental studies have explored priority effects on plant community assembly and plant invasions. To determine if and how priority effects affect the success of invasive species, we conducted a greenhouse study exploring how the arrival order of an invasive grass, Bromus tectorum, affects productivity and community composition when grown with native grasses. We found evidence for priority effects, as productivity was positively related to dominance of B. tectorum and was greater the earlier B. tectorum arrived. This suggests that priority effects could be important for plant communities as the early arrival of an invasive species drastically impacted the productivity and biodiversity of our system at the early establishment stages of plant community development.
Collapse
Affiliation(s)
- Laura Weber Ploughe
- Department of Natural Resource SciencesThompson Rivers UniversityKamloopsBCCanada
| | - Cameron N. Carlyle
- Agricultural, Food, and Nutritional ScienceUniversity of AlbertaEdmontonABCanada
| | - Lauchlan H. Fraser
- Department of Natural Resource SciencesThompson Rivers UniversityKamloopsBCCanada
| |
Collapse
|
37
|
Rudgers JA, Afkhami ME, Bell-Dereske L, Chung YA, Crawford KM, Kivlin SN, Mann MA, Nuñez MA. Climate Disruption of Plant-Microbe Interactions. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2020. [DOI: 10.1146/annurev-ecolsys-011720-090819] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Interactions between plants and microbes have important influences on evolutionary processes, population dynamics, community structure, and ecosystem function. We review the literature to document how climate change may disrupt these ecological interactions and develop a conceptual framework to integrate the pathways of plant-microbe responses to climate over different scales in space and time. We then create a blueprint to aid generalization that categorizes climate effects into changes in the context dependency of plant-microbe pairs, temporal mismatches and altered feedbacks over time, or spatial mismatches that accompany species range shifts. We pair a new graphical model of how plant-microbe interactions influence resistance to climate change with a statistical approach to predictthe consequences of increasing variability in climate. Finally, we suggest pathways through which plant-microbe interactions can affect resilience during recovery from climate disruption. Throughout, we take a forward-looking perspective, highlighting knowledge gaps and directions for future research.
Collapse
Affiliation(s)
- Jennifer A. Rudgers
- Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA;,
| | - Michelle E. Afkhami
- Department of Biology, University of Miami, Coral Gables, Florida 33157, USA
| | - Lukas Bell-Dereske
- Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan 49060, USA
| | - Y. Anny Chung
- Departments of Plant Biology and Plant Pathology, University of Georgia, Athens, Georgia 30602, USA
| | - Kerri M. Crawford
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204, USA
| | - Stephanie N. Kivlin
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Michael A. Mann
- Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA;,
| | - Martin A. Nuñez
- Grupo de Ecología de Invasiones, Instituto de Investigaciones en Biodiversidad y Medioambiente, CONICET/Universidad Nacional del Comahue, Bariloche 8400, Argentina
| |
Collapse
|
38
|
|
39
|
Both Mature Patches and Expanding Areas of Juniperus thurifera Forests Are Vulnerable to Climate Change But for Different Reasons. FORESTS 2020. [DOI: 10.3390/f11090960] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Research Highlights: Water use efficiency (WUE) varied along a gradient of Juniperus thurifera (L.) forest expansion, being higher in recently colonised areas. Background and Objectives: WUE is a classic physiological process of plants that reflects the compromise between carbon assimilation and water loss and has a profound influence on their performance in water-limited environments. Forest expansion in Mediterranean regions associated with land abandonment can influence the WUE of plants due to the existence of two opposing gradients: one of favourable–unfavourable environmental conditions and another one of increased–decreased intraspecific competition, the former increasing and the latter decreasing towards the expanding front. The main objective of this study was to elucidate how the WUE of Juniperus thurifera varied along the stages of forest expansion and to provide insight on how this variation is influenced by intraspecific competition and abiotic factors. Materials and Methods: Seventeen plots at different distances from the mature forest core were selected at three sites located in the centre of the Iberian Peninsula. For 30 individuals within each plot, we measured biometric characteristics, age, tree vigour, and C/N ratio in leaves, and the leaf carbon isotope signature (δ13C (‰)) as a proxy for WUE. Around each individual, we scored the percentage cover of bare soil, stoniness, conspecifics, and other woody species. Results: WUE of J. thurifera individuals varied along the forest expansion gradient, being greater for the individuals at the expanding front than for those at the mature forest. WUE was influenced by the cover of conspecifics, tree age, and C/N ratio in leaves. This pattern reveals that less favourable environmental conditions (i.e., rocky soils and higher radiation due to lower vegetation cover) and younger trees at the expanding front are associated with increased WUE. The increased cover of conspecifics decreases irradiance at the mature forest, involving milder stress conditions than at the expanding front. Conclusions: Lower WUE in mature forests due to more favourable conditions and higher WUE due to abiotic stress at expanding fronts revealed high constraints on water economy of this tree species in these two contrasting situations. Climate change scenarios bringing increased aridity are a serious threat to Juniperus thurifera forests, affecting both mature and juvenile populations although in different ways, which deserve further research to fully unveil.
Collapse
|
40
|
Alba C, Fahey C, Flory SL. Global change stressors alter resources and shift plant interactions from facilitation to competition over time. Ecology 2019; 100:e02859. [DOI: 10.1002/ecy.2859] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 04/22/2019] [Accepted: 07/08/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Christina Alba
- Agronomy Department University of Florida McCarty Hall B Gainesville Florida 32611 USA
- Research and Conservation Department Denver Botanic Gardens 909 York Street Denver Colorado 80206 USA
| | - Catherine Fahey
- School of Natural Resources and Environment University of Florida 103 Black Hall Gainesville Florida 32611 USA
- Biology Department Algoma University 1520 Queen Street East Sault Ste. Marie Ontario P6A 2G4 Canada
| | - S. Luke Flory
- Agronomy Department University of Florida McCarty Hall B Gainesville Florida 32611 USA
| |
Collapse
|