1
|
Fernandez CW, See CR. The pH influence on ectomycorrhizal nitrogen acquisition and decomposition. THE NEW PHYTOLOGIST 2025; 246:867-875. [PMID: 40065484 PMCID: PMC11982800 DOI: 10.1111/nph.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/25/2025] [Indexed: 04/11/2025]
Abstract
In theory, ectomycorrhizal (EM) and saprotrophic fungi compete for nitrogen (N) found in soil organic matter. However, both positive and negative effects of EM fungi on decomposition have been observed across systems, with opposing implications for soil carbon (C) storage. The conditions driving the context dependency of fungal guild interactions remain poorly understood, which has limited our ability to predict the effects of EM fungi on biogeochemical cycling at regional and global spatial scales. To address this knowledge gap, we used a publicly available dataset of soil fungal communities to examine global patterns of relative EM and saprotrophic abundance and their influence on soil carbon and nutrient cycling. We demonstrate that EM fungal dominance and its effects on C and N cycling are predictable across the globe using only soil C : N stoichiometry, host tree functional group, and soil pH as predictors. We argue that because soil pH influences the availability and enzymatic catabolism of organic N, it determines the dominant N acquisition strategy of EM fungi, which in turn governs the directional effect of EM-saprotroph interactions on rates of organic matter decomposition in forests.
Collapse
Affiliation(s)
| | - Craig R. See
- Department of Agronomy and Plant GeneticsUniversity of MinnesotaSt PaulMN55108USA
| |
Collapse
|
2
|
Si M, Zhang C, Xiang C, Jiang M, Guo L, Shao J. The Role of Plant Evolutionary History in Shaping the Variation in Specific Leaf Area Across China. Ecol Evol 2025; 15:e71304. [PMID: 40256267 PMCID: PMC12008053 DOI: 10.1002/ece3.71304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 03/18/2025] [Accepted: 04/04/2025] [Indexed: 04/22/2025] Open
Abstract
Specific leaf area (SLA, leaf area per unit leaf dry mass) occupies a central position in both community assembly and ecosystem functioning. Although SLA has significant phylogenetic signals, how and to what extent the evolutionary history influences the variation in SLA remain poorly understood. In this study, based on a dataset containing 1264 plant species belonging to 549 genera and 141 families in gymnosperms, monocots, and eudicots across China, we analyzed the influences of climatic conditions and soil properties on SLA, calculated the phylogenetic signals of SLA, and quantified the relative contributions of evolutionary history (represented by interspecific relatedness and intraspecific variation) to the variation in SLA. The results showed that the interspecific relatedness accounts for 50.46% of the total variance in SLA, followed by the intraspecific variation (36.12%), climatic conditions (30.68%), and soil properties (24.74%). Along the phylogenetic tree, the split between angiosperms and gymnosperms had the largest contribution to the variation in SLA. Other detailed splits (e.g., the split between monocots and eudicots, the splits within Rosidae, and etc.) had significant but much smaller contributions. The relationship between SLA and environmental variables (climatic conditions and soil properties) was different between angiosperms and gymnosperms, with the climatic conditions having larger influences on SLA than the soil properties, implying interactive effects between environment and evolutionary history on SLA. Within the woody angiosperms, deciduous and evergreen species exhibited differential responses of SLA to climatic and soil factors, suggesting a non-negligible role of leaf longevity in explaining the variation in SLA. Our results highlighted a much more important role of evolutionary history in the variation in SLA than previous studies. Neglecting such a great contribution could lead to biased conclusions if the evolutionary rate does not keep pace with the rapidly changing environments in the future.
Collapse
Affiliation(s)
- Minyue Si
- National key Laboratory for Development and Utilization of Forest Food Resources, College of Forestry and BiotechnologyZhejiang A&F UniversityHangzhouChina
| | - Caiyi Zhang
- National key Laboratory for Development and Utilization of Forest Food Resources, College of Forestry and BiotechnologyZhejiang A&F UniversityHangzhouChina
| | - Chunzhu Xiang
- National key Laboratory for Development and Utilization of Forest Food Resources, College of Forestry and BiotechnologyZhejiang A&F UniversityHangzhouChina
| | - Mingxia Jiang
- National key Laboratory for Development and Utilization of Forest Food Resources, College of Forestry and BiotechnologyZhejiang A&F UniversityHangzhouChina
| | - Linwei Guo
- National key Laboratory for Development and Utilization of Forest Food Resources, College of Forestry and BiotechnologyZhejiang A&F UniversityHangzhouChina
| | - Junjiong Shao
- National key Laboratory for Development and Utilization of Forest Food Resources, College of Forestry and BiotechnologyZhejiang A&F UniversityHangzhouChina
- Tianmushan Forest Ecosystem National Orientation Observation and Research Station of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
3
|
Wang H, Zhang K, Tappero R, Victor TW, Bhatnagar JM, Vilgalys R, Liao HL. Inorganic nitrogen and organic matter jointly regulate ectomycorrhizal fungi-mediated iron acquisition. THE NEW PHYTOLOGIST 2025; 245:2715-2725. [PMID: 39841620 DOI: 10.1111/nph.20394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025]
Abstract
Ectomycorrhizal fungi (EMF) play a crucial role in facilitating plant nutrient uptake from the soil although inorganic nitrogen (N) can potentially diminish this role. However, the effect of inorganic N availability and organic matter on shaping EMF-mediated plant iron (Fe) uptake remains unclear. To explore this, we performed a microcosm study on Pinus taeda roots inoculated with Suillus cothurnatus treated with +/-Fe-coated sand, +/-organic matter, and a gradient of NH4NO3 concentrations. Mycorrhiza formation was most favorable under conditions with organic matter, without inorganic N. Synchrotron X-ray microfluorescence imaging on ectomycorrhizal cross-sections suggested that the effect of inorganic N on mycorrhizal Fe acquisition largely depended on organic matter supply. With organic matter, mycorrhizal Fe concentration was significantly decreased as inorganic N levels increased. Conversely, an opposite trend was observed when organic matter was absent. Spatial distribution analysis showed that Fe, zinc, calcium, and copper predominantly accumulated in the fungal mantle across all conditions, highlighting the mantle's critical role in nutrient accumulation and regulation of nutrient transfer to internal compartments. Our work illustrated that the liberation of soil mineral Fe and the EMF-mediated plant Fe acquisition are jointly regulated by inorganic N and organic matter in the soil.
Collapse
Affiliation(s)
- Haihua Wang
- North Florida Research and Education Center, University of Florida, 155 Research Road, Quincy, FL, 32351, USA
- Department of Soil, Water, and Ecosystem Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Kaile Zhang
- North Florida Research and Education Center, University of Florida, 155 Research Road, Quincy, FL, 32351, USA
- Department of Soil, Water, and Ecosystem Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Ryan Tappero
- Photon Sciences Department, Brookhaven National Laboratory, NSLS-II, Upton, NY, 11973, USA
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Tiffany W Victor
- Photon Sciences Department, Brookhaven National Laboratory, NSLS-II, Upton, NY, 11973, USA
| | | | - Rytas Vilgalys
- Department of Biology, Duke University, 130 Science Dr., Durham, NC, 27708, USA
| | - Hui-Ling Liao
- North Florida Research and Education Center, University of Florida, 155 Research Road, Quincy, FL, 32351, USA
- Department of Soil, Water, and Ecosystem Sciences, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
4
|
Joly FX, Cotrufo MF, Garnett MH, Johnson D, Lavallee JM, Mueller CW, Perks MP, Subke JA. Temperate grassland conversion to conifer forest destabilises mineral soil carbon stocks. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 374:124149. [PMID: 39837144 DOI: 10.1016/j.jenvman.2025.124149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/06/2025] [Accepted: 01/13/2025] [Indexed: 01/23/2025]
Abstract
Tree-planting is increasingly presented as a cost-effective strategy to maximise ecosystem carbon (C) storage and thus mitigate climate change. Its success largely depends on the associated response of soil C stocks, where most terrestrial C is stored. Yet, we lack a precise understanding of how soil C stocks develop following tree planting, and particularly how it affects the form in which soil C is stored and its associated stability and resistance to climate change. Here, we present changes in C and nitrogen (N) stored as mineral-associated organic matter (OM), occluded particulate OM, free particulate OM and dissolved OM, from four regional chronosequences of Scots pine (Pinus sylvestris L.) forests planted on former grasslands across Scotland. We found that c. 58-68 years after the plantation, bulk soil C and N stocks in the organic layer and the top 20 cm of mineral soil decreased by half relative to unforested grasslands - a decrease roughly equivalent to a third of the simultaneous C gain in the tree biomass. This pattern was driven predominantly by a decrease in the amount of C and N stored as mineral-associated OM, an OM fraction considered as relatively long-lived. Our findings demonstrate the need to estimate C storage in response to tree planting based both on soil C stocks and tree biomass, as the use of the latter alone may significantly over-estimate net C benefits of tree planting on permanent grasslands.
Collapse
Affiliation(s)
- François-Xavier Joly
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, United Kingdom; Eco&Sols, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France.
| | - M Francesca Cotrufo
- Department of Soil and Crop Sciences, Colorado State University, 200 W. Lake St., Fort Collins, CO, 80523, USA
| | - Mark H Garnett
- NEIF Radiocarbon Laboratory, Rankine Avenue, East Kilbride, Glasgow, G75 0QF, United Kingdom
| | - David Johnson
- Department of Earth and Environmental Sciences, University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Jocelyn M Lavallee
- Department of Soil and Crop Sciences, Colorado State University, 200 W. Lake St., Fort Collins, CO, 80523, USA; Environmental Defense Fund, 257 Park Ave S, New York, NY, 10010, USA
| | - Carsten W Mueller
- Institute of Ecology, Technische Universitaet Berlin, Ernst-Reuter-Platz 1, 10587, Berlin, Germany; University of Copenhagen, Øster Voldgade 10, 1350, Copenhagen K., Denmark
| | - Mike P Perks
- Forest Research, Bush Estate, Roslin, EH25 9SY, United Kingdom
| | - Jens-Arne Subke
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, United Kingdom
| |
Collapse
|
5
|
Chen X, Chen S, Arthur MA, McCulley RL, Liu X, Xiong D, Xu C, Yang Z, Yang Y. Primary productivity regulates rhizosphere soil organic carbon: Evidence from a chronosequence of subtropical Chinese fir (Cunninghamia lanceolata) plantation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177082. [PMID: 39454775 DOI: 10.1016/j.scitotenv.2024.177082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/13/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024]
Abstract
Tree plantations worldwide are a large terrestrial carbon sink. Previous studies on the carbon sequestration capacity of plantations mainly focused on tree biomass carbon sequestration, but the importance of soil organic carbon (SOC) was relatively unclear. Living root carbon inputs influence SOC via plant-microbe interactions in the rhizosphere and play an essential role in nutrient cycling. Here, we compared SOC, including its fractions, microbial properties, and major nutrients in rhizosphere and bulk soils, and examined their relationships to net primary productivity (NPP) across three developmental stages of Chinese fir (Cunninghamia lanceolata) plantations (6, 18, and 42 years old) in subtropical China. Although NPP differed among the three plantations, SOC concentration in bulk soils did not vary significantly among them. However, SOC concentration and labile C pool I and recalcitrant C pool in rhizosphere soils were significantly (p < 0.05) higher in the young (6-year) and mature (42-year) plantations, both of which had lower (p < 0.05) NPP (-37.71 % and - 42.67 %) compared to the middle-aged (18-year) plantation, suggesting a decoupling of NPP from rhizosphere SOC in the plantations. The decoupling of NPP from rhizosphere SOC concentrations may be driven by nitrogen (N) and phosphorus (P) tree growth requirements, belowground C allocation, and resultant microbial activity in this highly weathered subtropical soil. Our study provides field-based evidence suggesting that rhizosphere SOC changes are primarily regulated by net primary production in subtropical forest plantations. We propose that accurate predictions of SOC dynamics in forest plantations require an improved understanding of rhizosphere processes during plantation development.
Collapse
Affiliation(s)
- Xiangbiao Chen
- School of Geographical sciences, Fujian Normal University, Fuzhou 350007, China; Fujian Sanming Forest Ecosystem National Observation and Research Station, Sanming 365002, Fujian, China
| | - Shidong Chen
- School of Geographical sciences, Fujian Normal University, Fuzhou 350007, China; Fujian Sanming Forest Ecosystem National Observation and Research Station, Sanming 365002, Fujian, China
| | - Mary A Arthur
- Department of Forestry and Natural Resources, University of Kentucky, Lexington 40508, USA
| | - Rebecca L McCulley
- Department of Plant and Soil Sciences, University of Kentucky, Lexington 40546, USA
| | - Xiaofei Liu
- School of Geographical sciences, Fujian Normal University, Fuzhou 350007, China; Fujian Sanming Forest Ecosystem National Observation and Research Station, Sanming 365002, Fujian, China
| | - Decheng Xiong
- School of Geographical sciences, Fujian Normal University, Fuzhou 350007, China; Fujian Sanming Forest Ecosystem National Observation and Research Station, Sanming 365002, Fujian, China
| | - Chao Xu
- School of Geographical sciences, Fujian Normal University, Fuzhou 350007, China; Fujian Sanming Forest Ecosystem National Observation and Research Station, Sanming 365002, Fujian, China
| | - Zhijie Yang
- School of Geographical sciences, Fujian Normal University, Fuzhou 350007, China; Fujian Sanming Forest Ecosystem National Observation and Research Station, Sanming 365002, Fujian, China; Department of Forestry and Natural Resources, University of Kentucky, Lexington 40508, USA.
| | - Yusheng Yang
- School of Geographical sciences, Fujian Normal University, Fuzhou 350007, China; Fujian Sanming Forest Ecosystem National Observation and Research Station, Sanming 365002, Fujian, China
| |
Collapse
|
6
|
Chen Q, Strashnov I, van Dongen B, Johnson D, Cox F. Environmental dependency of ectomycorrhizal fungi as soil organic matter oxidizers. THE NEW PHYTOLOGIST 2024; 244:2536-2547. [PMID: 39417445 PMCID: PMC11579442 DOI: 10.1111/nph.20205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
Forest soils play a pivotal role as global carbon (C) sinks, where the dynamics of soil organic matter (SOM) are significantly influenced by ectomycorrhizal (ECM) fungi. While correlations between ECM fungal community composition and soil C storage have been documented, the underlying mechanisms behind this remain unclear. Here, we conducted controlled experiments using pure cultures growing on naturally complex SOM extracts to test how ECM fungi regulate soil C and nitrogen (N) dynamics in response to varying inorganic N availability, in both monoculture and mixed culture conditions. ECM species dominant in N-poor soils exhibited superior SOM decay capabilities compared with those prevalent in N-rich soils. Inorganic N addition alleviated N limitation for ECM species but exacerbated their C limitation, reflected by reduced N compound decomposition and increased C compound decomposition. In mixed cultures without inorganic N supplementation, ECM species with greater SOM decomposition potential facilitated the persistence of less proficient SOM decomposers. Regardless of inorganic N availability, ECM species in mixed cultures demonstrated a preference for C over N, intensifying relatively labile C compound decomposition. This study highlights the complex interactions between ECM species, their nutritional requirements, the nutritional environment of their habitat, and their role in modifying SOM.
