1
|
Martin AR, Li G, Cui B, Mariani RO, Vicario K, Cathline KA, Findlay A, Robertson G. A high-throughput approach for quantifying turgor loss point in grapevine. PLANT METHODS 2024; 20:180. [PMID: 39581961 PMCID: PMC11587569 DOI: 10.1186/s13007-024-01304-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024]
Abstract
Quantifying drought tolerance in crops is critical for agriculture management under environmental change, and drought response traits in grape vine have long been the focus of viticultural research. Turgor loss point (πtlp) is gaining attention as an indicator of drought tolerance in plants, though estimating πtlp often requires the construction and analysis of pressure-volume (P-V) curves which are very time consuming. While P-V curves remain a valuable tool for assessing πtlp and related traits, there is considerable interest in developing high-throughput methods for rapidly estimating πtlp, especially in the context of crop screening. We tested the ability of a dewpoint hygrometer to quantify variation in πtlp across and within 12 clones of grape vine (Vitis vinifera subsp. vinifera) and one wild relative (Vitis riparia), and compared these results to those derived from P-V curves. At the leaf-level, methodology explained only 4-5% of the variation in πtlp while clone/species identity accounted for 39% of the variation, indicating that both methods are sensitive to detecting intraspecific πtlp variation in grape vine. Also at the leaf level, πtlp measured using a dewpoint hygrometer approximated πtlp values (r2 = 0.254) and conserved πtlp rankings from P-V curves (Spearman's ρ = 0.459). While the leaf-level datasets differed statistically from one another (paired t-test p = 0.01), average difference in πtlp for a given pair of leaves was small (0.1 ± 0.2 MPa (s.d.)). At the species/clone level, estimates of πtlp measured by the two methods were also statistically correlated (r2 = 0.304), did not deviate statistically from a 1:1 relationship, and conserved πtlp rankings across clones (Spearman's ρ = 0.692). The dewpoint hygrometer (taking ∼ 10-15 min on average per measurement) captures fine-scale intraspecific variation in πtlp, with results that approximate those from P-V curves (taking 2-3 h on average per measurement). The dewpoint hygrometer represents a viable method for rapidly estimating intraspecific variation in πtlp, and potentially greatly increasing replication when estimating this drought tolerance trait in grape vine and other crops.
Collapse
Affiliation(s)
- Adam R Martin
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Canada.
| | - Guangrui Li
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Canada
| | - Boya Cui
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Canada
| | - Rachel O Mariani
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Canada
| | - Kale Vicario
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Canada
| | - Kimberley A Cathline
- Horticultural & Environmental Sciences Innovation Centre, Niagara College, Welland, Canada
| | - Allison Findlay
- Horticultural & Environmental Sciences Innovation Centre, Niagara College, Welland, Canada
| | - Gavin Robertson
- Horticultural & Environmental Sciences Innovation Centre, Niagara College, Welland, Canada
| |
Collapse
|
2
|
Wood JD, Detto M, Browne M, Kraft NJB, Konings AG, Fisher JB, Quetin GR, Trugman AT, Magney TS, Medeiros CD, Vinod N, Buckley TN, Sack L. The Ecosystem as Super-Organ/ism, Revisited: Scaling Hydraulics to Forests under Climate Change. Integr Comp Biol 2024; 64:424-440. [PMID: 38886119 DOI: 10.1093/icb/icae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
Classic debates in community ecology focused on the complexities of considering an ecosystem as a super-organ or organism. New consideration of such perspectives could clarify mechanisms underlying the dynamics of forest carbon dioxide (CO2) uptake and water vapor loss, important for predicting and managing the future of Earth's ecosystems and climate system. Here, we provide a rubric for considering ecosystem traits as aggregated, systemic, or emergent, i.e., representing the ecosystem as an aggregate of its individuals or as a metaphorical or literal super-organ or organism. We review recent approaches to scaling-up plant water relations (hydraulics) concepts developed for organs and organisms to enable and interpret measurements at ecosystem-level. We focus on three community-scale versions of water relations traits that have potential to provide mechanistic insight into climate change responses of forest CO2 and H2O gas exchange and productivity: leaf water potential (Ψcanopy), pressure volume curves (eco-PV), and hydraulic conductance (Keco). These analyses can reveal additional ecosystem-scale parameters analogous to those typically quantified for leaves or plants (e.g., wilting point and hydraulic vulnerability) that may act as thresholds in forest responses to drought, including growth cessation, mortality, and flammability. We unite these concepts in a novel framework to predict Ψcanopy and its approaching of critical thresholds during drought, using measurements of Keco and eco-PV curves. We thus delineate how the extension of water relations concepts from organ- and organism-scales can reveal the hydraulic constraints on the interaction of vegetation and climate and provide new mechanistic understanding and prediction of forest water use and productivity.
Collapse
Affiliation(s)
- Jeffrey D Wood
- School of Natural Resources, University of Missouri, Columbia, MO 65211, USA
| | - Matteo Detto
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Marvin Browne
- Department of Earth System Science, Stanford University, 473 Via Ortega, Stanford, CA 94305, USA
| | - Nathan J B Kraft
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, 621 Charles E Young Drive South, Los Angeles, CA 90095, USA
| | - Alexandra G Konings
- Department of Earth System Science, Stanford University, 473 Via Ortega, Stanford, CA 94305, USA
| | - Joshua B Fisher
- Schmid College of Science and Technology, Chapman University, 1 University Drive, Orange, CA 92866, USA
| | - Gregory R Quetin
- Department of Geography, University of California, Santa Barbara, CA 93106, USA
| | - Anna T Trugman
- Department of Geography, University of California, Santa Barbara, CA 93106, USA
| | - Troy S Magney
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Camila D Medeiros
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, 621 Charles E Young Drive South, Los Angeles, CA 90095, USA
| | - Nidhi Vinod
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, 621 Charles E Young Drive South, Los Angeles, CA 90095, USA
| | - Thomas N Buckley
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Lawren Sack
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, 621 Charles E Young Drive South, Los Angeles, CA 90095, USA
| |
Collapse
|
3
|
Kunert N, Münchinger IK, Hajek P. Turgor loss point explains climate-driven growth reductions in trees in Central Europe. PLANT BIOLOGY (STUTTGART, GERMANY) 2024. [PMID: 38940818 DOI: 10.1111/plb.13687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/06/2024] [Indexed: 06/29/2024]
Abstract
As climate change thrives, and the frequency of intense droughts is affecting many forested regions, a mechanistic understanding of the factors conferring drought tolerance in trees is increasingly important. However, studies linking the observed growth reduction to mechanistic traits are still rare. We compared the median growth anomalies of 16 native tree species, gathered across a network of study plots in Bavaria, with the mean species-specific turgor loss point (πtlp) measured at five locations in Central Europe πtlp explained 37% of the growth anomalies observed in response to the intense droughts between 2018 and 2020 compared to the pre-drought period between 2006 and 2017 across sites. πtlp constitutes an important leaf drought tolerance trait and influences the growth response of native tree species during extraordinary dry periods. As climate change-induced droughts intensify, tree species with drought-tolerant leaves will be less vulnerable to growth reductions. πtlp provides a useful indicator for selecting tree species to adapt forest management systems to climate change.
