1
|
Zhu J, Jia Y, Yu G, Wang Q, He N, Chen Z, He H, Zhu X, Li P, Zhang F, Liu X, Goulding K, Fowler D, Vitousek P. Changing patterns of global nitrogen deposition driven by socio-economic development. Nat Commun 2025; 16:46. [PMID: 39747129 PMCID: PMC11695605 DOI: 10.1038/s41467-024-55606-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 12/05/2024] [Indexed: 01/04/2025] Open
Abstract
Advances in manufacturing and trade have reshaped global nitrogen deposition patterns, yet their dynamics and drivers remain unclear. Here, we compile a comprehensive global nitrogen deposition database spanning 1977-2021, aggregating 52,671 site-years of data from observation networks and published articles. This database show that global nitrogen deposition to land is 92.7 Tg N in 2020. Total nitrogen deposition increases initially, stabilizing after peaking in 2015. Developing countries at low and middle latitudes emerge as new hotspots. The gross domestic product per capita is found to be highly and non-linearly correlated with global nitrogen deposition dynamic evolution, and reduced nitrogen deposition peaks higher and earlier than oxidized nitrogen deposition. Our findings underscore the need for policies that align agricultural and industrial progress to facilitate the peak shift or reduction of nitrogen deposition in developing countries and to strengthen measures to address NH3 emission hotspots in developed countries.
Collapse
Affiliation(s)
- Jianxing Zhu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Yanlong Jia
- College of Forestry, Hebei Agricultural University, Baoding, China
| | - Guirui Yu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.
| | - Qiufeng Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Nianpeng He
- Institute of Carbon Neutrality, Northeast Forestry University, Harbin, China
| | - Zhi Chen
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Honglin He
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Xianjin Zhu
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Pan Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
| | - Fusuo Zhang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, China
| | - Xuejun Liu
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, China
| | - Keith Goulding
- Sustainable Agricultural Sciences Department, Rothamsted Research, Harpenden, UK
| | | | - Peter Vitousek
- Department of Biology, Stanford University, Stanford, USA
| |
Collapse
|
2
|
Yang Z, Mao Z, Ji W, Gazol A, Liu S, Wang C, Ye J, Lin F, Wang X, Hao Z, Bai E, Yuan Z. Nitrogen addition accelerates aboveground biomass sequestration in old-growth forests by stimulating ectomycorrhizal tree growth. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123736. [PMID: 39700933 DOI: 10.1016/j.jenvman.2024.123736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024]
Abstract
Examining whether nitrogen (N) enrichment promotes secondary tree growth in both young (YF) and old-growth forests (OF) is crucial. This will help determine how N addition influences plant carbon sequestration across successional phases in temperate forests. We conducted an eight-year N addition experiment (0, 25, 50, 75 kg N ha-1 yr-1) in YF and OF in northeast China to investigate the effects of enhanced in situ N deposition on tree growth. Our results indicated that N addition accelerated the accumulation of annual mean aboveground biomass (ΔAGB) of trees only in OF. Specifically, for the species co-occurring in both YF and OF plots, their ΔAGB in OF peaked under the medium N treatment (3.69 Mg ha-1 yr-1), which was 2.3 times higher than that of YF (1.58 Mg ha-1 yr-1). Regarding mycorrhizal types, only the ΔAGB of EcM-associated trees peaked under the high N treatment (2.81 Mg ha-1 yr-1), increasing by 126.6% compared to the control (1.24 Mg ha-1 yr-1). This increase in biomass primarily came from large trees with a DBH ≥15 cm, most of which are EcM -associated species, such as Pinus koraiensis. In conclusion, continuous N addition increases nutrient supply and alleviates N limitation in old growth forest, leading to faster biomass accumulation. The growth of large-diameter trees with EcM-associated may contribute significantly to aboveground biomass accmulation under N addition. Nutrient limitation is dependent on stand age, mycorrhizal type and size, so these factors must be considered when assessing forest nutrient limitations.