Collapse
Affiliation(s)
- Qiuyu Chen
- Department of Earth and Environmental SciencesThe University of ManchesterManchesterM13 9PTUK
| | - Ilya Strashnov
- Department of Earth and Environmental SciencesThe University of ManchesterManchesterM13 9PTUK
| | - Bart van Dongen
- Department of Earth and Environmental SciencesThe University of ManchesterManchesterM13 9PTUK
| | - David Johnson
- Department of Earth and Environmental SciencesThe University of ManchesterManchesterM13 9PTUK
| | - Filipa Cox
- Department of Earth and Environmental SciencesThe University of ManchesterManchesterM13 9PTUK
| |
Collapse
|
7
|
Zhang K, Chen X, Shi X, Yang Z, Yang L, Liu D, Yu F. Endophytic Bacterial Community, Core Taxa, and Functional Variations Within the Fruiting Bodies of Laccaria. Microorganisms 2024; 12:2296. [PMID: 39597685 PMCID: PMC11596330 DOI: 10.3390/microorganisms12112296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
Macrofungi do not exist in isolation but establish symbiotic relationships with microorganisms, particularly bacteria, within their fruiting bodies. Herein, we examined the fruiting bodies' bacteriome of seven species of the genus Laccaria collected from four locations in Yunnan, China. By analyzing bacterial diversity, community structure, and function through 16S rRNA sequencing, we observed the following: (1) In total, 4,840,291 high-quality bacterial sequences obtained from the fruiting bodies were grouped into 16,577 amplicon sequence variants (ASVs), and all samples comprised 23 shared bacterial ASVs. (2) The Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium complex was found to be the most abundant and presumably coexisting bacterium. (3) A network analysis revealed that endophytic bacteria formed functional groups, which were dominated by the genera Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, Novosphingobium, and Variovorax. (4) The diversity, community structure, and dominance of ecological functions (chemoheterotrophy and nitrogen cycling) among endophytic bacteria were significantly shaped by geographic location, habitat, and fungal genotype, rather than fruiting body type. (5) A large number of the endophytic bacteria within Laccaria are bacteria that promote plant growth; however, some pathogenic bacteria that pose a threat to human health might also be present. This research advances our understanding of the microbial ecology of Laccaria and the factors shaping its endophytic bacterial communities.
Collapse
Affiliation(s)
- Kaixuan Zhang
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (K.Z.); (X.S.); (Z.Y.); (L.Y.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xin Chen
- College of Life Sciences, Northwest Agriculture and Forestry University, Yangling 712100, China;
| | - Xiaofei Shi
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (K.Z.); (X.S.); (Z.Y.); (L.Y.)
| | - Zhenyan Yang
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (K.Z.); (X.S.); (Z.Y.); (L.Y.)
| | - Lian Yang
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (K.Z.); (X.S.); (Z.Y.); (L.Y.)
| | - Dong Liu
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (K.Z.); (X.S.); (Z.Y.); (L.Y.)
| | - Fuqiang Yu
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (K.Z.); (X.S.); (Z.Y.); (L.Y.)
| |
Collapse
|
8
|
Zhang X, Xiao W, Song C, Zhang J, Liu X, Mao R. Nutrient responses of vascular plants to N 2-fixing tree Alnus hirsuta encroachment in a boreal peatland. Oecologia 2024; 206:1-10. [PMID: 39133236 DOI: 10.1007/s00442-024-05605-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
The N2-fixing trees Alnus spp. have been widely encroaching into boreal peatlands, but the nutrient responses of native vascular plants remain unclear. Here, we compared nutrient concentrations and isotope signal of six common plants (Betula fruticosa, Salix rosmarinifolia, Vaccinium uliginosum, Rhododendron tomentosum, Chamaedaphne calyculata, and Eriophorum vaginatum) between Alnus hirsuta island and open peatland and assessed plant nutrient responses to A. hirsuta encroachment in boreal peatlands. Alnus hirsuta encroachment increased nitrogen (N) concentration of leaf, branch, and stem. Despite no significant interspecific difference in branch and stem, the increment magnitude of leaf N concentration varied among species, with greatest magnitude for R. tomentosum (55.1% ± 40.7%) and lowest for E. vaginatum (9.80% ± 4.40%) and B. fruticosa (18.4% ± 10.7%). Except for E. vaginatum, the significant increase in δ15N occurred for all organs of shrubs, with interspecific differences in change of leaf δ15N. According to the mass balance equation involving leaf δ15N, R. tomentosum and E. vaginatum, respectively, obtained highest (40.5% ± 19.8%) and lowest proportions (-14.0% ± 30.5%) of N from A. hirsuta. Moreover, the increment magnitudes of leaf N concentration showed a positive linear relationship with the proportion of N from A. hirsuta. In addition, A. hirsuta encroachment reduced leaf phosphorus (P) concentration of deciduous shrubs (i.e., B. fruticosa, S. rosmarinifolia, and V. uliginosum), thus increasing N:P ratio. These findings indicate that Alnus encroachment improves native plant N status and selectively intensifies P limitation of native deciduous shrubs, and highlight that the N acquisition from the symbiotic N2-fixing system regulates plant N responses in boreal peatlands.
Collapse
Affiliation(s)
- Xinhou Zhang
- Jiangsu Engineering Lab of Water and Soil Eco-Remediation, School of Environment, Nanjing Normal University, Nanjing, 210046, China
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Wen Xiao
- Jiangsu Engineering Lab of Water and Soil Eco-Remediation, School of Environment, Nanjing Normal University, Nanjing, 210046, China
| | - Changchun Song
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Jinbo Zhang
- School of Geography, Nanjing Normal University, Nanjing, 210046, China
| | - Xueyan Liu
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Rong Mao
- Key Laboratory of State Forestry and Grassland Administration On Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, College of Forestry, Jiangxi Agricultural University, No. 1101 Zhimin Road, Nanchang, 330045, China.
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| |
Collapse
|
9
|
Pena R, Tibbett M. Mycorrhizal symbiosis and the nitrogen nutrition of forest trees. Appl Microbiol Biotechnol 2024; 108:461. [PMID: 39249589 PMCID: PMC11384646 DOI: 10.1007/s00253-024-13298-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/10/2024]
Abstract
Terrestrial plants form primarily mutualistic symbiosis with mycorrhizal fungi based on a compatible exchange of solutes between plant and fungal partners. A key attribute of this symbiosis is the acquisition of soil nutrients by the fungus for the benefit of the plant in exchange for a carbon supply to the fungus. The interaction can range from mutualistic to parasitic depending on environmental and physiological contexts. This review considers current knowledge of the functionality of ectomycorrhizal (EM) symbiosis in the mobilisation and acquisition of soil nitrogen (N) in northern hemisphere forest ecosystems, highlighting the functional diversity of the fungi and the variation of symbiotic benefits, including the dynamics of N transfer to the plant. It provides an overview of recent advances in understanding 'mycorrhizal decomposition' for N release from organic or mineral-organic forms. Additionally, it emphasises the taxon-specific traits of EM fungi in soil N uptake. While the effects of EM communities on tree N are likely consistent across different communities regardless of species composition, the sink activities of various fungal taxa for tree carbon and N resources drive the dynamic continuum of mutualistic interactions. We posit that ectomycorrhizas contribute in a species-specific but complementary manner to benefit tree N nutrition. Therefore, alterations in diversity may impact fungal-plant resource exchange and, ultimately, the role of ectomycorrhizas in tree N nutrition. Understanding the dynamics of EM functions along the mutualism-parasitism continuum in forest ecosystems is essential for the effective management of ecosystem restoration and resilience amidst climate change. KEY POINTS: • Mycorrhizal symbiosis spans a continuum from invested to appropriated benefits. • Ectomycorrhizal fungal communities exhibit a high functional diversity. • Tree nitrogen nutrition benefits from the diversity of ectomycorrhizal fungi.
Collapse
Affiliation(s)
- Rodica Pena
- Department of Sustainable Land Management, School of Agriculture, Policy and Development, University of Reading, Reading, UK.
- Department of Silviculture, Transilvania University of Brasov, Brasov, Romania.
| | - Mark Tibbett
- Department of Sustainable Land Management, School of Agriculture, Policy and Development, University of Reading, Reading, UK
| |
Collapse
|
10
|
Van Nuland ME, Qin C, Pellitier PT, Zhu K, Peay KG. Climate mismatches with ectomycorrhizal fungi contribute to migration lag in North American tree range shifts. Proc Natl Acad Sci U S A 2024; 121:e2308811121. [PMID: 38805274 PMCID: PMC11161776 DOI: 10.1073/pnas.2308811121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 04/05/2024] [Indexed: 05/30/2024] Open
Abstract
Climate change will likely shift plant and microbial distributions, creating geographic mismatches between plant hosts and essential microbial symbionts (e.g., ectomycorrhizal fungi, EMF). The loss of historical interactions, or the gain of novel associations, can have important consequences for biodiversity, ecosystem processes, and plant migration potential, yet few analyses exist that measure where mycorrhizal symbioses could be lost or gained across landscapes. Here, we examine climate change impacts on tree-EMF codistributions at the continent scale. We built species distribution models for 400 EMF species and 50 tree species, integrating fungal sequencing data from North American forest ecosystems with tree species occurrence records and long-term forest inventory data. Our results show the following: 1) tree and EMF climate suitability to shift toward higher latitudes; 2) climate shifts increase the size of shared tree-EMF habitat overall, but 35% of tree-EMF pairs are at risk of declining habitat overlap; 3) climate mismatches between trees and EMF are projected to be greater at northern vs. southern boundaries; and 4) tree migration lag is correlated with lower richness of climatically suitable EMF partners. This work represents a concentrated effort to quantify the spatial extent and location of tree-EMF climate envelope mismatches. Our findings also support a biotic mechanism partially explaining the failure of northward tree species migrations with climate change: reduced diversity of co-occurring and climate-compatible EMF symbionts at higher latitudes. We highlight the conservation implications for identifying areas where tree and EMF responses to climate change may be highly divergent.
Collapse
Affiliation(s)
- Michael E. Van Nuland
- Department of Biology, Stanford University, Stanford, CA94305
- Society for the Protection of Underground Networks, Dover, DE19901
| | - Clara Qin
- Society for the Protection of Underground Networks, Dover, DE19901
- Department of Environmental Studies, University of California Santa Cruz, Santa Cruz, CA95064
| | | | - Kai Zhu
- Department of Environmental Studies, University of California Santa Cruz, Santa Cruz, CA95064
- Institute for Global Change Biology, School for Environment and Sustainability, University of Michigan, Ann Arbor, MI48109
| | - Kabir G. Peay
- Department of Biology, Stanford University, Stanford, CA94305
- Department of Earth System Science, Stanford University, Stanford, CA94305
| |
Collapse
|
11
|
Du Z, Zhou L, Thakur MP, Zhou G, Fu Y, Li N, Liu R, He Y, Chen H, Li J, Zhou H, Li M, Lu M, Zhou X. Mycorrhizal associations relate to stable convergence in plant-microbial competition for nitrogen absorption under high nitrogen conditions. GLOBAL CHANGE BIOLOGY 2024; 30:e17338. [PMID: 38822535 DOI: 10.1111/gcb.17338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 04/09/2024] [Accepted: 04/22/2024] [Indexed: 06/03/2024]
Abstract
Nitrogen (N) immobilization (Nim, including microbial N assimilation) and plant N uptake (PNU) are the two most important pathways of N retention in soils. The ratio of Nim to PNU (hereafter Nim:PNU ratio) generally reflects the degree of N limitation for plant growth in terrestrial ecosystems. However, the key factors driving the pattern of Nim:PNU ratio across global ecosystems remain unclear. Here, using a global data set of 1018 observations from 184 studies, we examined the relative importance of mycorrhizal associations, climate, plant, and soil properties on the Nim:PNU ratio across terrestrial ecosystems. Our results show that mycorrhizal fungi type (arbuscular mycorrhizal (AM) or ectomycorrhizal (EM) fungi) in combination with soil inorganic N mainly explain the global variation in the Nim:PNU ratio in terrestrial ecosystems. In AM fungi-associated ecosystems, the relationship between Nim and PNU displays a weaker negative correlation (r = -.06, p < .001), whereas there is a stronger positive correlation (r = .25, p < .001) in EM fungi-associated ecosystems. Our meta-analysis thus suggests that the AM-associated plants display a weak interaction with soil microorganisms for N absorption, while EM-associated plants cooperate with soil microorganisms. Furthermore, we find that the Nim:PNU ratio for both AM- and EM-associated ecosystems gradually converge around a stable value (13.8 ± 0.5 for AM- and 12.1 ± 1.2 for EM-associated ecosystems) under high soil inorganic N conditions. Our findings highlight the dependence of plant-microbial interaction for N absorption on both plant mycorrhizal association and soil inorganic N, with the stable convergence of the Nim:PNU ratio under high soil N conditions.