Collapse
Affiliation(s)
- N Kunert
- Functional and Tropical Plant Ecology, University of Bayreuth, Bayreuth, Germany
- Department of Integrative Biology and Biodiversity Research, Institute of Botany, University of Natural Resources and Life Sciences, Vienna, Austria
| | - I K Münchinger
- Functional and Tropical Plant Ecology, University of Bayreuth, Bayreuth, Germany
| | - P Hajek
- Geobotany, Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
4
|
Comita LS, Jones FA, Manzané-Pinzón EJ, Álvarez-Casino L, Cerón-Souza I, Contreras B, Jaén-Barrios N, Ferro N, Engelbrecht BMJ. Limited intraspecific variation in drought resistance along a pronounced tropical rainfall gradient. Proc Natl Acad Sci U S A 2024; 121:e2316971121. [PMID: 38809703 PMCID: PMC11161779 DOI: 10.1073/pnas.2316971121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 04/08/2024] [Indexed: 05/31/2024] Open
Abstract
Assessing within-species variation in response to drought is crucial for predicting species' responses to climate change and informing restoration and conservation efforts, yet experimental data are lacking for the vast majority of tropical tree species. We assessed intraspecific variation in response to water availability across a strong rainfall gradient for 16 tropical tree species using reciprocal transplant and common garden field experiments, along with measurements of gene flow and key functional traits linked to drought resistance. Although drought resistance varies widely among species in these forests, we found little evidence for within-species variation in drought resistance. For the majority of functional traits measured, we detected no significant intraspecific variation. The few traits that did vary significantly between drier and wetter origins of the same species all showed relationships opposite to expectations based on drought stress. Furthermore, seedlings of the same species originating from drier and wetter sites performed equally well under drought conditions in the common garden experiment and at the driest transplant site. However, contrary to expectation, wetter-origin seedlings survived better than drier-origin seedlings under wetter conditions in both the reciprocal transplant and common garden experiment, potentially due to lower insect herbivory. Our study provides the most comprehensive picture to date of intraspecific variation in tropical tree species' responses to water availability. Our findings suggest that while drought plays an important role in shaping species composition across moist tropical forests, its influence on within-species variation is limited.
Collapse
Affiliation(s)
- Liza S. Comita
- The Forest School, Yale School of the Environment, Yale University, New Haven, CT06511
- Smithsonian Tropical Research InstituteApartadoPostal 0843-03092, Panama City, Panamá
| | - F. Andrew Jones
- Smithsonian Tropical Research InstituteApartadoPostal 0843-03092, Panama City, Panamá
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR
| | - Eric J. Manzané-Pinzón
- Smithsonian Tropical Research InstituteApartadoPostal 0843-03092, Panama City, Panamá
- Departamento de Ciencias Naturales, Facultad de Ciencias y Tecnología, Universidad Tecnológica de Panamá, Panama City, Panamá
| | - Leonor Álvarez-Casino
- Department of Plant Biology and Ecology, Faculty of Biology, University of Seville, Seville, Spain
- Department of Plant Ecology, Center for Ecology and Environmental Research, University of Bayreuth, Bayreuth, Germany
| | - Ivania Cerón-Souza
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR
- Centro de Investigación Tibaitatá, Mosquera Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Cundinamarca250047, Colombia
| | - Blexein Contreras
- Smithsonian Tropical Research InstituteApartadoPostal 0843-03092, Panama City, Panamá
| | - Nelson Jaén-Barrios
- Smithsonian Tropical Research InstituteApartadoPostal 0843-03092, Panama City, Panamá
- Department of Plant Biology, Institute of Biology, University of Campinas, CampinasCEP 13083-970, SP, Brazil
| | - Natalie Ferro
- Smithsonian Tropical Research InstituteApartadoPostal 0843-03092, Panama City, Panamá
| | - Bettina M. J. Engelbrecht
- Smithsonian Tropical Research InstituteApartadoPostal 0843-03092, Panama City, Panamá
- Department of Plant Ecology, Center for Ecology and Environmental Research, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
5
|
Castillo-Argaez R, Sapes G, Mallen N, Lippert A, John GP, Zare A, Hammond WM. Spectral ecophysiology: hyperspectral pressure-volume curves to estimate leaf turgor loss. THE NEW PHYTOLOGIST 2024; 242:935-946. [PMID: 38482720 DOI: 10.1111/nph.19669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/19/2024] [Indexed: 04/12/2024]
Abstract
Turgor loss point (TLP) is an important proxy for plant drought tolerance, species habitat suitability, and drought-induced plant mortality risk. Thus, TLP serves as a critical tool for evaluating climate change impacts on plants, making it imperative to develop high-throughput and in situ methods to measure TLP. We developed hyperspectral pressure-volume curves (PV curves) to estimate TLP using leaf spectral reflectance. We used partial least square regression models to estimate water potential (Ψ) and relative water content (RWC) for two species, Frangula caroliniana and Magnolia grandiflora. RWC and Ψ's model for each species had R2 ≥ 0.7 and %RMSE = 7-10. We constructed PV curves with model estimates and compared the accuracy of directly measured and spectra-predicted TLP. Our findings indicate that leaf spectral measurements are an alternative method for estimating TLP. F. caroliniana TLP's values were -1.62 ± 0.15 (means ± SD) and -1.62 ± 0.34 MPa for observed and reflectance predicted, respectively (P > 0.05), while M. grandiflora were -1.78 ± 0.34 and -1.66 ± 0.41 MPa (P > 0.05). The estimation of TLP through leaf reflectance-based PV curves opens a broad range of possibilities for future research aimed at understanding and monitoring plant water relations on a large scale with spectral ecophysiology.
Collapse
Affiliation(s)
| | - Gerard Sapes
- Agronomy Department, University of Florida, Gainesville, FL, 32611, USA
| | - Nicole Mallen
- Agronomy Department, University of Florida, Gainesville, FL, 32611, USA
| | - Alston Lippert
- Agronomy Department, University of Florida, Gainesville, FL, 32611, USA
| | - Grace P John
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Alina Zare
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - William M Hammond
- Agronomy Department, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
6
|
Petruzzellis F, Di Bonaventura A, Tordoni E, Tomasella M, Natale S, Trifilò P, Tromba G, Di Lillo F, D'Amico L, Bacaro G, Nardini A. The optical method based on gas injection overestimates leaf vulnerability to xylem embolism in three woody species. TREE PHYSIOLOGY 2023; 43:1784-1795. [PMID: 37427987 DOI: 10.1093/treephys/tpad088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/26/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
Abstract
Plant hydraulic traits related to leaf drought tolerance, like the water potential at turgor loss point (TLP) and the water potential inducing 50% loss of hydraulic conductance (P50), are extremely useful to predict the potential impacts of drought on plants. While novel techniques have allowed the inclusion of TLP in studies targeting a large group of species, fast and reliable protocols to measure leaf P50 are still lacking. Recently, the optical method coupled with the gas injection (GI) technique has been proposed as a possibility to speed up the P50 estimation. Here, we present a comparison of leaf optical vulnerability curves (OVcs) measured in three woody species, namely Acer campestre (Ac), Ostrya carpinifolia (Oc) and Populus nigra (Pn), based on bench dehydration (BD) or GI of detached branches. For Pn, we also compared optical data with direct micro-computed tomography (micro-CT) imaging in both intact saplings and cut shoots subjected to BD. Based on the BD procedure, Ac, Oc and Pn had P50 values of -2.87, -2.47 and -2.11 MPa, respectively, while the GI procedure overestimated the leaf vulnerability (-2.68, -2.04 and -1.54 MPa for Ac, Oc and Pn, respectively). The overestimation was higher for Oc and Pn than for Ac, likely reflecting the species-specific vessel lengths. According to micro-CT observations performed on Pn, the leaf midrib showed none or very few embolized conduits at -1.2 MPa, consistent with the OVcs obtained with the BD procedure but at odds with that derived on the basis of GI. Overall, our data suggest that coupling the optical method with GI might not be a reliable technique to quantify leaf hydraulic vulnerability since it could be affected by the 'open-vessel' artifact. Accurate detection of xylem embolism in the leaf vein network should be based on BD, preferably of intact up-rooted plants.
