1
|
Liu H, Hu K, Ma Y, Fu L, Huang Z, Cheng Z, Sheng Y, Li D, Pan Y. Identification and functional analysis of an LTR retrotransposon insertion in CsPHYB associated with early senescence in cucumber (Cucumis sativus L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 356:112519. [PMID: 40268202 DOI: 10.1016/j.plantsci.2025.112519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/31/2025] [Accepted: 04/18/2025] [Indexed: 04/25/2025]
Abstract
Early senescence in plants significantly affects photosynthetic efficiency, crop yield, and overall plant vigor. In this study, we identified a spontaneous cucumber mutant, NW079, exhibiting premature leaf yellowing, reduced chlorophyll content, and impaired photosynthetic performance. To uncover the genetic basis of this phenotype, we generated F₂ mapping populations and employed bulked segregant analysis and fine mapping. These efforts led to the identification of a 5.5-kb long terminal repeat (LTR) retrotransposon insertion within the first exon of CsPHYB, a gene encoding phytochrome B. This insertion disrupted normal splicing and gave rise to two aberrant transcript variants: one containing a 261-bp LTR-derived sequence with premature stop codons, and the other harboring a 1,914-bp deletion due to exon skipping. Both variants are predicted to produce truncated, nonfunctional proteins. Functional analyses revealed that CsPHYB deficiency resulted in heightened sensitivity to varying light qualities and intensities, leading to pronounced leaf yellowing and reduced leaf area. RNA sequencing revealed widespread transcriptional reprogramming in NW079, with 580 differentially expressed genes (DEGs) implicated in heme metabolism, tetrapyrrole binding, and chloroplast development. These transcriptional disruptions were closely linked to the observed structural and functional abnormalities in chloroplasts. This study provides a molecular framework for understanding the early senescence in cucumber, offering valuable insights for breeding strategies aimed at improving crop resilience and productivity. Keymessage An LTR retrotransposon insertion in the first exon of CsPhyB disrupts its expression and splicing, leading to early leaf senescence in cucumber. This finding provides novel insights into the role of CsPHYB in chloroplast development and light signaling, offering valuable molecular markers and a target gene for cucumber breeding programs focused on enhancing yield and stress resilience.
Collapse
Affiliation(s)
- Hanqiang Liu
- Hainan Institute of Northwest A&F University, Sanya, Hainan 572024, China; College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kaihong Hu
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agriculture University, Daqing, Heilongjiang 163319, China
| | - Yuxuan Ma
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Liting Fu
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agriculture University, Daqing, Heilongjiang 163319, China
| | - Zeqiang Huang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhihui Cheng
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuyan Sheng
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agriculture University, Daqing, Heilongjiang 163319, China
| | - Dandan Li
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agriculture University, Daqing, Heilongjiang 163319, China.
| | - Yupeng Pan
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
2
|
Shi Y, Mu Z, Meng X, Li X, Zou L, Zhu X, Bo W. Genome-Wide Identification and Analysis of Auxin Response Factor Transcription Factor Gene Family in Populus euphratica. PLANTS (BASEL, SWITZERLAND) 2025; 14:1248. [PMID: 40284135 PMCID: PMC12030272 DOI: 10.3390/plants14081248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025]
Abstract
Auxin response factor (ARF) is a plant-specific transcription factor that responds to changes in auxin levels, regulating various biological processes in plants such as flower development, senescence, lateral root formation, stress response, and secondary metabolite accumulation. In this study, we identified the ARF gene family in Populus euphratica Oliv. using bioinformatics analysis, examining their conserved structural domains, gene structure, expression products, and evolutionary relationships. We found that the 34 PeARF genes were unevenly distributed on 19 chromosomes of P. euphratica. All 56 PeARF proteins were hydrophilic and unstable proteins localized in the nucleus, with secondary structures containing α-helices, extended strands, random coils, and β-turns but lacking transmembrane helices (TM-helices) and signal peptides. Evolutionary analysis divided the PeARF proteins into five subfamilies (A-E), with high conservation observed in the order and number of motifs, domains, gene structure, and other characteristics within each subfamily. Expression pattern analysis revealed that 17 PeARF genes were upregulated during cell growth and heterophylly development. This comprehensive analysis provides insights into the molecular mechanisms of ARF genes in P. euphratica growth, development, and stress response, serving as a basis for further studies on the auxin signaling pathway in P. euphratica.
Collapse
Affiliation(s)
- Yunzhu Shi
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Y.S.); (Z.M.); (X.M.); (X.L.); (L.Z.)
| | - Zixuan Mu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Y.S.); (Z.M.); (X.M.); (X.L.); (L.Z.)
| | - Xiangyu Meng
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Y.S.); (Z.M.); (X.M.); (X.L.); (L.Z.)
| | - Xiang Li
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Y.S.); (Z.M.); (X.M.); (X.L.); (L.Z.)
| | - Lingxuan Zou
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Y.S.); (Z.M.); (X.M.); (X.L.); (L.Z.)
| | - Xuli Zhu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Y.S.); (Z.M.); (X.M.); (X.L.); (L.Z.)
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Wenhao Bo
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Y.S.); (Z.M.); (X.M.); (X.L.); (L.Z.)
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
3
|
Zheng K, Feng Y, Liu R, Zhang Y, Fan D, Zhong K, Tang X, Zhang Q, Cao S. Bioinformatics Analysis Reveals the Evolutionary Characteristics of the Phoebe bournei ARF Gene Family and Its Expression Patterns in Stress Adaptation. Int J Mol Sci 2025; 26:3701. [PMID: 40332368 PMCID: PMC12027883 DOI: 10.3390/ijms26083701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 05/08/2025] Open
Abstract
Auxin response factors (ARFs) are pivotal transcription factors that regulate plant growth, development, and stress responses. Yet, the genomic characteristics and functions of ARFs in Phoebe bournei remain undefined. In this study, 25 PbARF genes were identified for the first time across the entire genome of P. bournei. Phylogenetic analysis categorized these genes into five subfamilies, with members of each subfamily displaying similar conserved motifs and gene structures. Notably, Classes III and V contained the largest number of members. Collinearity analysis suggested that segmental duplication events were the primary drivers of PbARF gene family expansion. Structural analysis revealed that all PbARF genes possess a conserved B3 binding domain and an auxin response element, while additional motifs varied among different classes. Promoter cis-acting element analysis revealed that PbARF genes are extensively involved in hormonal responses-particularly to abscisic acid and jasmonic acid and abiotic stresses-as well as abiotic stresses, including heat, drought, light, and dark. Tissue-specific expression analysis showed that PbARF25, PbARF23, PbARF19, PbARF22, and PbARF20 genes (class III), and PbARF18 and PbARF11 genes (class V) consistently exhibited high expression levels in the five tissues. In addition, five representative PbARF genes were analyzed using qRT-PCR. The results demonstrated significant differences in the expression of PbARF genes under various abiotic stress conditions (drought, salt stress, light, and dark), indicating their important roles in stress response. This study laid a foundation for elucidating the molecular evolution mechanism of ARF genes in P. bournei and for determining the candidate genes for stress-resistance breeding.
Collapse
Affiliation(s)
- Kehui Zheng
- College of Computer and Information Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Yizhuo Feng
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.F.); (R.L.); (D.F.); (X.T.)
| | - Ronglin Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.F.); (R.L.); (D.F.); (X.T.)
| | - Yanlin Zhang
- College of Jun Cao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (K.Z.)
| | - Dunjin Fan
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.F.); (R.L.); (D.F.); (X.T.)
| | - Kai Zhong
- College of Jun Cao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (K.Z.)
| | - Xinghao Tang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.F.); (R.L.); (D.F.); (X.T.)
- Fujian Academy of Forestry Sciences, Fuzhou 350012, China
| | - Qinghua Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.F.); (R.L.); (D.F.); (X.T.)
| | - Shijiang Cao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.F.); (R.L.); (D.F.); (X.T.)
| |
Collapse
|
4
|
Wang M, Liu W, Feng G, Nie G, Yang Z, Hao F, Huang L, Zhang X. Comprehensive genome-wide analysis of ARF transcription factors in orchardgrass (Dactylis glomerata): the positive regulatory role of DgARF7 in drought resistance. BMC Genomics 2025; 26:101. [PMID: 39901077 PMCID: PMC11792575 DOI: 10.1186/s12864-025-11241-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/13/2025] [Indexed: 02/05/2025] Open
Abstract
Auxin response factor (ARF), a transcription factor, is crucial in controlling growth, development, and response to environmental stress. Orchardgrass (Dactylis glomerata) is an economically significant, widely cultivated forage grass. However, information on the genome-wide information and functional characterization of ARFs in orchardgrass is limited. This study identified 27 ARF genes based on the orchardgrass genome database. These DgARFs were unevenly distributed across the seven orchardgrass chromosomes and clustered into four classes. Phylogenetic analysis with multispecies of ARF proteins indicated that the ARFs exhibit a relatively conserved evolutionary path. Focusing on hormone signaling responses, DgARF7 demonstrated a potential positive regulatory role in response to 3-indole acetic acid, methyl jasmonate, gibberellin, salicylic acid, and abscisic acid signals. Additionally, exposure to drought stress induced noticeable oscillatory changes in DgARF7 gene. Notably, DgARF7 enhanced drought tolerance through heterologous expression in yeast and overexpression in Arabidopsis. Overexpressed Arabidopsis lines of DgARF7 exhibited a markedly higher relative water content and superoxide dismutase activity, while the malondialdehyde content was significantly decreased compared to wild type under drought stress. DgARF7 also accelerated flowering time by inducing the flowering-related gene expression levels in Arabidopsis. This research provides important insights into the role of DgARF7 in orchardgrass and provides further understanding in molecular breeding.
Collapse
Affiliation(s)
- Miaoli Wang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wen Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guangyan Feng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Gang Nie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhongfu Yang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Feixiang Hao
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
5
|
Zhang L, Liu J, Chen J, Zhang Y, Qin C, Lyu X, Li Z, Ji R, Liu B, Li H, Zhao T. Regulation of Shade Avoidance Under Low-Blue-Light by MTA in Soybean. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410334. [PMID: 39665269 PMCID: PMC11791948 DOI: 10.1002/advs.202410334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/05/2024] [Indexed: 12/13/2024]
Abstract
Under low blue light (LBL) conditions, soybean exhibits classic shade avoidance syndrome (SAS) with exaggerated stem elongation (ESE), leading to lodging and yield reduction in dense farming. Recently, mRNA modification by N6-methyladenosine (m6A) has emerged as a crucial epigenetic mechanism regulating plant biological processes; however, its impact on shade avoidance remains unexplored. In this study, the double mutants, gmmtas, that are impaired in two m6A writer genes, GmMTAa and GmMTAb that encode m6A methyltransferases or m6A writers are generated. It is found that the gmmtas mutants showed a substantial reduction of m6A levels, a dwarf phenotype, and a diminished sensitivity to LBL. Further investigation of the gmmtas mutants demonstrates that GmMTA regulates shade avoidance response by altering the expression of GmCRY1s, GmSPAs, and GmCOP1s, resulting in increased accumulation of GmSTFs that are known to suppress the shad avoidance response in response to LBL in soybean. The findings reveal a novel molecular mechanism regulating shade resistance in soybean, providing insights into the epigenetic mechanisms of plant adaptation to changing light environments and paving the way for the development of shade-tolerant soybean varieties.
Collapse
Affiliation(s)
- Liya Zhang
- State Key Laboratory of Crop Gene Resources and BreedingKey Laboratory of Soybean Biology (Beijing) (MARA)Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijing100081China
| | - Jun Liu
- State Key Laboratory of Crop Gene Resources and BreedingKey Laboratory of Soybean Biology (Beijing) (MARA)Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijing100081China
| | - Jiaqi Chen
- State Key Laboratory of Crop Gene Resources and BreedingKey Laboratory of Soybean Biology (Beijing) (MARA)Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijing100081China
| | - Yanyan Zhang
- State Key Laboratory of Crop Gene Resources and BreedingKey Laboratory of Soybean Biology (Beijing) (MARA)Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijing100081China
| | - Chao Qin
- State Key Laboratory of Crop Gene Resources and BreedingKey Laboratory of Soybean Biology (Beijing) (MARA)Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijing100081China
| | - Xiangguang Lyu
- State Key Laboratory of Crop Gene Resources and BreedingKey Laboratory of Soybean Biology (Beijing) (MARA)Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijing100081China
| | - Zhuang Li
- State Key Laboratory of Crop Gene Resources and BreedingKey Laboratory of Soybean Biology (Beijing) (MARA)Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijing100081China
| | - Ronghuan Ji
- State Key Laboratory of Crop Gene Resources and BreedingKey Laboratory of Soybean Biology (Beijing) (MARA)Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijing100081China
| | - Bin Liu
- State Key Laboratory of Crop Gene Resources and BreedingKey Laboratory of Soybean Biology (Beijing) (MARA)Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijing100081China
| | - Hongyu Li
- State Key Laboratory of Crop Gene Resources and BreedingKey Laboratory of Soybean Biology (Beijing) (MARA)Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijing100081China
| | - Tao Zhao
- State Key Laboratory of Crop Gene Resources and BreedingKey Laboratory of Soybean Biology (Beijing) (MARA)Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijing100081China
| |
Collapse
|
6
|
Yang K, Zhang H, Sun L, Zhang Y, Gao Z, Song X. Identification and characterization of the auxin-response factor family in moso bamboo reveals that PeARF41 negatively regulates second cell wall formation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109395. [PMID: 39662390 DOI: 10.1016/j.plaphy.2024.109395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/03/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
Auxin response factors (ARFs) are key transcriptional factors mediating the transcriptional of auxin-related genes that play crucial roles in a range of plant metabolic activities. The characteristics of 47 PeARFs, identified in moso bamboo and divided into three classes, were evaluated. Structural feature analysis showed that intron numbers ranged from 3 to 14, while Motif 1, 2, 7 and 10 were highly conserved, altogether forming DNA-binding and ARF domains. Analysis of RNA-seq from different tissues revealed that PeARFs showed tissue-specificity. Additionally, abundant hormone-response and stress-related elements were enriched in promoters of PeARFs, supporting the hypothesis that the expression of PeARFs was significantly activated or inhibited by ABA and cold treatments. Further, PeARF41 overexpression inhibited SCW formation by reducing hemicellulose, cellulose and lignin contents. Moreover, a co-expression network, containing 28 genes with PeARF41 at its core was predicted, and the results of yeast one hybridization (Y1H), electrophoretic mobility shift assay (EMSA) and dual-luciferase (Dul-LUC) assays showed that PeARF41 bound the PeSME1 promoter to inhibit its expression. We conclude that a 'PeARF41-PeSME1' regulatory cascade mediates SCW formation. Our findings provided a solid theoretical foundation for further research on the role of PeARFs.