Collapse
Affiliation(s)
- Zhenggang Du
- Northeast Asia Ecosystem Carbon Sink Research Center (NACC), Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| | - Lingyan Zhou
- Shanghai Engineering Research Center of Sustainable Plant Innovation, Shanghai Botanical Garden, Shanghai, China
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Madhav P Thakur
- Institute of Ecology and Evolution and Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
| | - Guiyao Zhou
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla, Spain
| | - Yuling Fu
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Nan Li
- Northeast Asia Ecosystem Carbon Sink Research Center (NACC), Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| | - Ruiqiang Liu
- Northeast Asia Ecosystem Carbon Sink Research Center (NACC), Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| | - Yanghui He
- Northeast Asia Ecosystem Carbon Sink Research Center (NACC), Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| | - Hongyang Chen
- Northeast Asia Ecosystem Carbon Sink Research Center (NACC), Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| | - Jie Li
- Northeast Asia Ecosystem Carbon Sink Research Center (NACC), Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| | - Huimin Zhou
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Ming Li
- School of Life Sciences, Fudan University, Shanghai, China
| | - Meng Lu
- School of Ecology and Environmental Sciences, Yunnan University, Kunming, China
| | - Xuhui Zhou
- Northeast Asia Ecosystem Carbon Sink Research Center (NACC), Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
12
|
Zhang K, Wang H, Tappero R, Bhatnagar JM, Vilgalys R, Barry K, Keymanesh K, Tejomurthula S, Grigoriev IV, Kew WR, Eder EK, Nicora CD, Liao HL. Ectomycorrhizal fungi enhance pine growth by stimulating iron-dependent mechanisms with trade-offs in symbiotic performance. THE NEW PHYTOLOGIST 2024; 242:1645-1660. [PMID: 38062903 DOI: 10.1111/nph.19449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/13/2023] [Indexed: 04/26/2024]
Abstract
Iron (Fe) is crucial for metabolic functions of living organisms. Plants access occluded Fe through interactions with rhizosphere microorganisms and symbionts. Yet, the interplay between Fe addition and plant-mycorrhizal interactions, especially the molecular mechanisms underlying mycorrhiza-assisted Fe processing in plants, remains largely unexplored. We conducted mesocosms in Pinus plants inoculated with different ectomycorrhizal fungi (EMF) Suillus species under conditions with and without Fe coatings. Meta-transcriptomic, biogeochemical, and X-ray fluorescence imaging analyses were applied to investigate early-stage mycorrhizal roots. While Fe addition promoted Pinus growth, it concurrently reduced mycorrhiza formation rate, symbiosis-related metabolites in plant roots, and aboveground plant carbon and macronutrient content. This suggested potential trade-offs between Fe-enhanced plant growth and symbiotic performance. However, the extent of this trade-off may depend on interactions between host plants and EMF species. Interestingly, dual EMF species were more effective at facilitating plant Fe uptake by inducing diverse Fe-related functions than single-EMF species. This subsequently triggered various Fe-dependent physiological and biochemical processes in Pinus roots, significantly contributing to Pinus growth. However, this resulted in a greater carbon allocation to roots, relatively reducing the aboveground plant carbon content. Our study offers critical insights into how EMF communities rebalance benefits of Fe-induced effects on symbiotic partners.
Collapse
Affiliation(s)
- Kaile Zhang
- North Florida Research and Education Center, University of Florida, 155 Research Road, Quincy, FL, 32351, USA
- Department of Soil, Water, and Ecosystem Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Haihua Wang
- North Florida Research and Education Center, University of Florida, 155 Research Road, Quincy, FL, 32351, USA
- Department of Soil, Water, and Ecosystem Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Ryan Tappero
- Brookhaven National Laboratory, NSLS-II, Upton, NY, 11973, USA
| | | | - Rytas Vilgalys
- Department of Biology, Duke University, 130 Science Drive, Durham, NC, 27708, USA
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Keykhosrow Keymanesh
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Sravanthi Tejomurthula
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - William R Kew
- Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Elizabeth K Eder
- Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Carrie D Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Hui-Ling Liao
- North Florida Research and Education Center, University of Florida, 155 Research Road, Quincy, FL, 32351, USA
- Department of Soil, Water, and Ecosystem Sciences, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
13
|
Mahmood S, Fahad Z, Bolou-Bi EB, King K, Köhler SJ, Bishop K, Ekblad A, Finlay RD. Ectomycorrhizal fungi integrate nitrogen mobilisation and mineral weathering in boreal forest soil. THE NEW PHYTOLOGIST 2024; 242:1545-1560. [PMID: 37697631 DOI: 10.1111/nph.19260] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/24/2023] [Indexed: 09/13/2023]
Abstract
Tree growth in boreal forests is driven by ectomycorrhizal fungal mobilisation of organic nitrogen and mineral nutrients in soils with discrete organic and mineral horizons. However, there are no studies of how ectomycorrhizal mineral weathering and organic nitrogen mobilisation processes are integrated across the soil profile. We studied effects of organic matter (OM) availability on ectomycorrhizal functioning by altering the proportions of natural organic and mineral soil in reconstructed podzol profiles containing Pinus sylvestris plants, using 13CO2 pulse labelling, patterns of naturally occurring stable isotopes (26Mg and 15N) and high-throughput DNA sequencing of fungal amplicons. Reduction in OM resulted in nitrogen limitation of plant growth and decreased allocation of photosynthetically derived carbon and mycelial growth in mineral horizons. Fractionation patterns of 26Mg indicated that magnesium mobilisation and uptake occurred primarily in the deeper mineral horizon and was driven by carbon allocation to ectomycorrhizal mycelium. In this horizon, relative abundance of ectomycorrhizal fungi, carbon allocation and base cation mobilisation all increased with increased OM availability. Allocation of carbon through ectomycorrhizal fungi integrates organic nitrogen mobilisation and mineral weathering across soil horizons, improving the efficiency of plant nutrient acquisition. Our findings have fundamental implications for sustainable forest management and belowground carbon sequestration.
Collapse
Affiliation(s)
- Shahid Mahmood
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Box 7026, SE-750 07, Uppsala, Sweden
| | - Zaenab Fahad
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Box 7026, SE-750 07, Uppsala, Sweden
| | - Emile B Bolou-Bi
- UFR des Sciences de la Terre et des Ressources Minières, Département des Sciences du sol, Université Felix Houphouët-Boigny, 22 BP 582, Abidjan, Côte d'Ivoire
| | - Katharine King
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Box 7026, SE-750 07, Uppsala, Sweden
| | - Stephan J Köhler
- Department of Aquatic Sciences and Assessment, Soil-Water-Environment Center, Swedish University of Agricultural Sciences, Box 7050, SE-750 07, Uppsala, Sweden
| | - Kevin Bishop
- Department of Aquatic Sciences and Assessment, Soil-Water-Environment Center, Swedish University of Agricultural Sciences, Box 7050, SE-750 07, Uppsala, Sweden
| | - Alf Ekblad
- School of Science and Technology, Örebro University, SE-701 82, Örebro, Sweden
| | - Roger D Finlay
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Box 7026, SE-750 07, Uppsala, Sweden
| |
Collapse
|
14
|
Auer L, Buée M, Fauchery L, Lombard V, Barry KW, Clum A, Copeland A, Daum C, Foster B, LaButti K, Singan V, Yoshinaga Y, Martineau C, Alfaro M, Castillo FJ, Imbert JB, Ramírez L, Castanera R, Pisabarro AG, Finlay R, Lindahl B, Olson A, Séguin A, Kohler A, Henrissat B, Grigoriev IV, Martin FM. Metatranscriptomics sheds light on the links between the functional traits of fungal guilds and ecological processes in forest soil ecosystems. THE NEW PHYTOLOGIST 2024; 242:1676-1690. [PMID: 38148573 DOI: 10.1111/nph.19471] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 11/23/2023] [Indexed: 12/28/2023]
Abstract
Soil fungi belonging to different functional guilds, such as saprotrophs, pathogens, and mycorrhizal symbionts, play key roles in forest ecosystems. To date, no study has compared the actual gene expression of these guilds in different forest soils. We used metatranscriptomics to study the competition for organic resources by these fungal groups in boreal, temperate, and Mediterranean forest soils. Using a dedicated mRNA annotation pipeline combined with the JGI MycoCosm database, we compared the transcripts of these three fungal guilds, targeting enzymes involved in C- and N mobilization from plant and microbial cell walls. Genes encoding enzymes involved in the degradation of plant cell walls were expressed at a higher level in saprotrophic fungi than in ectomycorrhizal and pathogenic fungi. However, ectomycorrhizal and saprotrophic fungi showed similarly high expression levels of genes encoding enzymes involved in fungal cell wall degradation. Transcripts for N-related transporters were more highly expressed in ectomycorrhizal fungi than in other groups. We showed that ectomycorrhizal and saprotrophic fungi compete for N in soil organic matter, suggesting that their interactions could decelerate C cycling. Metatranscriptomics provides a unique tool to test controversial ecological hypotheses and to better understand the underlying ecological processes involved in soil functioning and carbon stabilization.
Collapse
Affiliation(s)
- Lucas Auer
- Université de Lorraine, INRAE, UMR Interactions Arbres-Microorganismes, Nancy, F-54000, France
| | - Marc Buée
- Université de Lorraine, INRAE, UMR Interactions Arbres-Microorganismes, Nancy, F-54000, France
| | - Laure Fauchery
- Université de Lorraine, INRAE, UMR Interactions Arbres-Microorganismes, Nancy, F-54000, France
| | - Vincent Lombard
- Architecture et Fonction des Macromolécules Biologiques, CNRS and Aix-Marseille Université, Marseille, 13288, France
- INRAE, USC1408 Architecture et Fonction des Macromolécules Biologiques, Marseille, 13009, France
| | - Kerry W Barry
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Alicia Clum
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Alex Copeland
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Chris Daum
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Brian Foster
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Kurt LaButti
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Vasanth Singan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yuko Yoshinaga
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Christine Martineau
- Laurentian Forestry Centre, Natural Resources Canada, Canadian Forest Service, Quebec, G1V4C7, QC, Canada
| | - Manuel Alfaro
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarra (UPNA), Pamplona, 31006, Spain
| | - Federico J Castillo
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarra (UPNA), Pamplona, 31006, Spain
| | - J Bosco Imbert
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarra (UPNA), Pamplona, 31006, Spain
| | - Lucia Ramírez
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarra (UPNA), Pamplona, 31006, Spain
| | - Raúl Castanera
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarra (UPNA), Pamplona, 31006, Spain
| | - Antonio G Pisabarro
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarra (UPNA), Pamplona, 31006, Spain
| | - Roger Finlay
- Department of Forest Mycology and Pathology, Swedish University of Agricultural Sciences, Uppsala, 75007, Sweden
| | - Björn Lindahl
- Department of Forest Mycology and Pathology, Swedish University of Agricultural Sciences, Uppsala, 75007, Sweden
| | - Ake Olson
- Department of Forest Mycology and Pathology, Swedish University of Agricultural Sciences, Uppsala, 75007, Sweden
| | - Armand Séguin
- Laurentian Forestry Centre, Natural Resources Canada, Canadian Forest Service, Quebec, G1V4C7, QC, Canada
| | - Annegret Kohler
- Université de Lorraine, INRAE, UMR Interactions Arbres-Microorganismes, Nancy, F-54000, France
| | - Bernard Henrissat
- DTU Bioengineering, Denmarks Tekniske Universitet, Copenhagen, 2800, Denmark
- Department of Biological Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Francis M Martin
- Université de Lorraine, INRAE, UMR Interactions Arbres-Microorganismes, Nancy, F-54000, France
| |
Collapse
|
15
|
Argiroff WA, Carrell AA, Klingeman DM, Dove NC, Muchero W, Veach AM, Wahl T, Lebreux SJ, Webb AB, Peyton K, Schadt CW, Cregger MA. Seasonality and longer-term development generate temporal dynamics in the Populus microbiome. mSystems 2024; 9:e0088623. [PMID: 38421171 PMCID: PMC10949431 DOI: 10.1128/msystems.00886-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 02/08/2024] [Indexed: 03/02/2024] Open
Abstract
Temporal variation in community composition is central to our understanding of the assembly and functioning of microbial communities, yet the controls over temporal dynamics for microbiomes of long-lived plants, such as trees, remain unclear. Temporal variation in tree microbiomes could arise primarily from seasonal (i.e., intra-annual) fluctuations in community composition or from longer-term changes across years as host plants age. To test these alternatives, we experimentally isolated temporal variation in plant microbiome composition using a common garden and clonally propagated plants, and we used amplicon sequencing to characterize bacterial/archaeal and fungal communities in the leaf endosphere, root endosphere, and rhizosphere of two Populus spp. over four seasons across two consecutive years. Microbial community composition differed among seasons and years (which accounted for up to 21% of the variation in microbial community composition) and was correlated with seasonal dissimilarity in climatic conditions. However, microbial community dissimilarity was also positively correlated with time, reflecting longer-term compositional shifts as host trees aged. Together, our findings demonstrate that temporal patterns in tree microbiomes arise from both seasonal fluctuations and longer-term changes, which interact to generate unique seasonal patterns each year. In addition to shedding light on two important controls over the assembly of plant microbiomes, our results also suggest future studies of tree microbiomes should account for background temporal dynamics when testing the drivers of spatial patterns in microbial community composition and temporal responses of plant microbiomes to environmental change.IMPORTANCEMicrobiomes are integral to the health of host plants, but we have a limited understanding of the factors that control how the composition of plant microbiomes changes over time. Especially little is known about the microbiome of long-lived trees, relative to annual and non-woody plants. We tested how tree microbiomes changed between seasons and years in poplar (genus Populus), which are widespread and ecologically important tree species that also serve as important biofuel feedstocks. We found the composition of bacterial, archaeal, and fungal communities differed among seasons, but these seasonal differences depended on year. This dependence was driven by longer-term changes in microbial composition as host trees developed across consecutive years. Our findings suggest that temporal variation in tree microbiomes is driven by both seasonal fluctuations and longer-term (i.e., multiyear) development.