Collapse
Affiliation(s)
- Francesco Petruzzellis
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 10, Trieste 34127, Italy
| | - Azzurra Di Bonaventura
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Viale delle Scienze 206, Udine 33100, Italy
| | - Enrico Tordoni
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, Tartu 50409, Estonia
| | - Martina Tomasella
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 10, Trieste 34127, Italy
| | - Sara Natale
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 10, Trieste 34127, Italy
- Department of Biology, University of Padova, Via U. Bassi 58/B, Padova 35121, Italy
| | - Patrizia Trifilò
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, Messina 98166, Italy
| | - Giuliana Tromba
- Elettra Sincrotrone Trieste, Area Science Park, Basovizza, Trieste 34149, Italy
| | - Francesca Di Lillo
- Elettra Sincrotrone Trieste, Area Science Park, Basovizza, Trieste 34149, Italy
| | - Lorenzo D'Amico
- Elettra Sincrotrone Trieste, Area Science Park, Basovizza, Trieste 34149, Italy
- Department of Physics, University of Trieste, Via A. Valerio 2, Trieste 34127, Italy
| | - Giovanni Bacaro
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 10, Trieste 34127, Italy
| | - Andrea Nardini
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 10, Trieste 34127, Italy
| |
Collapse
|
7
|
Schönbeck L, Arteaga M, Mirza H, Coleman M, Mitchell D, Huang X, Ortiz H, Santiago LS. Plant physiological indicators for optimizing conservation outcomes. CONSERVATION PHYSIOLOGY 2023; 11:coad073. [PMID: 37711583 PMCID: PMC10498484 DOI: 10.1093/conphys/coad073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 07/20/2023] [Accepted: 08/22/2023] [Indexed: 09/16/2023]
Abstract
Plant species of concern often occupy narrow habitat ranges, making climate change an outsized potential threat to their conservation and restoration. Understanding the physiological status of a species during stress has the potential to elucidate current risk and provide an outlook on population maintenance. However, the physiological status of a plant can be difficult to interpret without a reference point, such as the capacity to tolerate stress before loss of function, or mortality. We address the application of plant physiology to conservation biology by distinguishing between two physiological approaches that together determine plant status in relation to environmental conditions and evaluate the capacity to avoid stress-induced loss of function. Plant physiological status indices, such as instantaneous rates of photosynthetic gas exchange, describe the level of physiological activity in the plant and are indicative of physiological health. When such measurements are combined with a reference point that reflects the maximum value or environmental limits of a parameter, such as the temperature at which photosynthesis begins to decline due to high temperature stress, we can better diagnose the proximity to potentially damaging thresholds. Here, we review a collection of useful plant status and reference point measurements related to photosynthesis, water relations and mineral nutrition, which can contribute to plant conservation physiology. We propose that these measurements can serve as important additional information to more commonly used phenological and morphological parameters, as the proposed parameters will reveal early warning signals before they are visible. We discuss their implications in the context of changing temperature, water and nutrient supply.
Collapse
Affiliation(s)
- Leonie Schönbeck
- Department of Botany & Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Marc Arteaga
- Department of Botany & Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Humera Mirza
- Department of Botany & Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Mitchell Coleman
- Department of Botany & Plant Sciences, University of California, Riverside, CA 92521, USA
- Tejon Ranch Conservancy, Frazier Park, CA 93225, USA
| | - Denise Mitchell
- Department of Botany & Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Xinyi Huang
- Department of Botany & Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Haile Ortiz
- Department of Botany & Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Louis S Santiago
- Department of Botany & Plant Sciences, University of California, Riverside, CA 92521, USA
- Smithsonian Tropical Research Institute, Apartado 0843-03092. Balboa, Ancon, Panama, Republic of Panama
| |
Collapse
|
8
|
Song HQ, Wang YQ, Yan CL, Zeng WH, Chen YJ, Zhang JL, Liu H, Zhang QM, Zhu SD. Can leaf drought tolerance predict species abundance and its changes in tropical-subtropical forests? TREE PHYSIOLOGY 2023; 43:1319-1325. [PMID: 37154549 DOI: 10.1093/treephys/tpad058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/14/2023] [Accepted: 05/01/2023] [Indexed: 05/10/2023]
Abstract
Climate change has resulted in an increase in drought severity in the species-rich tropical and subtropical forests of southern China. Exploring the spatiotemporal relationship between drought-tolerance trait and tree abundance provides a means to elucidate the impact of droughts on community assembly and dynamics. In this study, we measured the leaf turgor loss point (πtlp) for 399 tree species from three tropical forest plots and three subtropical forest plots. The plot area was 1 ha and tree abundance was calculated as total basal area per hectare according to the nearest community census data. The first aim of this study was to explore πtlp abundance relationships in the six plots across a range of precipitation seasonality. Additionally, three of the six plots (two tropical forests and one subtropical forest) had consecutive community censuses data (12-22 years) and the mortality ratios and abundance year slope of tree species were analyzed. The second aim was to examine whether πtlp is a predictor of tree mortality and abundance changes. Our results showed that tree species with lower (more negative) πtlp were more abundant in the tropical forests with relative high seasonality. However, πtlp was not related to tree abundance in the subtropical forests with low seasonality. Moreover, πtlp was not a good predictor of tree mortality and abundance changes in both humid and dry forests. This study reveals the restricted role of πtlp in predicting the response of forests to increasing droughts under climate change.
Collapse
Affiliation(s)
- Hui-Qing Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Forestry, Guangxi University, Nanning 530004, Guangxi, China
| | - Yong-Qiang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Forestry, Guangxi University, Nanning 530004, Guangxi, China
| | - Chao-Long Yan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Forestry, Guangxi University, Nanning 530004, Guangxi, China
| | - Wen-Hao Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Forestry, Guangxi University, Nanning 530004, Guangxi, China
| | - Ya-Jun Chen
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China
| | - Jiao-Lin Zhang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China
| | - Hui Liu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, Guangdong, China
| | - Qian-Mei Zhang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, Guangdong, China
- Dinghushan Forest Ecosystem Research Station, South China Botanical Garden, Chinese Academy of Sciences, Zhaoqing 526070, Guangdong, China
| | - Shi-Dan Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Forestry, Guangxi University, Nanning 530004, Guangxi, China
| |
Collapse
|
9
|
Ribeiro-Júnior NG, Marimon BH, Marimon BS, Cruz WJA, Silva IV, Galbraith DR, Gloor E, Phillips OL. Anatomical functional traits and hydraulic vulnerability of trees in different water conditions in southern Amazonia. AMERICAN JOURNAL OF BOTANY 2023; 110:e16146. [PMID: 36826405 DOI: 10.1002/ajb2.16146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 05/11/2023]
Abstract
PREMISE Understanding tree species' responses to drought is critical for predicting the future of tropical forests, especially in regions where the climate is changing rapidly. METHODS We compared anatomical and functional traits of the dominant tree species of two tropical forests in southern Amazonia, one on deep, well-drained soils (cerradão [CD]) and one in a riparian environment (gallery forest [GF]), to examine potential anatomical indicators of resistance or vulnerability to drought. RESULTS Leaves of CD species generally had a thicker cuticle, upper epidermis, and mesophyll than those of GF species, traits that are indicative of adaptation to water deficit. In the GF, the theoretical hydraulic conductivity of the stems was significantly higher, indicating lower investment in drought resistance. The anatomical functional traits of CD species indicate a greater potential for surviving water restriction compared to the GF. Even so, it is possible that CD species could also be affected by extreme climate changes due to the more water-limited environment. CONCLUSIONS In addition to the marked anatomical and functional differences between these phytophysiognomies, tree diversity within each is associated with a large range of hydraulic morphofunctional niches. Our results suggest the strong potential for floristic and functional compositional shifts under continued climate change, especially in the GF.
