1
|
Wang Y, Jin H, Du S, Fang B, Yue J, Yang C, Wang H, Zhang D, Wang J, Song H, Shao Y, Li X. Multi-Omics Association Analysis of DOF Transcription Factors Involved in the Drought Resistance of Wheat Induced by Strigolactone. Int J Mol Sci 2025; 26:2396. [PMID: 40141041 PMCID: PMC11942236 DOI: 10.3390/ijms26062396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/03/2025] [Accepted: 03/03/2025] [Indexed: 03/28/2025] Open
Abstract
Drought is one of the main adverse factors affecting the growth and development of wheat. The molecular regulation pathway of Strigolactone (SLs or SL),which induces drought resistance in wheat, needs to be further clarified. In this study, SL and Tis (Strigolactone inhibitor) were sprayed on leaves to clarify the changes in wheat drought resistance and their effect on antioxidant enzyme activity, photosynthesis and other metabolic processes. However, 20 kinds of DOF transcription factors were identified by transcriptome metabolome association analysis, and they were highly enriched on chromosome 2. Moreover, the proline, glycosides, indoleacetic acid, betaine, etc., in wheat are the key factors affecting the change in the drought resistance of wheat. The study initially revealed the mechanism of the involvement of DOF in the SL regulation pathway and revealed its impact on different metabolites of wheat, thus providing a theoretical reference for the subsequent molecular verification and breeding of excellent drought-resistant varieties.
Collapse
Affiliation(s)
- Yanjing Wang
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- College of Life Sciences, Zhengzhou Normal University, Zhengzhou 450044, China
| | - Haiyang Jin
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Simeng Du
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Baoting Fang
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Junqin Yue
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Cheng Yang
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Hanfang Wang
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Deqi Zhang
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Jiarui Wang
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Hang Song
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yunhui Shao
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Xiangdong Li
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| |
Collapse
|
2
|
Dukat P, Hölttä T, Oren R, Salmon Y, Urbaniak M, Vesala T, Aalto J, Lintunen A. Partitioning seasonal stem carbon dioxide efflux into stem respiration, bark photosynthesis, and transport-related flux in Scots pine. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4944-4959. [PMID: 38779859 PMCID: PMC11350082 DOI: 10.1093/jxb/erae242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
Stem CO2 efflux is an important component of the carbon balance in forests. The efflux is considered to principally reflect the net result of two dominating and opposing processes: stem respiration and stem photosynthesis. In addition, transport of CO2 in xylem sap is thought to play an appreciable role in affecting the net flux. This work presents an approach to partition stem CO2 efflux among these processes using sap-flux data and CO2-exchange measurements from dark and transparent chambers placed on mature Scots pine (Pinus sylvestris) trees. Seasonal changes and monthly parameters describing the studied processes were determined. Respiration contributed most to stem net CO2 flux, reaching up to 79% (considering the sum of the absolute values of stem respiration, stem photosynthesis, and flux from CO2 transported in xylem sap to be 100%) in June, when stem growth was greatest. The contribution of photosynthesis accounted for up to 13% of the stem net CO2 flux, increasing over the monitoring period. CO2 transported axially with sap flow decreased towards the end of the growing season. At a reference temperature, respiration decreased starting around midsummer, while its temperature sensitivity increased during the summer. A decline was observed for photosynthetic quantum yield around midsummer together with a decrease in light-saturation point. The proposed approach facilitates modeling net stem CO2 flux at a range of time scales.
Collapse
Affiliation(s)
- Paulina Dukat
- Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
- Laboratory of Meteorology, Department of Construction and Geoengineering, Faculty of Environmental Engineering and Mechanical Engineering, Poznan University of Life Sciences, Piątkowska 94, 60-649 Poznań, Poland
| | - Teemu Hölttä
- Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Ram Oren
- Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
- Nicholas School of the Environment & Pratt School of Engineering, Duke University, Durham NC, USA
| | - Yann Salmon
- Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Marek Urbaniak
- Laboratory of Meteorology, Department of Construction and Geoengineering, Faculty of Environmental Engineering and Mechanical Engineering, Poznan University of Life Sciences, Piątkowska 94, 60-649 Poznań, Poland
| | - Timo Vesala
- Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Juho Aalto
- Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Anna Lintunen
- Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Guo Y, He S, Wang HL, Lin H, Zhang Y, Zhao Y. MicroRNA257 promotes secondary growth in hybrid poplar. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108870. [PMID: 38914038 DOI: 10.1016/j.plaphy.2024.108870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/30/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
Populus, a significant fast-growing tree species with global afforestation and energy potential, holds considerable economic value. The abundant production of secondary xylem by trees, which serves as a vital resource for industrial purposes and human sustenance, necessitates the orchestration of various regulatory mechanisms, encompassing transcriptional regulators and microRNAs (miRNAs). Nevertheless, the investigation of microRNA-mediated regulation of poplar secondary growth remains limited. In this study, we successfully isolated a novel microRNA (Pag-miR257) from 84 K poplar and subsequently integrated it into the 35 S overexpression vector. The overexpression of Pag-miR257 resulted in notable increases in plant height, stem diameter, and fresh weight. Additionally, the overexpression of Pag-miR257 demonstrated a significant enhancement in net photosynthetic rate. The findings from the examination of cell wall autofluorescence indicated a substantial increase in both xylem area and the number of vessels in poplar plants overexpressing Pag-miR257. Furthermore, the cell wall of the Pag-miR257 overexpressing plants exhibited thickening as observed through transmission electron microscopy. Moreover, the Fourier Transforms Infrared (FTIR) analysis and phloroglucinol-HCl staining revealed an elevation in lignin content in Pag-miR257 overexpressing poplar plants. The findings of this study suggest that microRNA257 may play a role in the control of secondary growth in poplar stems, thereby potentially enhancing the development of wood engineering techniques for improved material and energy production.