Collapse
Affiliation(s)
- William A. Argiroff
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Alyssa A. Carrell
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Dawn M. Klingeman
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Nicholas C. Dove
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Allison M. Veach
- Department of Integrative Biology, The University of Texas, San Antonio, Texas, USA
| | - Toni Wahl
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Steven J. Lebreux
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Amber B. Webb
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Kellie Peyton
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Christopher W. Schadt
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Melissa A. Cregger
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| |
Collapse
|
16
|
Wang K, Bi B, Zhu K, Wen M, Han F. Responses of soil dissolved organic carbon properties to the desertification of desert wetlands in the Mu Us Sandy Land. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120318. [PMID: 38387347 DOI: 10.1016/j.jenvman.2024.120318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024]
Abstract
In desert wetlands, the decline in ground water table results in desertification, triggering soil carbon and nutrient loss. However, the impacts of desertification on soil dissolved organic carbon (DOC) properties which determine the turnover of soil carbon and nutrients are unclear. Here, the desertification gradient was represented by the distance from the wetland center (0∼240 m) traversing reed marshes, desert shrubs and bare sandy land in the Hongjian Nur Basin, north China. Soil DOC properties were determined by ultraviolet and fluorescence spectroscopy coupled with parallel factor analysis (PARAFAC). Results showed that soil DOC content decreased significantly from 107.23 mg kg-1 to 8.44 mg kg-1 by desertification (p < 0.05). However, the proportion of DOC to soil organic carbon (SOC) was gradually significantly increased. According to spectral parameters, microbial-derived DOC decreased from 0 to 120 m (reed marshes to desert shrubs) but increased from 120 to 240 m (desert shrubs to bare sandy lands), with a reverse hump-shaped distribution pattern. The molecular weight and aromaticity of DOC increased from 0 to 120 m but decreased from 120 to 240 m, with a hump-shaped distribution pattern. For the DOC composition, although the relative abundances of humic-acid components remained stable (p > 0.05), they were ultimately decreased by serious desertification and the amino acids became the dominant component. A similar change pattern was also found for humification index. Additionally, MBC and C:N were the two most important variables in determining the content and spectral properties, respectively. Together, these findings relationships between the soil DOC properties and desertification degree, especially the increase in DOC proportion and the decrease in humification degree, which may reduce soil C stabilization in the Hongjian Nur Basin.
Collapse
Affiliation(s)
- Kun Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Boyuan Bi
- Shannxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection,School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, Shaanxi, China
| | - Kanghui Zhu
- Research Center on Soil & Water Conservation, Institute of Soil and Water Conservation, Chinese Academy of Sciences Ministry of Water Resources, Yangling, Shaanxi, China
| | - Miao Wen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Fengpeng Han
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi, 712100, China; Research Center on Soil & Water Conservation, Institute of Soil and Water Conservation, Chinese Academy of Sciences Ministry of Water Resources, Yangling, Shaanxi, China.
| |
Collapse
|
17
|
Dyshko V, Hilszczańska D, Davydenko K, Matić S, Moser WK, Borowik P, Oszako T. An Overview of Mycorrhiza in Pines: Research, Species, and Applications. PLANTS (BASEL, SWITZERLAND) 2024; 13:506. [PMID: 38498468 PMCID: PMC10891885 DOI: 10.3390/plants13040506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 03/20/2024]
Abstract
In the latest literature, climate models show that the conditions for pines, spruces, larches, and birches will deteriorate significantly. In Poland, as well as in other European countries, there are already signs of the decline of these species. This review article deals with the symbiotic relationships between fungi and plants, which can hardly be overestimated, using the example of pine trees. These are the oldest known symbiotic relationships, which are of great benefit to both components and can help plants, in particular, survive periods of severe drought and the attack of pathogens on the roots. This article describes symbioses and their causal conditions, as well as the mycorrhizal components of pine trees and their properties; characterizes ectomycorrhizal fungi and their mushroom-forming properties; and provides examples of the cultivation of pure fungal cultures, with particular attention to the specificity of the mycorrhizal structure and its effects on the growth and development of Pinus species. Finally, the role of mycorrhiza in plant protection and pathogen control is described.
Collapse
Affiliation(s)
- Valentyna Dyshko
- Ukrainian Research Institute of Forestry and Forest Melioration Named after G. M. Vysotsky, 61024 Kharkiv, Ukraine; (V.D.); (K.D.)
| | - Dorota Hilszczańska
- Department of Forest Ecology, Forest Research Institute, Sękocin Stary, Braci Leśnej 3, 05-090 Raszyn, Poland;
| | - Kateryna Davydenko
- Ukrainian Research Institute of Forestry and Forest Melioration Named after G. M. Vysotsky, 61024 Kharkiv, Ukraine; (V.D.); (K.D.)
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7026, 75007 Uppsala, Sweden
| | - Slavica Matić
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy (CNR), Strada delle Cacce 73, 10135 Torino, Italy;
| | - W. Keith Moser
- US Department of Agriculture, Forest Service, Rocky Mountain Research Station, 2500 S. Pine Knoll Dr., Flagstaff, AZ 86001, USA;
| | - Piotr Borowik
- Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45E, 15-351 Białystok, Poland;
| | - Tomasz Oszako
- Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45E, 15-351 Białystok, Poland;
| |
Collapse
|
18
|
Zeng G, Wen Y, Luo C, Zhang Y, Li F, Xiong C. Plant-microorganism-soil interaction under long-term low-dose ionizing radiation. Front Microbiol 2024; 14:1331477. [PMID: 38274757 PMCID: PMC10808812 DOI: 10.3389/fmicb.2023.1331477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
As the environmental nuclear radiation pollution caused by nuclear-contaminated water discharge and other factors intensifies, more plant-microorganism-soil systems will be under long-term low-dose ionizing radiation (LLR). However, the regulatory mechanisms of the plant-microorganism-soil system under LLR are still unclear. In this study, we study a system that has been stably exposed to low-dose ionizing radiation for 10 years and investigate the response of the plant-microorganism-soil system to LLR based on the decay of the absorbed dose rate with distance. The results show that LLR affects the carbon and nitrogen migration process between plant-microorganism-soil through the "symbiotic microbial effect." The increase in the intensity of ionizing radiation led to a significant increase in the relative abundance of symbiotic fungi, such as Ectomycorrhizal fungi and Rhizobiales, which is accompanied by a significant increase in soil lignin peroxidase (LiP) activity, the C/N ratio, and C%. Meanwhile, enhanced radiation intensity causes adaptive changes in the plant functional traits. This study demonstrates that the "symbiotic microbial effect" of plant-microorganism-soil systems is an important process in terrestrial ecosystems in response to LLR.
Collapse
Affiliation(s)
- Guoqiang Zeng
- College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu, China
- Applied Nuclear Techniques in Geosciences Key Laboratory of Sichuan, Chengdu University of Technology, Chengdu, China
| | - Yingzi Wen
- College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu, China
| | - Chuyang Luo
- College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu, China
| | - Yihong Zhang
- College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu, China
| | - Fei Li
- College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu, China
- Applied Nuclear Techniques in Geosciences Key Laboratory of Sichuan, Chengdu University of Technology, Chengdu, China
| | - Chao Xiong
- Data Recovery Key Laboratory of Sichuan Province, Neijiang Normal University, Neijiang, China
| |
Collapse
|
19
|
Olchowik J, Jankowski P, Suchocka M, Malewski T, Wiesiołek A, Hilszczańska D. The impact of anthropogenic transformation of urban soils on ectomycorrhizal fungal communities associated with silver birch (Betula pendula Roth.) growth in natural versus urban soils. Sci Rep 2023; 13:21268. [PMID: 38042912 PMCID: PMC10693619 DOI: 10.1038/s41598-023-48592-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/28/2023] [Indexed: 12/04/2023] Open
Abstract
Betula pendula Roth. is considered a pioneering plant species important for urban ecosystems. Based on the sequencing of fungal ITS, we characterized the ectomycorrhizal (ECM) communities of twenty silver birch trees growing in a contaminated, highly anthropo-pressured urban environment and in a natural reserve site. We analysed chemical properties of each tree soil samples, focusing on effects of anthropogenic transformation. Three effects of urbanization: high heavy metal content, increased salinity and soil alkalinity, were highly correlated. The examined trees were divided into two forest and two urban clusters according to the level of anthropogenic soil change. The effect of soil transformation on the ECM communities was studied, with the assumption that stronger urban transformation leads to lower ECM vitality and diversity. The results of the study did not confirm the above hypothesis. The ECM colonization was above 80% in all clusters, but the forest clusters had significantly higher share of vital non-ECM root tips than the urban ones. Eleven mycorrhizal fungal species were identified varying from seven to nine and with seven species observed in the most contaminated urban plot. However, the lowest Shannon species diversity index was found in the most natural forest cluster. In conclusion, our findings demonstrate no significant negative effect of the urban stresses on the ECM communities of silver birch suggesting that both forest and urban trees have the potential to generate a similar set of ECM taxa.
Collapse
Affiliation(s)
- Jacek Olchowik
- Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Paweł Jankowski
- Department of Computer Information Systems, Institute of Information Technology, Warsaw University of Life Sciences-SGGW, Warsaw, Poland.
| | - Marzena Suchocka
- Department of Landscape Architecture, Institute of Environmental Engineering, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Tadeusz Malewski
- Department of Molecular and Biometric Techniques, Museum and Institute of Zoology, Polish Academy of Science, Warsaw, Poland
| | - Adam Wiesiołek
- Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Dorota Hilszczańska
- Department of Forest Ecology, Forest Research Institute, Sękocin Stary, Poland
| |
Collapse
|
20
|
Fransson P, Robertson AHJ, Campbell CD. Carbon availability affects already large species-specific differences in chemical composition of ectomycorrhizal fungal mycelia in pure culture. MYCORRHIZA 2023; 33:303-319. [PMID: 37824023 PMCID: PMC10752919 DOI: 10.1007/s00572-023-01128-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023]
Abstract
Although ectomycorrhizal (ECM) contribution to soil organic matter processes receives increased attention, little is known about fundamental differences in chemical composition among species, and how that may be affected by carbon (C) availability. Here, we study how 16 species (incl. 19 isolates) grown in pure culture at three different C:N ratios (10:1, 20:1, and 40:1) vary in chemical structure, using Fourier transform infrared (FTIR) spectroscopy. We hypothesized that C availability impacts directly on chemical composition, expecting increased C availability to lead to more carbohydrates and less proteins in the mycelia. There were strong and significant effects of ECM species (R2 = 0.873 and P = 0.001) and large species-specific differences in chemical composition. Chemical composition also changed significantly with C availability, and increased C led to more polysaccharides and less proteins for many species, but not all. Understanding how chemical composition change with altered C availability is a first step towards understanding their role in organic matter accumulation and decomposition.
Collapse
Affiliation(s)
- Petra Fransson
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, PO Box 7026, SE-750 07, Uppsala, Sweden.
| | - A H Jean Robertson
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, Scotland
| | - Colin D Campbell
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, Scotland
| |
Collapse
|
21
|
Raza T, Qadir MF, Khan KS, Eash NS, Yousuf M, Chatterjee S, Manzoor R, Rehman SU, Oetting JN. Unrevealing the potential of microbes in decomposition of organic matter and release of carbon in the ecosystem. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118529. [PMID: 37418912 DOI: 10.1016/j.jenvman.2023.118529] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/13/2023] [Accepted: 06/25/2023] [Indexed: 07/09/2023]
Abstract
Organic matter decomposition is a biochemical process with consequences affecting climate change and ecosystem productivity. Once decomposition begins, C is lost as CO2 or sequestered into more recalcitrant carbon difficult to further degradation. As microbial respiration releases carbon dioxide into the atmosphere, microbes act as gatekeepers in the whole process. Microbial activities were found to be the second largest CO2 emission source in the environment after human activities (industrialization), and research investigations suggest that this may have affected climate change over the past few decades. It is crucial to note that microbes are major contributors in the whole C cycle (decomposition, transformation, and stabilization). Therefore, imbalances in the C cycle might be causing changes in the entire carbon content of the ecosystem. The significance of microbes, especially soil bacteria in the terrestrial carbon cycle requires more attention. This review focuses on the factors that affect microorganism behavior during the breakdown of organic materials. The key factors affecting the microbial degradation processes are the quality of the input material, nitrogen, temperature, and moisture content. In this review, we suggest that to address global climate change and its effects on agricultural systems and vice versa, there is a need to double-up on efforts and conduct new research studies to further evaluate the potential of microbial communities to reduce their contribution to terrestrial carbon emission.
Collapse
Affiliation(s)
- Taqi Raza
- The Biosystems Engineering & Soil Science, University of Tennessee, Knoxville, USA.
| | - Muhammad Farhan Qadir
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad 38040, Pakistan
| | - Khuram Shehzad Khan
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China
| | - Neal S Eash
- The Biosystems Engineering & Soil Science, University of Tennessee, Knoxville, USA
| | - Muhammad Yousuf
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad 38040, Pakistan
| | - Sumanta Chatterjee
- USDA ARS, Hydrology and Remote Sensing Laboratory, 10300 Baltimore Avenue, Beltsville, MD 20705, USA; ICAR-National Rice Research Institute, Cuttack 753006, India
| | - Rabia Manzoor
- Land Resources Research Institute, National Agricultural Research Centre, Islamabad, Pakistan
| | - Sana Ur Rehman
- National Research Center of Intercropping, The Islamia University of Bahawalpur, Pakistan
| | | |
Collapse
|
22
|
Ward EB, Polussa A, Bradford MA. Depth-dependent effects of ericoid mycorrhizal shrubs on soil carbon and nitrogen pools are accentuated under arbuscular mycorrhizal trees. GLOBAL CHANGE BIOLOGY 2023; 29:5924-5940. [PMID: 37480162 DOI: 10.1111/gcb.16887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/06/2023] [Indexed: 07/23/2023]
Abstract
Plant mycorrhizal associations influence the accumulation and persistence of soil organic matter and could therefore shape ecosystem biogeochemical responses to global changes that are altering forest composition. For instance, arbuscular mycorrhizal (AM) tree dominance is increasing in temperate forests, and ericoid mycorrhizal (ErM) shrubs can respond positively to canopy disturbances. Yet how shifts in the co-occurrence of trees and shrubs with different mycorrhizal associations will affect soil organic matter pools remains largely unknown. We examine the effects of ErM shrubs on soil carbon and nitrogen stocks and indicators of microbial activity at different depths across gradients of AM versus ectomycorrhizal (EcM) tree dominance in three temperate forest sites. We find that ErM shrubs strongly modulate tree mycorrhizal dominance effects. In surface soils, ErM shrubs increase particulate organic matter accumulation and weaken the positive relationship between soil organic matter stocks and indicators of microbial activity. These effects are strongest under AM trees that lack fungal symbionts that can degrade organic matter. In subsurface soil organic matter pools, by contrast, tree mycorrhizal dominance effects are stronger than those of ErM shrubs. Ectomycorrhizal tree dominance has a negative influence on particulate and mineral-associated soil organic matter pools, and these effects are stronger for nitrogen than for carbon stocks. Our findings suggest that increasing co-occurrence of ErM shrubs and AM trees will enhance particulate organic matter accumulation in surface soils by suppressing microbial activity while having little influence on mineral-associated organic matter in subsurface soils. Our study highlights the importance of considering interactions between co-occurring plant mycorrhizal types, as well as their depth-dependent effects, for projecting changes in soil carbon and nitrogen stocks in response to compositional shifts in temperate forests driven by disturbances and global change.