Collapse
Affiliation(s)
- Norberto G Ribeiro-Júnior
- Programa de Pós-graduação em Ecologia e Conservação, Universidade do Estado de Mato Grosso, Rua Prof. Dr. Renato Figueiro Varella, 78690-000, Nova Xavantina-MT, Brasil
- Diretoria Regional de Educação de Sinop, Secretaria de Estado de Educação de Mato Grosso, Rua dos Lírios, 78500-007, Sinop-MT, Brasil
| | - Ben Hur Marimon
- Programa de Pós-graduação em Ecologia e Conservação, Universidade do Estado de Mato Grosso, Rua Prof. Dr. Renato Figueiro Varella, 78690-000, Nova Xavantina-MT, Brasil
| | - Beatriz S Marimon
- Programa de Pós-graduação em Ecologia e Conservação, Universidade do Estado de Mato Grosso, Rua Prof. Dr. Renato Figueiro Varella, 78690-000, Nova Xavantina-MT, Brasil
| | - Wesley J A Cruz
- Programa de Pós-graduação em Ecologia e Conservação, Universidade do Estado de Mato Grosso, Rua Prof. Dr. Renato Figueiro Varella, 78690-000, Nova Xavantina-MT, Brasil
| | - Ivone V Silva
- Programa de Pós-graduação em Biodiversidade e Agroecossistemas, Universidade do Estado de Mato Grosso, Avenida Perimetral Rogério Silva, 4930, 78580-000, Alta Floresta-MT, Brasil
| | | | - Emanuel Gloor
- School of Geography, University of Leeds, Leeds, LS2 9JT, UK
| | | |
Collapse
|
10
|
Yao Y, Ciais P, Viovy N, Joetzjer E, Chave J. How drought events during the last century have impacted biomass carbon in Amazonian rainforests. GLOBAL CHANGE BIOLOGY 2023; 29:747-762. [PMID: 36285645 PMCID: PMC10100251 DOI: 10.1111/gcb.16504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
During the last two decades, inventory data show that droughts have reduced biomass carbon sink of the Amazon forest by causing mortality to exceed growth. However, process-based models have struggled to include drought-induced responses of growth and mortality and have not been evaluated against plot data. A process-based model, ORCHIDEE-CAN-NHA, including forest demography with tree cohorts, plant hydraulic architecture and drought-induced tree mortality, was applied over Amazonia rainforests forced by gridded climate fields and rising CO2 from 1901 to 2019. The model reproduced the decelerating signal of net carbon sink and drought sensitivity of aboveground biomass (AGB) growth and mortality observed at forest plots across selected Amazon intact forests for 2005 and 2010. We predicted a larger mortality rate and a more negative sensitivity of the net carbon sink during the 2015/16 El Niño compared with the former droughts. 2015/16 was indeed the most severe drought since 1901 regarding both AGB loss and area experiencing a severe carbon loss. We found that even if climate change did increase mortality, elevated CO2 contributed to balance the biomass mortality, since CO2 -induced stomatal closure reduces transpiration, thus, offsets increased transpiration from CO2 -induced higher foliage area.
Collapse
Affiliation(s)
- Yitong Yao
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA‐CNRS‐UVSQUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Philippe Ciais
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA‐CNRS‐UVSQUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Nicolas Viovy
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA‐CNRS‐UVSQUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Emilie Joetzjer
- INRAE, Universite de Lorraine, AgroParisTech, UMR SilvaNancyFrance
| | - Jerome Chave
- Laboratoire Evolution et Diversité Biologique UMR 5174 CNRS, IRDUniversité Paul SabatierToulouseFrance
| |
Collapse
|
11
|
Petruzzellis F, Tordoni E, Di Bonaventura A, Tomasella M, Natale S, Panepinto F, Bacaro G, Nardini A. Turgor loss point and vulnerability to xylem embolism predict species-specific risk of drought-induced decline of urban trees. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:1198-1207. [PMID: 34704333 PMCID: PMC10078640 DOI: 10.1111/plb.13355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Increasing frequency and severity of drought events is posing risks to trees' health, including those planted in urban settlements. Drought-induced decline of urban trees negatively affects ecosystem services of urban green spaces and implies cost for maintenance and removal of plants. We aimed at identifying physiological traits that can explain and predict the species-specific vulnerability to climate change in urban habitats. We assessed the relationships between long-term risk of decline of different tree species in a medium-sized town and their key indicators of drought stress tolerance, i.e. turgor loss point (TLP) and vulnerability to xylem embolism (P50 ). Starting from 2012, the study area experienced several summer seasons with positive anomalies of temperature and negative anomalies of precipitation. This trend was coupled with increasing percentages of urban trees showing signs of crown die-back and mortality. The species-specific risk of decline was higher for species with less negative TLP and P50 values. The relationship between species-specific risk of climate change-induced decline of urban trees and key physiological indicators of drought tolerance confirms findings obtained in natural forests and highlights that TLP and P50 are useful indicators for species selection for tree plantation in towns, to mitigate negative impacts of climate change.
Collapse
Affiliation(s)
- F. Petruzzellis
- Dipartimento di Scienze della VitaUniversità di TriesteTriesteItalia
- Dipartimento di Scienze agroalimentari, ambientali e animaliUniversità di UdineUdineItalia
| | - E. Tordoni
- Dipartimento di Scienze della VitaUniversità di TriesteTriesteItalia
- Institute of Ecology and Earth ScienceUniversity of TartuTartuEstonia
| | - A. Di Bonaventura
- Dipartimento di Scienze della VitaUniversità di TriesteTriesteItalia
| | - M. Tomasella
- Dipartimento di Scienze della VitaUniversità di TriesteTriesteItalia
| | - S. Natale
- Dipartimento di Scienze della VitaUniversità di TriesteTriesteItalia
| | - F. Panepinto
- Unità Tecnica Alberature e ParchiServizio Strade e Verde PubblicoComune di TriesteTriesteItalia
| | - G. Bacaro
- Dipartimento di Scienze della VitaUniversità di TriesteTriesteItalia
| | - A. Nardini
- Dipartimento di Scienze della VitaUniversità di TriesteTriesteItalia
| |
Collapse
|
12
|
Vargas G. G, Kunert N, Hammond WM, Berry ZC, Werden LK, Smith‐Martin CM, Wolfe BT, Toro L, Mondragón‐Botero A, Pinto‐Ledezma JN, Schwartz NB, Uriarte M, Sack L, Anderson‐Teixeira KJ, Powers JS. Leaf habit affects the distribution of drought sensitivity but not water transport efficiency in the tropics. Ecol Lett 2022; 25:2637-2650. [PMID: 36257904 PMCID: PMC9828425 DOI: 10.1111/ele.14128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/11/2022] [Accepted: 09/10/2022] [Indexed: 01/12/2023]
Abstract
Considering the global intensification of aridity in tropical biomes due to climate change, we need to understand what shapes the distribution of drought sensitivity in tropical plants. We conducted a pantropical data synthesis representing 1117 species to test whether xylem-specific hydraulic conductivity (KS ), water potential at leaf turgor loss (ΨTLP ) and water potential at 50% loss of KS (ΨP50 ) varied along climate gradients. The ΨTLP and ΨP50 increased with climatic moisture only for evergreen species, but KS did not. Species with high ΨTLP and ΨP50 values were associated with both dry and wet environments. However, drought-deciduous species showed high ΨTLP and ΨP50 values regardless of water availability, whereas evergreen species only in wet environments. All three traits showed a weak phylogenetic signal and a short half-life. These results suggest strong environmental controls on trait variance, which in turn is modulated by leaf habit along climatic moisture gradients in the tropics.