Collapse
Affiliation(s)
- Kebin Yang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, China
| | - Huiling Zhang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, China
| | - Letong Sun
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yue Zhang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zhimin Gao
- International Center for Bamboo and Rattan, Beijing 100102, China
| | - Xinzhang Song
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
7
|
Wang X, Lin C. The two action mechanisms of plant cryptochromes. TRENDS IN PLANT SCIENCE 2025:S1360-1385(24)00337-6. [PMID: 39875298 DOI: 10.1016/j.tplants.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 01/30/2025]
Abstract
Plant cryptochromes (CRYs) are photolyase-like blue-light receptors that contain a flavin adenine dinucleotide (FAD) chromophore. In plants grown in darkness, CRYs are present as monomers. Photoexcited CRYs oligomerize to form homo-tetramers. CRYs physically interact with non-constitutive or constitutive CRY-interacting proteins to form the non-constitutive or constitutive CRY complexes, respectively. The non-constitutive CRY complexes exhibit a different affinity for CRYs in response to light, and act by a light-induced fit (lock-and-key) mechanism. The constitutive CRY complexes have a similar affinity for CRYs regardless of light, and act via a light-induced liquid-liquid phase separation (LLPS) mechanism. These CRY complexes mediate blue-light regulation of transcription, mRNA methylation, mRNA splicing, protein modification, and proteolysis to modulate plant growth and development.
Collapse
Affiliation(s)
- Xu Wang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong 261325, China
| | - Chentao Lin
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
8
|
Chen L, Qiu Z, Dong J, Bu R, Zhou Y, Wang H, Hu L. CsPHYB- CsPIF3/ 4 Regulates Hypocotyl Elongation by Coordinating the Auxin and Gibberellin Biosynthetic Pathways in Cucumber ( Cucumis sativus L.). PLANTS (BASEL, SWITZERLAND) 2025; 14:371. [PMID: 39942933 PMCID: PMC11821244 DOI: 10.3390/plants14030371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025]
Abstract
Hypocotyl length is closely related to quality in seedlings and is an important component of plant height vital for plant-type breeding in cucumber. However, the underlying molecular mechanisms of hypocotyl elongation are poorly understood. In this study, the endogenous hormone content of indole acetic acid (IAA) and gibberellin (GA3) showed an increase in the long hypocotyl Csphyb (phytochrome B) mutant AM274M compared with its wild-type AM274W. An RNA-sequencing analysis identified 1130 differentially expressed genes (DEGs), of which 476 and 654 were up- and downregulated in the mutant AM274M, respectively. A KEGG enrichment analysis exhibited that these DEGs were mainly enriched in the plant hormone signal transduction pathway. The expression levels of the pivotal genes CsGA20ox-2, in the gibberellin biosynthesis pathway, and CsYUCCA8, in the auxin biosynthesis pathway, were notably elevated in the hypocotyl of the mutant AM274M, in contrast to the wild-type AM274W. Additionally, GUS staining and a dual-luciferase reporter assay corroborated that the phytochrome-interacting factors CsPIF3/4 can bind to the E(G)-box motifs present in the promoters of the CsGA20ox-2 and CsYUCCA8 genes, thereby modulating their expression and subsequently influencing hypocotyl elongation. Consequently, this research offers profound insights into the regulation of hypocotyl elongation by auxin and gibberellin in response to light signals and establishes a crucial theoretical groundwork for cultivating robust cucumber seedlings in agricultural practice.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Liangliang Hu
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China; (L.C.); (Z.Q.); (J.D.); (R.B.); (Y.Z.); (H.W.)
| |
Collapse
|
9
|
Zhao Y, Han Q, Kang X, Tan W, Yao X, Zhang Y, Shi H, Xia R, Wu X, Lin H, Zhang D. The HAT1 transcription factor regulates photomorphogenesis and skotomorphogenesis via phytohormone levels. PLANT PHYSIOLOGY 2024; 197:kiae542. [PMID: 39404113 DOI: 10.1093/plphys/kiae542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 08/26/2024] [Indexed: 12/24/2024]
Abstract
Plants dynamically modulate their growth and development to acclimate to the fluctuating light environment via a complex phytohormone network. However, the dynamic molecular regulatory mechanisms underlying how plants regulate phytohormones during skotomorphogenesis and photomorphogenesis are largely unknown. Here, we identified a HD-ZIP II transcription factor, HOMEODOMAIN ARABIDOPSIS THALIANA1 (HAT1), as a key node that modulates the dose effects of brassinosteroids (BRs) and auxin on hypocotyl growth during skotomorphogenesis and photomorphogenesis. Compared with the wild-type (Col-0), both HAT1 loss of function and its overexpression led to disrupted photomorphogenic and skotomorphogenic hypocotyl growth. HAT1 overexpression (HAT1OX) plants displayed longer hypocotyls in the light but shorter hypocotyls in darkness, whereas the triple mutant hat1hat2hat3 showed the opposite phenotype. Furthermore, we found that CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) interacted with dephosphorylated HAT1 and facilitated the degradation of HAT1 by ubiquitination in darkness, while HAT1 was phosphorylated and stabilized by BRASSINOSTEROID INSENSITIVE2 (BIN2) in the light. Interestingly, we observed distinct dose-dependent effects of BR and auxin on hypocotyl elongation under varying light conditions and that HAT1 functioned as a key node in this process. The shorter hypocotyl of HAT1OX in darkness was due to the inhibition of BR biosynthetic gene BRASSINOSTEROID-6-OXIDASE2 (BR6OX2) expression to reduce BRs content, while brassinolide (BL) treatment alleviated this growth repression. In the light, HAT1 inhibited BR biosynthesis but enhanced auxin signaling by directly repressing IAA3/SHORT HYPOCOTYL 2 (SHY2) expression. Our findings uncover a dual function of HAT1 in regulating BR biosynthesis and auxin signaling that is crucial for ensuring proper skotomorphogenic and photomorphogenic growth.
Collapse
Affiliation(s)
- Yuqing Zhao
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Qing Han
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Xinke Kang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Wenrong Tan
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Xiuhong Yao
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Yang Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Haoyu Shi
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Ran Xia
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Xuemei Wu
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Honghui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Dawei Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
10
|
Tian Z, Chen B, Sun Y, Sun G, Gao X, Pan Z, Song G, Du X, He S. GhGRF4/GhARF2-GhGASA24 module regulates fiber cell wall thickness by modulating cellulose biosynthesis in upland cotton (Gossypium hirsutum). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1842-1856. [PMID: 39427330 DOI: 10.1111/tpj.17083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 10/03/2024] [Indexed: 10/22/2024]
Abstract
Fiber elongation rate is an essential characteristic of cotton fiber in the textile industry, yet it has been largely overlooked in genetic studies. Gibberellins (GAs) and auxin (IAA) are recognized for their role in directing numerous developmental processes in plants by influencing cell differentiation and elongation. However, the degree to which GA-IAA interaction governs cellular elongation in cotton fiber cells remains to be fully understood. In this study, we identified a causal gene, Gibberellic Acid-Stimulated in Arabidopsis 24 (GhGASA24), that appears to be responsible for fiber elongation rate via regulating fiber cell wall thickness. Subsequent experiments revealed that GhGASA24 influences cell wall formation by promoting the expression of GhCesA8 and GhCesA10. Our findings suggest that Auxin Response Factor 2 (GhARF2) regulates fiber elongation rate by directly binding to the AuxRE elements in GhGASA24 promoter. In addition, we identified Growth Regulation Factor 4 (GhGRF4) as a transcription factor that interacts with GhARF2 to form a heterodimer complex, which also transcriptionally activates GhGASA24. Intriguingly, GhGRF4 regulates GhARF2 expression by directly binding to its promoter, thereby acting as a cascade regulator to enhance the transcriptional levels of GhGASA24. We propose that the GhGRF4/GhARF2-GhGASA24-GhCesAs module may contribute to fiber cell wall thickness by modulating cellulose biosynthesis, and provide a theoretical basis for improvement of fiber quality.
Collapse
Affiliation(s)
- Zailong Tian
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, China
| | - Baojun Chen
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yaru Sun
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Gaofei Sun
- School of Computer Science and Information Engineering, Anyang Institute of Technology, Anyang, China
| | - Xu Gao
- National Supercomputing Center in Zhengzhou, Zhengzhou University, Zhengzhou, China
| | - Zhaoe Pan
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Guoli Song
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiongming Du
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Shoupu He
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
Yang X, Ma Y, Chen J, Huang M, Qi M, Han N, Bian H, Qiu T, Yan Q, Wang J. Sextuple knockouts of a highly conserved and coexpressed AUXIN/INDOLE-3-ACETIC ACID gene set confer shade avoidance-like responses in Arabidopsis. PLANT, CELL & ENVIRONMENT 2024; 47:4483-4497. [PMID: 39012193 DOI: 10.1111/pce.15039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 07/17/2024]
Abstract
AUXIN/INDOLE-3-ACETIC ACIDs are transcriptional repressors for auxin signalling. Aux/IAAs of Arabidopsis thaliana display some functional redundancy. The IAA3/SHY2 clade (IAA1, IAA2, IAA3 and IAA4) show strong sequence similarity, but no higher-order mutants have been reported. Here, through CRISPR/Cas9 genome editing, we generated loss-of-function iaa1/2/3/4 mutants. The quadruple mutants only exhibited a weak phenotype. Thus, we additionally knocked out IAA7/AXR2 and IAA16, which are coexpressed with IAA1/2/3/4. Remarkably, under white light control conditions, the iaa1/2/3/4/7/16 mutants exhibited a shade avoidance-like phenotype with over-elongated hypocotyls and petioles and hyponastic leaves. The sextuple mutants were highly sensitive to low light intensity, and the hypocotyl cells of the mutants were excessively elongated. Transcriptome profiling and qRT-PCR analyses revealed that the sextuple mutation upregulated IAA19/MSG2 and IAA29, two shared shade/auxin signalling targets. Besides, genes encoding cell wall-remodelling proteins and shade-responsive transcription regulators were upregulated. Using dual-luciferase reporter assays, we verified that IAA2/IAA7 targeted the promoters of cell wall-remodelling genes to inhibit their transcription. Our work indicates that the IAA1/2/3/4/7/16 gene set is required for the optimal integration of auxin and shade signalling. The mutants generated here should be valuable for exploring the complex interactions among signal sensors, transcription activators and transcription repressors during hormone/environmental responses.