Collapse
Affiliation(s)
- Elisabeth B Ward
- The Forest School, Yale School of the Environment, Yale University, New Haven, Connecticut, USA
- Department of Environmental Science and Forestry, The Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA
- The New York Botanical Garden, The Bronx, New York, USA
| | - Alexander Polussa
- The Forest School, Yale School of the Environment, Yale University, New Haven, Connecticut, USA
| | - Mark A Bradford
- The Forest School, Yale School of the Environment, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
23
|
Greenwood L, Nimmo DG, Egidi E, Price JN, McIntosh R, Frew A. Fire shapes fungal guild diversity and composition through direct and indirect pathways. Mol Ecol 2023; 32:4921-4939. [PMID: 37452603 DOI: 10.1111/mec.17068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/20/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Fire has shaped global ecosystems for millennia by directly killing organisms and indirectly altering habitats and resources. All terrestrial ecosystems, including fire-prone ecosystems, rely on soil-inhabiting fungi, where they play vital roles in ecological processes. Yet our understanding of how fire regimes influence soil fungi remains limited and our knowledge of these interactions in semiarid landscapes is virtually absent. We collected soil samples and vegetation measurements from sites across a gradient in time-since-fire ages (0-75 years-since-fire) and fire frequency (burnt 0-5 times during the recent 29-year period) in a semiarid heathland of south-eastern Australia. We characterized fungal communities using ITS amplicon-sequencing and assigned fungi taxonomically to trophic guilds. We used structural equation models to examine direct, indirect and total effects of time-since-fire and fire frequency on total fungal, ectomycorrhizal, saprotrophic and pathogenic richness. We used multivariate analyses to investigate how total fungal, ectomycorrhizal, saprotrophic and pathogenic species composition differed between post-fire successional stages and fire frequency classes. Time-since-fire was an important driver of saprotrophic richness; directly, saprotrophic richness increased with time-since-fire, and indirectly, saprotrophic richness declined with time-since-fire (resulting in a positive total effect), mediated through the impact of fire on substrates. Frequently burnt sites had lower numbers of saprotrophic and pathogenic species. Post-fire successional stages and fire frequency classes were characterized by distinct fungal communities, with large differences in ectomycorrhizal species composition. Understanding the complex responses of fungal communities to fire can be improved by exploring how the effects of fire flow through ecosystems. Diverse fire histories may be important for maintaining the functional diversity of fungi in semiarid regions.
Collapse
Affiliation(s)
- Leanne Greenwood
- Gulbali Institute, Charles Sturt University, Thurgoona, New South Wales, Australia
| | - Dale G Nimmo
- Gulbali Institute, Charles Sturt University, Thurgoona, New South Wales, Australia
| | - Eleonora Egidi
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Jodi N Price
- Gulbali Institute, Charles Sturt University, Thurgoona, New South Wales, Australia
| | | | - Adam Frew
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| |
Collapse
|
24
|
Zhang AY, Zhang ML, Zhu JL, Mei Y, Xu FJ, Bai HY, Sun K, Zhang W, Dai CC, Jia Y. Endofungal Bacterial Microbiota Promotes the Absorption of Chelated Inorganic Phosphorus by Host Pine through the Ectomycorrhizal System. Microbiol Spectr 2023; 11:e0016223. [PMID: 37404161 PMCID: PMC10433794 DOI: 10.1128/spectrum.00162-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/07/2023] [Indexed: 07/06/2023] Open
Abstract
Ectomycorrhizal fungi play an irreplaceable role in phosphorus cycling. However, ectomycorrhizal fungi have a limited ability to dissolve chelated inorganic phosphorus, which is the main component of soil phosphorus. Endofungal bacteria in ectomycorrhizal fruiting bodies are always closely related to the ecological function of ectomycorrhizal fungi. In this study, we explore endofungal bacteria in the fruiting body of Tylopilus neofelleus and their function during the absorption of chelated inorganic phosphorus by host pine through the ectomycorrhizal system. The results showed that the endofungal bacterial microbiota in the fruiting body of T. neofelleus might be related to the dissolution of chelated inorganic phosphorus in soil. The soluble phosphorus content in the combined system of T. neofelleus and endofungal bacteria Bacillus sp. strain B5 was five times higher than the sum of T. neofelleus-only treatment and Bacillus sp. strain B5-only treatment in the dissolution experiment of chelated inorganic phosphorus. The results showed that T. neofelleus not only promoted the proliferation of Bacillus sp. strain B5 in the combined system but also improved the expression of genes related to organic acid metabolism, as assesed by transcriptomic analysis. Lactic acid content was five times higher in the combined system than the sum of T. neofelleus-only treatment and Bacillus sp. strain B5-only treatment. Two essential genes related to lactate metabolism of Bacillus sp. strain B5, gapA and pckA, were significantly upregulated. Finally, in a pot experiment, we verified that T. neofelleus and Bacillus sp. strain B5 could synergistically promote the absorption of chelated inorganic phosphorus by Pinus sylvestris in a ternary symbiotic system. IMPORTANCE Ectomycorrhizal fungi (ECMF) have a limited ability to dissolve chelated inorganic phosphorus, which is the main component of soil phosphorus. In the natural environment, the extraradical hyphae of ECMF alone may not satisfy the phosphorus demand of the plant ectomycorrhizal system. In this study, our results innovatively show that the ectomycorrhizal system might be a ternary symbiont in which ectomycorrhizal fungi might recruit endofungal bacteria that could synergistically promote the mineralization of chelated inorganic phosphorus, which ultimately promotes plant phosphorus absorption by the ectomycorrhizal system.
Collapse
Affiliation(s)
- Ai-Yue Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Mei-Ling Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jia-Le Zhu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yan Mei
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Fang-Ji Xu
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences (SAAS), Jinan, China
| | - Hong-Yan Bai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Kai Sun
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Wei Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yong Jia
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
25
|
Cui Y, Peng S, Delgado-Baquerizo M, Rillig MC, Terrer C, Zhu B, Jing X, Chen J, Li J, Feng J, He Y, Fang L, Moorhead DL, Sinsabaugh RL, Peñuelas J. Microbial communities in terrestrial surface soils are not widely limited by carbon. GLOBAL CHANGE BIOLOGY 2023; 29:4412-4429. [PMID: 37277945 DOI: 10.1111/gcb.16765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 06/07/2023]
Abstract
Microbial communities in soils are generally considered to be limited by carbon (C), which could be a crucial control for basic soil functions and responses of microbial heterotrophic metabolism to climate change. However, global soil microbial C limitation (MCL) has rarely been estimated and is poorly understood. Here, we predicted MCL, defined as limited availability of substrate C relative to nitrogen and/or phosphorus to meet microbial metabolic requirements, based on the thresholds of extracellular enzyme activity across 847 sites (2476 observations) representing global natural ecosystems. Results showed that only about 22% of global sites in terrestrial surface soils show relative C limitation in microbial community. This finding challenges the conventional hypothesis of ubiquitous C limitation for soil microbial metabolism. The limited geographic extent of C limitation in our study was mainly attributed to plant litter, rather than soil organic matter that has been processed by microbes, serving as the dominant C source for microbial acquisition. We also identified a significant latitudinal pattern of predicted MCL with larger C limitation at mid- to high latitudes, whereas this limitation was generally absent in the tropics. Moreover, MCL significantly constrained the rates of soil heterotrophic respiration, suggesting a potentially larger relative increase in respiration at mid- to high latitudes than low latitudes, if climate change increases primary productivity that alleviates MCL at higher latitudes. Our study provides the first global estimates of MCL, advancing our understanding of terrestrial C cycling and microbial metabolic feedback under global climate change.
Collapse
Affiliation(s)
- Yongxing Cui
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Shushi Peng
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla, Spain
- Unidad Asociada CSIC-UPO (BioFun). Universidad Pablo de Olavide, Sevilla, Spain
| | | | - César Terrer
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Boston, Massachusetts, USA
| | - Biao Zhu
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Xin Jing
- State Key Laboratory of Grassland Agro-Ecosystems, and College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Ji Chen
- Department of Agroecology, Aarhus University, Tjele, Denmark
| | - Jinquan Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| | - Jiao Feng
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Yue He
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Linchuan Fang
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, China
| | - Daryl L Moorhead
- Department of Environmental Sciences, University of Toledo, Toledo, Ohio, USA
| | - Robert L Sinsabaugh
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, Catalonia, Spain
| |
Collapse
|
26
|
Niego AGT, Rapior S, Thongklang N, Raspé O, Hyde KD, Mortimer P. Reviewing the contributions of macrofungi to forest ecosystem processes and services. FUNGAL BIOL REV 2023. [DOI: 10.1016/j.fbr.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Wang Q, Zhang Y, Zhang P, Li N, Wang R, Zhang X, Yin H. Nitrogen deposition induces a greater soil C sequestration in the rhizosphere than bulk soil in an alpine forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162701. [PMID: 36906017 DOI: 10.1016/j.scitotenv.2023.162701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/14/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Root activity regulates rhizosphere soil carbon (C) dynamics, thereby profoundly affecting soil C sequestration and associated climate feedback. However, whether and how rhizosphere soil organic C (SOC) sequestration responds to atmospheric N deposition remains unclear. We distinguished and quantified the direction and magnitude of soil C sequestration between the rhizosphere and bulk soil of a spruce (Picea asperata Mast.) plantation after 4-year field N additions. Moreover, the contribution of microbial necromass C to SOC accumulation under N addition was further compared between the two soil compartments, considering the crucial role of microbial necromass in soil C formation and stabilization. The results showed that although both the rhizosphere and bulk soil facilitated SOC accumulation in response to N addition, the rhizosphere exerted a greater C sequestration than that of bulk soil. Specifically, compared to the control, SOC content increased 15.03 mg/g and 4.22 mg/g in the rhizosphere and bulk soil under N addition, respectively. Further numerical model analysis showed that SOC pool in the rhizosphere increased by 33.39 % induced by N addition, which was nearly four times of that in the bulk soil (7.41 %). The contribution of increased microbial necromass C to SOC accumulation induced by N addition was significantly higher in the rhizosphere (38.76 %) than that in the bulk soil (31.31 %), which was directly related to the greater accumulation of fungal necromass C in the rhizosphere. Our findings highlighted the vital role of the rhizosphere processes in regulating soil C dynamics under elevating N deposition, and also provided a clear evidence for importance of the microbial-derived C in the SOC sequestration from the rhizosphere perspective.
Collapse
Affiliation(s)
- Qitong Wang
- Institute of Tibet Plateau Ecology & Key Laboratory of Forest Ecology in Tibet Plateau (Tibet Agriculture and Animal Husbandry University), Ministry of Education & Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Tibet Agriculture and Animal Husbandry University, Nyingchi, Tibet 860000, China; CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Ying Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Peipei Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Na Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Ruihong Wang
- Institute of Tibet Plateau Ecology & Key Laboratory of Forest Ecology in Tibet Plateau (Tibet Agriculture and Animal Husbandry University), Ministry of Education & Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Tibet Agriculture and Animal Husbandry University, Nyingchi, Tibet 860000, China
| | - Xinjun Zhang
- Institute of Tibet Plateau Ecology & Key Laboratory of Forest Ecology in Tibet Plateau (Tibet Agriculture and Animal Husbandry University), Ministry of Education & Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Tibet Agriculture and Animal Husbandry University, Nyingchi, Tibet 860000, China.
| | - Huajun Yin
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
28
|
Mayer M, Matthews B, Sandén H, Katzensteiner K, Hagedorn F, Gorfer M, Berger H, Berger TW, Godbold DL, Rewald B. Soil fertility determines whether ectomycorrhizal fungi accelerate or decelerate decomposition in a temperate forest. THE NEW PHYTOLOGIST 2023. [PMID: 37084070 DOI: 10.1111/nph.18930] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
Ectomycorrhizal (ECM) fungi can both accelerate and decelerate decomposition of organic matter in forest soils, but a mechanistic understanding of this differential influence is limited. Here, we tested how ECM fungi affect decomposition along a natural fertility gradient in a temperate forest of European beech. Trees were girdled to reduce belowground carbon supply to the soil. Girdling shifted soil fungal community composition and decreased hyphal biomass production and soil CO2 efflux, indicating a reduced ECM fungal activity. Girdling also affected decomposition processes, but the effects depended on fertility. Our results indicate that ECM fungi decelerate decomposition under conditions of low fertility while under conditions of high fertility ECM fungi and their host roots have an accelerating effect. We conclude that both acceleration and deceleration of decomposition of organic matter by ECM fungi can occur within a forest, with soil fertility determining the direction and magnitude of these effects. We suggest a positive feedback between fertility, stand productivity and soil carbon and nitrogen dynamics that is mediated to a large extent by ECM fungi.