Collapse
Affiliation(s)
- German Vargas G.
- Department of Plant and Microbial BiologyUniversity of MinnesotaSt. PaulMinnesotaUSA,School of Biological SciencesThe University of UtahSalt Lake CityUtahUSA
| | - Norbert Kunert
- Conservation Ecology CenterSmithsonian National Zoo and Conservation Biology InstituteFront RoyalVirginiaUSA,Forest Global Earth ObservatorySmithsonian Tropical Research InstitutePanamaRepublic of Panama,Department of Integrative Biology and Biodiversity Research, Institute of BotanyUniversity of Natural Resources and Life Sciences ViennaViennaAustria
| | - William M. Hammond
- Agronomy Department, Institute of Food and Agricultural SciencesUniversity of FloridaGainesvilleFloridaUSA
| | - Z. Carter Berry
- Department of BiologyWake Forest UniversityWinston‐SalemNorth CarolinaUSA
| | - Leland K. Werden
- Department of Environmental Systems ScienceETH ZürichZürichSwitzerland
| | - Chris M. Smith‐Martin
- Department of Ecology Evolution and Environmental BiologyColumbia UniversityNew YorkNew YorkUSA
| | - Brett T. Wolfe
- School of Renewable Natural ResourcesLouisiana State University Agricultural CenterBaton RougeLouisianaUSA,Smithsonian Tropical Research InstitutePanamaRepublic of Panama
| | - Laura Toro
- Department of Plant and Microbial BiologyUniversity of MinnesotaSt. PaulMinnesotaUSA
| | | | - Jesús N. Pinto‐Ledezma
- Department of Ecology, Evolution and BehaviorUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Naomi B. Schwartz
- Department of GeographyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - María Uriarte
- Department of Ecology Evolution and Environmental BiologyColumbia UniversityNew YorkNew YorkUSA
| | - Lawren Sack
- Department of Ecology and EvolutionUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Kristina J. Anderson‐Teixeira
- Conservation Ecology CenterSmithsonian National Zoo and Conservation Biology InstituteFront RoyalVirginiaUSA,Forest Global Earth ObservatorySmithsonian Tropical Research InstitutePanamaRepublic of Panama
| | - Jennifer S. Powers
- Department of Ecology, Evolution and BehaviorUniversity of MinnesotaSt. PaulMinnesotaUSA
| |
Collapse
|
13
|
Fradera-Soler M, Leverett A, Mravec J, Jørgensen B, Borland AM, Grace OM. Are cell wall traits a component of the succulent syndrome? FRONTIERS IN PLANT SCIENCE 2022; 13:1043429. [PMID: 36507451 PMCID: PMC9732111 DOI: 10.3389/fpls.2022.1043429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/31/2022] [Indexed: 05/11/2023]
Abstract
Succulence is an adaptation to low water availability characterised by the presence of water-storage tissues that alleviate water stress under low water availability. The succulent syndrome has evolved convergently in over 80 plant families and is associated with anatomical, physiological and biochemical traits. Despite the alleged importance of cell wall traits in drought responses, their significance in the succulent syndrome has long been overlooked. Here, by analyzing published pressure-volume curves, we show that elastic adjustment, whereby plants change cell wall elasticity, is uniquely beneficial to succulents for avoiding turgor loss. In addition, we used comprehensive microarray polymer profiling (CoMPP) to assess the biochemical composition of cell walls in leaves. Across phylogenetically diverse species, we uncover several differences in cell wall biochemistry between succulent and non-succulent leaves, pointing to the existence of a 'succulent glycome'. We also highlight the glycomic diversity among succulent plants, with some glycomic features being restricted to certain succulent lineages. In conclusion, we suggest that cell wall biomechanics and biochemistry should be considered among the characteristic traits that make up the succulent syndrome.
Collapse
Affiliation(s)
- Marc Fradera-Soler
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
- Department of Accelerated Taxonomy, Royal Botanic Gardens, Kew, Richmond, Surrey, United Kingdom
| | - Alistair Leverett
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - Jozef Mravec
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
- Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, Plant Science and Biodiversity Center, Nitra, Slovakia
| | - Bodil Jørgensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Anne M. Borland
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Olwen M. Grace
- Department of Accelerated Taxonomy, Royal Botanic Gardens, Kew, Richmond, Surrey, United Kingdom
| |
Collapse
|
14
|
Brown A, Butler DW, Radford‐Smith J, Dwyer JM. Changes in trait covariance along an orographic moisture gradient reveal the relative importance of light- and moisture-driven trade-offs in subtropical rainforest communities. THE NEW PHYTOLOGIST 2022; 236:839-851. [PMID: 35922934 PMCID: PMC9804723 DOI: 10.1111/nph.18418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
A range of functional trait-based approaches have been developed to investigate community assembly processes, but most ignore how traits covary within communities. We combined existing approaches - community-weighted means (CWMs) and functional dispersion (FDis) - with a metric of trait covariance to examine assembly processes in five angiosperm assemblages along a moisture gradient in Australia's subtropics. In addition to testing hypotheses about habitat filtering along the gradient, we hypothesized that trait covariance would be strongest at both ends of the moisture gradient and weakest in the middle, reflecting trade-offs associated with light capture in productive sites and moisture stress in dry sites. CWMs revealed evidence of climatic filtering, but FDis patterns were less clear. As hypothesized, trait covariance was weakest in the middle of the gradient but unexpectedly peaked at the second driest site due to the emergence of a clear drought tolerance-drought avoidance spectrum. At the driest site, the same spectrum was truncated at the 'avoider' end, revealing important information about habitat filtering in this system. Our focus on trait covariance revealed the nature and strength of trade-offs imposed by light and moisture availability, complementing insights gained about community assembly from existing trait-based approaches.
Collapse
Affiliation(s)
- Alison Brown
- School of Biological SciencesThe University of QueenslandSt LuciaQld4072Australia
| | - Donald W. Butler
- College of LawAustralian National UniversityCanberraACT2600Australia
| | - Julian Radford‐Smith
- School of Biological SciencesThe University of QueenslandSt LuciaQld4072Australia
| | - John M. Dwyer
- School of Biological SciencesThe University of QueenslandSt LuciaQld4072Australia
| |
Collapse
|
15
|
Tordoni E, Petruzzellis F, Di Bonaventura A, Pavanetto N, Tomasella M, Nardini A, Boscutti F, Martini F, Bacaro G. Projections of leaf turgor loss point shifts under future climate change scenarios. GLOBAL CHANGE BIOLOGY 2022; 28:6640-6652. [PMID: 36054311 PMCID: PMC9825879 DOI: 10.1111/gcb.16400] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Predicting the consequences of climate change is of utmost importance to mitigate impacts on vulnerable ecosystems; plant hydraulic traits are particularly useful proxies for predicting functional disruptions potentially occurring in the near future. This study assessed the current and future regional patterns of leaf water potential at turgor loss point (Ψtlp ) by measuring and projecting the Ψtlp of 166 vascular plant species (159 angiosperms and 7 gymnosperms) across a large climatic range spanning from alpine to Mediterranean areas in NE Italy. For angiosperms, random forest models predicted a consistent shift toward more negative values in low-elevation areas, whereas for gymnosperms the pattern was more variable, particularly in the alpine sector (i.e., Alps and Prealps). Simulations were also developed to evaluate the number of threatened species under two Ψtlp plasticity scenarios (low vs. high plasticity), and it was found that in the worst-case scenario approximately 72% of the angiosperm species and 68% of gymnosperms within a location were at risk to exceed their physiological plasticity. The different responses to climate change by specific clades might produce reassembly in natural communities, undermining the resilience of natural ecosystems to climate change.