Collapse
Affiliation(s)
- Xinxing Yang
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yuan Ma
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jie Chen
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Minhua Huang
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Mengyuan Qi
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ning Han
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Hongwu Bian
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ting Qiu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Qingfeng Yan
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Junhui Wang
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Wang YX, Zhao QP, Zhu JD, Chu FY, Fu XL, Li XK, Ding MC, Liu YF, Wu QQ, Xue LL, Xin GY, Zhao X. TRANSPARENT TESTA GLABRA1 regulates high-intensity blue light-induced phototropism by reducing CRYPTOCHROME1 levels. PLANT PHYSIOLOGY 2024; 196:1475-1488. [PMID: 38833579 DOI: 10.1093/plphys/kiae322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/04/2024] [Accepted: 04/17/2024] [Indexed: 06/06/2024]
Abstract
The asymmetrical distribution of auxin supports high intensity blue light (HBL)-mediated phototropism. Flavonoids, secondary metabolites induced by blue light and TRANSPARENT TESTA GLABRA1 (TTG1), alter auxin transport. However, the role of TTG1 in HBL-induced phototropism in Arabidopsis (Arabidopsis thaliana) remains unclear. We found that TTG1 regulates HBL-mediated phototropism. HBL-induced degradation of CRYPTOCHROME 1 (CRY1) was repressed in ttg1-1, and depletion of CRY1 rescued the phototropic defects of the ttg1-1 mutant. Moreover, overexpression of CRY1 in a cry1 mutant background led to phototropic defects in response to HBL. These results indicated that CRY1 is involved in the regulation of TTG1-mediated phototropism in response to HBL. Further investigation showed that TTG1 physically interacts with CRY1 via its N-terminus and that the added TTG1 promotes the dimerization of CRY1. The interaction between TTG1 and CRY1 may promote HBL-mediated degradation of CRY1. TTG1 also physically interacted with blue light inhibitor of cryptochrome 1 (BIC1) and Light-Response Bric-a-Brack/Tramtrack/Broad 2 (LRB2), and these interactions either inhibited or promoted their interaction with CRY1. Exogenous gibberellins (GA) and auxins, two key plant hormones that crosstalk with CRY1, may confer the recovery of phototropic defects in the ttg1-1 mutant and CRY1-overexpressing plants. Our results revealed that TTG1 participates in the regulation of HBL-induced phototropism by modulating CRY1 levels, which are coordinated with GA or IAA signaling.
Collapse
Affiliation(s)
- Yu-Xi Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Qing-Ping Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
- College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang 473061, Henan, China
| | - Jin-Dong Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Fang-Yuan Chu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xiang-Lin Fu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xing-Kun Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Mei-Chen Ding
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Yan-Fei Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Qi-Qi Wu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Lin-Lin Xue
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Guang-Yuan Xin
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xiang Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
13
|
Chen L, Liu M, Li Y, Guan Y, Ruan J, Mao Z, Wang W, Yang HQ, Guo T. Arabidopsis cryptochromes interact with SOG1 to promote the repair of DNA double-strand breaks. Biochem Biophys Res Commun 2024; 724:150233. [PMID: 38865814 DOI: 10.1016/j.bbrc.2024.150233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
Cryptochromes (CRYs) are blue light (BL) photoreceptors to regulate a variety of physiological processes including DNA double-strand break (DSB) repair. SUPPRESSOR OF GAMMA RADIATION 1 (SOG1) acts as the central transcription factor of DNA damage response (DDR) to induce the transcription of downstream genes, including DSB repair-related genes BRCA1 and RAD51. Whether CRYs regulate DSB repair by directly modulating SOG1 is unknown. Here, we demonstrate that CRYs physically interact with SOG1. Disruption of CRYs and SOG1 leads to increased sensitivity to DSBs and reduced DSB repair-related genes' expression under BL. Moreover, we found that CRY1 enhances SOG1's transcription activation of DSB repair-related gene BRCA1. These results suggest that the mechanism by which CRYs promote DSB repair involves positive regulation of SOG1's transcription of its target genes, which is likely mediated by CRYs-SOG1 interaction.
Collapse
Affiliation(s)
- Li Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Minqing Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yupeng Li
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yan Guan
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jiaqi Ruan
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Zhilei Mao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Wenxiu Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Hong-Quan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Tongtong Guo
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
14
|
Chen L, Cao X, Li Y, Liu M, Liu Y, Guan Y, Ruan J, Mao Z, Wang W, Yang HQ, Guo T. Photoexcited Cryptochrome 1 Interacts With SPCHLESS to Regulate Stomatal Development in Arabidopsis. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39253954 DOI: 10.1111/pce.15123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024]
Abstract
Stomata are epidermal openings that facilitate plant-atmosphere gas and water exchange during photosynthesis, respiration and water evaporation. SPEECHLESS (SPCH) is a master basic helix-loop-helix (bHLH) transcription factor that determines the initiation of stomatal development. It is known that blue light promotes stomatal development through the blue light photoreceptor cryptochromes (CRYs, CRY1 and CRY2). Whether CRYs regulate stomatal development through directly modulating SPCH is unknown. Here, we demonstrate by biochemical studies that CRY1 physically interacts with SPCH in a blue light-dependent manner. Genetic studies show that SPCH acts downstream of CRY1 to promote stomatal development in blue light. Furthermore, we show that CRY1 enhances the DNA-binding activity of SPCH and promotes the expression of its target genes in blue light. These results suggest that the mechanism by which CRY1 promotes stomatal development involves positive regulation of the DNA-binding activity of SPCH, which is likely mediated by blue light-induced CRY1-SPCH interaction. The precise regulation of SPCH DNA-binding activity by CRY1 may allow plants to optimize stomatal density and pattern according to ambient light conditions.
Collapse
Affiliation(s)
- Li Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Xiaoli Cao
- School of Life Sciences, Fudan University, Shanghai, China
| | - Yupeng Li
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Minqing Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yao Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yan Guan
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Jiaqi Ruan
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Zhilei Mao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Wenxiu Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Hong-Quan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Tongtong Guo
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
15
|
Jiang Z, Zhao Y, Gao B, Wei X, Jiao P, Zhang H, Liu S, Guan S, Ma Y. ZmARF16 Regulates ZCN12 to Promote the Accumulation of Florigen and Accelerate Flowering. Int J Mol Sci 2024; 25:9607. [PMID: 39273554 PMCID: PMC11395262 DOI: 10.3390/ijms25179607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/31/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Auxin response factors(ARFs) are a class of transcription factors that regulate the expression of auxin response genes and play a crucial role in plant growth and development. Florigen plays a crucial role in the process of flowering. However, the process by which auxin regulates the accumulation of florigen remains largely unclear. This study found that the expression of ZmARF16 in maize increases during flowering, and the genetic transformation of ZmARF16 accelerates the flowering process in Arabidopsis and maize. Furthermore, ZmARF16 was found to be positively correlated with the transcription of the ZCN12 gene. Similarly, the FT-like gene ZCN12 in maize rescues the late flowering phenotype of the FT mutation in Arabidopsis. Moreover, ZCN12 actively participates in the accumulation of florigen and the flowering process. Further research revealed that ZmARF16 positively responds to the auxin signal, and that the interaction between ZmARF16 and the ZCN12 promoter, as well as the subsequent promotion of ZCN12 gene expression, leads to early flowering. This was confirmed through a yeast one-hybrid and dual-luciferase assay. Therefore, the study provides evidence that the ZmARF16-ZCN12 module plays a crucial role in regulating the flowering process of maize.
Collapse
Affiliation(s)
- Zhenzhong Jiang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China;
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun 130118, China; (Y.Z.); (B.G.); (X.W.); (P.J.); (H.Z.); (S.L.)
| | - Yang Zhao
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun 130118, China; (Y.Z.); (B.G.); (X.W.); (P.J.); (H.Z.); (S.L.)
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Bai Gao
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun 130118, China; (Y.Z.); (B.G.); (X.W.); (P.J.); (H.Z.); (S.L.)
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Xiaotong Wei
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun 130118, China; (Y.Z.); (B.G.); (X.W.); (P.J.); (H.Z.); (S.L.)
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Peng Jiao
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun 130118, China; (Y.Z.); (B.G.); (X.W.); (P.J.); (H.Z.); (S.L.)
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Honglin Zhang
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun 130118, China; (Y.Z.); (B.G.); (X.W.); (P.J.); (H.Z.); (S.L.)
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Siyan Liu
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun 130118, China; (Y.Z.); (B.G.); (X.W.); (P.J.); (H.Z.); (S.L.)
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Shuyan Guan
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun 130118, China; (Y.Z.); (B.G.); (X.W.); (P.J.); (H.Z.); (S.L.)
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Yiyong Ma
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun 130118, China; (Y.Z.); (B.G.); (X.W.); (P.J.); (H.Z.); (S.L.)
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
16
|
Sun Y, Tian Z, Zuo D, Cheng H, Wang Q, Zhang Y, Lv L, Song G. Strigolactone-induced degradation of SMXL7 and SMXL8 contributes to gibberellin- and auxin-mediated fiber cell elongation in cotton. THE PLANT CELL 2024; 36:3875-3893. [PMID: 39046066 PMCID: PMC11371155 DOI: 10.1093/plcell/koae212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 05/22/2024] [Accepted: 07/18/2024] [Indexed: 07/25/2024]
Abstract
Cotton (Gossypium) fiber length, a key trait determining fiber yield and quality, is highly regulated by a class of recently identified phytohormones, strigolactones (SLs). However, the underlying molecular mechanisms of SL signaling involved in fiber cell development are largely unknown. Here, we show that the SL signaling repressors MORE AXILLARY GROWTH2-LIKE7 (GhSMXL7) and GhSMXL8 negatively regulate cotton fiber elongation. Specifically, GhSMXL7 and GhSMXL8 inhibit the polyubiquitination and degradation of the gibberellin (GA)-triggered DELLA protein (GhSLR1). Biochemical analysis revealed that GhSMXL7 and GhSMXL8 physically interact with GhSLR1, which interferes with the association of GhSLR1 with the E3 ligase GA INSENSITIVE2 (GhGID2), leading to the repression of GA signal transduction. GhSMXL7 also interacts with the transcription factor GhHOX3, preventing its binding to the promoters of essential fiber elongation regulatory genes. Moreover, both GhSMXL7 and GhSMXL8 directly bind to the promoter regions of the AUXIN RESPONSE FACTOR (ARF) genes GhARF18-10A, GhARF18-10D, and GhARF19-7D to suppress their expression. Cotton plants in which GhARF18-10A, GhARF18-10D, and GhARF19-7D transcript levels had been reduced by virus-induced gene silencing (VIGS) displayed reduced fiber length compared with control plants. Collectively, our findings reveal a mechanism illustrating how SL integrates GA and auxin signaling to coordinately regulate plant cell elongation at the single-cell level.
Collapse
Affiliation(s)
- Yaru Sun
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Zailong Tian
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan 572024, China
| | - Dongyun Zuo
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Hailiang Cheng
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Qiaolian Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Youping Zhang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Limin Lv
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Guoli Song
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan 572024, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
17
|
Sun Y, Yang X, Wu R, Lv S, Li Y, Jia H, Yang Y, Li B, Chen W, Allan AC, Jiang G, Shi YN, Chen K. DNA methylation controlling abscisic acid catabolism responds to light to mediate strawberry fruit ripening. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1718-1734. [PMID: 38896078 DOI: 10.1111/jipb.13681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/02/2024] [Indexed: 06/21/2024]
Abstract
Phytohormones, epigenetic regulation and environmental factors regulate fruit ripening but their interplay during strawberry fruit ripening remains to be determined. In this study, bagged strawberry fruit exhibited delayed ripening compared with fruit grown in normal light, correlating with reduced abscisic acid (ABA) accumulation. Transcription of the key ABA catabolism gene, ABA 8'-hydroxylase FaCYP707A4, was induced in bagged fruit. With light exclusion whole genome DNA methylation levels were up-regulated, corresponding to a delayed ripening process, while DNA methylation levels in the promoter of FaCYP707A4 were suppressed, correlating with increases in transcript and decreased ABA content. Experiments indicated FaCRY1, a blue light receptor repressed in bagged fruit and FaAGO4, a key protein involved in RNA-directed DNA methylation, could bind to the promoter of FaCYP707A4. The interaction between FaCRY1 and FaAGO4, and an increased enrichment of FaAGO4 directed to the FaCYP707A4 promoter in fruit grown under light suggests FaCRY1 may influence FaAGO4 to modulate the DNA methylation status of the FaCYP707A4 promoter. Furthermore, transient overexpression of FaCRY1, or an increase in FaCRY1 transcription by blue light treatment, increases the methylation level of the FaCYP707A4 promoter, while transient RNA interference of FaCRY1 displayed opposite phenotypes. These findings reveal a mechanism by which DNA methylation influences ABA catabolism, and participates in light-mediated strawberry ripening.
Collapse
Affiliation(s)
- Yunfan Sun
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Xiaofang Yang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Rongrong Wu
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Shouzheng Lv
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Yunduan Li
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Haoran Jia
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Yuying Yang
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Baijun Li
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Wenbo Chen
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Andrew C Allan
- New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Guihua Jiang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yan-Na Shi
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Kunsong Chen
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| |
Collapse
|
18
|
Chen L, Ruan J, Li Y, Liu M, Liu Y, Guan Y, Mao Z, Wang W, Yang HQ, Guo T. ADA2b acts to positively regulate blue light-mediated photomorphogenesis in Arabidopsis. Biochem Biophys Res Commun 2024; 717:150050. [PMID: 38718571 DOI: 10.1016/j.bbrc.2024.150050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/01/2024] [Indexed: 05/21/2024]
Abstract
Cryptochromes (CRYs) act as blue light photoreceptors to regulate various plant physiological processes including photomorphogenesis and repair of DNA double strand breaks (DSBs). ADA2b is a conserved transcription co-activator that is involved in multiple plant developmental processes. It is known that ADA2b interacts with CRYs to mediate blue light-promoted DSBs repair. Whether ADA2b may participate in CRYs-mediated photomorphogenesis is unknown. Here we show that ADA2b acts to inhibit hypocotyl elongation and hypocotyl cell elongation in blue light. We found that the SWIRM domain-containing C-terminus mediates the blue light-dependent interaction of ADA2b with CRYs in blue light. Moreover, ADA2b and CRYs act to co-regulate the expression of hypocotyl elongation-related genes in blue light. Based on previous studies and these results, we propose that ADA2b plays dual functions in blue light-mediated DNA damage repair and photomorphogenesis.