Collapse
Affiliation(s)
- Mathias Mayer
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, Birmensdorf, 8903, Switzerland
- Forest Ecology, Institute of Terrestrial Ecosystems (ITES), ETH Zurich, Universitätsstrasse 16, Zürich, 8092, Switzerland
- Department of Forest and Soil Sciences, Institute of Forest Ecology, University of Natural Resources and Life Sciences (BOKU), Peter-Jordan Straße 82, Vienna, 1190, Austria
| | - Bradley Matthews
- Department of Forest and Soil Sciences, Institute of Forest Ecology, University of Natural Resources and Life Sciences (BOKU), Peter-Jordan Straße 82, Vienna, 1190, Austria
- Environment Agency Austria, Spittelauer Lände 5, Vienna, 1090, Austria
| | - Hans Sandén
- Department of Forest and Soil Sciences, Institute of Forest Ecology, University of Natural Resources and Life Sciences (BOKU), Peter-Jordan Straße 82, Vienna, 1190, Austria
| | - Klaus Katzensteiner
- Department of Forest and Soil Sciences, Institute of Forest Ecology, University of Natural Resources and Life Sciences (BOKU), Peter-Jordan Straße 82, Vienna, 1190, Austria
| | - Frank Hagedorn
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, Birmensdorf, 8903, Switzerland
| | - Markus Gorfer
- Center for Health and Bioresources, Austrian Institute of Technology GmbH (AIT), Konrad-Lorenz-Straße 24, Tulln, 3430, Austria
| | - Harald Berger
- Center for Health and Bioresources, Austrian Institute of Technology GmbH (AIT), Konrad-Lorenz-Straße 24, Tulln, 3430, Austria
- Symbiocyte, Konrad-Lorenz-Straße 24, Tulln, 3430, Austria
| | - Torsten W Berger
- Department of Forest and Soil Sciences, Institute of Forest Ecology, University of Natural Resources and Life Sciences (BOKU), Peter-Jordan Straße 82, Vienna, 1190, Austria
| | - Douglas L Godbold
- Department of Forest and Soil Sciences, Institute of Forest Ecology, University of Natural Resources and Life Sciences (BOKU), Peter-Jordan Straße 82, Vienna, 1190, Austria
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, Brno, 613 00, Czech Republic
| | - Boris Rewald
- Department of Forest and Soil Sciences, Institute of Forest Ecology, University of Natural Resources and Life Sciences (BOKU), Peter-Jordan Straße 82, Vienna, 1190, Austria
| |
Collapse
|
29
|
Maillard F, Kohler A, Morin E, Hossann C, Miyauchi S, Ziegler-Devin I, Gérant D, Angeli N, Lipzen A, Keymanesh K, Johnson J, Barry K, Grigoriev IV, Martin FM, Buée M. Functional genomics gives new insights into the ectomycorrhizal degradation of chitin. THE NEW PHYTOLOGIST 2023; 238:845-858. [PMID: 36702619 DOI: 10.1111/nph.18773] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Ectomycorrhizal (EcM) fungi play a crucial role in the mineral nitrogen (N) nutrition of their host trees. While it has been proposed that several EcM species also mobilize organic N, studies reporting the EcM ability to degrade N-containing polymers, such as chitin, remain scarce. Here, we assessed the capacity of a representative collection of 16 EcM species to acquire 15 N from 15 N-chitin. In addition, we combined genomics and transcriptomics to identify pathways involved in exogenous chitin degradation between these fungal strains. Boletus edulis, Imleria badia, Suillus luteus, and Hebeloma cylindrosporum efficiently mobilized N from exogenous chitin. EcM genomes primarily contained genes encoding for the direct hydrolysis of chitin. Further, we found a significant relationship between the capacity of EcM fungi to assimilate organic N from chitin and their genomic and transcriptomic potentials for chitin degradation. These findings demonstrate that certain EcM fungal species depolymerize chitin using hydrolytic mechanisms and that endochitinases, but not exochitinases, represent the enzymatic bottleneck of chitin degradation. Finally, this study shows that the degradation of exogenous chitin by EcM fungi might be a key functional trait of nutrient cycling in forests dominated by EcM fungi.
Collapse
Affiliation(s)
- François Maillard
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, 54280, Champenoux, France
| | - Annegret Kohler
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, 54280, Champenoux, France
| | - Emmanuelle Morin
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, 54280, Champenoux, France
| | - Christian Hossann
- Université de Lorraine, AgroParisTech, INRAE, SILVA, Silvatech, F-54000, Nancy, France
| | - Shingo Miyauchi
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, 54280, Champenoux, France
| | | | - Dominique Gérant
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, 54000, Nancy, France
| | - Nicolas Angeli
- Université de Lorraine, AgroParisTech, INRAE, SILVA, Silvatech, F-54000, Nancy, France
| | - Anna Lipzen
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Keykhosrow Keymanesh
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Jenifer Johnson
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Kerrie Barry
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Igor V Grigoriev
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Francis M Martin
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, 54280, Champenoux, France
| | - Marc Buée
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, 54280, Champenoux, France
| |
Collapse
|
30
|
Scartazza A, Sbrana C, D'Andrea E, Matteucci G, Rezaie N, Lauteri M. Above- and belowground interplay: Canopy CO 2 uptake, carbon and nitrogen allocation and isotope fractionation along the plant-ectomycorrhiza continuum. PLANT, CELL & ENVIRONMENT 2023; 46:889-900. [PMID: 36541420 DOI: 10.1111/pce.14519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/02/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
In forests, mycorrhizal fungi regulate carbon (C) and nitrogen (N) dynamics. We evaluated the interplay among ectomycorrhizas (ECM), ecosystem C fluxes, tree productivity, C and N exchange and isotopic fractionation along the soil-ECM-plant continuum in a Mediterranean beech forest. From bud break to leaf shedding, we monitored: net ecosystem exchange (NEE, a measure of the net exchange of C between an ecosystem and the atmosphere), leaf area index, stem growth, N concentration, δ13 C and δ15 N in rhizosphere soil, ectomycorrhizal fine root tips (ERT), ECM-free fine root portions (NCR) and leaves. Seasonal changes in ERT relative biomass were strictly related to NEE and mimicked those detected in the radial growth. The analysis of δ13 C in ERT, leaves and NCR highlighted the impact of canopy photosynthesis on ERT development and an asynchronous seasonal C allocation strategy between ERT and NCR at the root tips level. Concerning N, δ15 N of leaves was negatively related to that of ERT and dependent on seasonal 15 N differences between ERT and NCR. Our results unravel a synchronous C allocation towards ERT and tree stem driven by the increasing NEE in spring-early summer. Moreover, they highlighted a phenology-dependent 15 N fractionation during N transfer from ECM to their hosts. This evidence, obtained in mature beech trees under natural conditions, may improve the knowledge of Mediterranean forests functionality.
Collapse
Affiliation(s)
- Andrea Scartazza
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy (CNR-IRET), Pisa, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Cristiana Sbrana
- Institute of Agricultural Biology and Biotechnology, National Research Council of Italy (CNR-IBBA), Pisa, Italy
| | - Ettore D'Andrea
- National Biodiversity Future Center (NBFC), Palermo, Italy
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy (CNR-IRET), Porano, Italy
| | - Giorgio Matteucci
- National Biodiversity Future Center (NBFC), Palermo, Italy
- Institute for BioEconomy, National Research Council of Italy (CNR-IBE), Sesto Fiorentino, Italy
| | - Negar Rezaie
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy (CNR-IRET), Napoli, Italy
| | - Marco Lauteri
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy (CNR-IRET), Porano, Italy
| |
Collapse
|
31
|
Horning AL, Koury SS, Meachum M, Kuehn KA, Hoeksema JD. Dirt cheap: an experimental test of controls on resource exchange in an ectomycorrhizal symbiosis. THE NEW PHYTOLOGIST 2023; 237:987-998. [PMID: 36346200 DOI: 10.1111/nph.18603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
To distinguish among hypotheses on the importance of resource-exchange ratios in outcomes of mutualisms, we measured resource (carbon (C), nitrogen (N), and phosphorus (P)) transfers and their ratios, between Pinus taeda seedlings and two ectomycorrhizal (EM) fungal species, Rhizopogon roseolus and Pisolithus arhizus in a laboratory experiment. We evaluated how ambient light affected those resource fluxes and ratios over three time periods (10, 20, and 30 wk) and the consequences for plant and fungal biomass accrual, in environmental chambers. Our results suggest that light availability is an important factor driving absolute fluxes of N, P, and C, but not exchange ratios, although its effects vary among EM fungal species. Declines in N : C and P : C exchange ratios over time, as soil nutrient availability likely declined, were consistent with predictions of biological market models. Absolute transfer of P was an important predictor of both plant and fungal biomass, consistent with the excess resource-exchange hypothesis, and N transfer to plants was positively associated with fungal biomass. Altogether, light effects on resource fluxes indicated mixed support for various theoretical frameworks, while results on biomass accrual better supported the excess resource-exchange hypothesis, although among-species variability is in need of further characterization.
Collapse
Affiliation(s)
- Amber L Horning
- Department of Biology, University of Mississippi, PO Box 1848, University, MS, 38677, USA
| | - Stephanie S Koury
- School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, 118 College Drive #5018, Hattiesburg, MS, 39406-0001, USA
| | - Mariah Meachum
- Department of Biology, University of Mississippi, PO Box 1848, University, MS, 38677, USA
| | - Kevin A Kuehn
- School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, 118 College Drive #5018, Hattiesburg, MS, 39406-0001, USA
| | - Jason D Hoeksema
- Department of Biology, University of Mississippi, PO Box 1848, University, MS, 38677, USA
| |
Collapse
|
32
|
Policelli N, Hoeksema JD, Moyano J, Vilgalys R, Vivelo S, Bhatnagar JM. Global pine tree invasions are linked to invasive root symbionts. THE NEW PHYTOLOGIST 2023; 237:16-21. [PMID: 36221214 DOI: 10.1111/nph.18527] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Affiliation(s)
- Nahuel Policelli
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | - Jason D Hoeksema
- Department of Biology, The University of Mississippi, Oxford, MS, 38677, USA
| | - Jaime Moyano
- Grupo de Ecología de Invasiones, Instituto de Investigaciones en Biodiversidad y Medioambiente, Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional del Comahue, San Carlos de Bariloche, 8400, Argentina
| | - Rytas Vilgalys
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Sasha Vivelo
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | | |
Collapse
|
33
|
Razgulin SM. Mycorrhizal Complexes and Their Role in the Ecology of Boreal Forests (Review). BIOL BULL+ 2022. [DOI: 10.1134/s1062359022060140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
34
|
Yang T, Tedersoo L, Liu X, Gao GF, Dong K, Adams JM, Chu H. Fungi stabilize multi-kingdom community in a high elevation timberline ecosystem. IMETA 2022; 1:e49. [PMID: 38867896 PMCID: PMC10989762 DOI: 10.1002/imt2.49] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/11/2022] [Accepted: 07/23/2022] [Indexed: 06/14/2024]
Abstract
Microbes dominate terrestrial ecosystems via their great species diversity and vital ecosystem functions, such as biogeochemical cycling and mycorrhizal symbiosis. Fungi and other organisms form diverse association networks. However, the roles of species belonging to different kingdoms in multi-kingdom community networks have remained largely elusive. In light of the integrative microbiome initiative, we inferred multiple-kingdom biotic associations from high elevation timberline soils using the SPIEC-EASI method. Biotic interactions among plants, nematodes, fungi, bacteria, and archaea were surveyed at the community and network levels. Compared to single-kingdom networks, multi-kingdom networks and their associations increased the within-kingdom and cross-kingdom edge numbers by 1012 and 10,772, respectively, as well as mean connectivity and negative edge proportion by 15.2 and 0.8%, respectively. Fungal involvement increased network stability (i.e., resistance to node loss) and connectivity, but reduced modularity, when compared with those in the single-kingdom networks of plants, nematodes, bacteria, and archaea. In the entire multi-kingdom network, fungal nodes were characterized by significantly higher degree and betweenness than bacteria. Fungi more often played the role of connector, linking different modules. Consistently, structural equation modeling and multiple regression on matrices corroborated the "bridge" role of fungi at the community level, linking plants and other soil biota. Overall, our findings suggest that fungi can stabilize the self-organization process of multi-kingdom networks. The findings facilitate the initiation and carrying out of multi-kingdom community studies in natural ecosystems to reveal the complex above- and belowground linkages.
Collapse
Affiliation(s)
- Teng Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science Chinese Academy of Sciences Nanjing China
- University of Chinese Academy of Sciences Beijing China
| | - Leho Tedersoo
- Mycology and Microbiology Center University of Tartu Tartu Estonia
| | - Xu Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science Chinese Academy of Sciences Nanjing China
- University of Chinese Academy of Sciences Beijing China
| | - Gui-Feng Gao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science Chinese Academy of Sciences Nanjing China
- University of Chinese Academy of Sciences Beijing China
| | - Ke Dong
- Life Science Major Kyonggi University Suwon South Korea
| | - Jonathan M Adams
- School of Geographic and Oceanographic Sciences Nanjing University Nanjing China
| | - Haiyan Chu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science Chinese Academy of Sciences Nanjing China
- University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
35
|
Feng W, Sun X, Ding G. Morphological and Transcriptional Characteristics of the Symbiotic Interaction between Pinus massoniana and Suillus bovinus. J Fungi (Basel) 2022; 8:1162. [PMID: 36354929 PMCID: PMC9699607 DOI: 10.3390/jof8111162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 09/08/2023] Open
Abstract
Ectomycorrhiza (ECM) function has been well studied; however, there is little detailed information regarding the establishment of ECM symbioses. We investigated the morphological and transcriptional changes that occur during the establishment of the Pinus massoniana-Suillus bovinus ECM. S. bovinus promoted the growth of P. massoniana via the release of volatile organic compounds and exudates during the pre-symbiotic stage. Exudate-induced effects showed host plant specificity. At seven days post-inoculation (dpi), the mycelium started to penetrate P. massoniana roots. At 28 dpi, the Hartig net and mantle formed. At the pre-symbiotic stage, most differentially expressed genes in P. massoniana roots were mapped to the biosynthesis of secondary metabolites, signal transduction, and carbohydrate metabolism. At the symbiotic stage, S. bovinus colonization induced the reprogramming of pathways involved in genetic information processing in P. massoniana, particularly at the Hartig net and mantle formation stage. Phenylpropanoid biosynthesis was present at all stages and was regulated via S. bovinus colonization. Enzyme inhibitor tests suggested that hydroxycinnamoyl-CoA shikimate/quinate transferase is involved in the development of the Hartig net. Our findings outline the mechanism involved in the P. massoniana-S. bovinus ECM. Further studies are needed to clarify the role of phenylpropanoid biosynthesis in ECM formation.
Collapse
Affiliation(s)
- Wanyan Feng
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang 550025, China
- Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Forestry, Guizhou University, Guiyang 550025, China
| | - Xueguang Sun
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang 550025, China
- Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Forestry, Guizhou University, Guiyang 550025, China
| | - Guijie Ding
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang 550025, China
- Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Forestry, Guizhou University, Guiyang 550025, China
| |
Collapse
|
36
|
Watershed-scale Variation in Potential Fungal Community Contributions to Ectomycorrhizal Biogeochemical Syndromes. Ecosystems 2022. [DOI: 10.1007/s10021-022-00788-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Ward EB, Duguid MC, Kuebbing SE, Lendemer JC, Bradford MA. The functional role of ericoid mycorrhizal plants and fungi on carbon and nitrogen dynamics in forests. THE NEW PHYTOLOGIST 2022; 235:1701-1718. [PMID: 35704030 DOI: 10.1111/nph.18307] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Ericoid mycorrhizal (ErM) shrubs commonly occur in forest understories and could therefore alter arbuscular (AM) and/or ectomycorrhizal (EcM) tree effects on soil carbon and nitrogen dynamics. Specifically, ErM fungi have extensive organic matter decay capabilities, and ErM plant and fungal tissues have high concentrations of secondary compounds that can form persistent complexes in the soil. Together, these traits could contribute to organic matter accumulation and inorganic nutrient limitation. These effects could also differ in AM- vs EcM-dominated stands at multiple scales within and among forest biomes by, for instance, altering fungal guild interactions. Most work on ErM effects in forests has been conducted in boreal forests dominated by EcM trees. However, ErM plants occur in c. 96, 69 and 29% of boreal, temperate and tropical forests, respectively. Within tropical montane forests, the effects of ErM plants could be particularly pronounced because their traits are more distinct from AM than EcM trees. Because ErM fungi can function as free-living saprotrophs, they could also be more resilient to forest disturbances than obligate symbionts. Further consideration of ErM effects within and among forest biomes could improve our understanding of how cooccurring mycorrhizal types interact to collectively affect soil carbon and nitrogen dynamics under changing conditions.