Collapse
Affiliation(s)
- Zhichun Yang
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, China
| | - Zikun Mao
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Wenwen Ji
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Antonio Gazol
- Instituto Pirenaico de Ecología (IPE-CSIC), 50059, Zaragoza, Spain
| | - Shufang Liu
- College of Biology and Oceanography, Weifang University, Weifang, 261061, China
| | - Chao Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Ji Ye
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Fei Lin
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Xugao Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Zhanqing Hao
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, China
| | - Edith Bai
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China
| | - Zuoqiang Yuan
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, China; CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China.
| |
Collapse
|
3
|
Stocker BD, Dong N, Perkowski EA, Schneider PD, Xu H, de Boer HJ, Rebel KT, Smith NG, Van Sundert K, Wang H, Jones SE, Prentice IC, Harrison SP. Empirical evidence and theoretical understanding of ecosystem carbon and nitrogen cycle interactions. THE NEW PHYTOLOGIST 2025; 245:49-68. [PMID: 39444238 PMCID: PMC11617667 DOI: 10.1111/nph.20178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/06/2024] [Indexed: 10/25/2024]
Abstract
Interactions between carbon (C) and nitrogen (N) cycles in terrestrial ecosystems are simulated in advanced vegetation models, yet methodologies vary widely, leading to divergent simulations of past land C balance trends. This underscores the need to reassess our understanding of ecosystem processes, given recent theoretical advancements and empirical data. We review current knowledge, emphasising evidence from experiments and trait data compilations for vegetation responses to CO2 and N input, alongside theoretical and ecological principles for modelling. N fertilisation increases leaf N content but inconsistently enhances leaf-level photosynthetic capacity. Whole-plant responses include increased leaf area and biomass, with reduced root allocation and increased aboveground biomass. Elevated atmospheric CO2 also boosts leaf area and biomass but intensifies belowground allocation, depleting soil N and likely reducing N losses. Global leaf traits data confirm these findings, indicating that soil N availability influences leaf N content more than photosynthetic capacity. A demonstration model based on the functional balance hypothesis accurately predicts responses to N and CO2 fertilisation on tissue allocation, growth and biomass, offering a path to reduce uncertainty in global C cycle projections.
Collapse
Affiliation(s)
- Benjamin D. Stocker
- Institute of GeographyUniversity of BernHallerstrasse 12CH‐3012BernSwitzerland
- Oeschger Centre for Climate Change ResearchUniversity of BernFalkenplatz 163012BernSwitzerland
| | - Ning Dong
- Department of Life Sciences, Georgina Mace Centre for the Living PlanetImperial College LondonSilwood Park Campus, Buckhurst RoadAscotSL5 7PYUK
| | - Evan A. Perkowski
- Department of Biological SciencesTexas Tech UniversityLubbockTX79409USA
| | - Pascal D. Schneider
- Institute of GeographyUniversity of BernHallerstrasse 12CH‐3012BernSwitzerland
- Oeschger Centre for Climate Change ResearchUniversity of BernFalkenplatz 163012BernSwitzerland
| | - Huiying Xu
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System ScienceTsinghua UniversityBeijing100084China
| | - Hugo J. de Boer
- Faculty of Geosciences, Copernicus Institute of Sustainable Development, Environmental SciencesUtrecht UniversityVening Meinesz Building, Princetonlaan 8aUtrecht3584 CBthe Netherlands
| | - Karin T. Rebel
- Faculty of Geosciences, Copernicus Institute of Sustainable Development, Environmental SciencesUtrecht UniversityVening Meinesz Building, Princetonlaan 8aUtrecht3584 CBthe Netherlands
| | - Nicholas G. Smith
- Department of Biological SciencesTexas Tech UniversityLubbockTX79409USA
| | - Kevin Van Sundert
- Department of BiologyUniversity of AntwerpUniversiteitsplein 12610WilrijkBelgium
- Department of Bioscience EngineeringUniversity of AntwerpGroenenborgerlaan 1712020AntwerpBelgium
| | - Han Wang
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System ScienceTsinghua UniversityBeijing100084China
| | - Sarah E. Jones
- Department of Life Sciences, Georgina Mace Centre for the Living PlanetImperial College LondonSilwood Park Campus, Buckhurst RoadAscotSL5 7PYUK
| | - I. Colin Prentice
- Department of Life Sciences, Georgina Mace Centre for the Living PlanetImperial College LondonSilwood Park Campus, Buckhurst RoadAscotSL5 7PYUK
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System ScienceTsinghua UniversityBeijing100084China
| | - Sandy P. Harrison