Collapse
Affiliation(s)
- Li Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jiaqi Ruan
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yupeng Li
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Minqing Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yao Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yan Guan
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Zhilei Mao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Wenxiu Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Hong-Quan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Tongtong Guo
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
19
|
Wang Y, Wang Q, Zhang F, Han C, Li W, Ren M, Wang Y, Qi K, Xie Z, Zhang S, Tao S. PbARF19-mediated auxin signaling regulates lignification in pear fruit stone cells. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 344:112103. [PMID: 38657909 DOI: 10.1016/j.plantsci.2024.112103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/18/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
The stone cells in pear fruits cause rough flesh and low juice, seriously affecting the taste. Lignin has been demonstrated as the main component of stone cells. Auxin, one of the most important plant hormone, regulates most physiological processes in plants including lignification. However, the concentration effect and regulators of auxin on pear fruits stone cell formation remains unclear. Here, endogenous indole-3-acetic acid (IAA) and stone cells were found to be co-localized in lignified cells by immunofluorescence localization analysis. The exogenous treatment of different concentrations of IAA demonstrated that the application of 200 µM IAA significantly reduced stone cell content, while concentrations greater than 500 µM significantly increased stone cell content. Besides, 31 auxin response factors (ARFs) were identified in pear genome. Putative ARFs were predicted as critical regulators involved in the lignification of pear flesh cells by phylogenetic relationship and expression analysis. Furthermore, the negative regulation of PbARF19 on stone cell formation in pear fruit was demonstrated by overexpression in pear fruitlets and Arabidopsis. These results illustrated that the PbARF19-mediated auxin signal plays a critical role in the lignification of pear stone cell by regulating lignin biosynthetic genes. This study provides theoretical and practical guidance for improving fruit quality in pear production.
Collapse
Affiliation(s)
- Yanling Wang
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Qi Wang
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Fanhang Zhang
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Chenyang Han
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Wen Li
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Mei Ren
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yueyang Wang
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaijie Qi
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhihua Xie
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Shaoling Zhang
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Shutian Tao
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
20
|
Krahmer J, Fankhauser C. Environmental Control of Hypocotyl Elongation. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:489-519. [PMID: 38012051 DOI: 10.1146/annurev-arplant-062923-023852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The hypocotyl is the embryonic stem connecting the primary root to the cotyledons. Hypocotyl length varies tremendously depending on the conditions. This developmental plasticity and the simplicity of the organ explain its success as a model for growth regulation. Light and temperature are prominent growth-controlling cues, using shared signaling elements. Mechanisms controlling hypocotyl elongation in etiolated seedlings reaching the light differ from those in photoautotrophic seedlings. However, many common growth regulators intervene in both situations. Multiple photoreceptors including phytochromes, which also respond to temperature, control the activity of several transcription factors, thereby eliciting rapid transcriptional reprogramming. Hypocotyl growth often depends on sensing in green tissues and interorgan communication comprising auxin. Hypocotyl auxin, in conjunction with other hormones, determines epidermal cell elongation. Plants facing cues with opposite effects on growth control hypocotyl elongation through intricate mechanisms. We discuss the status of the field and end by highlighting open questions.
Collapse
Affiliation(s)
- Johanna Krahmer
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland;
- Current affiliation: Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark;
| | - Christian Fankhauser
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland;
| |
Collapse
|
21
|
Ma Y, Chang W, Li Y, Xu J, Song Y, Yao X, Wang L, Sun Y, Guo L, Zhang H, Liu X. Plant cuticles repress organ initiation and development during skotomorphogenesis in Arabidopsis. PLANT COMMUNICATIONS 2024; 5:100850. [PMID: 38409782 PMCID: PMC11211553 DOI: 10.1016/j.xplc.2024.100850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/11/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
After germination in the dark, plants produce a shoot apical hook and closed cotyledons to protect the quiescent shoot apical meristem (SAM), which is critical for seedling survival during skotomorphogenesis. The factors that coordinate these processes, particularly SAM repression, remain enigmatic. Plant cuticles, multilayered structures of lipid components on the outermost surface of the aerial epidermis of all land plants, provide protection against desiccation and external environmental stresses. Whether and how cuticles regulate plant development are still unclear. Here, we demonstrate that mutants of BODYGUARD1 (BDG1) and long-chain acyl-CoA synthetase2 (LACS2), key genes involved in cutin biosynthesis, produce a short hypocotyl with an opened apical hook and cotyledons in which the SAM is activated during skotomorphogenesis. Light signaling represses expression of BDG1 and LACS2, as well as cutin biosynthesis. Transcriptome analysis revealed that cuticles are critical for skotomorphogenesis, particularly for the development and function of chloroplasts. Genetic and molecular analyses showed that decreased HOOKLESS1 expression results in apical hook opening in the mutants. When hypoxia-induced expression of LITTLE ZIPPER2 at the SAM promotes organ initiation in the mutants, the de-repressed expression of cell-cycle genes and the cytokinin response induce the growth of true leaves. Our results reveal previously unrecognized developmental functions of the plant cuticle during skotomorphogenesis and demonstrate a mechanism by which light initiates photomorphogenesis through dynamic regulation of cuticle synthesis to induce coordinated and systemic changes in organ development and growth during the skotomorphogenesis-to-photomorphogenesis transition.
Collapse
Affiliation(s)
- Yuru Ma
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Wenwen Chang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
| | - Yongpeng Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
| | - Jiahui Xu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Yongli Song
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Xinmiao Yao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Lei Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
| | - Yu Sun
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Lin Guo
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| | - Hao Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| | - Xigang Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| |
Collapse
|
22
|
Chen X, Fan Y, Guo Y, Li S, Zhang B, Li H, Liu LJ. Blue light photoreceptor cryptochrome 1 promotes wood formation and anthocyanin biosynthesis in Populus. PLANT, CELL & ENVIRONMENT 2024; 47:2044-2057. [PMID: 38392920 DOI: 10.1111/pce.14866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 01/26/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Abstract
Blue light photoreceptor cryptochrome 1 (CRY1) in herbaceous plants plays crucial roles in various developmental processes, including cotyledon expansion, hypocotyl elongation and anthocyanin biosynthesis. However, the function of CRY1 in perennial trees is unclear. In this study, we identified two ortholog genes of CRY1 (PagCRY1a and PagCRY1b) from Populus, which displayed high sequence similarity to Arabidopsis CRY1. Overexpression of PagCRY1 substantially inhibited plant growth and promoted secondary xylem development in Populus, while CRISPR/Cas9-mediated knockout of PagCRY1 enhanced plant growth and delayed secondary xylem development. Moreover, overexpression of PagCRY1 dramatically increased anthocyanin accumulation. The further analysis supported that PagCRY1 functions specifically in response to blue light. Taken together, our results demonstrated that modulating the expression of blue light photoreceptor CRY1 ortholog gene in Populus could significantly influence plant biomass production and the process of wood formation, laying a foundation for further investigating the light-regulated tree growth.
Collapse
Affiliation(s)
- Xiaoman Chen
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian, Shandong, China
| | - Yiting Fan
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian, Shandong, China
| | - Ying Guo
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian, Shandong, China
| | - Shuyi Li
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian, Shandong, China
| | - Bo Zhang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian, Shandong, China
| | - Hao Li
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian, Shandong, China
| | - Li-Jun Liu
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
23
|
Yang G, Sun M, Brewer L, Tang Z, Nieuwenhuizen N, Cooney J, Xu S, Sheng J, Andre C, Xue C, Rebstock R, Yang B, Chang W, Liu Y, Li J, Wang R, Qin M, Brendolise C, Allan AC, Espley RV, Lin‐Wang K, Wu J. Allelic variation of BBX24 is a dominant determinant controlling red coloration and dwarfism in pear. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1468-1490. [PMID: 38169146 PMCID: PMC11123420 DOI: 10.1111/pbi.14280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024]
Abstract
Variation in anthocyanin biosynthesis in pear fruit provides genetic germplasm resources for breeding, while dwarfing is an important agronomic trait, which is beneficial to reduce the management costs and allow for the implementation of high-density cultivation. Here, we combined bulked segregant analysis (BSA), quantitative trait loci (QTL), and structural variation (SV) analysis to identify a 14-bp deletion which caused a frame shift mutation and resulted in the premature translation termination of a B-box (BBX) family of zinc transcription factor, PyBBX24, and its allelic variation termed PyBBX24ΔN14. PyBBX24ΔN14 overexpression promotes anthocyanin biosynthesis in pear, strawberry, Arabidopsis, tobacco, and tomato, while that of PyBBX24 did not. PyBBX24ΔN14 directly activates the transcription of PyUFGT and PyMYB10 through interaction with PyHY5. Moreover, stable overexpression of PyBBX24ΔN14 exhibits a dwarfing phenotype in Arabidopsis, tobacco, and tomato plants. PyBBX24ΔN14 can activate the expression of PyGA2ox8 via directly binding to its promoter, thereby deactivating bioactive GAs and reducing the plant height. However, the nuclear localization signal (NLS) and Valine-Proline (VP) motifs in the C-terminus of PyBBX24 reverse these effects. Interestingly, mutations leading to premature termination of PyBBX24 were also identified in red sports of un-related European pear varieties. We conclude that mutations in PyBBX24 gene link both an increase in pigmentation and a decrease in plant height.
Collapse
Affiliation(s)
- Guangyan Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of HorticultureNanjing Agricultural UniversityNanjingChina
- Zhongshan Biological Breeding LaboratoryNanjingJiangsuChina
| | - Manyi Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of HorticultureNanjing Agricultural UniversityNanjingChina
- Zhongshan Biological Breeding LaboratoryNanjingJiangsuChina
| | - Lester Brewer
- The New Zealand Institute for Plant & Food Research LimitedAucklandNew Zealand
| | - Zikai Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Niels Nieuwenhuizen
- The New Zealand Institute for Plant & Food Research LimitedAucklandNew Zealand
| | - Janine Cooney
- The New Zealand Institute for Plant & Food Research LimitedAucklandNew Zealand
| | - Shaozhuo Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Jiawen Sheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Christelle Andre
- The New Zealand Institute for Plant & Food Research LimitedAucklandNew Zealand
| | - Cheng Xue
- State Key Laboratory of Crop Biology, College of Horticulture Science and EngineeringShandong Agricultural UniversityTai'anChina
| | - Ria Rebstock
- The New Zealand Institute for Plant & Food Research LimitedAucklandNew Zealand
| | - Bo Yang
- The New Zealand Institute for Plant & Food Research LimitedAucklandNew Zealand
| | - Wenjing Chang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Yueyuan Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Jiaming Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of HorticultureNanjing Agricultural UniversityNanjingChina
- Zhongshan Biological Breeding LaboratoryNanjingJiangsuChina
| | - Runze Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Mengfan Qin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Cyril Brendolise
- The New Zealand Institute for Plant & Food Research LimitedAucklandNew Zealand
| | - Andrew C. Allan
- The New Zealand Institute for Plant & Food Research LimitedAucklandNew Zealand
| | - Richard V. Espley
- The New Zealand Institute for Plant & Food Research LimitedAucklandNew Zealand
| | - Kui Lin‐Wang
- The New Zealand Institute for Plant & Food Research LimitedAucklandNew Zealand
| | - Jun Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of HorticultureNanjing Agricultural UniversityNanjingChina
- Zhongshan Biological Breeding LaboratoryNanjingJiangsuChina
| |
Collapse
|
24
|
Qu GP, Jiang B, Lin C. The dual-action mechanism of Arabidopsis cryptochromes. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:883-896. [PMID: 37902426 DOI: 10.1111/jipb.13578] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 10/31/2023]
Abstract
Photoreceptor cryptochromes (CRYs) mediate blue-light regulation of plant growth and development. It has been reported that Arabidopsis CRY1and CRY2 function by physically interacting with at least 84 proteins, including transcription factors or co-factors, chromatin regulators, splicing factors, messenger RNA methyltransferases, DNA repair proteins, E3 ubiquitin ligases, protein kinases and so on. Of these 84 proteins, 47 have been reported to exhibit altered binding affinity to CRYs in response to blue light, and 41 have been shown to exhibit condensation to CRY photobodies. The blue light-regulated composition or condensation of CRY complexes results in changes of gene expression and developmental programs. In this mini-review, we analyzed recent studies of the photoregulatory mechanisms of Arabidopsis CRY complexes and proposed the dual mechanisms of action, including the "Lock-and-Key" and the "Liquid-Liquid Phase Separation (LLPS)" mechanisms. The dual CRY action mechanisms explain, at least partially, the structural diversity of CRY-interacting proteins and the functional diversity of the CRY photoreceptors.