Collapse
Affiliation(s)
- Yayu Guo
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, China; National Engineering Research Center for Tree Breeding and Ecological Restoration, College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Shuhang He
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, China; National Engineering Research Center for Tree Breeding and Ecological Restoration, College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, China; Dongguan No.1 Senior High School, China
| | - Hou-Ling Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, China; National Engineering Research Center for Tree Breeding and Ecological Restoration, College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Hongxia Lin
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, China; National Engineering Research Center for Tree Breeding and Ecological Restoration, College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yuqian Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, China; National Engineering Research Center for Tree Breeding and Ecological Restoration, College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yuanyuan Zhao
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, China; National Engineering Research Center for Tree Breeding and Ecological Restoration, College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
4
|
Natale S, Peralta Ogorek LL, Caracciolo L, Morosinotto T, van Amerongen H, Casolo V, Pedersen O, Nardini A. Net O 2 exchange rates under dark and light conditions across different stem compartments. THE NEW PHYTOLOGIST 2024; 243:72-81. [PMID: 38703003 DOI: 10.1111/nph.19782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/02/2024] [Indexed: 05/06/2024]
Abstract
Woody plants display some photosynthetic activity in stems, but the biological role of stem photosynthesis and the specific contributions of bark and wood to carbon uptake and oxygen evolution remain poorly understood. We aimed to elucidate the functional characteristics of chloroplasts in stems of different ages in Fraxinus ornus. Our investigation employed diverse experimental approaches, including microsensor technology to assess oxygen production rates in whole stem, bark, and wood separately. Additionally, we utilized fluorescence lifetime imaging microscopy (FLIM) to characterize the relative abundance of photosystems I and II (PSI : PSII chlorophyll ratio) in bark and wood. Our findings revealed light-induced increases in O2 production in whole stem, bark, and wood. We present the radial profile of O2 production in F. ornus stems, demonstrating the capability of stem chloroplasts to perform light-dependent electron transport. Younger stems exhibited higher light-induced O2 production and dark respiration rates than older ones. While bark emerged as the primary contributor to net O2 production under light conditions, our data underscored that wood chloroplasts are also photosynthetically active. The FLIM analysis unveiled a lower PSI abundance in wood than in bark, suggesting stem chloroplasts are not only active but also acclimate to the spectral composition of light reaching inner compartments.
Collapse
Affiliation(s)
- Sara Natale
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, Trieste, 34127, Italy
- Dipartimento di Biologia, Università di Padova, Via Ugo Bassi 58B, Padova, 35121, Italy
| | - Lucas Léon Peralta Ogorek
- The Freshwater Biological Laboratory, Department of Biology, University of Copenhagen, Universitetsparken 4, Copenhagen, 2100, Denmark
- School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Ludovico Caracciolo
- Laboratory of Biophysics, Wageningen University & Research, PO Box 8128, 6700 ET, Wageningen, the Netherlands
| | - Tomas Morosinotto
- Dipartimento di Biologia, Università di Padova, Via Ugo Bassi 58B, Padova, 35121, Italy
| | - Herbert van Amerongen
- Laboratory of Biophysics, Wageningen University & Research, PO Box 8128, 6700 ET, Wageningen, the Netherlands
- MicroSpectroscopy Research Facility at Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Valentino Casolo
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università di Udine, Sezione di Biologia Vegetale, Via delle Scienze 91, Udine, 33100, Italy
| | - Ole Pedersen
- The Freshwater Biological Laboratory, Department of Biology, University of Copenhagen, Universitetsparken 4, Copenhagen, 2100, Denmark
- School of Biological Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Andrea Nardini
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, Trieste, 34127, Italy
| |
Collapse
|
5
|
Nardini A, Cochard H, Mayr S. Talk is cheap: rediscovering sounds made by plants. TRENDS IN PLANT SCIENCE 2024; 29:662-667. [PMID: 38218649 DOI: 10.1016/j.tplants.2023.11.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/21/2023] [Accepted: 11/30/2023] [Indexed: 01/15/2024]
Abstract
A recent study and related commentaries have raised new interest in the phenomenon of ultrasonic sound production by plants exposed to stress, especially drought. While recent technological advancements have allowed the demonstration that these sounds can propagate in the air surrounding plants, we remind readers here that research on sound production by plants is more than 100 years old. The mechanisms and patterns of sound emission from plants subjected to different stress factors are also reasonably understood, thanks to the pioneering work of John Milburn and others. By contrast, experimental evidence for a role of these sounds in plant-animal or plant-plant communication remains lacking and, at present, these ideas remain highly speculative.
Collapse
Affiliation(s)
- Andrea Nardini
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy.
| | - Hervé Cochard
- Université Clermont-Auvergne, INRAE, PIAF, Clermont-Ferrand 63000, France
| | - Stefan Mayr
- Department of Botany, University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
6
|
Jupa R, Rosell JA, Pittermann J. Bark structure is coordinated with xylem hydraulic properties in branches of five Cupressaceae species. PLANT, CELL & ENVIRONMENT 2024; 47:1439-1451. [PMID: 38234202 DOI: 10.1111/pce.14824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/27/2023] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
The properties of bark and xylem contribute to tree growth and survival under drought and other types of stress conditions. However, little is known about the functional coordination of the xylem and bark despite the influence of selection on both structures in response to drought. To this end, we examined relationships between proportions of bark components (i.e. thicknesses of tissues outside the vascular cambium) and xylem transport properties in juvenile branches of five Cupressaceae species, focusing on transport efficiency and safety from hydraulic failure via drought-induced embolism. Both xylem efficiency and safety were correlated with multiple bark traits, suggesting that xylem transport and bark properties are coordinated. Specifically, xylem transport efficiency was greater in species with thicker secondary phloem, greater phloem-to-xylem thickness ratio and phloem-to-xylem cell number ratio. In contrast, species with thicker bark, living cortex and dead bark tissues were more resistant to embolism. Thicker phellem layers were associated with lower embolism resistance. Results of this study point to an important connection between xylem transport efficiency and phloem characteristics, which are shaped by the activity of vascular cambium. The link between bark and embolism resistance affirms the importance of both tissues to drought tolerance.