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System ScienceTsinghua UniversityBeijing100084China
- Department of Geography and Environmental ScienceUniversity of ReadingReadingRG6 6ABUK
| |
Collapse
|
4
|
Propson BE, Zak DR, Classen AT, Burton AJ, Freedman ZB. Gains in soil carbon storage under anthropogenic nitrogen deposition are rapidly lost following its cessation. Ecology 2024; 105:e4444. [PMID: 39400351 DOI: 10.1002/ecy.4444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/03/2024] [Accepted: 08/21/2024] [Indexed: 10/15/2024]
Abstract
In the Northern Hemisphere, anthropogenic nitrogen (N) deposition contributed to the enhancement of the global terrestrial carbon (C) sink, partially offsetting CO2 emissions. Across several long-term field experiments, this ecosystem-level response was determined to be driven, in part, by the suppression of microbial activity associated with the breakdown of soil organic matter. However, since the implementation of emission abatement policies in the 1970s, atmospheric N deposition has declined globally, and the consequences of this decline are unknown. Here, we assessed the response of soil C storage and associated microbial activities, in a long-term field study that experimentally increased N deposition for 24 years. We measured soil C and N, microbial activity, and compared effect sizes of soil C in response to, and in recovery from, the N deposition treatment across the history of our experiment (1994-2022). Our results demonstrate that the accumulated C in the organic horizon has been lost and exhibits additional deficits 5 years post-termination of the N deposition treatment. These findings, in part, arise from mechanistic changes in microbial activity. Soil C in the mineral soil was less responsive thus far in recovery. If these organic horizon C dynamics are similar in other temperate forests, the Northern Hemisphere C sink will be reduced and climate warming will be enhanced.
Collapse
Affiliation(s)
- Brooke E Propson
- Department of Soil and Environmental Sciences, University of Wisconsin, Madison, Wisconsin, USA
| | - Donald R Zak
- School for Environment and Sustainability, University of Michigan, Ann Arbor, Michigan, USA
- Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Aimée T Classen
- Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Andrew J Burton
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan, USA
| | - Zachary B Freedman
- Department of Soil and Environmental Sciences, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
5
|
Pan B, Qian Z, Xu Z, Yang J, Tao B, Sun X, Xu X, Yu Y, Wang J, Tao X. Edaphic factors mediate the responses of forest soil respiration and its components to nitrogen deposition along an urban-rural gradient. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174423. [PMID: 38969114 DOI: 10.1016/j.scitotenv.2024.174423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/26/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
Exploring the influences of nitrogen deposition on soil carbon (C) flux is necessary for predicting C cycling processes; however, few studies have investigated the effects of nitrogen deposition on soil respiration (Rs), autotrophic respiration (Ra) and heterotrophic respiration (Rh) across urban-rural forests. In this study, a 4-year simulated nitrogen deposition experiment was conducted by treating the experimental plots with 0, 50, or 100 kg·ha-1·year-1 of nitrogen to check out the mechanisms of nitrogen deposition on Rs, Ra, and Rh in urban-rural forests. Our finding indicated a positive association between soil temperature and Rs. Soil temperature sensitivity was significantly suppressed in the experimental plots treated with 100 kg·ha-1·year-1 of nitrogen only in terms of the urban forest Rs and Ra and the rural forest Ra. Nitrogen treatment did not significantly increase Rs and had different influencing mechanisms. In urban forests, nitrogen addition contributed to Rh by increasing soil microbial biomass nitrogen and inhibited Ra by increasing soil ammonium‑nitrogen concentration. In suburban forests, the lack of response of Rh under nitrogen addition was due to the combined effects of soil ammonium‑nitrogen and microbial biomass nitrogen; the indirect effects from nitrate‑nitrogen also contributed to a divergent effect on Ra. In rural forests, the soil pH, dissolved organic C, fine root biomass, and microbial biomass C concentration were the main factors mediating Rs and its components. In summary, the current rate of nitrogen deposition is unlikely to result in significant increases in soil C release in urban-rural forests, high nitrogen deposition is beneficial for reducing the temperature sensitivity of Rs in urban forests. The findings grant a groundwork for predicting responses of forest soil C cycling to global change in the context of urban expansion.