Collapse
Affiliation(s)
- Gao-Ping Qu
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Bochen Jiang
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
| | - Chentao Lin
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
25
|
Kwon Y, Kim C, Choi G. Phytochrome B photobody components. THE NEW PHYTOLOGIST 2024; 242:909-915. [PMID: 38477037 DOI: 10.1111/nph.19675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024]
Abstract
Phytochrome B (phyB) is a red and far-red photoreceptor that promotes light responses. Upon photoactivation, phyB enters the nucleus and forms a molecular condensate called a photobody through liquid-liquid phase separation. Phytochrome B photobody comprises phyB, the main scaffold molecule, and at least 37 client proteins. These clients belong to diverse functional categories enriched with transcription regulators, encompassing both positive and negative light signaling factors, with the functional bias toward the negative factors. The functionally diverse clients suggest that phyB photobody acts either as a trap to capture proteins, including negatively acting transcription regulators, for processes such as sequestration, modification, or degradation or as a hub where proteins are brought into close proximity for interaction in a light-dependent manner.
Collapse
Affiliation(s)
- Yongmin Kwon
- Department of Biological Sciences, KAIST, Daejeon, 34141, Korea
| | - Chanhee Kim
- Department of Biological Sciences, KAIST, Daejeon, 34141, Korea
| | - Giltsu Choi
- Department of Biological Sciences, KAIST, Daejeon, 34141, Korea
| |
Collapse
|
26
|
Huq E, Lin C, Quail PH. Light signaling in plants-a selective history. PLANT PHYSIOLOGY 2024; 195:213-231. [PMID: 38431282 PMCID: PMC11060691 DOI: 10.1093/plphys/kiae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/15/2023] [Accepted: 02/16/2024] [Indexed: 03/05/2024]
Abstract
In addition to providing the radiant energy that drives photosynthesis, sunlight carries signals that enable plants to grow, develop and adapt optimally to the prevailing environment. Here we trace the path of research that has led to our current understanding of the cellular and molecular mechanisms underlying the plant's capacity to perceive and transduce these signals into appropriate growth and developmental responses. Because a fully comprehensive review was not possible, we have restricted our coverage to the phytochrome and cryptochrome classes of photosensory receptors, while recognizing that the phototropin and UV classes also contribute importantly to the full scope of light-signal monitoring by the plant.
Collapse
Affiliation(s)
- Enamul Huq
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Chentao Lin
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Peter H Quail
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Plant Gene Expression Center, Agricultural Research Service, US Department of Agriculture, Albany, CA 94710, USA
| |
Collapse
|
27
|
Chen W, Jiang B, Zeng H, Liu Z, Chen W, Zheng S, Wu J, Lou H. Molecular regulatory mechanisms of staminate strobilus development and dehiscence in Torreya grandis. PLANT PHYSIOLOGY 2024; 195:534-551. [PMID: 38365225 DOI: 10.1093/plphys/kiae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/06/2023] [Accepted: 12/24/2023] [Indexed: 02/18/2024]
Abstract
Gymnosperms are mostly dioecious, and their staminate strobili undergo a longer developmental period than those of angiosperms. However, the underlying molecular mechanisms remain unclear. This study aimed to identify key genes and pathways involved in staminate strobilus development and dehiscence in Torreya grandis. Through weighted gene co-expression network analysis (WGCNA), we identified fast elongation-related genes enriched in carbon metabolism and auxin signal transduction, whereas dehiscence-related genes were abundant in alpha-linolenic acid metabolism and the phenylpropanoid pathway. Based on WGCNA, we also identified PHYTOCHROME-INTERACTING FACTOR4 (TgPIF4) as a potential regulator for fast elongation of staminate strobilus and 2 WRKY proteins (TgWRKY3 and TgWRKY31) as potential regulators for staminate strobilus dehiscence. Multiple protein-DNA interaction analyses showed that TgPIF4 directly activates the expression of TRANSPORT INHIBITOR RESPONSE2 (TgTIR2) and NADP-MALIC ENZYME (TgNADP-ME). Overexpression of TgPIF4 significantly promoted staminate strobilus elongation by elevating auxin signal transduction and pyruvate content. TgWRKY3 and TgWRKY31 bind to the promoters of the lignin biosynthesis gene PHENYLALANINE AMMONIA-LYASE (TgPAL) and jasmonic acid metabolism gene JASMONATE O-METHYLTRANSFERASE (TgJMT), respectively, and directly activate their transcription. Overexpression of TgWRKY3 and TgWRKY31 in the staminate strobilus led to early dehiscence, accompanied by increased lignin and methyl jasmonate levels, respectively. Collectively, our findings offer a perspective for understanding the growth of staminate strobili in gymnosperms.
Collapse
Affiliation(s)
- Weijie Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Baofeng Jiang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Hao Zeng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Zhihui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Wenchao Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Shan Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Jiasheng Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Heqiang Lou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| |
Collapse
|
28
|
Zhang L, Xu Y, Li Y, Zheng S, Zhao Z, Chen M, Yang H, Yi H, Wu J. Transcription factor CsMYB77 negatively regulates fruit ripening and fruit size in citrus. PLANT PHYSIOLOGY 2024; 194:867-883. [PMID: 37935634 DOI: 10.1093/plphys/kiad592] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/03/2023] [Accepted: 10/10/2023] [Indexed: 11/09/2023]
Abstract
MYB family transcription factors (TFs) play essential roles in various biological processes, yet their involvement in regulating fruit ripening and fruit size in citrus remains poorly understood. In this study, we have established that the R2R3-MYB TF, CsMYB77, exerts a negative regulatory influence on fruit ripening in both citrus and tomato (Solanum lycopersicum), while also playing a role in modulating fruit size in citrus. The overexpression of CsMYB77 in tomato and Hongkong kumquat (Fortunella hindsii) led to notably delayed fruit ripening phenotypes. Moreover, the fruit size of Hongkong kumquat transgenic lines was largely reduced. Based on DNA affinity purification sequencing and verified interaction assays, SEVEN IN ABSENTIA OF ARABIDOPSIS THALIANA4 (SINAT4) and PIN-FORMED PROTEIN5 (PIN5) were identified as downstream target genes of CsMYB77. CsMYB77 inhibited the expression of SINAT4 to modulate abscisic acid (ABA) signaling, which delayed fruit ripening in transgenic tomato and Hongkong kumquat lines. The expression of PIN5 was activated by CsMYB77, which promoted free indole-3-acetic acid decline and modulated auxin signaling in the fruits of transgenic Hongkong kumquat lines. Taken together, our findings revealed a fruit development and ripening regulation module (MYB77-SINAT4/PIN5-ABA/auxin) in citrus, which enriches the understanding of the molecular regulatory network underlying fruit ripening and size.
Collapse
Affiliation(s)
- Li Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yang Xu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yanting Li
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Saisai Zheng
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Zhenmei Zhao
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Meiling Chen
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Haijian Yang
- Fruit Tree Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing 401329, PR China
| | - Hualin Yi
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Juxun Wu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, PR China
| |
Collapse
|
29
|
Zhang Y, Shen C, Li G, Shi J, Yuan Y, Ye L, Song Q, Shi J, Zhang D. MADS1-regulated lemma and awn development benefits barley yield. Nat Commun 2024; 15:301. [PMID: 38182608 PMCID: PMC10770128 DOI: 10.1038/s41467-023-44457-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 12/14/2023] [Indexed: 01/07/2024] Open
Abstract
Floral organ shape and size in cereal crops can affect grain size and yield, so genes that regulate their development are promising breeding targets. The lemma, which protects inner floral organs, can physically constrain grain growth; while the awn, a needle-like extension of the lemma, creates photosynthate to developing grain. Although several genes and modules controlling grain size and awn/lemma growth in rice have been characterized, these processes, and the relationships between them, are not well understood for barley and wheat. Here, we demonstrate that the barley E-class gene HvMADS1 positively regulates awn length and lemma width, affecting grain size and weight. Cytological data indicates that HvMADS1 promotes awn and lemma growth by promoting cell proliferation, while multi-omics data reveals that HvMADS1 target genes are associated with cell cycle, phytohormone signaling, and developmental processes. We define two potential targets of HvMADS1 regulation, HvSHI and HvDL, whose knockout mutants mimic awn and/or lemma phenotypes of mads1 mutants. Additionally, we demonstrate that HvMADS1 interacts with APETALA2 (A-class) to synergistically activate downstream genes in awn/lemma development in barley. Notably, we find that MADS1 function remains conserved in wheat, promoting cell proliferation to increase awn length. These findings extend our understanding of MADS1 function in floral organ development and provide insights for Triticeae crop improvement strategies.
Collapse
Affiliation(s)
- Yueya Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chaoqun Shen
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Adelaide, SA, 5064, Australia
| | - Gang Li
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Adelaide, SA, 5064, Australia.
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yajing Yuan
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lingzhen Ye
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Qingfeng Song
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya, 572025, China.
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Adelaide, SA, 5064, Australia
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya, 572025, China
| |
Collapse
|
30
|
Chen H, Wang W, Chen X, Niu Y, Qi Y, Yu Z, Xiong M, Xu P, Wang W, Guo T, Yang HQ, Mao Z. PIFs interact with SWI2/SNF2-related 1 complex subunit 6 to regulate H2A.Z deposition and photomorphogenesis in Arabidopsis. J Genet Genomics 2023; 50:983-992. [PMID: 37120038 DOI: 10.1016/j.jgg.2023.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 05/01/2023]
Abstract
Light is an essential environmental signal perceived by a broad range of photoreceptors in plants. Among them, the red/far-red light receptor phytochromes function to promote photomorphogenesis, which is critical to the survival of seedlings after seeds germination. The basic-helix-loop-helix transcription factors phytochrome-interacting factors (PIFs) are the pivotal direct downstream components of phytochromes. H2A.Z is a highly conserved histone variant regulating gene transcription, and its incorporation into nucleosomes is catalyzed by SWI2/SNF2-related 1 complex, in which SWI2/SNF2-related 1 complex subunit 6 (SWC6) and actin-related protein 6 (ARP6) serve as core subunits. Here, we show that PIFs physically interact with SWC6 in vitro and in vivo, leading to the disassociation of HY5 from SWC6. SWC6 and ARP6 regulate hypocotyl elongation partly through PIFs in red light. PIFs and SWC6 coregulate the expression of auxin-responsive genes such as IAA6, IAA19, IAA20, and IAA29 and repress H2A.Z deposition at IAA6 and IAA19 in red light. Based on previous studies and our findings, we propose that PIFs inhibit photomorphogenesis, at least in part, through repression of H2A.Z deposition at auxin-responsive genes mediated by the interactions of PIFs with SWC6 and promotion of their expression in red light.
Collapse
Affiliation(s)
- Huiru Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Wanting Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xiao Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yake Niu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yuanyuan Qi
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Ze Yu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Minyu Xiong
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Pengbo Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenxiu Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Tongtong Guo
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Hong-Quan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Zhilei Mao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
31
|
Gao Q, Hu S, Wang X, Han F, Luo H, Liu Z, Kang C. The red/far-red light photoreceptor FvePhyB regulates tissue elongation and anthocyanin accumulation in woodland strawberry. HORTICULTURE RESEARCH 2023; 10:uhad232. [PMID: 38143485 PMCID: PMC10745270 DOI: 10.1093/hr/uhad232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/01/2023] [Indexed: 12/26/2023]
Abstract
Light is an important environmental signal that influences plant growth and development. Among the photoreceptors, phytochromes can sense red/far-red light to coordinate various biological processes. However, their functions in strawberry are not yet known. In this study, we identified an EMS mutant, named P8, in woodland strawberry (Fragaria vesca) that showed greatly increased plant height and reduced anthocyanin content. Mapping-by-sequencing revealed that the causal mutation in FvePhyB leads to premature termination of translation. The light treatment assay revealed that FvePhyB is a bona fide red/far-red light photoreceptor, as it specifically inhibits hypocotyl length under red light. Transcriptome analysis showed that the FvePhyB mutation affects the expression levels of genes involved in hormone synthesis and signaling and anthocyanin biosynthesis in petioles and fruits. The srl mutant with a longer internode is caused by a mutation in the DELLA gene FveRGA1 (Repressor of GA1) in the gibberellin pathway. We found that the P8 srl double mutant has much longer internodes than srl, suggesting a synergistic role of FvePhyB and FveRGA1 in this process. Taken together, these results demonstrate the important role of FvePhyB in regulating plant architecture and anthocyanin content in woodland strawberry.