Collapse
Affiliation(s)
- Radek Jupa
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, California, USA
| | - Julieta A Rosell
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Jarmila Pittermann
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, California, USA
| |
Collapse
|
7
|
Liao X, Wang Y, Malghani S, Zhu X, Cai W, Qin Z, Wang F. Methane and nitrous oxide emissions and related microbial communities from mangrove stems on Qi'ao Island, Pearl River Estuary in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170062. [PMID: 38220023 DOI: 10.1016/j.scitotenv.2024.170062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
Mangrove forests, crucial carbon-rich ecosystems, are increasingly vulnerable to soil carbon loss and greenhouse gas (GHG) emissions due to human disturbance. However, the contribution of mangrove trees to GHG emissions remains poorly understood. This study monitored CO2, CH4, and N2O fluxes from the stems of two mangrove species, native Kandelia obovata (KO) and exotic Sonneratia apetala (SA), at three heights (0.7 m, 1.2 m, and 1.7 m) during the dry winter period on Qi'ao Island, Pearl River Estuary, China. Heartwood samples were analyzed to identify potential functional groups related to gas fluxes. Our study found that tree stems acted as both sinks and sources for N2O (ranging from -9.49 to 28.35 μg m-2 h-1 for KO and from -6.73 to 28.95 μg m-2 h-1 for SA) and CH4. SA exhibited significantly higher stem CH4 flux (from -26.67 to 97.33 μg m-2 h-1) compared to KO (from -44.13 to 88.0 μg m-2 h-1) (P < 0.05). When upscaled to the community level, both species were net emitters of CH4, contributing approximately 4.68 % (KO) and 0.51 % (SA) to total CH4 emissions. The decrease in stem CH4 flux with increasing height, indicates a soil source. Microbial analysis in the heartwood using the KEGG database indicated aceticlastic methanogenesis as the dominant CH4 pathway. The presence of methanogens, methanotrophs, denitrifiers, and nitrifiers suggests microbial involvement in CH4 and N2O production and consumption. Remarkably, the dominance of Cyanobacteria in the heartwood microbiome (with the relative abundance of 97.5 ± 0.6 % for KO and 99.1 ± 0.2 % for SA) implies roles in carbon and nitrogen fixation for mangroves coping with nitrogen limitation in coastal wetlands, and possibly in CH4 production. Although the present study has limitations in sampling duration and area, it highlights the significant role of tree stems in GHG emissions which is crucial for a holistic evaluation of the global carbon sequestration capability of mangrove ecosystems. Future research should broaden spatial and temporal scales to enhance the accuracy of upscaling tree stem gas fluxes to the mangrove ecosystem level.
Collapse
Affiliation(s)
- Xiaolin Liao
- College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Ying Wang
- School of Atmospheric Sciences, Sun Yat-sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, Guangdong, China
| | - Saadatullah Malghani
- College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Xudong Zhu
- Key Laboratory of the Coastal and Wetland Ecosystems (Ministry of Education), College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China; Fujian Key Laboratory of Severe Weather, Fuzhou 350008, Fujian, China
| | - Wenqi Cai
- School of Atmospheric Sciences, Sun Yat-sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, Guangdong, China
| | - Zhangcai Qin
- School of Atmospheric Sciences, Sun Yat-sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, Guangdong, China; Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai 519082, China
| | - Fan Wang
- School of Atmospheric Sciences, Sun Yat-sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, Guangdong, China; Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai 519082, China; School of Ecology, Sun Yat-sen University, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, Guangdong, China.
| |
Collapse
|
8
|
Ávila-Lovera E, Haro R, Choudhary M, Acosta-Rangel A, Pratt RB, Santiago LS. The benefits of woody plant stem photosynthesis extend to hydraulic function and drought survival in Parkinsonia florida. TREE PHYSIOLOGY 2024; 44:tpae013. [PMID: 38284819 PMCID: PMC10918054 DOI: 10.1093/treephys/tpae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 01/16/2024] [Accepted: 01/21/2024] [Indexed: 01/30/2024]
Abstract
As climate change exacerbates drought stress in many parts of the world, understanding plant physiological mechanisms for drought survival is critical to predicting ecosystem responses. Stem net photosynthesis, which is common in arid environments, may be a drought survival trait, but whether the additional carbon fixed by stems contributes to plant hydraulic function and drought survival in arid land plants is untested. We conducted a stem light-exclusion experiment on saplings of a widespread North American desert tree species, Parkinsonia florida L., and after shading acclimation, we then subjected half of the plants to a drought treatment to test the interaction between light exclusion and water limitation on growth, leaf and stem photosynthetic gas exchange, xylem embolism assessed with micro-computed tomography and gravimetric techniques, and survival. Growth, stem photosynthetic gas exchange, hydraulic function and survival all showed expected reductions in response to light exclusion. However, stem photosynthesis mitigated the drought-induced reductions in gas exchange, xylem embolism (percent loss of conductivity, PLC) and mortality. The highest mortality was in the combined light exclusion and drought treatment, and was related to stem PLC and native sapwood-specific hydraulic conductivity. This research highlights the integration of carbon economy and water transport. Our results show that additional carbon income by photosynthetic stems has an important role in the growth and survival of a widespread desert tree species during drought. This shift in function under conditions of increasing stress underscores the importance of considering stem photosynthesis for predicting drought-induced mortality not only for the additional supply of carbon, but also for its extended benefits for hydraulic function.
Collapse
Affiliation(s)
- Eleinis Ávila-Lovera
- School of Biological Sciences, The University of Utah, 257 S 1400 E, Salt Lake City, UT 84112, USA
- Department of Botany and Plant Sciences, University of California, 2150 Batchelor Hall, Riverside, CA 92521, USA
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Panama, Republic of Panama
| | - Roxana Haro
- Department of Botany and Plant Sciences, University of California, 2150 Batchelor Hall, Riverside, CA 92521, USA
| | - Manika Choudhary
- Department of Botany and Plant Sciences, University of California, 2150 Batchelor Hall, Riverside, CA 92521, USA
| | - Aleyda Acosta-Rangel
- Department of Botany and Plant Sciences, University of California, 2150 Batchelor Hall, Riverside, CA 92521, USA
| | - R Brandon Pratt
- Department of Biology, California State University, 9001 Stockdale Hwy, Bakersfield, CA 93311, USA
| | - Louis S Santiago
- Department of Botany and Plant Sciences, University of California, 2150 Batchelor Hall, Riverside, CA 92521, USA
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Panama, Republic of Panama
| |
Collapse
|
9
|
Wu T, Song Y, Tissue D, Su W, Luo H, Li X, Yang S, Liu X, Yan J, Huang J, Liu J. Photosynthetic and biochemical responses of four subtropical tree seedlings to reduced dry season and increased wet season precipitation and variable N deposition. TREE PHYSIOLOGY 2024; 44:tpad114. [PMID: 37756634 DOI: 10.1093/treephys/tpad114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/27/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Interspecific variations in phenotypic plasticity of trees that are affected by climate change may alter the ecosystem function of forests. Seedlings of four common tree species (Castanopsis fissa, Michelia macclurei, Dalbergia odorifera and Ormosia pinnata) in subtropical plantations of southern China were grown in the field under rainout shelters and subjected to changing precipitation (48 L of water every 4 days in the dry season, 83 L of water every 1 day in the wet season; 4 g m-2 year-1 of nitrogen (N)), low N deposition (48 L of water every 2 days in the dry season, 71 L of water every 1 day in the wet season; 8 g m-2 year-1 N), high N deposition (48 L of water every 2 days in the dry season, 71 L of water every 1 day in the wet season; 10 g m-2 year-1 N) and their interactive effects. We found that the changes in seasonal precipitation reduced the light-saturated photosynthetic rate (Asat) for C. fissa due to declining area-based foliar N concentrations (Na). However, we also found that the interactive effects of changing precipitation and N deposition enhanced Asat for C. fissa by increasing foliar Na concentrations, suggesting that N deposition could alleviate N limitations associated with changing precipitation. Altered precipitation and high N deposition reduced Asat for D. odorifera by decreasing the maximum electron transport rate for RuBP regeneration (Jmax) and maximum rate of carboxylation of Rubisco (Vcmax). Ormosia pinnata under high N deposition exhibited increasing Asat due to higher stomatal conductance and Vcmax. The growth of D. odorifera might be inhibited by changes in seasonal precipitation and N deposition, while O. pinnata may benefit from increasing N deposition in future climates. Our study provides an important insight into the selection of tree species with high capacity to tolerate changing precipitation and N deposition in subtropical plantations.