Collapse
Affiliation(s)
- Baoxu Pan
- School of Forestry and Landscape Architecture, Anhui Provincial Key Laboratory of Forest Resources and Silviculture, Hefei Urban Ecosystem Research Station, National Forestry and Grassland Administration, Anhui Agricultural University, Hefei 230036, Anhui Province, China
| | - Zhuangzhuang Qian
- School of Forestry and Landscape Architecture, Anhui Provincial Key Laboratory of Forest Resources and Silviculture, Hefei Urban Ecosystem Research Station, National Forestry and Grassland Administration, Anhui Agricultural University, Hefei 230036, Anhui Province, China
| | - Zaoshi Xu
- Anhui Provincial Forestry Science and Technology Promotion Station, Hefei 230000, Anhui Province, China
| | - Jie Yang
- School of Forestry and Landscape Architecture, Anhui Provincial Key Laboratory of Forest Resources and Silviculture, Hefei Urban Ecosystem Research Station, National Forestry and Grassland Administration, Anhui Agricultural University, Hefei 230036, Anhui Province, China
| | - Boyu Tao
- School of Forestry and Landscape Architecture, Anhui Provincial Key Laboratory of Forest Resources and Silviculture, Hefei Urban Ecosystem Research Station, National Forestry and Grassland Administration, Anhui Agricultural University, Hefei 230036, Anhui Province, China
| | - Xu Sun
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui Province, China
| | - Xiaoniu Xu
- School of Forestry and Landscape Architecture, Anhui Provincial Key Laboratory of Forest Resources and Silviculture, Hefei Urban Ecosystem Research Station, National Forestry and Grassland Administration, Anhui Agricultural University, Hefei 230036, Anhui Province, China
| | - Yuanchun Yu
- College of Ecology and the Environment, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, Jiangsu Province, China
| | - Jianan Wang
- School of Forestry and Landscape Architecture, Anhui Provincial Key Laboratory of Forest Resources and Silviculture, Hefei Urban Ecosystem Research Station, National Forestry and Grassland Administration, Anhui Agricultural University, Hefei 230036, Anhui Province, China
| | - Xiao Tao
- School of Forestry and Landscape Architecture, Anhui Provincial Key Laboratory of Forest Resources and Silviculture, Hefei Urban Ecosystem Research Station, National Forestry and Grassland Administration, Anhui Agricultural University, Hefei 230036, Anhui Province, China.
| |
Collapse
|
6
|
Stephenson T, Hudiburg T, Mathias JM, Jones M, Lynch LM. Do Tasmanian devil declines impact ecosystem function? GLOBAL CHANGE BIOLOGY 2024; 30:e17413. [PMID: 38982678 DOI: 10.1111/gcb.17413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/17/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024]
Abstract
Tasmanian eucalypt forests are among the most carbon-dense in the world, but projected climate change could destabilize this critical carbon sink. While the impact of abiotic factors on forest ecosystem carbon dynamics have received considerable attention, biotic factors such as the input of animal scat are less understood. Tasmanian devils (Sarcophilus harrisii)-an osteophageous scavenger that can ingest and solubilize nutrients locked in bone material-may subsidize plant and microbial productivity by concentrating bioavailable nutrients (e.g., nitrogen and phosphorus) in scat latrines. However, dramatic declines in devil population densities, driven by the spread of a transmissible cancer, may have underappreciated consequences for soil organic carbon (SOC) storage and forest productivity by altering nutrient cycling. Here, we fuse experimental data and modeling to quantify and predict future changes to forest productivity and SOC under various climate and scat-quality futures. We find that devil scat significantly increases concentrations of nitrogen, ammonium, phosphorus, and phosphate in the soil and shifts soil microbial communities toward those dominated by r-selected (e.g., fast-growing) phyla. Further, under expected increases in temperature and changes in precipitation, devil scat inputs are projected to increase above- and below-ground net primary productivity and microbial biomass carbon through 2100. In contrast, when devil scat is replaced by lower-quality scat (e.g., from non-osteophageous scavengers and herbivores), forest carbon pools are likely to increase more slowly, or in some cases, decline. Together, our results suggest often overlooked biotic factors will interact with climate change to drive current and future carbon pool dynamics in Tasmanian forests.