Collapse
Affiliation(s)
- Qi Gao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Shaoqiang Hu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xiaoli Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Fu Han
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Huifeng Luo
- Institute of Horticulture, Hangzhou Academy of Agricultural Sciences, Hangzhou, 310024, China
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Chunying Kang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
32
|
Diao R, Zhao M, Liu Y, Zhang Z, Zhong B. The advantages of crosstalk during the evolution of the BZR1-ARF6-PIF4 (BAP) module. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:2631-2644. [PMID: 37552560 DOI: 10.1111/jipb.13554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/07/2023] [Indexed: 08/10/2023]
Abstract
The BAP module, comprising BRASSINAZOLE RESISTANT 1 (BZR1), AUXIN RESPONSE FACTOR 6 (ARF6), and PHYTOCHROME-INTERACTING FACTOR 4 (PIF4), functions as a molecular hub to orchestrate plant growth and development. In Arabidopsis thaliana, components of the BAP module physically interact to form a complex system that integrates light, brassinosteroid (BR), and auxin signals. Little is known about the origin and evolution of the BAP module. Here, we conducted comparative genomic and transcriptomic analyses to investigate the evolution and functional diversification of the BAP module. Our results suggest that the BAP module originated in land plants and that the ζ, ε, and γ whole-genome duplication/triplication events contributed to the expansion of BAP module components in seed plants. Comparative transcriptomic analysis suggested that the prototype BAP module arose in Marchantia polymorpha, experienced stepwise evolution, and became established as a mature regulatory system in seed plants. We developed a formula to calculate the signal transduction productivity of the BAP module and demonstrate that more crosstalk among components enables higher signal transduction efficiency. Our results reveal the evolutionary history of the BAP module and provide insights into the evolution of plant signaling networks and the strategies employed by plants to integrate environmental and endogenous signals.
Collapse
Affiliation(s)
- Runjie Diao
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Mengru Zhao
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Yannan Liu
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Zhenhua Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Bojian Zhong
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
33
|
Bianchimano L, De Luca MB, Borniego MB, Iglesias MJ, Casal JJ. Temperature regulation of auxin-related gene expression and its implications for plant growth. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:7015-7033. [PMID: 37422862 DOI: 10.1093/jxb/erad265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Twenty-five years ago, a seminal paper demonstrated that warm temperatures increase auxin levels to promote hypocotyl growth in Arabidopsis thaliana. Here we highlight recent advances in auxin-mediated thermomorphogenesis and identify unanswered questions. In the warmth, PHYTOCHROME INTERACTING FACTOR 4 (PIF4) and PIF7 bind the YUCCA8 gene promoter and, in concert with histone modifications, enhance its expression to increase auxin synthesis in the cotyledons. Once transported to the hypocotyl, auxin promotes cell elongation. The meta-analysis of expression of auxin-related genes in seedlings exposed to temperatures ranging from cold to hot shows complex patterns of response. Changes in auxin only partially account for these responses. The expression of many SMALL AUXIN UP RNA (SAUR) genes reaches a maximum in the warmth, decreasing towards both temperature extremes in correlation with the rate of hypocotyl growth. Warm temperatures enhance primary root growth, the response requires auxin, and the hormone levels increase in the root tip but the impacts on cell division and cell expansion are not clear. A deeper understanding of auxin-mediated temperature control of plant architecture is necessary to face the challenge of global warming.
Collapse
Affiliation(s)
- Luciana Bianchimano
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| | - María Belén De Luca
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Av. San Martín 4453, Buenos Aires C1417DSE, Argentina
| | - María Belén Borniego
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Av. San Martín 4453, Buenos Aires C1417DSE, Argentina
| | - María José Iglesias
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-UBA, Buenos Aires C1428EHA, Argentina
| | - Jorge J Casal
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Av. San Martín 4453, Buenos Aires C1417DSE, Argentina
| |
Collapse
|
34
|
Neres DF, Taylor JS, Bryant JA, Bargmann BOR, Wright RC. Identification of potential Auxin Response Candidate genes for soybean rapid canopy coverage through comparative evolution and expression analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.564213. [PMID: 37961442 PMCID: PMC10634891 DOI: 10.1101/2023.10.26.564213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Glycine max, soybean, is an abundantly cultivated crop worldwide. Efforts have been made over the past decades to improve soybean production in traditional and organic agriculture, driven by growing demand for soybean-based products. Rapid canopy cover development (RCC) increases soybean yields and suppresses early-season weeds. Genome-wide association studies have found natural variants associated with RCC, however causal mechanisms are unclear. Auxin modulates plant growth and development and has been implicated in RCC traits. Therefore, modulation of auxin regulatory genes may enhance RCC. Here, we focus on the use of genomic tools and existing datasets to identify auxin signaling pathway RCC candidate genes, using a comparative phylogenetics and expression analysis approach. We identified genes encoding 14 TIR1/AFB auxin receptors, 61 Aux/IAA auxin co-receptors and transcriptional co-repressors, and 55 ARF auxin response factors in the soybean genome. We used Bayesian phylogenetic inference to identify soybean orthologs of Arabidopsis thaliana genes, and defined an ortholog naming system for these genes. To further define potential auxin signaling candidate genes for RCC, we examined tissue-level expression of these genes in existing datasets and identified highly expressed auxin signaling genes in apical tissues early in development. We identified at least 4 TIR1/AFB, 8 Aux/IAA, and 8 ARF genes with highly specific expression in one or more RCC-associated tissues. We hypothesize that modulating the function of these genes through gene editing or traditional breeding will have the highest likelihood of affecting RCC while minimizing pleiotropic effects.
Collapse
|
35
|
Kanojia A, Bhola D, Mudgil Y. Light signaling as cellular integrator of multiple environmental cues in plants. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1485-1503. [PMID: 38076763 PMCID: PMC10709290 DOI: 10.1007/s12298-023-01364-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/01/2023] [Accepted: 09/14/2023] [Indexed: 12/17/2023]
Abstract
Plants being sessile need to rapidly adapt to the constantly changing environment through modifications in their internal clock, metabolism, and gene expression. They have evolved an intricate system to perceive and transfer the signals from the primary environmental factors namely light, temperature and water to regulate their growth development and survival. Over past few decades rigorous research using molecular genetics approaches, especially in model plant Arabidopsis, has resulted in substantial progress in discovering various photoreceptor systems and light signaling components. In parallel several molecular pathways operating in response to other environmental cues have also been elucidated. Interestingly, the studies have shown that expression profiles of genes involved in photomorphogenesis can undergo modulation in response to other cues from the environment. Recently, the photoreceptor, PHYB, has been shown to function as a thermosensor. Downstream components of light signaling pathway like COP1 and PIF have also emerged as integrating hubs for various kinds of signals. All these findings indicate that light signaling components may act as central integrator of various environmental cues to regulate plant growth and development processes. In this review, we present a perspective on cross talk of signaling mechanisms induced in response to myriad array of signals and their integration with the light signaling components. By putting light signals on the central stage, we propose the possibilities of enhancing plant resilience to the changing environment by fine-tuning the genetic manipulation of its signaling components in the future.
Collapse
Affiliation(s)
- Abhishek Kanojia
- Department of Botany, University of Delhi, New Delhi, 110007 India
| | - Diksha Bhola
- Department of Botany, University of Delhi, New Delhi, 110007 India
| | - Yashwanti Mudgil
- Department of Botany, University of Delhi, New Delhi, 110007 India
| |
Collapse
|
36
|
Li X, Xi D, Gao L, Zhu H, Yang X, Song X, Zhang C, Miao L, Zhang D, Zhang Z, Hou X, Zhu Y, Wei M. Integrated Transcriptome and Proteome Analysis Revealed the Regulatory Mechanism of Hypocotyl Elongation in Pakchoi. Int J Mol Sci 2023; 24:13808. [PMID: 37762111 PMCID: PMC10531338 DOI: 10.3390/ijms241813808] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Hypocotyl length is a critical determinant for the efficiency of mechanical harvesting in pakchoi production, but the knowledge on the molecular regulation of hypocotyl growth is very limited. Here, we report a spontaneous mutant of pakchoi, lhy7.1, and identified its characteristics. We found that it has an elongated hypocotyl phenotype compared to the wild type caused by the longitudinal growth of hypocotyl cells. Different light quality treatments, transcriptome, and proteomic analyses were performed to reveal the molecular mechanisms of hypocotyl elongation. The data showed that the hypocotyl length of lhy7.1 was significantly longer than that of WT under red, blue, and white lights but there was no significant difference under dark conditions. Furthermore, we used transcriptome and label-free proteome analyses to investigate differences in gene and protein expression levels between lhy7.1 and WT. At the transcript level, 4568 differentially expressed genes (DEGs) were identified, which were mainly enriched in "plant hormone signal transduction", "photosynthesis", "photosynthesis-antenna proteins", and "carbon fixation in photosynthetic organisms" pathways. At the protein level, 1007 differentially expressed proteins (DEPs) were identified and were mainly enriched in photosynthesis-related pathways. The comprehensive transcriptome and proteome analyses revealed a regulatory network of hypocotyl elongation involving plant hormone signal transduction and photosynthesis-related pathways. The findings of this study help elucidate the regulatory mechanisms of hypocotyl elongation in lhy7.1.
Collapse
Affiliation(s)
- Xiaofeng Li
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China;
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.X.); (L.G.); (H.Z.); (X.Y.); (L.M.); (D.Z.); (Z.Z.)
| | - Dandan Xi
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.X.); (L.G.); (H.Z.); (X.Y.); (L.M.); (D.Z.); (Z.Z.)
| | - Lu Gao
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.X.); (L.G.); (H.Z.); (X.Y.); (L.M.); (D.Z.); (Z.Z.)
| | - Hongfang Zhu
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.X.); (L.G.); (H.Z.); (X.Y.); (L.M.); (D.Z.); (Z.Z.)
| | - Xiuke Yang
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.X.); (L.G.); (H.Z.); (X.Y.); (L.M.); (D.Z.); (Z.Z.)
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (C.Z.); (X.H.)
| | - Xiaoming Song
- College of Life Sciences, North China University of Science and Technology, Tangshan 063210, China;
| | - Changwei Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (C.Z.); (X.H.)
| | - Liming Miao
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.X.); (L.G.); (H.Z.); (X.Y.); (L.M.); (D.Z.); (Z.Z.)
| | - Dingyu Zhang
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.X.); (L.G.); (H.Z.); (X.Y.); (L.M.); (D.Z.); (Z.Z.)
| | - Zhaohui Zhang
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.X.); (L.G.); (H.Z.); (X.Y.); (L.M.); (D.Z.); (Z.Z.)
| | - Xilin Hou
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (C.Z.); (X.H.)
| | - Yuying Zhu
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.X.); (L.G.); (H.Z.); (X.Y.); (L.M.); (D.Z.); (Z.Z.)
| | - Min Wei
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China;
| |
Collapse
|
37
|
Guo T, Liu M, Chen L, Liu Y, Li L, Li Y, Cao X, Mao Z, Wang W, Yang HQ. Photoexcited cryptochromes interact with ADA2b and SMC5 to promote the repair of DNA double-strand breaks in Arabidopsis. NATURE PLANTS 2023; 9:1280-1290. [PMID: 37488265 DOI: 10.1038/s41477-023-01461-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/20/2023] [Indexed: 07/26/2023]
Abstract
Cryptochromes (CRYs) act as blue-light photoreceptors that regulate development and circadian rhythms in plants and animals and as navigating magnetoreceptors in migratory birds. DNA double-strand breaks (DSBs) are the most serious type of DNA damage and threaten genome stability in all organisms. Although CRYs have been shown to respond to DNA damage, whether and how they participate in DSB repair is not well understood. Here we report that Arabidopsis CRYs promote the repair of DSBs through direct interactions with ADA2b and SMC5 in a blue-light-dependent manner to enhance their interaction. Mutations in CRYs and in ADA2b lead to similar enhanced DNA damage accumulation. In response to DNA damage, CRYs are localized at DSBs, and the recruitment of SMC5 to DSBs is dependent on CRYs. These results suggest that CRY-enhanced ADA2b-SMC5 interaction promotes ADA2b-mediated recruitment of SMC5 to DSBs, leading to DSB repair.
Collapse
Affiliation(s)
- Tongtong Guo
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Minqing Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Li Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yao Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Ling Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yupeng Li
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Xiaoli Cao
- School of Life Sciences, Fudan University, Shanghai, China
| | - Zhilei Mao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Wenxiu Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Hong-Quan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China.
| |
Collapse
|
38
|
Wei Y, Wang S, Yu D. The Role of Light Quality in Regulating Early Seedling Development. PLANTS (BASEL, SWITZERLAND) 2023; 12:2746. [PMID: 37514360 PMCID: PMC10383958 DOI: 10.3390/plants12142746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/09/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
It is well-established that plants are sessile and photoautotrophic organisms that rely on light throughout their entire life cycle. Light quality (spectral composition) is especially important as it provides energy for photosynthesis and influences signaling pathways that regulate plant development in the complex process of photomorphogenesis. During previous years, significant progress has been made in light quality's physiological and biochemical effects on crops. However, understanding how light quality modulates plant growth and development remains a complex challenge. In this review, we provide an overview of the role of light quality in regulating the early development of plants, encompassing processes such as seed germination, seedling de-etiolation, and seedling establishment. These insights can be harnessed to improve production planning and crop quality by producing high-quality seedlings in plant factories and improving the theoretical framework for modern agriculture.