Collapse
Affiliation(s)
- Ting Wu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Penrith, NSW 2751, Australia
- Global Centre for Land-Based Innovation, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Penrith, NSW 2751, Australia
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yuting Song
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - David Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Penrith, NSW 2751, Australia
- Global Centre for Land-Based Innovation, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Wei Su
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Hanyu Luo
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xu Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Shimin Yang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xujun Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Junhua Yan
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Juan Huang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Juxiu Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| |
Collapse
|
10
|
Salomón RL, Helm J, Gessler A, Grams TEE, Hilman B, Muhr J, Steppe K, Wittmann C, Hartmann H. The quandary of sources and sinks of CO2 efflux in tree stems-new insights and future directions. TREE PHYSIOLOGY 2024; 44:tpad157. [PMID: 38214910 DOI: 10.1093/treephys/tpad157] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024]
Abstract
Stem respiration (RS) substantially contributes to the return of photo assimilated carbon to the atmosphere and, thus, to the tree and ecosystem carbon balance. Stem CO2 efflux (ECO2) is often used as a proxy for RS. However, this metric has often been challenged because of the uncertain origin of CO2 emitted from the stem due to post-respiratory processes. In this Insight, we (i) describe processes affecting the quantification of RS, (ii) review common methodological approaches to quantify and model RS and (iii) develop a research agenda to fill the most relevant knowledge gaps that we identified. Dissolution, transport and accumulation of respired CO2 away from its production site, reassimilation of respired CO2 via stem photosynthesis and the enzyme phosphoenolpyruvate carboxylase, axial CO2 diffusion in the gas phase, shifts in the respiratory substrate and non-respiratory oxygen (O2) consumption are the most relevant processes causing divergence between RS and measured stem gas exchange (ECO2 or O2 influx, IO2). Two common methodological approaches to estimate RS, namely the CO2 mass balance approach and the O2 consumption technique, circumvent some of these processes but have yielded inconsistent results regarding the fate of respired CO2. Stem respiration modelling has recently progressed at the organ and tree levels. However, its implementation in large-scale models, commonly operated from a source-driven perspective, is unlikely to reflect adequate mechanisms. Finally, we propose hypotheses and approaches to advance the knowledge of the stem carbon balance, the role of sap pH on RS, the reassimilation of respired CO2, RS upscaling procedures, large-scale RS modelling and shifts in respiratory metabolism during environmental stress.
Collapse
Affiliation(s)
- Roberto L Salomón
- Universidad Politécnica de Madrid (UPM), Departamento de Sistemas y Recursos Naturales, Research Group FORESCENT, Antonio Novais 10, 28040, Madrid, Spain
- Department of Plants and Crops, Laboratory of Plant Ecology, Ghent University, Faculty of Bioscience Engineering, Coupure Links 653, 9000 Ghent, Belgium
| | - Juliane Helm
- Max-Planck-Institute for Biogeochemistry, Biogeochemical Processes, Hans-Knöll-Str. 10, 07743 Jena, Germany
- Department of Environmental Sciences - Botany, Basel University, Schönbeinstr. 6, Basel CH-4056, Switzerland
| | - Arthur Gessler
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zurcherstrasse 111, 8903 Birmensdorf, Switzerland
- Institute of Terrestrial Ecosystems, ETH Zürich, Rämistrasse 101, 8902 Zurich, Switzerland
| | - Thorsten E E Grams
- Technical University of Munich, Ecophysiology of Plants, Land Surface - Atmosphere Interactions, Von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Boaz Hilman
- Max-Planck-Institute for Biogeochemistry, Biogeochemical Processes, Hans-Knöll-Str. 10, 07743 Jena, Germany
| | - Jan Muhr
- Department of Forest Botany and Tree Physiology, Laboratory for Radioisotopes, Georg-August Universität Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Kathy Steppe
- Department of Plants and Crops, Laboratory of Plant Ecology, Ghent University, Faculty of Bioscience Engineering, Coupure Links 653, 9000 Ghent, Belgium
| | - Christiane Wittmann
- Faculty of Biology, Botanical Garden, University of Duisburg-Essen, Universitätsstrasse 5, 45117 Essen, Germany
| | - Henrik Hartmann
- Max-Planck-Institute for Biogeochemistry, Biogeochemical Processes, Hans-Knöll-Str. 10, 07743 Jena, Germany
- Institute for Forest Protection, Julius Kühn Institute Federal Research Centre for Cultivated Plants, Erwin-Baur-Straße 27, 06484 Quedlinburg, Germany
| |
Collapse
|
11
|
Yin XH, Hao GY, Sterck F. Ring- and diffuse-porous tree species from a cold temperate forest diverge in stem hydraulic traits, leaf photosynthetic traits, growth rate and altitudinal distribution. TREE PHYSIOLOGY 2023; 43:722-736. [PMID: 36715627 DOI: 10.1093/treephys/tpad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 01/06/2023] [Accepted: 01/20/2023] [Indexed: 05/13/2023]
Abstract
In cold and humid temperate forests, low temperature, late frost and frequent freeze-thaw cycles are the main factors limiting tree growth and survival. Ring- and diffuse-porous tree species differing in xylem anatomy coexist in these forests, but their divergent adaptations to these factors have been poorly explored. To fill this knowledge gap, we compared four ring-porous and four diffuse-porous tree species from the same temperate forest in Northeast China by quantifying their leaf and stem functional traits, their stem growth rates using tree ring analysis and their resistance to cold represented by upper altitude species distribution borders from survey data. We found that the ring-porous trees were characterized by traits related to more rapid water transport, carbon gain and stem growth rates than those of the diffuse-porous species. Compared with the diffuse-porous species, the ring-porous species had a significantly higher shoot hydraulic conductance (Ks-shoot, 0.52 vs 1.03 kg m-1 s-1 MPa-1), leaf photosynthetic rate (An, 11.28 vs 15.83 μmol m-2 s-1), relative basal area increment (BAIr, 2.28 vs 0.72 cm year-1) and stem biomass increment (M, 0.34 vs 0.09 kg year-1 m-1). However, the observed upper elevational distribution limit of the diffuse-porous species was higher than that of the ring-porous species and was associated with higher values of conservative traits, such as longer leaf life span (R2 = 0.52). Correspondingly, BAIr and M showed significant positive correlations with acquisitive traits such as Ks-shoot (R2 = 0.77) and leaf photosynthetic rate (R2 = 0.73) across the eight species, with the ring-porous species occurring at the fast-acquisitive side of the spectrum and the diffuse-porous species located on the opposite side. The observed contrasts in functional traits between the two species groups improved our understanding of their differences in terms of growth strategies and adaptive capabilities in the cold, humid temperate forests.