Collapse
Affiliation(s)
- Torrey Stephenson
- Department of Soil and Water Systems, University of Idaho, Moscow, Idaho, USA
| | - Tara Hudiburg
- Department of Forest, Rangeland and Fire Sciences, University of Idaho, Moscow, Idaho, USA
| | - Justin M Mathias
- Department of Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Menna Jones
- School of Natural Sciences, West Virginia University, Hobart, Tasmania, Australia
| | - Laurel M Lynch
- Department of Soil and Water Systems, University of Idaho, Moscow, Idaho, USA
| |
Collapse
|
7
|
Chen Y, Zhang Y, Zhang X, Stevens C, Fu S, Feng T, Li X, Chen Q, Liu S, Hu S. Canopy and understory nitrogen additions differently affect soil microbial residual carbon in a temperate forest. GLOBAL CHANGE BIOLOGY 2024; 30:e17427. [PMID: 39021313 DOI: 10.1111/gcb.17427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/20/2024]
Abstract
Atmospheric nitrogen (N) deposition in forests can affect soil microbial growth and turnover directly through increasing N availability and indirectly through altering plant-derived carbon (C) availability for microbes. This impacts microbial residues (i.e., amino sugars), a major component of soil organic carbon (SOC). Previous studies in forests have so far focused on the impact of understory N addition on microbes and microbial residues, but the effect of N deposition through plant canopy, the major pathway of N deposition in nature, has not been explicitly explored. In this study, we investigated whether and how the quantities (25 and 50 kg N ha-1 year-1) and modes (canopy and understory) of N addition affect soil microbial residues in a temperate broadleaf forest under 10-year N additions. Our results showed that N addition enhanced the concentrations of soil amino sugars and microbial residual C (MRC) but not their relative contributions to SOC, and this effect on amino sugars and MRC was closely related to the quantities and modes of N addition. In the topsoil, high-N addition significantly increased the concentrations of amino sugars and MRC, regardless of the N addition mode. In the subsoil, only canopy N addition positively affected amino sugars and MRC, implying that the indirect pathway via plants plays a more important role. Neither canopy nor understory N addition significantly affected soil microbial biomass (as represented by phospholipid fatty acids), community composition and activity, suggesting that enhanced microbial residues under N deposition likely stem from increased microbial turnover. These findings indicate that understory N addition may underestimate the impact of N deposition on microbial residues and SOC, highlighting that the processes of canopy N uptake and plant-derived C availability to microbes should be taken into consideration when predicting the impact of N deposition on the C sequestration in temperate forests.
Collapse
Affiliation(s)
- Yuanqi Chen
- Institute of Geographical Environment and Carbon Peak and Neutrality, School of Earth Sciences and Spatial Information Engineering, Hunan University of Science and Technology, Xiangtan, China
- Key Laboratory of Forest Ecology and Environment of Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Yu Zhang
- Institute of Carbon Peak and Neutrality, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, China
| | - Xu Zhang
- Institute of Carbon Peak and Neutrality, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, China
| | - Carly Stevens
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Shenglei Fu
- Henan Dabieshan National Field Observation and Research Station of Forest Ecosystem, Henan University, Zhengzhou, China
| | - Teng Feng
- Institute of Geographical Environment and Carbon Peak and Neutrality, School of Earth Sciences and Spatial Information Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Xiaowei Li
- Henan Dabieshan National Field Observation and Research Station of Forest Ecosystem, Henan University, Zhengzhou, China
| | - Quan Chen
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, China
| | - Shirong Liu
- Key Laboratory of Forest Ecology and Environment of Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Shuijin Hu
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
8
|
Wang Y, Zhu F, Li J, Gurmesa GA, Huang S, Fang X, Liu D, Mgelwa AS, Wang W, Huang K, Duan Y, Song L, Li X, Quan Z, Kang R, Zhu W, Hobbie EA, Fang Y. Evidence and causes of recent decreases in nitrogen deposition in temperate forests in Northeast China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172472. [PMID: 38642760 DOI: 10.1016/j.scitotenv.2024.172472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/23/2024] [Accepted: 04/11/2024] [Indexed: 04/22/2024]
Abstract
High reactive nitrogen (N) emissions due to anthropogenic activities in China have led to an increase in N deposition and ecosystem degradation. The Chinese government has strictly regulated reactive N emissions since 2010, however, determining whether N deposition has reduced requires long-term monitoring. Here, we report the patterns of N deposition at a rural forest site (Qingyuan) in northeastern China over the last decade. We collected 456 daily precipitation samples from 2014 to 2022 and analysed the temporal dynamics of N deposition. NH4+-N, NO3--N, and total inorganic N (TIN) deposition ranged from 10.5 ± 3.5 (mean ± SD), 6.1 ± 1.6, and 16.6 ± 4.7 kg N ha-1 year-1, respectively. Over the measurement period, TIN deposition at Qingyuan decreased by 55 %, whereas that in comparable sites in East Asia declined by 14-34 %. We used a random forest model to determine factors influencing the deposition of NH4+-N, NO3--N, and TIN during the study period. NH4+-N deposition decreased by 60 % because of decreased agricultural NH3 emissions. Furthermore, NO3--N deposition decreased by 42 %, due to reduced NOx emissions from agricultural soil and fossil fuel combustion. The steep decline in N deposition in northeastern China was attributed to reduced coal consumption, improved emission controls on automobiles, and shifts in agricultural practices. Long-term monitoring is needed to assess regional air quality and the impact of N emission control regulations.