Collapse
Affiliation(s)
- Yunmin Wei
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Shuwei Wang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Dashi Yu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
39
|
Geldhof B, Pattyn J, Van de Poel B. From a different angle: genetic diversity underlies differentiation of waterlogging-induced epinasty in tomato. FRONTIERS IN PLANT SCIENCE 2023; 14:1178778. [PMID: 37324684 PMCID: PMC10264670 DOI: 10.3389/fpls.2023.1178778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/04/2023] [Indexed: 06/17/2023]
Abstract
In tomato, downward leaf bending is a morphological adaptation towards waterlogging, which has been shown to induce a range of metabolic and hormonal changes. This kind of functional trait is often the result of a complex interplay of regulatory processes starting at the gene level, gated through a plethora of signaling cascades and modulated by environmental cues. Through phenotypical screening of a population of 54 tomato accessions in a Genome Wide Association Study (GWAS), we have identified target genes potentially involved in plant growth and survival during waterlogging and subsequent recovery. Changes in both plant growth rate and epinastic descriptors revealed several associations to genes possibly supporting metabolic activity in low oxygen conditions in the root zone. In addition to this general reprogramming, some of the targets were specifically associated to leaf angle dynamics, indicating these genes might play a role in the induction, maintenance or recovery of differential petiole elongation in tomato during waterlogging.
Collapse
Affiliation(s)
- Batist Geldhof
- Molecular Plant Hormone Physiology Lab, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Jolien Pattyn
- Molecular Plant Hormone Physiology Lab, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Bram Van de Poel
- Molecular Plant Hormone Physiology Lab, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
- KU Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
| |
Collapse
|
40
|
Liao J, Deng B, Yang Q, Li Y, Zhang Y, Cong J, Wang X, Kohnen MV, Liu ZJ, Lu MZ, Lin D, Gu L, Liu B. Insights into cryptochrome modulation of ABA signaling to mediate dormancy regulation in Marchantia polymorpha. THE NEW PHYTOLOGIST 2023; 238:1479-1497. [PMID: 36797656 DOI: 10.1111/nph.18815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
The acquisition of dormancy capabilities has enabled plants to survive in adverse terrestrial environmental conditions. Dormancy accumulation and release is coupled with light signaling, which is well studied in Arabidopsis, but it is unclear in the distant nonvascular relative. We study the characteristics and function on dormancy regulation of a blue light receptor cryptochrome in Marchantia polymorpha (MpCRY). Here, we identified MpCRY via bioinformatics and mutant complement analysis. The biochemical characteristics were assessed by multiple protein-binding assays. The function of MpCRY in gemma dormancy was clarified by overexpression and mutation of MpCRY, and its mechanism was analyzed via RNA sequencing and quantitative PCR analyses associated with hormone treatment. We found that the unique MpCRY protein in M. polymorpha undergoes both blue light-promoted interaction with itself (self-interaction) and blue light-dependent phosphorylation. MpCRY has the specific characteristics of blue light-induced nuclear localization and degradation. We further demonstrated that MpCRY transcriptionally represses abscisic acid (ABA) signaling-related gene expression to suppress gemma dormancy, which is dependent on blue light signaling. Our findings indicate that MpCRY possesses specific biochemical and molecular characteristics, and modulates ABA signaling under blue light conditions to regulate gemma dormancy in M. polymorpha.
Collapse
Affiliation(s)
- Jiakai Liao
- Basic Forestry and Proteomics Research Center, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, School of Wetlands, Yancheng Teachers University, Yancheng, 224007, China
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Ban Deng
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Qixin Yang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, School of Wetlands, Yancheng Teachers University, Yancheng, 224007, China
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Yu Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yuxiang Zhang
- Basic Forestry and Proteomics Research Center, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Jiajing Cong
- Basic Forestry and Proteomics Research Center, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Xiaqin Wang
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Markus V Kohnen
- Basic Forestry and Proteomics Research Center, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Zhong-Jian Liu
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Meng-Zhu Lu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Deshu Lin
- Basic Forestry and Proteomics Research Center, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Lianfeng Gu
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Bobin Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, School of Wetlands, Yancheng Teachers University, Yancheng, 224007, China
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| |
Collapse
|
41
|
Khadem A, Moshtaghi N, Bagheri A. Regulatory networks of hormone-involved transcription factors and their downstream pathways during somatic embryogenesis of Arabidopsis thaliana. 3 Biotech 2023; 13:132. [PMID: 37091499 PMCID: PMC10115918 DOI: 10.1007/s13205-023-03546-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 03/28/2023] [Indexed: 04/25/2023] Open
Abstract
Somatic embryogenesis (SE) depends on a variety of developmental pathways that are influenced by several environmental factors. Therefore, it is important to understand the relationship between environmental and genetic factors by identifying the gene networks involved in SE through gene set enrichment analysis (GSEA). For determination of SE effective transcription factors, upstream sequences of core-enriched genes were analyzed. The results indicated that response to hormones is one of the biological pathways activated by the enriched TFs at all stages of somatic embryogenesis and about half of the hormonal pathways were enriched. On the fifth day after 2,4-Dichlorophenoxyacetic acid (2,4-D) treatment, the activity of hormone-affecting genes reached its maximum. At this time, more transcription factors regulated the enriched genes compared to the other stages of somatic embryogenesis. MYBs, AT-HOOKs, and HSFs are the main families of transcription factors which affect core-enriched genes during SE. CCA1, PRR7, and TOC1 and their related genes at the center of protein-protein interaction of SE-key transcription factors, involved in the regulation of the circadian clock. Gene expression analysis of CCA1, PRR7, and TOC1 revealed that the genes involved in circadian clock reached their maximum activity when embryonic cells formed. Also, auxin response elements were identified at the upstream of SE-circadian clock transcription factors, indicating that they might mediate between auxin signaling and SE-related hormonal pathways as well as SE marker genes such as AGL15, BBM, and LECs. Based on these results, it is possible that the cellular circadian rhythm activates various developmental pathways under the influence of auxin signal transduction and their interactions determine the induction of somatic embryogenesis. According to the results of this study, modifying pathways affected by SE-related transcription factors such as circadian rhythm may result in cell reprogramming and increase somatic embryogenesis efficiency. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03546-7.
Collapse
Affiliation(s)
- Azadeh Khadem
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Nasrin Moshtaghi
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Abdolreza Bagheri
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
42
|
Xu S, Sun M, Yao JL, Liu X, Xue Y, Yang G, Zhu R, Jiang W, Wang R, Xue C, Mao Z, Wu J. Auxin inhibits lignin and cellulose biosynthesis in stone cells of pear fruit via the PbrARF13-PbrNSC-PbrMYB132 transcriptional regulatory cascade. PLANT BIOTECHNOLOGY JOURNAL 2023. [PMID: 37031416 DOI: 10.1111/pbi.14046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Stone cells are often present in pear fruit, and they can seriously affect the fruit quality when present in large numbers. The plant growth regulator NAA, a synthetic auxin, is known to play an active role in fruit development regulation. However, the genetic mechanisms of NAA regulation of stone cell formation are still unclear. Here, we demonstrated that exogenous application of 200 μM NAA reduced stone cell content and also significantly decreased the expression level of PbrNSC encoding a transcriptional regulator. PbrNSC was shown to bind to an auxin response factor, PbrARF13. Overexpression of PbrARF13 decreased stone cell content in pear fruit and secondary cell wall (SCW) thickness in transgenic Arabidopsis plants. In contrast, knocking down PbrARF13 expression using virus-induced gene silencing had the opposite effect. PbrARF13 was subsequently shown to inhibit PbrNSC expression by directly binding to its promoter, and further to reduce stone cell content. Furthermore, PbrNSC was identified as a positive regulator of PbrMYB132 through analyses of co-expression network of stone cell formation-related genes. PbrMYB132 activated the expression of gene encoding cellulose synthase (PbrCESA4b/7a/8a) and lignin laccase (PbrLAC5) binding to their promotors. As expected, overexpression or knockdown of PbrMYB132 increased or decreased stone cell content in pear fruit and SCW thickness in Arabidopsis transgenic plants. In conclusion, our study shows that the 'PbrARF13-PbrNSC-PbrMYB132' regulatory cascade mediates the biosynthesis of lignin and cellulose in stone cells of pear fruit in response to auxin signals and also provides new insights into plant SCW formation.
Collapse
Affiliation(s)
- Shaozhuo Xu
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Manyi Sun
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jia-Long Yao
- The New Zealand Institute for Plant and Food Research Ltd, Mt Albert Research Centre, Auckland, New Zealand
| | - Xiuxia Liu
- College of Horticultural Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Yongsong Xue
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Guangyan Yang
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Rongxiang Zhu
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Weitao Jiang
- College of Horticultural Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Runze Wang
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Cheng Xue
- College of Horticultural Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Zhiquan Mao
- College of Horticultural Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Jun Wu
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
43
|
Hu L, Zhang M, Shang J, Liu Z, Weng Y, Yue H, Li Y, Chen P. A 5.5-kb LTR-retrotransposon insertion inside phytochrome B gene (CsPHYB) results in long hypocotyl and early flowering in cucumber (Cucumis sativus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:68. [PMID: 36952021 DOI: 10.1007/s00122-023-04271-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 01/02/2023] [Indexed: 06/18/2023]
Abstract
The novel spontaneous long hypocotyl and early flowering (lhef) mutation in cucumber is due to a 5551-bp LTR-retrotransposon insertion in CsPHYB gene encoding PHYTOCHROME B, which plays a major role in regulating photomorphogenic hypocotyl growth and flowering. Hypocotyl length and flowering time are important for establishing high-quality seedlings in modern cucumber production, but little is known for the underlying molecular mechanisms of these two traits. In this study, a spontaneous cucumber long hypocotyl and early flowering mutant was identified and characterized. Based on multiple lines of evidence, we show that cucumber phytochrome B (CsPHYB) is the candidate gene for this mutation, and a 5551-bp LTR-retrotransposon insertion in the first exon of CsPHYB was responsible for the mutant phenotypes. Uniqueness of the mutant allele at CsPHYB was verified in 114 natural cucumber lines. Ectopic expression of the CsPHYB in Arabidopsis phyB mutant rescued the long hypocotyl and early flowering phenotype of phyB-9 mutant. The wild-type CsPHYB protein was localized on the membrane and cytoplasm under white light condition, whereas in the nucleus under red light, it is consistent with its roles as a red-light photoreceptor in Arabidopsis. However, the mutant csphyb protein was localized on the membrane and cytoplasm under both white and red-light conditions. Expression dynamics of CsPHYB and several cell elongation-related genes were positively correlated with hypocotyl elongation; the transcription levels of key positive and negative regulators for flowering time were also consistent with the anthesis dates in the mutant and wild-type plants. Yeast two hybrid and bimolecular fluorescence complementation assays identified physical interactions between CsPHYB and phytochrome interacting factor 3/4 (CsPIF3/4). These findings will provide new insights into the roles of the CsPHYB in cucumber hypocotyl growth and flowering time.
Collapse
Affiliation(s)
- Liangliang Hu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Miaomiao Zhang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jingjing Shang
- College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zichen Liu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yiqun Weng
- Horticulture Department, USDA-ARS Vegetable Crops Research Unit, University of Wisconsin, Madison, WI, 53706, USA
| | - Hongzhong Yue
- Vegetable Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, Gansu, China
| | - Yuhong Li
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Peng Chen
- College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
44
|
PyuARF16/33 Are Involved in the Regulation of Lignin Synthesis and Rapid Growth in Populus yunnanensis. Genes (Basel) 2023; 14:genes14020278. [PMID: 36833205 PMCID: PMC9956056 DOI: 10.3390/genes14020278] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
(1) Background: Lignin is a unique component of the secondary cell wall, which provides structural support for perennial woody plants. ARFs are the core factors of the auxin-signaling pathway, which plays an important role in promoting plant growth, but the specific relationship between auxin response factors (ARFs) and lignin has not been fully elucidated with regard to rapid plant growth in forest trees. (2) Objectives: This study aimed to investigate the relationship between ARFs and lignin with regard to rapid plant growth in forest trees. (3) Methods: We used bioinformatics analysis to investigate the PyuARF family, find genes homologous to ARF6 and ARF8 in Populus yunnanensis, and explore the changes in gene expression and lignin content under light treatment. (4) Results: We identified and characterized 35 PyuARFs based on chromosome-level genome data from P. yunnanensis. In total, we identified 92 ARF genes in P. yunnanensis, Arabidopsis thaliana, and Populus trichocarpa, which were subsequently divided into three subgroups based on phylogenetic analysis and classified the conserved exon-intron structures and motif compositions of the ARFs into the same subgroups. Collinearity analysis suggested that segmental duplication and whole-genome duplication events were majorly responsible for the expansion of the PyuARF family, and the analysis of Ka/Ks indicated that the majority of the duplicated PyuARFs underwent purifying selection. The analysis of cis-acting elements showed that PyuARFs were sensitive to light, plant hormones, and stress. We analyzed the tissue-specific transcription profiles of PyuARFs with transcriptional activation function and the transcription profiles of PyuARFs with high expression under light in the stem. We also measured the lignin content under light treatment. The data showed that the lignin content was lower, and the gene transcription profiles were more limited under red light than under white light on days 1, 7, and 14 of the light treatments. The results suggest that PyuARF16/33 may be involved in the regulation of lignin synthesis, thereby promoting the rapid growth of P. yunnanensis. (5) Conclusions: Collectively, this study firstly reports that PyuARF16/33 may be involved in the regulation of lignin synthesis and in promoting the rapid growth in P. yunnanensis.