Collapse
Affiliation(s)
- Xiao-Han Yin
- Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Shengyang, Liaoning 110016, China
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shengyang, Liaoning 110016, China
- Forest Ecology and Forest Management Group, Wageningen University, PO Box 47, 6700 AA Wageningen, The Netherlands
| | - Guang-You Hao
- Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Shengyang, Liaoning 110016, China
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shengyang, Liaoning 110016, China
| | - Frank Sterck
- Forest Ecology and Forest Management Group, Wageningen University, PO Box 47, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
12
|
Tung CC, Kuo SC, Yang CL, Yu JH, Huang CE, Liou PC, Sun YH, Shuai P, Su JC, Ku C, Lin YCJ. Single-cell transcriptomics unveils xylem cell development and evolution. Genome Biol 2023; 24:3. [PMID: 36624504 PMCID: PMC9830878 DOI: 10.1186/s13059-022-02845-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/31/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Xylem, the most abundant tissue on Earth, is responsible for lateral growth in plants. Typical xylem has a radial system composed of ray parenchyma cells and an axial system of fusiform cells. In most angiosperms, fusiform cells comprise vessel elements for water transportation and libriform fibers for mechanical support, while both functions are performed by tracheids in other vascular plants such as gymnosperms. Little is known about the developmental programs and evolutionary relationships of these xylem cell types. RESULTS Through both single-cell and laser capture microdissection transcriptomic profiling, we determine the developmental lineages of ray and fusiform cells in stem-differentiating xylem across four divergent woody angiosperms. Based on cross-species analyses of single-cell clusters and overlapping trajectories, we reveal highly conserved ray, yet variable fusiform, lineages across angiosperms. Core eudicots Populus trichocarpa and Eucalyptus grandis share nearly identical fusiform lineages, whereas the more basal angiosperm Liriodendron chinense has a fusiform lineage distinct from that in core eudicots. The tracheids in the basal eudicot Trochodendron aralioides, an evolutionarily reversed trait, exhibit strong transcriptomic similarity to vessel elements rather than libriform fibers. CONCLUSIONS This evo-devo framework provides a comprehensive understanding of the formation of xylem cell lineages across multiple plant species spanning over a hundred million years of evolutionary history.
Collapse
Affiliation(s)
- Chia-Chun Tung
- Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Shang-Che Kuo
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, 10617, Taiwan
| | - Chia-Ling Yang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Jhong-He Yu
- Institute of Plant Biology, National Taiwan University, Taipei, 10617, Taiwan
| | - Chia-En Huang
- Institute of Plant Biology, National Taiwan University, Taipei, 10617, Taiwan
| | - Pin-Chien Liou
- Institute of Plant Biology, National Taiwan University, Taipei, 10617, Taiwan
| | - Ying-Hsuan Sun
- Department of Forestry, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Peng Shuai
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jung-Chen Su
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Chuan Ku
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, 10617, Taiwan.
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan.
| | - Ying-Chung Jimmy Lin
- Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan.
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, 10617, Taiwan.
- Institute of Plant Biology, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
13
|
Acclimation Strategy of Masson Pine (Pinus massoniana) by Limiting Flavonoid and Terpenoid Production under Low Light and Drought. Int J Mol Sci 2022; 23:ijms23158441. [PMID: 35955577 PMCID: PMC9368996 DOI: 10.3390/ijms23158441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 12/10/2022] Open
Abstract
Low light and drought often limit the growth and performance of Masson pines (Pinus massoniana) in the subtropical forest ecosystem of China. We speculated that stress-induced defensive secondary metabolites, such as flavonoids and terpenoids, might influence the growth of Masson pines, considering the existence of tradeoffs between growth and defense. However, the mechanisms of Masson pines responsive to low light and drought at the levels of these two metabolites remain unclear. In the present work, the compositions of flavonoids and terpenoids, as well as their biosynthetic pathways, were revealed through metabolome and transcriptome analyses, respectively, coupled with a study on carbon allocation using a 13CO2-pulse-labeling experiment in two-year-old seedlings under low light (LL), drought (DR), and their combined stress (DL) compared to a control (CK). A total of 35 flavonoids and derivatives (LL vs. CK: 18; DR vs. CK: 20; and DL vs. CK: 18), as well as 29 terpenoids and derivatives (LL vs. CK: 23; DR vs. CK: 13; and DL vs. CK: 7), were differentially identified in the leaves. Surprisingly, most of them were decreased under all three stress regimes. At the transcriptomic level, most or all of the detected DEGs (differentially expressed genes) involved in the biosynthetic pathways of flavonoids and terpenoids were downregulated in phloem and xylem under stress treatments. This indicated that stress treatments limited the production of flavonoids and terpenoids. The reduction in the 13C allocation to stems might suggest that it is necessary for maintaining the growth of Masson pine seedlings at the whole-plant level by attenuating energetic resources to the biosynthetic pathways of flavonoids and terpenoids when facing the occurrence of adverse environments. Our results provide new insight into understanding the acclimation strategy of Masson pines or other conifers in adverse environments.