Collapse
Affiliation(s)
- Elisabeth B Ward
- The Forest School, Yale School of the Environment, Yale University, New Haven, CT, 06511, USA
- The New York Botanical Garden, The Bronx, NY, 10458, USA
| | - Marlyse C Duguid
- The Forest School, Yale School of the Environment, Yale University, New Haven, CT, 06511, USA
| | - Sara E Kuebbing
- The Forest School, Yale School of the Environment, Yale University, New Haven, CT, 06511, USA
| | | | - Mark A Bradford
- The Forest School, Yale School of the Environment, Yale University, New Haven, CT, 06511, USA
| |
Collapse
|
38
|
Sridhar B, Wilhelm RC, Debenport SJ, Fahey TJ, Buckley DH, Goodale CL. Microbial community shifts correspond with suppression of decomposition 25 years after liming of acidic forest soils. GLOBAL CHANGE BIOLOGY 2022; 28:5399-5415. [PMID: 35770362 DOI: 10.1111/gcb.16321] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
Microbial community structure and function regularly covary with soil pH, yet effects of these interactions on soil carbon are rarely tested experimentally within natural ecosystems. We investigated the enduring (25 year) impacts of liming on microbial community structure and decomposition at an acidic northern hardwood forest, where experimental liming increased pH one unit and surprisingly doubled the organic carbon stocks of the forest floor. We show that this increase in carbon storage corresponded with restructuring of the bacterial and fungal communities that drive decomposition. In the Oe horizon, liming reduced the activities of five extracellular enzymes that mediate decomposition, while the Oa horizon showed an especially large (64%) reduction in the activity of a sixth, peroxidase, which is an oxidative enzyme central to lignocellulose degradation. Decreased enzyme activities corresponded with loss of microbial taxa important for lignocellulose decay, including large reductions in the dominant ectomycorrhizal genera Russula and Cenococcum, saprotrophic and wood decaying fungi, and Actinobacteria (Thermomonosporaceae). These results demonstrate the importance of pH as a dominant regulator of microbial community structure and illustrate how changes to this structure can produce large, otherwise unexpected increases in carbon storage in forest soils.
Collapse
Affiliation(s)
- Bhavya Sridhar
- Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Roland C Wilhelm
- School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Spencer J Debenport
- School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Timothy J Fahey
- Department of Natural Resources, Cornell University, Ithaca, New York, USA
| | - Daniel H Buckley
- School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Christine L Goodale
- Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
39
|
Liang S, Wang W, Zeng X, Wu R, Chen W. Enhanced suppression of saprotrophs by ectomycorrhizal fungi under high level of nitrogen fertilization. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.974449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ectomycorrhizal fungi (EMF) are widespread in northern conifer forests. By competing with the free-living saprotrophic fungal and bacterial communities for limited soil nitrogen, EMF are expected to suppress litter decomposition and thus drive soil carbon accumulation. The EMF may also stimulate rhizosphere microbial growth through inputs of labile plant carbon, and subsequently contribute to the soil carbon pool via microbial necromass. Here we examined the relative strength of these two potential EMF effects in a northern conifer plantation of the Saihanba Forest, the largest plantation in China. The soil fungal and bacterial biomass, as well as their respiration, were quantified within the two types of soil cores that either allow or exclude the ingrowth of EMF. We also set up a nitrogen fertilization gradient (0, 5, 10, 15 g N m–2 y–1) in this plantation to quantify the influence of external inorganic nitrogen on the EMF effects. We found evidence that EMF inhibit the overall fungal and bacteria biomass, confirming the suppression of saprotrophs by EMF. In addition, high levels of external nitrogen fertilization (15 g N m–2 y–1) might further enhance the suppression by EMF. In contrast, the presence of EMF consistently increased soil microbial respiration across all nitrogen fertilization levels, indicating that the carbon allocated to EMF could have been largely consumed by microbial respiration and contributed minimally to the accumulation of microbial biomass. Our results also indicated that the suppression of saprotrophs by EMF may play a critical role in driving continuous soil carbon accumulation in this northern pine plantation under atmospheric nitrogen deposition.
Collapse
|
40
|
Soil microbial community of urban green infrastructures in a polar city. Urban Ecosyst 2022. [DOI: 10.1007/s11252-022-01233-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
41
|
See CR, Keller AB, Hobbie SE, Kennedy PG, Weber PK, Pett-Ridge J. Hyphae move matter and microbes to mineral microsites: Integrating the hyphosphere into conceptual models of soil organic matter stabilization. GLOBAL CHANGE BIOLOGY 2022; 28:2527-2540. [PMID: 34989058 DOI: 10.1111/gcb.16073] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Associations between soil minerals and microbially derived organic matter (often referred to as mineral-associated organic matter or MAOM) form a large pool of slowly cycling carbon (C). The rhizosphere, soil immediately adjacent to roots, is thought to control the spatial extent of MAOM formation because it is the dominant entry point of new C inputs to soil. However, emphasis on the rhizosphere implicitly assumes that microbial redistribution of C into bulk (non-rhizosphere) soils is minimal. We question this assumption, arguing that because of extensive fungal exploration and rapid hyphal turnover, fungal redistribution of soil C from the rhizosphere to bulk soil minerals is common, and encourages MAOM formation. First, we summarize published estimates of fungal hyphal length density and turnover rates and demonstrate that fungal C inputs are high throughout the rhizosphere-bulk soil continuum. Second, because colonization of hyphal surfaces is a common dispersal mechanism for soil bacteria, we argue that hyphal exploration allows for the non-random colonization of mineral surfaces by hyphae-associated taxa. Third, these bacterial communities and their fungal hosts determine the chemical form of organic matter deposited on colonized mineral surfaces. Collectively, our analysis demonstrates that omission of the hyphosphere from conceptual models of soil C flow overlooks key mechanisms for MAOM formation in bulk soils. Moving forward, there is a clear need for spatially explicit, quantitative research characterizing the environmental drivers of hyphal exploration and hyphosphere community composition across systems, as these are important controls over the rate and organic chemistry of C deposited on minerals.
Collapse
Affiliation(s)
- Craig R See
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, Minnesota, USA
| | - Adrienne B Keller
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, Minnesota, USA
| | - Sarah E Hobbie
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, Minnesota, USA
| | - Peter G Kennedy
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, Minnesota, USA
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota, USA
| | - Peter K Weber
- Physical and Life Science Directorate, Lawrence Livermore National Lab, Livermore, California, USA
| | - Jennifer Pett-Ridge
- Physical and Life Science Directorate, Lawrence Livermore National Lab, Livermore, California, USA
| |
Collapse
|
42
|
Looney B, Miyauchi S, Morin E, Drula E, Courty PE, Kohler A, Kuo A, LaButti K, Pangilinan J, Lipzen A, Riley R, Andreopoulos W, He G, Johnson J, Nolan M, Tritt A, Barry KW, Grigoriev IV, Nagy LG, Hibbett D, Henrissat B, Matheny PB, Labbé J, Martin FM. Evolutionary transition to the ectomycorrhizal habit in the genomes of a hyperdiverse lineage of mushroom-forming fungi. THE NEW PHYTOLOGIST 2022; 233:2294-2309. [PMID: 34861049 DOI: 10.1111/nph.17892] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
The ectomycorrhizal (ECM) symbiosis has independently evolved from diverse types of saprotrophic ancestors. In this study, we seek to identify genomic signatures of the transition to the ECM habit within the hyperdiverse Russulaceae. We present comparative analyses of the genomic architecture and the total and secreted gene repertoires of 18 species across the order Russulales, of which 13 are newly sequenced, including a representative of a saprotrophic member of Russulaceae, Gloeopeniophorella convolvens. The genomes of ECM Russulaceae are characterized by a loss of genes for plant cell wall-degrading enzymes (PCWDEs), an expansion of genome size through increased transposable element (TE) content, a reduction in secondary metabolism clusters, and an association of small secreted proteins (SSPs) with TE 'nests', or dense aggregations of TEs. Some PCWDEs have been retained or even expanded, mostly in a species-specific manner. The genome of G. convolvens possesses some characteristics of ECM genomes (e.g. loss of some PCWDEs, TE expansion, reduction in secondary metabolism clusters). Functional specialization in ECM decomposition may drive diversification. Accelerated gene evolution predates the evolution of the ECM habit, indicating that changes in genome architecture and gene content may be necessary to prime the evolutionary switch.
Collapse
Affiliation(s)
- Brian Looney
- Department of Biology, Clark University, Worcester, MA, 01610, USA
| | - Shingo Miyauchi
- UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est-Nancy, INRAE, Université de Lorraine, Champenoux, 54000, France
| | - Emmanuelle Morin
- UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est-Nancy, INRAE, Université de Lorraine, Champenoux, 54000, France
| | - Elodie Drula
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Univ., Marseille, 13009, France
- USC1408 Architecture et Fonction des Macromolécules Biologiques (AFMB), INRAE, Marseille, 13009, France
| | - Pierre Emmanuel Courty
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Université de Bourgogne, Université de Bourgogne Franche- Comté, Dijon, 25000, France
| | - Annegret Kohler
- UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est-Nancy, INRAE, Université de Lorraine, Champenoux, 54000, France
| | - Alan Kuo
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Kurt LaButti
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Jasmyn Pangilinan
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Anna Lipzen
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Robert Riley
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| | - William Andreopoulos
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Guifen He
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Jenifer Johnson
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Matt Nolan
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Andrew Tritt
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Kerrie W Barry
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Igor V Grigoriev
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - László G Nagy
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, 6726, Hungary
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Budapest, 1053, Hungary
| | - David Hibbett
- Department of Biology, Clark University, Worcester, MA, 01610, USA
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Univ., Marseille, 13009, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - P Brandon Matheny
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Jesse Labbé
- Biosciences Division, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, TN, 37830, USA
| | - Francis M Martin
- UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est-Nancy, INRAE, Université de Lorraine, Champenoux, 54000, France
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
43
|
Khalid M, Tan H, Ali M, Rehman A, Liu X, Su L, Zhao C, Li X, Hui N. Karst rocky desertification diverged the soil residing and the active ectomycorrhizal fungal communities thereby fostering distinctive extramatrical mycelia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:151016. [PMID: 34666083 DOI: 10.1016/j.scitotenv.2021.151016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Ectomycorrhizal fungi (EMF) are mutualists that play crucial roles in liberation, nutrient acquisition, transfer of growth-limiting resources and provision of water to host plants in terrestrial ecosystems, particularly in stressed prone climates. In this study, a field-based experiment was performed in Yunnan, China to assess the effect of karst rocky desertification (KRD) and natural forests (non-KRD) sites on the richness and composition of EMF communities. Inert sand-filled mesh bags were employed to characterize the active EMF and quantify the production of extramatrical mycelium (EMM). Results indicated that, EMF exhibited a significant differentiation among KRD and non-KRD sites, richness and diversity were higher across KRD areas, whereas the evenness showed the opposite trend. Ascomycota and Zygomycota were greater across KRD sites, however, Basidiomycota showed no difference across both study sites. The relative abundance of Clavaria, Butyriboletus, Odontia, Phyloporus, Helvella, Russula and Tomentella were higher across the KRD sites, whereas, Clavulinopsis, Endogone, Amanita, Inocybe and Clavulina were higher across the non-KRD sites. It's worth noting that, saprophytic (SAP) fungal community was found to be more abundant in the soil than the mesh bags at both sites particularly at KRD sites, which likely provide more free space and less competition for the EMF to thrive well in the mesh bags. In similar pattern, ergosterol concentration in mesh bags was observed relatively higher at KRD sites than the non-KRD sites. The Entoloma, Amanita, and Sebacina were found to be substantially higher in mesh bags than soil across both sites. Delicatula, Helvella and Tomentella on the other hand, showed higher relative abundance in mesh bags than soil over KRD sites, however they did not differ across non-KRD sites. Taken together, the presented results highlight relationship between the EMF community and the complex KRD environment, which is very important for the restoration of disturbed karst landscapes.
Collapse
Affiliation(s)
- Muhammad Khalid
- Key Laboratory of Urban Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haoxin Tan
- Key Laboratory of Urban Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mehran Ali
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Asad Rehman
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinxin Liu
- Key Laboratory of Urban Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lantian Su
- Key Laboratory of Urban Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chang Zhao
- Key Laboratory of Urban Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoxiao Li
- Key Laboratory of Urban Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nan Hui
- Key Laboratory of Urban Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., Shanghai 200240, China.
| |
Collapse
|
44
|
Jörgensen K, Granath G, Strengbom J, Lindahl BD. Links between boreal forest management, soil fungal communities and below‐ground carbon sequestration. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Karolina Jörgensen
- Department of Soil and Environment Swedish University of Agricultural Sciences Uppsala Sweden
| | - Gustaf Granath
- Department of Ecology and Genetics Uppsala University Uppsala Sweden
| | - Joachim Strengbom
- Department of Ecology Swedish University of Agricultural Sciences Uppsala Sweden
| | - Björn D. Lindahl
- Department of Soil and Environment Swedish University of Agricultural Sciences Uppsala Sweden
| |
Collapse
|
45
|
|
46
|
Pellitier PT, Zak DR. Ectomycorrhizal fungal decay traits along a soil nitrogen gradient. THE NEW PHYTOLOGIST 2021; 232:2152-2164. [PMID: 34533216 DOI: 10.1111/nph.17734] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
The extent to which ectomycorrhizal (ECM) fungi decay soil organic matter (SOM) has implications for accurately predicting forest ecosystem response to climate change. Investigating the distribution of gene traits associated with SOM decay among ectomycorrhizal fungal communities could improve understanding of SOM dynamics and plant nutrition. We hypothesized that soil inorganic nitrogen (N) availability structures the distribution of ECM fungal genes associated with SOM decay and, specifically, that ECM fungal communities occurring in inorganic N-poor soils have greater SOM decay potential. To test this hypothesis, we paired amplicon and shotgun metagenomic sequencing of 60 ECM fungal communities associating with Quercus rubra along a natural soil inorganic N gradient. Ectomycorrhizal fungal communities occurring in low inorganic N soils were enriched in gene families involved in the decay of lignin, cellulose, and chitin. Ectomycorrhizal fungal community composition was the strongest driver of shifts in metagenomic estimates of fungal decay potential. Our study simultaneously illuminates the identity of key ECM fungal taxa and gene families potentially involved in the decay of SOM, and we link rhizomorphic and medium-distance hyphal morphologies with enhanced SOM decay potential. Coupled shifts in ECM fungal community composition and community-level decay gene frequencies are consistent with outcomes of trait-mediated community assembly processes.