Collapse
|
45
|
Yu Z, Ma J, Zhang M, Li X, Sun Y, Zhang M, Ding Z. Auxin promotes hypocotyl elongation by enhancing BZR1 nuclear accumulation in Arabidopsis. SCIENCE ADVANCES 2023; 9:eade2493. [PMID: 36598987 PMCID: PMC9812374 DOI: 10.1126/sciadv.ade2493] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Auxin and brassinosteroids (BRs) are two major growth-promoting phytohormones that shape hypocotyl elongation; however, the cross-talk between auxin and BR in this process is not fully understood. In this study, we found that auxin-induced hypocotyl elongation is dependent on brassinazole-resistant 1 (BZR1), a core BR signaling component. Auxin promotes BZR1 nuclear accumulation in hypocotyl cells, a process dependent on mitogen-activated protein kinase 3 (MPK3) and MPK6, which are both activated by auxin and whose encoding genes are highly expressed in hypocotyls. We determined that MPK3/MPK6 phosphorylate and reduce the protein stability of general regulatory factor 4 (GRF4), a member of the 14-3-3 family of proteins that retain BZR1 in the cytoplasm. In summary, this study reveals the molecular mechanism by which auxin promotes hypocotyl elongation by enhancing BZR1 nuclear accumulation via MPK3/MPK6-regulated GRF4 protein stability.
Collapse
Affiliation(s)
- Zipeng Yu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Jinxin Ma
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Mengyue Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Xiaoxuan Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Yi Sun
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Mengxin Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Zhaojun Ding
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| |
Collapse
|
46
|
Wang Q, Zhu Z. Light signaling-mediated growth plasticity in Arabidopsis grown under high-temperature conditions. STRESS BIOLOGY 2022; 2:53. [PMID: 37676614 PMCID: PMC10441904 DOI: 10.1007/s44154-022-00075-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/11/2022] [Indexed: 09/08/2023]
Abstract
Growing concern around global warming has led to an increase in research focused on plant responses to increased temperature. In this review, we highlight recent advances in our understanding of plant adaptation to high ambient temperature and heat stress, emphasizing the roles of plant light signaling in these responses. We summarize how high temperatures regulate plant cotyledon expansion and shoot and root elongation and explain how plants use light signaling to combat severe heat stress. Finally, we discuss several future avenues for this research and identify various unresolved questions within this field.
Collapse
Affiliation(s)
- Qi Wang
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Ziqiang Zhu
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
47
|
Zhang L, Tao R, Wang S, Gao Y, Wang L, Yang S, Zhang X, Yu W, Wu X, Li K, Ni J, Teng Y, Bai S. PpZAT5 suppresses the expression of a B-box gene PpBBX18 to inhibit anthocyanin biosynthesis in the fruit peel of red pear. FRONTIERS IN PLANT SCIENCE 2022; 13:1022034. [PMID: 36304405 PMCID: PMC9592862 DOI: 10.3389/fpls.2022.1022034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
BBX (B-box) proteins play a vital role in light-induced anthocyanin biosynthesis. PpBBX18 was an indispensable regulator for the induction of anthocyanin biosynthesis in the peel of red pear fruit (Pyrus pyrifolia Nakai.). However, the upstream regulation of BBX genes has not been well characterized. In this study, PpZAT5, a cysteine2/histidine2-type transcription factor, was discovered as the upstream negative regulator of PpBBX18. The results showed that PpZAT5 functions as a transcriptional repressor and directly binds to the CAAT motif of PpBBX18 and inhibits its expression. PpZAT5 expression was inhibited by light, which is converse to the expression pattern of anthocyanin-related structural genes. In addition, less anthocyanin accumulated in the PpZAT5-overexpressing pear calli than in the wild-type pear calli; on the contrary, more anthocyanin accumulated in PpZAT5-RNAi pear calli. Moreover, the crucial genes involved in light-induced anthocyanin biosynthesis were markedly down-regulated in the transcriptome of PpZAT5 overexpression pear calli compared to wild-type. In conclusion, our study indicates that PpBBX18 is negatively regulated by a C2H2-type transcriptional repressor, PpZAT5, which reduces anthocyanin content in pear. The present results demonstrate an upstream molecular mechanism of PpBBX18 and provide insights into light-induced anthocyanin biosynthesis.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Horticulture, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, China
| | - Ruiyan Tao
- Department of Horticulture, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, China
| | - Simai Wang
- Department of Horticulture, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, China
| | - Yuhao Gao
- Department of Horticulture, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, China
| | - Lu Wang
- Department of Horticulture, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, China
| | - Shulin Yang
- Department of Horticulture, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, China
| | - Xiao Zhang
- Department of Horticulture, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, China
| | - Wenjie Yu
- Department of Horticulture, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, China
| | - Xinyue Wu
- Department of Horticulture, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, China
| | - Kunfeng Li
- Agricultural Experiment Station, Zhejiang University, Hangzhou, China
| | - Junbei Ni
- Department of Horticulture, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, China
| | - Yuanwen Teng
- Department of Horticulture, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, China
| | - Songling Bai
- Department of Horticulture, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, China
| |
Collapse
|
48
|
Liu X, Wang J, Sabir IA, Sun W, Wang L, Xu Y, Zhang N, Liu H, Jiu S, Liu L, Zhang C. PavGA2ox-2L inhibits the plant growth and development interacting with PavDWARF in sweet cherry (Prunus avium L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 186:299-309. [PMID: 35932654 DOI: 10.1016/j.plaphy.2022.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/27/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Dwarf dense planting is helpful to improve the yield and quality of sweet cherry, which has enormous market demand. GA2oxs (GA oxidases) affect plant height, dormancy release, flower development, and seed germination by participating in the metabolic regulation and signal transduction of GA (Gibberellin). However, the research on GA2ox in sweet cherry is little and worthy of further investigation. Therefore, we identified the PavGA2ox-2L gene from sweet cherry, close to PynGA2ox-2 from Prunus yedoensis var. Nudiflora. The phylogenetic analysis indicated conserved functions with these evolutionarily closer GA2ox subfamily genes. Subcellular localization forecast analysis indicated that PavGA2ox-2L was localized in the nucleus or cytoplasm. The expression levels of PavGA2ox-2L were higher in winter, indicating that PavGA2ox-2L promoted maintained flower bud dormancy. The expression levels of PavGA2ox-2L were significantly increased after GA4+7 treatment while decreased after GR24 (a synthetic analog of SLs (Strigolactones)) or TIS108 (a triazole-type SL-biosynthesis inhibitor) treatments. Over-expression of PavGA2ox-2L resulted in decreased plant height, delayed flowering time, and low seed germination rate in Arabidopsis thaliana. Furthermore, the interaction between PavGA2ox-2L and PavDWARF was verified by Y2H and BiFC assays. In the current investigation, PavGA2ox-2L functions as a GA metabolic gene that promotes dwarf dense planting, delays flowering time, and inhibits seed germination. In addition, it also participates in regulating plant growth and development through the interaction with the critical negative regulator PavDWARF of Gibberellin. These results will help us better explore the molecular mechanism of GA2ox-mediated dwarf and late-maturing varieties for fruit trees.
Collapse
Affiliation(s)
- Xunju Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai, 200240, China.
| | - Jiyuan Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai, 200240, China.
| | - Irfan Ali Sabir
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai, 200240, China.
| | - Wanxia Sun
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai, 200240, China.
| | - Li Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai, 200240, China.
| | - Yan Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai, 200240, China.
| | - Niangong Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai, 200240, China.
| | - Haobo Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai, 200240, China.
| | - Songtao Jiu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai, 200240, China.
| | - Lu Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai, 200240, China.
| | - Caixi Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai, 200240, China.
| |
Collapse
|
49
|
Bian Y, Chu L, Lin H, Qi Y, Fang Z, Xu D. PIFs- and COP1-HY5-mediated temperature signaling in higher plants. STRESS BIOLOGY 2022; 2:35. [PMID: 37676326 PMCID: PMC10441884 DOI: 10.1007/s44154-022-00059-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/16/2022] [Indexed: 09/08/2023]
Abstract
Plants have to cope with the surrounding changing environmental stimuli to optimize their physiological and developmental response throughout their entire life cycle. Light and temperature are two critical environmental cues that fluctuate greatly during day-night cycles and seasonal changes. These two external signals coordinately control the plant growth and development. Distinct spectrum of light signals are perceived by a group of wavelength-specific photoreceptors in plants. PIFs and COP1-HY5 are two predominant signaling hubs that control the expression of a large number of light-responsive genes and subsequent light-mediated development in plants. In parallel, plants also transmit low or warm temperature signals to these two regulatory modules that precisely modulate the responsiveness of low or warm temperatures. The core component of circadian clock ELF3 integrates signals from light and warm temperatures to regulate physiological and developmental processes in plants. In this review, we summarize and discuss recent advances and progresses on PIFs-, COP1-HY5- and ELF3-mediated light, low or warm temperature signaling, and highlight emerging insights regarding the interactions between light and low or warm temperature signal transduction pathways in the control of plant growth.
Collapse
Affiliation(s)
- Yeting Bian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Li Chu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huan Lin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yaoyao Qi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zheng Fang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dongqing Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
50
|
Nakamura-Gouvea N, Alves-Lima C, Benites LF, Iha C, Maracaja-Coutinho V, Aliaga-Tobar V, Araujo Amaral Carneiro M, Yokoya NS, Marinho-Soriano E, Graminha MAS, Collén J, Oliveira MC, Setubal JC, Colepicolo P. Insights into agar and secondary metabolite pathways from the genome of the red alga Gracilaria domingensis (Rhodophyta, Gracilariales). JOURNAL OF PHYCOLOGY 2022; 58:406-423. [PMID: 35090189 DOI: 10.1111/jpy.13238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Gracilariales is a clade of florideophycean red macroalgae known for being the main source of agar. We present a de novo genome assembly and annotation of Gracilaria domingensis, an agarophyte alga with flattened thallus widely distributed along Central and South American Atlantic intertidal zones. In addition to structural analysis, an organizational comparison was done with other Rhodophyta genomes. The nuclear genome has 78 Mbp, with 11,437 predicted coding genes, 4,075 of which did not have hits in sequence databases. We also predicted 1,567 noncoding RNAs, distributed in 14 classes. The plastid and mitochondrion genome structures were also obtained. Genes related to agar synthesis were identified. Genes for type II galactose sulfurylases could not be found. Genes related to ascorbate synthesis were found. These results suggest an intricate connection of cell wall polysaccharide synthesis and the redox systems through the use of L-galactose in Rhodophyta. The genome of G. domingensis should be valuable to phycological and aquacultural research, as it is the first tropical and Western Atlantic red macroalgal genome to be sequenced.
Collapse
Affiliation(s)
- Natalia Nakamura-Gouvea
- Laboratory of Algal Biochemistry and Molecular Biology, Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu, Prestes, 748, São Paulo, SP, 05508-000, Brazil
| | - Cicero Alves-Lima
- Laboratory of Algal Biochemistry and Molecular Biology, Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu, Prestes, 748, São Paulo, SP, 05508-000, Brazil
| | - Luiz Felipe Benites
- CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Sorbonne Université, Observatoire Océanologique - F-66650, Banyuls-sur-Mer, France
| | - Cintia Iha
- Department of Botany, Institute of Biosciences, University of São Paulo, R Matão 277, São Paulo, SP, 05508-090, Brazil
| | - Vinicius Maracaja-Coutinho
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Universidad de Chile - Independencia, Santiago, 8380492, Chile
| | - Victor Aliaga-Tobar
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Universidad de Chile - Independencia, Santiago, 8380492, Chile
| | - Marcella Araujo Amaral Carneiro
- Department of Oceanography and Limnology, Federal University of Rio Grande do Norte - Via Costeira, Praia de Mãe Luiza, s/n, Natal, RN, 59014-002, Brazil
| | - Nair S Yokoya
- Phycology Research Center, Institute of Botany, Secretary of Infrastructure and Environment of São Paulo State, Brazil - Av. Miguel Estefano, 3687, Água Funda, São Paulo, SP, 04301-012, Brazil
| | - Eliane Marinho-Soriano
- Department of Oceanography and Limnology, Federal University of Rio Grande do Norte - Via Costeira, Praia de Mãe Luiza, s/n, Natal, RN, 59014-002, Brazil
| | - Marcia A S Graminha
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rod. Araraquara-Jaú km 1, Campus Ville, Araraquara, SP, 14800-903, Brazil
| | - Jonas Collén
- Station Biologique de Roscoff, UMR 8227, Integrative Biology of Marine Models - CS 90074, Roscoff cedex, 29688, France
| | - Mariana C Oliveira
- Department of Botany, Institute of Biosciences, University of São Paulo, R Matão 277, São Paulo, SP, 05508-090, Brazil
| | - Joao C Setubal
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP, 05508-000, Brazil
| | - Pio Colepicolo
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP, 05508-000, Brazil
| |
Collapse
|