Collapse
Affiliation(s)
- Enrico Tordoni
- Department of Life SciencesUniversity of TriesteTriesteItaly
- Institute of Ecology and Earth ScienceUniversity of TartuTartuEstonia
| | - Francesco Petruzzellis
- Department of Life SciencesUniversity of TriesteTriesteItaly
- Department of Agricultural, Food, Environmental and Animal SciencesUniversity of UdineUdineItaly
| | - Azzurra Di Bonaventura
- Department of Life SciencesUniversity of TriesteTriesteItaly
- Department of Agricultural, Food, Environmental and Animal SciencesUniversity of UdineUdineItaly
| | | | | | - Andrea Nardini
- Department of Life SciencesUniversity of TriesteTriesteItaly
| | - Francesco Boscutti
- Department of Agricultural, Food, Environmental and Animal SciencesUniversity of UdineUdineItaly
| | | | - Giovanni Bacaro
- Department of Life SciencesUniversity of TriesteTriesteItaly
| |
Collapse
|
16
|
Fletcher LR, Scoffoni C, Farrell C, Buckley TN, Pellegrini M, Sack L. Testing the association of relative growth rate and adaptation to climate across natural ecotypes of Arabidopsis. THE NEW PHYTOLOGIST 2022; 236:413-432. [PMID: 35811421 DOI: 10.1111/nph.18369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Ecophysiologists have reported a range of relationships, including intrinsic trade-offs across and within species between plant relative growth rate in high resource conditions (RGR) vs adaptation to tolerate cold or arid climates, arising from trait-based mechanisms. Few studies have considered ecotypes within a species, in which the lack of a trade-off would contribute to a wide species range and resilience to climate change. For 15 ecotypes of Arabidopsis thaliana in a common garden we tested for associations between RGR vs adaptation to cold or dry native climates and assessed hypotheses for its mediation by 15 functional traits. Ecotypes native to warmer, drier climates had higher leaf density, leaf mass per area, root mass fraction, nitrogen per leaf area and carbon isotope ratio, and lower osmotic potential at full turgor. Relative growth rate was statistically independent of the climate of the ecotype native range and of individual functional traits. The decoupling of RGR and cold or drought adaptation in Arabidopsis is consistent with multiple stress resistance and avoidance mechanisms for ecotypic climate adaptation and would contribute to the species' wide geographic range and resilience as the climate changes.
Collapse
Affiliation(s)
- Leila R Fletcher
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095, USA
- School of the Environment, Yale University, New Haven, CT, 06511, USA
| | - Christine Scoffoni
- Department of Biological Sciences, California State University, Los Angeles, CA, 90032, USA
| | - Colin Farrell
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Thomas N Buckley
- Department of Plant Sciences, College of Agricultural and Environmental Sciences, University of California, Davis, CA, 95616, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Lawren Sack
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
17
|
Sorek Y, Greenstein S, Hochberg U. Seasonal adjustment of leaf embolism resistance and its importance for hydraulic safety in deciduous trees. PHYSIOLOGIA PLANTARUM 2022; 174:e13785. [PMID: 36151946 PMCID: PMC9828144 DOI: 10.1111/ppl.13785] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/27/2022] [Accepted: 09/15/2022] [Indexed: 05/20/2023]
Abstract
Embolism resistance is often viewed as seasonally stable. Here we examined the seasonality in the leaf xylem vulnerability curve (VC) and turgor loss point (ΨTLP ) of nine deciduous species that originated from Mediterranean, temperate, tropical, or sub-tropical habitats and were growing on the Volcani campus, Israel. All four Mediterranean/temperate species exhibited a shift of their VC to lower xylem pressures (Ψx ) along the dry season, in addition to two of the five tropical/sub-tropical species. In three of the species that exhibited VC seasonality, it was critical for avoiding embolism in the leaf. In total, seven out of the nine species avoided embolism. The seasonal VC adjustment was over two times higher as compared with the seasonal adjustment of ΨTLP , resulting in improved hydraulic safety as the season progressed. The results suggest that seasonality in the leaf xylem vulnerability is common in species that originate from Mediterranean or temperate habitats that have large seasonal environmental changes. This seasonality is advantageous because it enables a gradual seasonal reduction in the Ψx without increasing the danger of embolism. The results also highlight that measuring the minimal Ψx and the VC at different times can lead to erroneous estimations of the hydraulic safety margins. Changing the current hydraulic dogma into a seasonal dynamic in the vulnerability of the xylem itself should enable physiologists to understand plants' responses to their environment better.
Collapse
Affiliation(s)
- Yonatan Sorek
- Institute of Soil, Water and Environmental Science, Volcani CenterAgricultural Research OrganizationRishon LeZionIsrael
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| | - Smadar Greenstein
- Institute of Soil, Water and Environmental Science, Volcani CenterAgricultural Research OrganizationRishon LeZionIsrael
| | - Uri Hochberg
- Institute of Soil, Water and Environmental Science, Volcani CenterAgricultural Research OrganizationRishon LeZionIsrael
| |
Collapse
|
18
|
Hietz P, Rungwattana K, Scheffknecht S, George JP. Effects of Provenance, Growing Site, and Growth on Quercus robur Wood Anatomy and Density in a 12-Year-Old Provenance Trial. FRONTIERS IN PLANT SCIENCE 2022; 13:795941. [PMID: 35574121 PMCID: PMC9100569 DOI: 10.3389/fpls.2022.795941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/22/2022] [Indexed: 06/15/2023]
Abstract
Vessels are responsible for an efficient and safe water transport in angiosperm xylem. Whereas large vessels efficiently conduct the bulk of water, small vessels might be important under drought stress or after winter when large vessels are embolized. Wood anatomy can adjust to the environment by plastic adaptation, but is also modified by genetic selection, which can be driven by climate or other factors. To distinguish between plastic and genetic components on wood anatomy, we used a Quercus robur trial where trees from ten Central European provenances were planted in three locations in Austria along a rainfall gradient. Because wood anatomy also adjusts to tree size and in ring-porous species, the vessel size depends on the amount of latewood and thereby ring width, we included tree size and ring width in the analysis. We found that the trees' provenance had a significant effect on average vessel area (VA), theoretical specific hydraulic conductivity (Ks), and the vessel fraction (VF), but correlations with annual rainfall of provenances were at best weak. The trial site had a strong effect on growth (ring width, RW), which increased from the driest to the wettest site and wood density (WD), which increased from wet to dry sites. Significant site x provenance interactions were seen only for WD. Surprisingly, the drier site had higher VA, higher VF, and higher Ks. This, however, is mainly a result of greater RW and thus a greater proportion of latewood in the wetter forest. The average size of vessels > 70 μm diameter increased with rainfall. We argue that Ks, which is measured per cross-sectional area, is not an ideal parameter to compare the capacity of ring-porous trees to supply leaves with water. Small vessels (<70 μm) on average contributed only 1.4% to Ks, and we found no evidence that their number or size was adaptive to aridity. RW and tree size had strong effect on all vessel parameters, likely via the greater proportion of latewood in wide rings. This should be accounted for when searching for wood anatomical adaptations to the environment.