Collapse
Affiliation(s)
- Peter T Pellitier
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Donald R Zak
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
47
|
Argiroff WA, Zak DR, Pellitier PT, Upchurch RA, Belke JP. Decay by ectomycorrhizal fungi couples soil organic matter to nitrogen availability. Ecol Lett 2021; 25:391-404. [PMID: 34787356 DOI: 10.1111/ele.13923] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/21/2021] [Accepted: 10/30/2021] [Indexed: 01/04/2023]
Abstract
Interactions between soil nitrogen (N) availability, fungal community composition, and soil organic matter (SOM) regulate soil carbon (C) dynamics in many forest ecosystems, but context dependency in these relationships has precluded general predictive theory. We found that ectomycorrhizal (ECM) fungi with peroxidases decreased with increasing inorganic N availability across a natural inorganic N gradient in northern temperate forests, whereas ligninolytic fungal saprotrophs exhibited no response. Lignin-derived SOM and soil C were negatively correlated with ECM fungi with peroxidases and were positively correlated with inorganic N availability, suggesting decay of lignin-derived SOM by these ECM fungi reduced soil C storage. The correlations we observed link SOM decay in temperate forests to tradeoffs in tree N nutrition and ECM composition, and we propose SOM varies along a single continuum across temperate and boreal ecosystems depending upon how tree allocation to functionally distinct ECM taxa and environmental stress covary with soil N availability.
Collapse
Affiliation(s)
- William A Argiroff
- School for Environment and Sustainability, University of Michigan, Ann Arbor, Michigan, USA
| | - Donald R Zak
- School for Environment and Sustainability, University of Michigan, Ann Arbor, Michigan, USA.,Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Peter T Pellitier
- School for Environment and Sustainability, University of Michigan, Ann Arbor, Michigan, USA
| | - Rima A Upchurch
- School for Environment and Sustainability, University of Michigan, Ann Arbor, Michigan, USA
| | - Julia P Belke
- Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
48
|
Ectomycorrhizal Stands Accelerate Decomposition to a Greater Extent than Arbuscular Mycorrhizal Stands in a Northern Deciduous Forest. Ecosystems 2021. [DOI: 10.1007/s10021-021-00712-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
49
|
Lebreton A, Zeng Q, Miyauchi S, Kohler A, Dai YC, Martin FM. Evolution of the Mode of Nutrition in Symbiotic and Saprotrophic Fungi in Forest Ecosystems. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2021. [DOI: 10.1146/annurev-ecolsys-012021-114902] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this review, we highlight the main insights that have been gathered from recent developments using large-scale genomics of fungal saprotrophs and symbiotrophs (including ectomycorrhizal and orchid and ericoid mycorrhizal fungi) inhabiting forest ecosystems. After assessing the goals and motivations underlying our approach, we explore our current understanding of the limits and future potential of using genomics to understand the ecological roles of these forest fungi. Comparative genomics unraveled the molecular machineries involved in lignocellulose decomposition in wood decayers, soil and litter saprotrophs, and mycorrhizal symbionts. They also showed that transitions from saprotrophy to mutualism entailed widespread losses of lignocellulose-degrading enzymes; diversification of novel, lineage-specific symbiosis-induced genes; and convergent evolution of genetic innovations that facilitate the accommodationof mutualistic symbionts within their plant hosts. We also identify the major questions that remain unanswered and propose new avenues of genome-based research to understand the role of soil fungi in sustainable forest ecosystems.
Collapse
Affiliation(s)
- Annie Lebreton
- Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design (BAIC-TBMD), Institute of Microbiology, Beijing Forestry University, Beijing, China 100083
- Université de Lorraine, Unité Mixte de Recherche (UMR) Interactions Arbres/Microorganismes, Centre INRAE (Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement) Grand Est-Nancy, INRAE, 54280 Champenoux, France
| | - Qingchao Zeng
- Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design (BAIC-TBMD), Institute of Microbiology, Beijing Forestry University, Beijing, China 100083
| | - Shingo Miyauchi
- Max Planck Institute for Plant Breeding Research, Department of Plant–Microbe Interactions, Köln, Germany, D-50829
| | - Annegret Kohler
- Université de Lorraine, Unité Mixte de Recherche (UMR) Interactions Arbres/Microorganismes, Centre INRAE (Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement) Grand Est-Nancy, INRAE, 54280 Champenoux, France
| | - Yu-Cheng Dai
- Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design (BAIC-TBMD), Institute of Microbiology, Beijing Forestry University, Beijing, China 100083
| | - Francis M. Martin
- Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design (BAIC-TBMD), Institute of Microbiology, Beijing Forestry University, Beijing, China 100083
- Université de Lorraine, Unité Mixte de Recherche (UMR) Interactions Arbres/Microorganismes, Centre INRAE (Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement) Grand Est-Nancy, INRAE, 54280 Champenoux, France
| |
Collapse
|
50
|
Freschet GT, Pagès L, Iversen CM, Comas LH, Rewald B, Roumet C, Klimešová J, Zadworny M, Poorter H, Postma JA, Adams TS, Bagniewska‐Zadworna A, Bengough AG, Blancaflor EB, Brunner I, Cornelissen JHC, Garnier E, Gessler A, Hobbie SE, Meier IC, Mommer L, Picon‐Cochard C, Rose L, Ryser P, Scherer‐Lorenzen M, Soudzilovskaia NA, Stokes A, Sun T, Valverde‐Barrantes OJ, Weemstra M, Weigelt A, Wurzburger N, York LM, Batterman SA, Gomes de Moraes M, Janeček Š, Lambers H, Salmon V, Tharayil N, McCormack ML. A starting guide to root ecology: strengthening ecological concepts and standardising root classification, sampling, processing and trait measurements. THE NEW PHYTOLOGIST 2021; 232:973-1122. [PMID: 34608637 PMCID: PMC8518129 DOI: 10.1111/nph.17572] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/22/2021] [Indexed: 05/17/2023]
Abstract
In the context of a recent massive increase in research on plant root functions and their impact on the environment, root ecologists currently face many important challenges to keep on generating cutting-edge, meaningful and integrated knowledge. Consideration of the below-ground components in plant and ecosystem studies has been consistently called for in recent decades, but methodology is disparate and sometimes inappropriate. This handbook, based on the collective effort of a large team of experts, will improve trait comparisons across studies and integration of information across databases by providing standardised methods and controlled vocabularies. It is meant to be used not only as starting point by students and scientists who desire working on below-ground ecosystems, but also by experts for consolidating and broadening their views on multiple aspects of root ecology. Beyond the classical compilation of measurement protocols, we have synthesised recommendations from the literature to provide key background knowledge useful for: (1) defining below-ground plant entities and giving keys for their meaningful dissection, classification and naming beyond the classical fine-root vs coarse-root approach; (2) considering the specificity of root research to produce sound laboratory and field data; (3) describing typical, but overlooked steps for studying roots (e.g. root handling, cleaning and storage); and (4) gathering metadata necessary for the interpretation of results and their reuse. Most importantly, all root traits have been introduced with some degree of ecological context that will be a foundation for understanding their ecological meaning, their typical use and uncertainties, and some methodological and conceptual perspectives for future research. Considering all of this, we urge readers not to solely extract protocol recommendations for trait measurements from this work, but to take a moment to read and reflect on the extensive information contained in this broader guide to root ecology, including sections I-VII and the many introductions to each section and root trait description. Finally, it is critical to understand that a major aim of this guide is to help break down barriers between the many subdisciplines of root ecology and ecophysiology, broaden researchers' views on the multiple aspects of root study and create favourable conditions for the inception of comprehensive experiments on the role of roots in plant and ecosystem functioning.
Collapse
Affiliation(s)
- Grégoire T. Freschet
- CEFEUniv Montpellier, CNRS, EPHE, IRD1919 route de MendeMontpellier34293France
- Station d’Ecologie Théorique et ExpérimentaleCNRS2 route du CNRS09200MoulisFrance
| | - Loïc Pagès
- UR 1115 PSHCentre PACA, site AgroparcINRAE84914Avignon cedex 9France
| | - Colleen M. Iversen
- Environmental Sciences Division and Climate Change Science InstituteOak Ridge National LaboratoryOak RidgeTN37831USA
| | - Louise H. Comas
- USDA‐ARS Water Management Research Unit2150 Centre Avenue, Bldg D, Suite 320Fort CollinsCO80526USA
| | - Boris Rewald
- Department of Forest and Soil SciencesUniversity of Natural Resources and Life SciencesVienna1190Austria
| | - Catherine Roumet
- CEFEUniv Montpellier, CNRS, EPHE, IRD1919 route de MendeMontpellier34293France
| | - Jitka Klimešová
- Department of Functional EcologyInstitute of Botany CASDukelska 13537901TrebonCzech Republic
| | - Marcin Zadworny
- Institute of DendrologyPolish Academy of SciencesParkowa 562‐035KórnikPoland
| | - Hendrik Poorter
- Plant Sciences (IBG‐2)Forschungszentrum Jülich GmbHD‐52425JülichGermany
- Department of Biological SciencesMacquarie UniversityNorth RydeNSW2109Australia
| | | | - Thomas S. Adams
- Department of Plant SciencesThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Agnieszka Bagniewska‐Zadworna
- Department of General BotanyInstitute of Experimental BiologyFaculty of BiologyAdam Mickiewicz UniversityUniwersytetu Poznańskiego 661-614PoznańPoland
| | - A. Glyn Bengough
- The James Hutton InstituteInvergowrie, Dundee,DD2 5DAUK
- School of Science and EngineeringUniversity of DundeeDundee,DD1 4HNUK
| | | | - Ivano Brunner
- Forest Soils and BiogeochemistrySwiss Federal Research Institute WSLZürcherstr. 1118903BirmensdorfSwitzerland
| | - Johannes H. C. Cornelissen
- Department of Ecological ScienceFaculty of ScienceVrije Universiteit AmsterdamDe Boelelaan 1085Amsterdam1081 HVthe Netherlands
| | - Eric Garnier
- CEFEUniv Montpellier, CNRS, EPHE, IRD1919 route de MendeMontpellier34293France
| | - Arthur Gessler
- Forest DynamicsSwiss Federal Research Institute WSLZürcherstr. 1118903BirmensdorfSwitzerland
- Institute of Terrestrial EcosystemsETH Zurich8092ZurichSwitzerland
| | - Sarah E. Hobbie
- Department of Ecology, Evolution and BehaviorUniversity of MinnesotaSt PaulMN55108USA
| | - Ina C. Meier
- Functional Forest EcologyUniversity of HamburgHaidkrugsweg 122885BarsbütelGermany
| | - Liesje Mommer
- Plant Ecology and Nature Conservation GroupDepartment of Environmental SciencesWageningen University and ResearchPO Box 476700 AAWageningenthe Netherlands
| | | | - Laura Rose
- Station d’Ecologie Théorique et ExpérimentaleCNRS2 route du CNRS09200MoulisFrance
- Senckenberg Biodiversity and Climate Research Centre (BiK-F)Senckenberganlage 2560325Frankfurt am MainGermany
| | - Peter Ryser
- Laurentian University935 Ramsey Lake RoadSudburyONP3E 2C6Canada
| | | | - Nadejda A. Soudzilovskaia
- Environmental Biology DepartmentInstitute of Environmental SciencesCMLLeiden UniversityLeiden2300 RAthe Netherlands
| | - Alexia Stokes
- INRAEAMAPCIRAD, IRDCNRSUniversity of MontpellierMontpellier34000France
| | - Tao Sun
- Institute of Applied EcologyChinese Academy of SciencesShenyang110016China
| | - Oscar J. Valverde‐Barrantes
- International Center for Tropical BotanyDepartment of Biological SciencesFlorida International UniversityMiamiFL33199USA
| | - Monique Weemstra
- CEFEUniv Montpellier, CNRS, EPHE, IRD1919 route de MendeMontpellier34293France
| | - Alexandra Weigelt
- Systematic Botany and Functional BiodiversityInstitute of BiologyLeipzig UniversityJohannisallee 21-23Leipzig04103Germany
| | - Nina Wurzburger
- Odum School of EcologyUniversity of Georgia140 E. Green StreetAthensGA30602USA
| | - Larry M. York
- Biosciences Division and Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTN37831USA
| | - Sarah A. Batterman
- School of Geography and Priestley International Centre for ClimateUniversity of LeedsLeedsLS2 9JTUK
- Cary Institute of Ecosystem StudiesMillbrookNY12545USA
| | - Moemy Gomes de Moraes
- Department of BotanyInstitute of Biological SciencesFederal University of Goiás1974690-900Goiânia, GoiásBrazil
| | - Štěpán Janeček
- School of Biological SciencesThe University of Western Australia35 Stirling HighwayCrawley (Perth)WA 6009Australia
| | - Hans Lambers
- School of Biological SciencesThe University of Western AustraliaCrawley (Perth)WAAustralia
| | - Verity Salmon
- Environmental Sciences Division and Climate Change Science InstituteOak Ridge National LaboratoryOak RidgeTN37831USA
| | - Nishanth Tharayil
- Department of Plant and Environmental SciencesClemson UniversityClemsonSC29634USA
| | - M. Luke McCormack
- Center for Tree ScienceMorton Arboretum, 4100 Illinois Rt. 53LisleIL60532USA
| |
Collapse
|