Collapse
|
14
|
Liu M, Zhao Y, Wang Y, Korpelainen H, Li C. Stem xylem traits and wood formation affect sex-specific responses to drought and rewatering in Populus cathayana. TREE PHYSIOLOGY 2022; 42:1350-1363. [PMID: 35137223 DOI: 10.1093/treephys/tpac011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
The increased frequency and intensity of drought pose great threats to the survival of trees, especially in dioecious tree species with sexual differences in mortality and biased sex ratios. The sex-specific mechanisms underlying stem xylem anatomy and function and carbon metabolism in drought resistance and recovery were investigated in dioecious Populus cathayana Rehder. The sex-specific drought resistance and subsequent recovery were linked to the xylem anatomy and carbon metabolism. Females had a greater xylem vessel area per vessel, biomass and theoretically hydraulic efficiency under well-watered conditions. Conversely, males had a lower xylem lumen area, but greater vessel numbers, and a higher cell wall thickness, suggesting a theoretically conservative water-use strategy and drought resistance. The recovery of photosynthetic ability after drought in males was largely dependent on the recovery of xylem function and the regulation of the xylem carbohydrate metabolism. Additionally, the number of upregulated genes related to xylem cell wall biogenesis was greater in males relative to females under drought stress and subsequent rewatering, which facilitated drought resistance and xylem function restoration in males. These results suggested that sex-specific drought resistance and restoration were related to xylem anatomy and function, carbohydrate metabolism and cell turgor maintenance.
Collapse
Affiliation(s)
- Miao Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Yuhangtang Road 2318, Hangzhou 311121, China
| | - Yang Zhao
- College of Life and Environmental Sciences, Hangzhou Normal University, Yuhangtang Road 2318, Hangzhou 311121, China
| | - Yuting Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Yuhangtang Road 2318, Hangzhou 311121, China
| | - Helena Korpelainen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, Latokartanonkaari 5, Helsinki FI-00014, Finland
| | - Chunyang Li
- College of Agriculture and Biotechnology, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| |
Collapse
|
15
|
Zhou XL, Ma JY, Liu ZD, Dai NF, Yang HQ, Yang L, Wang YH, Shen SK. Gene Co-expression Network and Regression Analysis Identify the Transcriptomic, Physiological, and Biochemical Indicators of the Response of Alpine Woody Plant Rhododendron rex to Drought Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:896691. [PMID: 35693180 PMCID: PMC9174646 DOI: 10.3389/fpls.2022.896691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Increasing severity of drought stress due to global change and extreme weather has been affecting the biodiversity, function, and stability of forest ecosystems. However, despite being an important component in the alpine and subalpine vegetation in forest ecosystems, Rhododendron species have been paid rare attention in the study of molecular mechanism of tolerance or response to drought. Herein, we investigated the correlation of transcriptomic changes with the physiological and biochemical indicators of Rhododendron rex under drought stress by using the co-expression network approach and regression analysis. Compared with the control treatment, the number of significantly differentially expressed unigenes (DEGs) increased with the degree of drought stress. The DEGs were mainly enriched in the cell wall metabolic process, signaling pathways, sugar metabolism, and nitrogen metabolism. Coupled analysis of the transcriptome, physiological, and biochemical parameters indicated that the metabolic pathways were highly correlated with the physiological and biochemical indicators under drought stress, especially the chlorophyll fluorescence parameters, such as the actual photosynthetic efficiency of photosystem II, electron transport rate, photochemical quenching coefficient, and the maximum quantum efficiency of photosystem II photochemistry. The majority of the response genes related to the metabolic pathways, including photosynthesis, sugar metabolism, and phytohormone signal pathway, were highly expressed under drought stress. In addition, genes associated with cell wall, pectin, and galacturonan metabolism also played crucial roles in the response of R. rex to drought stress. The results provided novel insight into the molecular response of the alpine woody species under drought stress and may improve the understanding of the response of forest ecosystems to the global climate change.
Collapse
Affiliation(s)
- Xiong-Li Zhou
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, China
| | - Jin-Yan Ma
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Zhen-Dian Liu
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Ni-fei Dai
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Hui-Qin Yang
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Liu Yang
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
| | - Yue-Hua Wang
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
| | - Shi-Kang Shen
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, China
| |
Collapse
|
16
|
Li X, Xi B, Wu X, Choat B, Feng J, Jiang M, Tissue D. Unlocking Drought-Induced Tree Mortality: Physiological Mechanisms to Modeling. FRONTIERS IN PLANT SCIENCE 2022; 13:835921. [PMID: 35444681 PMCID: PMC9015645 DOI: 10.3389/fpls.2022.835921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Drought-related tree mortality has become a major concern worldwide due to its pronounced negative impacts on the functioning and sustainability of forest ecosystems. However, our ability to identify the species that are most vulnerable to drought, and to pinpoint the spatial and temporal patterns of mortality events, is still limited. Model is useful tools to capture the dynamics of vegetation at spatiotemporal scales, yet contemporary land surface models (LSMs) are often incapable of predicting the response of vegetation to environmental perturbations with sufficient accuracy, especially under stressful conditions such as drought. Significant progress has been made regarding the physiological mechanisms underpinning plant drought response in the past decade, and plant hydraulic dysfunction has emerged as a key determinant for tree death due to water shortage. The identification of pivotal physiological events and relevant plant traits may facilitate forecasting tree mortality through a mechanistic approach, with improved precision. In this review, we (1) summarize current understanding of physiological mechanisms leading to tree death, (2) describe the functionality of key hydraulic traits that are involved in the process of hydraulic dysfunction, and (3) outline their roles in improving the representation of hydraulic function in LSMs. We urge potential future research on detailed hydraulic processes under drought, pinpointing corresponding functional traits, as well as understanding traits variation across and within species, for a better representation of drought-induced tree mortality in models.