Collapse
Affiliation(s)
- Yingying Wang
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feifei Zhu
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China; Qingyuan Forest CERN, National Observation and Research Station, Shenyang, Liaoning 110016, China; Key Laboratory of Stable Isotope Techniques and Applications, Shenyang, Liaoning 110016, China.
| | - Jin Li
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Geshere Abdisa Gurmesa
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China; Key Laboratory of Stable Isotope Techniques and Applications, Shenyang, Liaoning 110016, China
| | - Shaonan Huang
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, College of Geography and Environment Science, Henan University, Kaifeng 475004, China; Henan Key Laboratory of Air Pollution Prevention and Ecological Security (Henan University), Kaifeng 475004, China
| | - Xiaoming Fang
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China; Qingyuan Forest CERN, National Observation and Research Station, Shenyang, Liaoning 110016, China; Key Laboratory of Stable Isotope Techniques and Applications, Shenyang, Liaoning 110016, China
| | - Dongwei Liu
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China; Qingyuan Forest CERN, National Observation and Research Station, Shenyang, Liaoning 110016, China; Key Laboratory of Stable Isotope Techniques and Applications, Shenyang, Liaoning 110016, China
| | - Abubakari Said Mgelwa
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China; Key Laboratory of Stable Isotope Techniques and Applications, Shenyang, Liaoning 110016, China; College of Natural Resources Management & Tourism, Mwalimu Julius K. Nyerere University of Agriculture & Technology, P.O. Box 976, Musoma, Tanzania
| | - Wenchao Wang
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Huang
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China; Key Laboratory of Stable Isotope Techniques and Applications, Shenyang, Liaoning 110016, China
| | - Yihang Duan
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China; Key Laboratory of Stable Isotope Techniques and Applications, Shenyang, Liaoning 110016, China
| | - Linlin Song
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China; Key Laboratory of Stable Isotope Techniques and Applications, Shenyang, Liaoning 110016, China
| | - Xue Li
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Quan
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China; Key Laboratory of Stable Isotope Techniques and Applications, Shenyang, Liaoning 110016, China
| | - Ronghua Kang
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China; Key Laboratory of Stable Isotope Techniques and Applications, Shenyang, Liaoning 110016, China
| | - Weixing Zhu
- Department of Biological Sciences, Binghamton University, The State University of New York, Binghamton, NY, USA
| | - Erik A Hobbie
- Earth Systems Research Center, University of New Hampshire, Durham, NH 03824, United States
| | - Yunting Fang
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China; Qingyuan Forest CERN, National Observation and Research Station, Shenyang, Liaoning 110016, China; Key Laboratory of Stable Isotope Techniques and Applications, Shenyang, Liaoning 110016, China.