Collapse
Affiliation(s)
- Peter Hietz
- Department of Integrative Biology and Biodiversity Research, Institute of Botany, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Kanin Rungwattana
- Department of Integrative Biology and Biodiversity Research, Institute of Botany, University of Natural Resources and Life Sciences, Vienna, Austria
- Department of Botany, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Susanne Scheffknecht
- Department of Integrative Biology and Biodiversity Research, Institute of Botany, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Jan-Peter George
- Department of Forest Genetics, Federal Research and Training Centre for Forests, Natural Hazards and Landscape, Vienna, Austria
- Faculty of Science and Technology, University of Tartu, Tartu, Estonia
| |
Collapse
|
19
|
Lourenço J, Enquist BJ, von Arx G, Sonsin-Oliveira J, Morino K, Thomaz LD, Milanez CRD. Hydraulic tradeoffs underlie local variation in tropical forest functional diversity and sensitivity to drought. THE NEW PHYTOLOGIST 2022; 234:50-63. [PMID: 34981534 DOI: 10.1111/nph.17944] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Tropical forests are important to the regulation of climate and the maintenance of biodiversity on Earth. However, these ecosystems are threatened by climate change, as temperatures rise and droughts' frequency and duration increase. Xylem anatomical traits are an essential component in understanding and predicting forest responses to changes in water availability. We calculated the community-weighted means and variances of xylem anatomical traits of hydraulic and structural importance (plot-level trait values weighted by species abundance) to assess their linkages to local adaptation and community assembly in response to varying soil water conditions in an environmentally diverse Brazilian Atlantic Forest habitat. Scaling approaches revealed community-level tradeoffs in xylem traits not observed at the species level. Towards drier sites, xylem structural reinforcement and integration balanced against hydraulic efficiency and capacitance xylem traits, leading to changes in plant community diversity. We show how general community assembly rules are reflected in persistent fiber-parenchyma and xylem hydraulic tradeoffs. Trait variation across a moisture gradient is larger between species than within species and is realized mainly through changes in species composition and abundance, suggesting habitat specialization. Modeling efforts to predict tropical forest diversity and drought sensitivity may benefit from adding hydraulic architecture traits into the analysis.
Collapse
Affiliation(s)
- Jehová Lourenço
- Programa de Pós-graduação em Biologia Vegetal, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, ES, 29075-910, Brazil
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
- Department of Biological Sciences, University of Quebec in Montreal, Montreal, QC, H3C 3J7, Canada
- College of Life and Environmental Sciences, Geography, Exeter, Devon, EX4 4QE, UK
| | - Brian J Enquist
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
- The Santa Fe Institute, Santa Fe, NM, 87501, USA
| | - Georg von Arx
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, CH-8903, Switzerland
- Oeschger Centre for Climate Change Research, University of Bern, Bern, CH-3012, Switzerland
| | - Julia Sonsin-Oliveira
- Programa de Pós-Graduação (PPG) em Botânica, Departamento de Botânica, Instituto de Ciências Biológicas - Universidade de Brasília - UNB, Brasília, DF, 70919-970, Brazil
| | - Kiyomi Morino
- Laboratory of Tree-Ring Research, University of Arizona, Tucson, AZ, 85721, USA
| | - Luciana Dias Thomaz
- Herbário VIES, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, ES, 29075-910, Brazil
| | - Camilla Rozindo Dias Milanez
- Programa de Pós-graduação em Biologia Vegetal, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, ES, 29075-910, Brazil
| |
Collapse
|
20
|
Guillemot J, Martin-StPaul NK, Bulascoschi L, Poorter L, Morin X, Pinho BX, le Maire G, R L Bittencourt P, Oliveira RS, Bongers F, Brouwer R, Pereira L, Gonzalez Melo GA, Boonman CCF, Brown KA, Cerabolini BEL, Niinemets Ü, Onoda Y, Schneider JV, Sheremetiev S, Brancalion PHS. Small and slow is safe: On the drought tolerance of tropical tree species. GLOBAL CHANGE BIOLOGY 2022; 28:2622-2638. [PMID: 35007364 DOI: 10.1111/gcb.16082] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Understanding how evolutionary history and the coordination between trait trade-off axes shape the drought tolerance of trees is crucial to predict forest dynamics under climate change. Here, we compiled traits related to drought tolerance and the fast-slow and stature-recruitment trade-off axes in 601 tropical woody species to explore their covariations and phylogenetic signals. We found that xylem resistance to embolism (P50) determines the risk of hydraulic failure, while the functional significance of leaf turgor loss point (TLP) relies on its coordination with water use strategies. P50 and TLP exhibit weak phylogenetic signals and substantial variation within genera. TLP is closely associated with the fast-slow trait axis: slow species maintain leaf functioning under higher water stress. P50 is associated with both the fast-slow and stature-recruitment trait axes: slow and small species exhibit more resistant xylem. Lower leaf phosphorus concentration is associated with more resistant xylem, which suggests a (nutrient and drought) stress-tolerance syndrome in the tropics. Overall, our results imply that (1) drought tolerance is under strong selective pressure in tropical forests, and TLP and P50 result from the repeated evolutionary adaptation of closely related taxa, and (2) drought tolerance is coordinated with the ecological strategies governing tropical forest demography. These findings provide a physiological basis to interpret the drought-induced shift toward slow-growing, smaller, denser-wooded trees observed in the tropics, with implications for forest restoration programmes.
Collapse
Affiliation(s)
- Joannès Guillemot
- CIRAD, UMR Eco&Sols, Piracicaba, São Paulo, Brazil
- Eco&Sols, Univ. Montpellier, CIRAD, INRAe, Institut Agro, IRD, Montpellier, France
- Department of Forest Sciences, ESALQ, University of São Paulo, Piracicaba, São Paulo, Brazil
| | | | - Leticia Bulascoschi
- Department of Forest Sciences, ESALQ, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Lourens Poorter
- Forest Ecology and Forest Management Group, Wageningen University, Wageningen, The Netherlands
| | - Xavier Morin
- CEFE, CNRS, Univ. Montpellier, EPHE, IRD, Univ. Paul Valéry Montpellier 3, Montpellier, France
| | - Bruno X Pinho
- AMAP, Univ Montpellier, INRAe, CIRAD, CNRS, IRD, Montpellier, France
- Departamento de Botânica, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Guerric le Maire
- CIRAD, UMR Eco&Sols, Piracicaba, São Paulo, Brazil
- Eco&Sols, Univ. Montpellier, CIRAD, INRAe, Institut Agro, IRD, Montpellier, France
| | | | - Rafael S Oliveira
- Department of Plant Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | - Frans Bongers
- Forest Ecology and Forest Management Group, Wageningen University, Wageningen, The Netherlands
| | - Rens Brouwer
- Forest Ecology and Forest Management Group, Wageningen University, Wageningen, The Netherlands
| | - Luciano Pereira
- Department of Plant Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, São Paulo, Brazil
- Institute of Systematic Botany and Ecology, Ulm University, Ulm, Germany
| | | | - Coline C F Boonman
- Department of Aquatic Ecology and Environmental Biology, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands
| | - Kerry A Brown
- Department of Geography, Geology and the Environment, Kingston University London, Kingston Upon Thames, UK
| | - Bruno E L Cerabolini
- Department of Biotechnologies and Life Sciences (DBSV), University of Insubria, Varese, Italy
| | - Ülo Niinemets
- Estonian University of Life Sciences, Tartu, Estonia
| | - Yusuke Onoda
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Julio V Schneider
- Department of Botany and Molecular Evolution, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt, Germany
- Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt, Germany
| | | | - Pedro H S Brancalion
- Department of Forest Sciences, ESALQ, University of São Paulo, Piracicaba, São Paulo, Brazil
| |
Collapse
|
21
|
Álvarez-Cansino L, Comita LS, Jones FA, Manzané-Pinzón E, Browne L, Engelbrecht BMJ. Turgor loss point predicts survival responses to experimental and natural drought in tropical tree seedlings. Ecology 2022; 103:e3700. [PMID: 35352828 DOI: 10.1002/ecy.3700] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 12/28/2021] [Accepted: 01/07/2022] [Indexed: 11/06/2022]
Abstract
Identifying key traits that can serve as proxies for species drought resistance is crucial for predicting and mitigating effects of climate change in diverse plant communities. Turgor loss point (πtlp ) is a recently emerged trait that has been linked to species distributions across gradients of water availability. However, a direct relationship between πtlp and species ability to survive drought has yet to be established for woody species. Using a manipulative field experiment to quantify species drought resistance (i.e. their survival response to drought), combined with measurements of πtlp for 16 tree species, we show a negative relationship between πtlp and seedling drought resistance. Using long-term forest plot data, we also show that πtlp predicts seedling survival responses to a severe El Niño-related drought, although additional factors are clearly also important. Our study demonstrates that species with lower πtlp exhibit higher survival under both experimental and natural drought. These results provide a missing cornerstone in the assessment of the traits underlying drought resistance in woody species and strengthen πtlp as a proxy for evaluating which species will lose or win under projections of exacerbating drought regimes.