Collapse
Affiliation(s)
- Ximeng Li
- College of Life and Environmental Science, Minzu University of China, Beijing, China
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | - Benye Xi
- Ministry of Education Key Laboratory of Silviculture and Conservation, Beijing Forestry University, Beijing, China
| | - Xiuchen Wu
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, China
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | - Jinchao Feng
- College of Life and Environmental Science, Minzu University of China, Beijing, China
| | - Mingkai Jiang
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - David Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
- Global Centre for Land-based Innovation, Western Sydney University, Richmond, NSW, Australia
| |
Collapse
|
17
|
Yin X, Hao G, Sterck F. A trade‐off between growth and hydraulic resilience against freezing leads to divergent adaptations among temperate tree species. Funct Ecol 2022. [DOI: 10.1111/1365-2435.13991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiao‐Han Yin
- CAS Key Laboratory of Forest Ecology and Management & Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Liaoning Province Institute of Applied Ecology Chinese Academy of Sciences Shenyang China
- Forest Ecology and Forest Management Group Wageningen University Wageningen The Netherlands
| | - Guang‐You Hao
- CAS Key Laboratory of Forest Ecology and Management & Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Liaoning Province Institute of Applied Ecology Chinese Academy of Sciences Shenyang China
| | - Frank Sterck
- Forest Ecology and Forest Management Group Wageningen University Wageningen The Netherlands
| |
Collapse
|
18
|
Wu N, Li Z, Meng S, Wu F. Effects of arbuscular mycorrhizal inoculation on the growth, photosynthesis and antioxidant enzymatic activity of Euonymus maackii Rupr. under gradient water deficit levels. PLoS One 2021; 16:e0259959. [PMID: 34813605 PMCID: PMC8610274 DOI: 10.1371/journal.pone.0259959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 10/30/2021] [Indexed: 11/19/2022] Open
Abstract
The role of arbuscular mycorrhizal (AM) fungus (Rhizophagus intraradices) in the amelioration of the water deficit-mediated negative influence on the growth, photosynthesis, and antioxidant system in Euonymus maackii Rupr. was examined. E. maackii seedlings were subjected to 5 water deficit levels, soil water contents of 20%, 40%, 60%, 80% and 100% field capacity (FC), and 2 inoculation treatments, with and without AM inoculation. The water deficit increasingly limited the seedling height, biomass accumulation in shoots and roots, chlorophyll content, gas exchange and chlorophyll fluorescence parameters with an increasing water deficit level. In addition, water deficit stimulated the activities of antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT), in both shoots and roots, except under 20% FC conditions. E. maackii seedlings under all water deficit conditions formed symbiosis well with AM fungi, which significantly ameliorated the drought-mediated negative effect, especially under 40% and 60% FC conditions. Under 40% to 80% FC conditions, AM formation improved seedling growth and photosynthesis by significantly enhancing the biomass accumulation, chlorophyll content and assimilation. Mycorrhizal seedlings showed better tolerance and less sensitivity to a water deficit, reflected in the lower SOD activities of shoots and roots and CAT activity of shoots under 40% and 60% FC conditions. Downregulation of the antioxidant system in mycorrhizal seedlings suggested better maintenance of redox homeostasis and protection of metabolism, including biomass accumulation and assimilation. All the results advocated the positive role of R. intraradices inoculation in E. maackii against a water deficit, especially under 40% FC, which suggested the distinct AM performance in drought tolerance and the potential role of the combination of E. maackii-AM fungi in ecological restoration in arid regions.
Collapse
Affiliation(s)
- Na Wu
- Institute of Applied Biotechnology, School of Life Science, Shanxi Datong University, Datong, Shanxi, China
| | - Zhen Li
- Institute of Applied Biotechnology, School of Life Science, Shanxi Datong University, Datong, Shanxi, China
| | - Sen Meng
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangdong, China
| | - Fei Wu
- 2011 Collaborative Innovation Center of Jiangxi Typical Trees Cultivation and Utilization, College of Forestry, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| |
Collapse
|
19
|
Liu J, Sun C, Zhai FF, Li Z, Qian Y, Gu L, Sun Z. Proteomic insights into the photosynthetic divergence between bark and leaf chloroplasts in Salix matsudana. TREE PHYSIOLOGY 2021; 41:2142-2152. [PMID: 33987679 DOI: 10.1093/treephys/tpab055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Bark chloroplasts play important roles in carbon balancing by recycling internal stem CO2 into assimilated carbon. The photosynthetic response of bark chloroplasts to interior stem environments has been studied recently in woody plants. However, the molecular regulatory mechanisms underlying specific characteristics of bark photosynthesis remain unclear. To address this knowledge gap, differences in the structure, photosynthetic activity and protein expression profiles between bark and leaf chloroplasts were investigated in Salix matsudana in this study. Bark chloroplasts exhibited broader and lower grana stacks and higher levels of starch relative to leaf chloroplasts. Concomitantly, decreased oxygen evolution rates and decreased saturated radiation point were observed in bark chloroplasts. Furthermore, a total of 293 differentially expressed proteins (DEPs) were identified in bark and leaf chloroplast profile comparisons. These DEPs were significantly enriched in photosynthesis-related biological processes or Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways associated with photosynthesis. All 116 DEPs within the KEGG pathways associated with photosynthesis light reactions were downregulated in bark chloroplasts, including key proteins responsible for chlorophyll synthesis, light energy harvesting, nonphotochemical quenching, linear electron transport and photophosphorylation. Interestingly, seven upregulated proteins involved in dark reactions were identified in bark chloroplasts that comprised two kinds of malic enzymes typical of C4-type photosynthesis. These results provide comprehensive proteomic evidence to understand the low photochemical capability of bark chloroplasts and suggest that bark chloroplasts might fix CO2 derived from malate decarboxylation.
Collapse
Affiliation(s)
- Junxiang Liu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, P.R. China
| | - Chao Sun
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, P.R. China
| | - Fei-Fei Zhai
- School of Architectural and Artistic Design, Henan Polytechnic University, Jiaozuo, Henan 454000, P.R. China
| | - Zhenjian Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, P.R. China
| | - Yongqiang Qian
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, P.R. China
| | - Lin Gu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, P.R. China
| | - Zhenyuan Sun
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, P.R. China
| |
Collapse
|
20
|
Salomón RL, De Roo L, Bodé S, Boeckx P, Steppe K. Efflux and assimilation of xylem-transported CO 2 in stems and leaves of tree species with different wood anatomy. PLANT, CELL & ENVIRONMENT 2021; 44:3494-3508. [PMID: 33822389 DOI: 10.1111/pce.14062] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Determining the fate of CO2 respired in woody tissues is necessary to understand plant respiratory physiology and to evaluate CO2 recycling mechanisms. An aqueous 13 C-enriched CO2 solution was infused into the stem of 3-4 m tall trees to estimate efflux and assimilation of xylem-transported CO2 via cavity ring-down laser spectroscopy and isotope ratio mass spectrometry, respectively. Different tree locations (lower stem, upper stem and leafy shoots) and tissues (xylem, bark and leaves) were monitored in species with tracheid, diffuse- and ring-porous wood anatomy (cedar, maple and oak, respectively). Radial xylem CO2 diffusivity and xylem [CO2 ] were lower in cedar relative to maple and oak trees, thereby limiting label diffusion. Part of the labeled 13 CO2 was assimilated in cedar (8.7%) and oak (20.6%) trees, mostly in xylem and bark tissues of the stem, while limited solution uptake in maple trees hindered the detection of label assimilation. Little label reached foliar tissues, suggesting substantial label loss along the stem-branch transition following reductions in the radial diffusive pathway. Differences in respiration rates and radial xylem CO2 diffusivity (lower in conifer relative to angiosperm species) might reconcile discrepancies in efflux and assimilation of xylem-transported CO2 so far observed between taxonomic clades.