| |
Collapse
|
9
|
Zhao X, Tian P, Zhang W, Wang Q, Guo P, Wang Q. Nitrogen deposition caused higher increases in plant-derived organic carbon than microbial-derived organic carbon in forest soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171752. [PMID: 38494032 DOI: 10.1016/j.scitotenv.2024.171752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/19/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Plant- and microbial-derived organic carbon, two components of the soil organic carbon (SOC) pool in terrestrial ecosystems, are regulated by increased atmospheric nitrogen (N) deposition. However, the spatial patterns and driving factors of the responses of plant- and microbial-derived SOC to N deposition in forests are not clear, which hinders our understanding of SOC sequestration. In this study, we explored the spatial patterns of plant- and microbial-derived SOC, and their responses to N addition and elucidated their underlying mechanisms in forest soils receiving N addition at four sites with various soil and climate conditions. Plant- and microbial-derived SOC were quantified using lignin phenols and amino sugars, respectively. N addition increased the total microbial residues by 20.5% on average ranging from 9.4% to 34.0% in temperate forests but not in tropical forests, and the increase was mainly derived from fungal residues. Lignin phenols increased more in temperate forests (average of 63.8%) than in tropical forests (average of 15.7%) following N addition. The ratio of total amino sugars to lignin phenols was higher in temperate forests than in tropical forests and decreased with N addition in temperate forests. N addition mainly regulated soil microbial residues by affecting pH, SOC, exchangeable Ca2+, gram-negative bacteria biomass, and the C:N ratio, while it mainly had indirect effects on lignin phenols by altering SOC, soil C:N ratio, and gram-negative bacteria biomass. Overall, our findings suggested that N deposition caused a greater increase in plant-derived SOC than in microbial-derived SOC and that plant-derived SOC would have a more important role in sequestering SOC under increasing N deposition in forest ecosystems, particularly in temperate forests.
Collapse
Affiliation(s)
- Xuechao Zhao
- Anhui Province Key Laboratory of Forest Resources and Silviculture, Anhui Agricultural University, Hefei 230036, China; Huitong Experimental Station of Forest Ecology, CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang 110016, China
| | - Peng Tian
- Anhui Province Key Laboratory of Forest Resources and Silviculture, Anhui Agricultural University, Hefei 230036, China
| | - Wei Zhang
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Qinggui Wang
- School of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Peng Guo
- Department of Chemical and Environmental Engineering, Hebei College of Industry and Technology, Shijiazhuang 050091, China
| | - Qingkui Wang
- Anhui Province Key Laboratory of Forest Resources and Silviculture, Anhui Agricultural University, Hefei 230036, China; Huitong Experimental Station of Forest Ecology, CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang 110016, China.
| |
Collapse
|
10
|
Sun Y, Fernie AR. Plant secondary metabolism in a fluctuating world: climate change perspectives. TRENDS IN PLANT SCIENCE 2024; 29:560-571. [PMID: 38042677 DOI: 10.1016/j.tplants.2023.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 12/04/2023]
Abstract
Climate changes have unpredictable effects on ecosystems and agriculture. Plants adapt metabolically to overcome these challenges, with plant secondary metabolites (PSMs) being crucial for plant-environment interactions. Thus, understanding how PSMs respond to climate change is vital for future cultivation and breeding strategies. Here, we review PSM responses to climate changes such as elevated carbon dioxide, ozone, nitrogen deposition, heat and drought, as well as a combinations of different factors. These responses are complex, depending on stress dosage and duration, and metabolite classes. We finally identify mechanisms by which climate change affects PSM production ecologically and molecularly. While these observations provide insights into PSM responses to climate changes and the underlying regulatory mechanisms, considerable further research is required for a comprehensive understanding.
Collapse
Affiliation(s)
- Yuming Sun
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China.
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
11
|
Houle D, Moore JD, Renaudin M. Eastern Canadian boreal forest soil and foliar chemistry show evidence of resilience to long-term nitrogen addition. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e2958. [PMID: 38425036 DOI: 10.1002/eap.2958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/23/2023] [Accepted: 01/10/2024] [Indexed: 03/02/2024]
Abstract
The boreal forest is one of the world's largest terrestrial biome and plays crucial roles in global biogeochemical cycles, such as carbon (C) sequestration in vegetation and soil. However, the impacts of decades of N deposition on N-limited ecosystems, like the eastern Canadian boreal forest, remain unclear. For 13 years, N deposition was simulated by periodically adding ammonium nitrate on soils of two boreal coniferous forests (i.e., balsam fir and black spruce) of eastern Canada, at low (LN) and high (HN) rates, corresponding to 3 and 10 times the ambient N deposition, respectively. We show that more than a decade of N addition had no strong effects on mineral soil C, N, P, and cation concentrations and on foliar total Ca, K, Mg, and Mn concentrations. In organic soil, C stock was not affected by N addition while N stock increased, and exchangeable Ca2+ and Mg2+ decreased at the balsam fir site under HN treatment. At both sites, LN treatment had nearly no impact on foliage and soil chemistry but foliar N and N:P significantly increased under HN treatment, potentially leading to foliar nutrient imbalance. Overall, our work indicates that, in the eastern Canadian boreal forest, soil and foliar nutrient concentrations and stocks are resilient to increasing N deposition potentially because, in the context of N limitation, extra N would be rapidly immobilized by soil micro-organisms and vegetation. These findings could improve modeling future boreal forest soil C stocks and biomass growth and could help in planning forest management strategies in eastern Canada.