Collapse
Affiliation(s)
- Leonor Álvarez-Cansino
- Department of Plant Ecology, Bayreuth Center of Ecology and Environmental Research, University of Bayreuth, Bayreuth, Germany.,Department of Plant Biology and Ecology, Faculty of Biology, University of Seville Avda. Reina Mercedes s/n, Seville, Spain
| | - Liza S Comita
- School of the Environment, Yale University, New Haven, Connecticut, USA.,Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Panama
| | - F Andrew Jones
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Panama.,Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Eric Manzané-Pinzón
- Eric Manzané-Pinzón: Departamento de Ciencias Naturales, Facultad de Ciencias y Tecnología, Universidad Tecnológica de Panamá
| | - Luke Browne
- School of the Environment, Yale University, New Haven, Connecticut, USA
| | - Bettina M J Engelbrecht
- Department of Plant Ecology, Bayreuth Center of Ecology and Environmental Research, University of Bayreuth, Bayreuth, Germany.,Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Panama
| |
Collapse
|
22
|
Signori‐Müller C, Oliveira RS, Valentim Tavares J, Carvalho Diniz F, Gilpin M, de V. Barros F, Marca Zevallos MJ, Salas Yupayccana CA, Nina A, Brum M, Baker TR, Cosio EG, Malhi Y, Monteagudo Mendoza A, Phillips OL, Rowland L, Salinas N, Vasquez R, Mencuccini M, Galbraith D. Variation of non‐structural carbohydrates across the fast–slow continuum in Amazon Forest canopy trees. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Caroline Signori‐Müller
- Geography College of Life and Environmental Sciences University of Exeter Exeter UK
- Department of Plant Biology Institute of Biology Programa de Pós Graduação em Biologia Vegetal University of Campinas Campinas Brazil
- School of Geography University of Leeds Leeds UK
| | - Rafael S. Oliveira
- Department of Plant Biology Institute of Biology University of Campinas Campinas Brazil
| | | | | | | | - Fernanda de V. Barros
- Geography College of Life and Environmental Sciences University of Exeter Exeter UK
- Department of Plant Biology Institute of Biology Programa de Pós Graduação em Ecologia University of Campinas Campinas Brazil
| | - Manuel J. Marca Zevallos
- Universidad Nacional de San Antonio Abad del Cusco Cusco Peru
- Pontificia Universidad Católica del Perú Lima Perú
| | | | - Alex Nina
- Pontificia Universidad Católica del Perú Lima Perú
| | - Mauro Brum
- Department of Plant Biology Institute of Biology Programa de Pós Graduação em Ecologia University of Campinas Campinas Brazil
- Department of Ecology and Evolutionary Biology University of Arizona Tucson AZ USA
| | | | - Eric G. Cosio
- Sección Química Pontificia Universidad Católica del Perú Lima Peru
| | - Yadvinder Malhi
- Environmental Change Institute School of Geography and the Environment University of Oxford Oxford UK
| | | | | | - Lucy Rowland
- Geography College of Life and Environmental Sciences University of Exeter Exeter UK
| | - Norma Salinas
- Sección Química Pontificia Universidad Católica del Perú Lima Peru
- Environmental Change Institute School of Geography and the Environment University of Oxford Oxford UK
| | | | | | | |
Collapse
|
23
|
Chitra‐Tarak R, Xu C, Aguilar S, Anderson‐Teixeira KJ, Chambers J, Detto M, Faybishenko B, Fisher RA, Knox RG, Koven CD, Kueppers LM, Kunert N, Kupers SJ, McDowell NG, Newman BD, Paton SR, Pérez R, Ruiz L, Sack L, Warren JM, Wolfe BT, Wright C, Wright SJ, Zailaa J, McMahon SM. Hydraulically-vulnerable trees survive on deep-water access during droughts in a tropical forest. THE NEW PHYTOLOGIST 2021; 231:1798-1813. [PMID: 33993520 PMCID: PMC8457149 DOI: 10.1111/nph.17464] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/29/2021] [Indexed: 05/24/2023]
Abstract
Deep-water access is arguably the most effective, but under-studied, mechanism that plants employ to survive during drought. Vulnerability to embolism and hydraulic safety margins can predict mortality risk at given levels of dehydration, but deep-water access may delay plant dehydration. Here, we tested the role of deep-water access in enabling survival within a diverse tropical forest community in Panama using a novel data-model approach. We inversely estimated the effective rooting depth (ERD, as the average depth of water extraction), for 29 canopy species by linking diameter growth dynamics (1990-2015) to vapor pressure deficit, water potentials in the whole-soil column, and leaf hydraulic vulnerability curves. We validated ERD estimates against existing isotopic data of potential water-access depths. Across species, deeper ERD was associated with higher maximum stem hydraulic conductivity, greater vulnerability to xylem embolism, narrower safety margins, and lower mortality rates during extreme droughts over 35 years (1981-2015) among evergreen species. Species exposure to water stress declined with deeper ERD indicating that trees compensate for water stress-related mortality risk through deep-water access. The role of deep-water access in mitigating mortality of hydraulically-vulnerable trees has important implications for our predictive understanding of forest dynamics under current and future climates.
Collapse
|
24
|
Leverett A, Hurtado Castaño N, Ferguson K, Winter K, Borland AM. Crassulacean acid metabolism (CAM) supersedes the turgor loss point (TLP) as an important adaptation across a precipitation gradient, in the genus Clusia. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:703-716. [PMID: 33663679 DOI: 10.1071/fp20268] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/30/2021] [Indexed: 05/25/2023]
Abstract
As future climates continue to change, precipitation deficits are expected to become more severe across tropical ecosystems. As a result, it is important that we identify plant physiological traits that act as adaptations to drought, and determine whether these traits act synergistically or independently of each other. In this study, we assessed the role of three leaf-level putative adaptations to drought: crassulacean acid metabolism (CAM), the turgor loss point (TLPΨ) and water storage hydrenchyma tissue. Using the genus Clusia as a model, we were able to explore the extent to which these leaf physiological traits co-vary, and also how they contribute to species' distributions across a precipitation gradient in Central and South America. We found that CAM is independent of the TLPΨ and hydrenchyma depth in Clusia. In addition, we provide evidence that constitutive CAM is an adaptation to year-long water deficits, whereas facultative CAM appears to be more important for surviving acute dry seasons. Finally, we find that the other leaf traits tested did not correlate with environmental precipitation, suggesting that the reduced transpirational rates associated with CAM obviate the need to adapt the TLPΨ and hydrenchyma depth in this genus.
Collapse
Affiliation(s)
- Alistair Leverett
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK; and Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancón, Republic of Panama; and Carl R. Woese Institute for Genomic Biology, 1206 West Gregory Drive, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; and Corresponding author.
| | - Natalia Hurtado Castaño
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK; and Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Kate Ferguson
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Klaus Winter
- Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancón, Republic of Panama
| | - Anne M Borland
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| |
Collapse
|