Collapse
Affiliation(s)
- Roberto Luis Salomón
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Grupo de Investigación Sistemas Naturales e Historia Forestal, Universidad Politécnica de Madrid, Madrid, Spain
| | - Linus De Roo
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Samuel Bodé
- Isotope Bioscience Laboratory-ISOFYS, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Pascal Boeckx
- Isotope Bioscience Laboratory-ISOFYS, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
21
|
Stutz SS, Anderson J. Inside out: Measuring the effect of wood anatomy on the efflux and assimilation of xylem-transported CO 2. PLANT, CELL & ENVIRONMENT 2021; 44:3490-3493. [PMID: 34424562 DOI: 10.1111/pce.14172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/22/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Samantha S Stutz
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jeremiah Anderson
- Department of Environmental and Climate Sciences, Brookhaven National Laboratory, Upton, New York, USA
| |
Collapse
|
22
|
Tomasella M, Casolo V, Natale S, Petruzzellis F, Kofler W, Beikircher B, Mayr S, Nardini A. Shade-induced reduction of stem nonstructural carbohydrates increases xylem vulnerability to embolism and impedes hydraulic recovery in Populus nigra. THE NEW PHYTOLOGIST 2021; 231:108-121. [PMID: 33811346 PMCID: PMC9290559 DOI: 10.1111/nph.17384] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/28/2021] [Indexed: 05/08/2023]
Abstract
Nonstructural carbohydrates (NSCs) have been suggested to affect xylem transport under fluctuating water availability, but conclusive evidence is still lacking. We tested the effect of shade-induced NSC depletion on xylem vulnerability to embolism and hydraulic recovery on Populus nigra saplings. Vulnerability was assessed in light-exposed (L) and shaded (S) plants with the hydraulic method, and in vivo with the optical method and X-ray micro-computed tomography. Plants were stressed to 80% loss of hydraulic conductance (PLC) and re-irrigated to check for possible recovery. We measured PLC, bark and wood NSC content, as well as xylem sap pH, surface tension (γsap ) and sugar concentration, before, during and after drought. Shading induced depletion of stem NSC (mainly starch) reserves. All methods converged in indicating higher xylem vulnerability in S than in L plants. This difference was not explained by xylem vessel and pit anatomy or by γsap . Shading impeded sap acidification and sugar accumulation during drought in S plants and prevented hydraulic recovery, which was observed in L plants. Our results highlight the importance of stem NSCs to sustain xylem hydraulic functioning during drought and suggest that light and/or adequate stem NSC thresholds are required to trigger xylem sap chemical changes involved in embolism recovery.
Collapse
Affiliation(s)
- Martina Tomasella
- Dipartimento di Scienze della VitaUniversità di TriesteVia L. Giorgieri 10Trieste34127Italy
| | - Valentino Casolo
- Dipartimento di Scienze AgroalimentariAmbientali e AnimaliUniversità di UdineVia delle Scienze 91Udine33100Italy
| | - Sara Natale
- Dipartimento di Scienze della VitaUniversità di TriesteVia L. Giorgieri 10Trieste34127Italy
| | - Francesco Petruzzellis
- Dipartimento di Scienze della VitaUniversità di TriesteVia L. Giorgieri 10Trieste34127Italy
| | - Werner Kofler
- Department of BotanyUniversity of InnsbruckSternwartestraße 15Innsbruck6020Austria
| | - Barbara Beikircher
- Department of BotanyUniversity of InnsbruckSternwartestraße 15Innsbruck6020Austria
| | - Stefan Mayr
- Department of BotanyUniversity of InnsbruckSternwartestraße 15Innsbruck6020Austria
| | - Andrea Nardini
- Dipartimento di Scienze della VitaUniversità di TriesteVia L. Giorgieri 10Trieste34127Italy
| |
Collapse
|
23
|
De Roo L, Lauriks F, Salomón RL, Oleksyn J, Steppe K. Woody tissue photosynthesis increases radial stem growth of young poplar trees under ambient atmospheric CO2 but its contribution ceases under elevated CO2. TREE PHYSIOLOGY 2020; 40:1572-1582. [PMID: 32597984 DOI: 10.1093/treephys/tpaa085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Woody tissue photosynthesis (Pwt) contributes to the tree carbon (C) budget and generally stimulates radial stem growth under ambient atmospheric CO2 concentration (aCO2). Moreover, Pwt has potential to enhance tree survival under changing climates by delaying negative effects of drought stress on tree hydraulic functioning. However, the relevance of Pwt on tree performance under elevated atmospheric CO2 concentration (eCO2) remains unexplored. To fill this knowledge gap, 1-year-old Populus tremula L. seedlings were grown in two treatment chambers at aCO2 and eCO2 (400 and 660 ppm, respectively), and woody tissues of half of the seedlings in each treatment chamber were light-excluded to prevent Pwt. Radial stem growth, sap flow, leaf photosynthesis and stomatal and canopy conductance were measured throughout the growing season, and the concentration of non-structural carbohydrates (NSC) in stem tissues was determined at the end of the experiment. Fuelled by eCO2, an increase in stem growth of 18 and 50% was observed in control and light-excluded trees, respectively. Woody tissue photosynthesis increased radial stem growth by 39% under aCO2, while, surprisingly, no impact of Pwt on stem growth was observed under eCO2. By the end of the growing season, eCO2 and Pwt had little effect on stem growth, leaf photosynthesis acclimated to eCO2, but stomatal conductance did not, and homeostatic stem NSC pools were observed among combined treatments. Our results highlight that eCO2 potentially fulfils plant C requirements, limiting the contribution of Pwt to stem growth as atmospheric [CO2] rises, and that radial stem growth in young developing trees was C (source) limited during early phenological stages but transitioned towards sink-driven control at the end of the growing season.
Collapse
Affiliation(s)
- Linus De Roo
- Laboratory of Plant Ecology, Department of Plant and Crops Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Fran Lauriks
- Laboratory of Plant Ecology, Department of Plant and Crops Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Roberto Luis Salomón
- Laboratory of Plant Ecology, Department of Plant and Crops Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Jacek Oleksyn
- Polish Academy of Sciences, Institute of Dendrology, Parkowa 5, 62-035 Kórnik, Poland
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plant and Crops Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| |
Collapse
|