Collapse
Affiliation(s)
- Daniel Houle
- Science and Technology Branch, Environment and Climate Change Canada, Montréal, Québec, Canada
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Jean-David Moore
- Direction de la recherche forestière, Ministère des Ressources naturelles et des Forêts, Québec City, Québec, Canada
| | - Marie Renaudin
- Science and Technology Branch, Environment and Climate Change Canada, Montréal, Québec, Canada
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Québec, Canada
| |
Collapse
|
12
|
Ridgeway J, Kane J, Morrissey E, Starcher H, Brzostek E. Roots selectively decompose litter to mine nitrogen and build new soil carbon. Ecol Lett 2024; 27:e14331. [PMID: 37898561 DOI: 10.1111/ele.14331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/18/2023] [Accepted: 10/02/2023] [Indexed: 10/30/2023]
Abstract
Plant-microbe interactions in the rhizosphere shape carbon and nitrogen cycling in soil organic matter (SOM). However, there is conflicting evidence on whether these interactions lead to a net loss or increase of SOM. In part, this conflict is driven by uncertainty in how living roots and microbes alter SOM formation or loss in the field. To address these uncertainties, we traced the fate of isotopically labelled litter into SOM using root and fungal ingrowth cores incubated in a Miscanthus x giganteus field. Roots stimulated litter decomposition, but balanced this loss by transferring carbon into aggregate associated SOM. Further, roots selectively mobilized nitrogen from litter without additional carbon release. Overall, our findings suggest that roots mine litter nitrogen and protect soil carbon.
Collapse
Affiliation(s)
- Joanna Ridgeway
- Department of Biology, West Virginia University, Morgantown, West Virginia, USA
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jennifer Kane
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, West Virginia, USA
| | - Ember Morrissey
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, West Virginia, USA
| | - Hayden Starcher
- Department of Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Edward Brzostek
- Department of Biology, West Virginia University, Morgantown, West Virginia, USA
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
13
|
Piñeiro J, Dang C, Walkup JGV, Kuzniar T, Winslett R, Blazewicz SJ, Freedman ZB, Brzostek E, Morrissey EM. Shifts in bacterial traits under chronic nitrogen deposition align with soil processes in arbuscular, but not ectomycorrhizal-associated trees. GLOBAL CHANGE BIOLOGY 2024; 30:e17030. [PMID: 38010627 DOI: 10.1111/gcb.17030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 11/29/2023]
Abstract
Nitrogen (N) deposition increases soil carbon (C) storage by reducing microbial activity. These effects vary in soil beneath trees that associate with arbuscular (AM) and ectomycorrhizal (ECM) fungi. Variation in carbon C and N uptake traits among microbes may explain differences in soil nutrient cycling between mycorrhizal associations in response to high N loads, a mechanism not previously examined due to methodological limitations. Here, we used quantitative Stable Isotope Probing (qSIP) to measure bacterial C and N assimilation rates from an added organic compound, which we conceptualize as functional traits. As such, we applied a trait-based approach to explore whether variation in assimilation rates of bacterial taxa can inform shifts in soil function under chronic N deposition. We show taxon-specific and community-wide declines of bacterial C and N uptake under chronic N deposition in both AM and ECM soils. N deposition-induced reductions in microbial activity were mirrored by declines in soil organic matter mineralization rates in AM but not ECM soils. Our findings suggest C and N uptake traits of bacterial communities can predict C cycling feedbacks to N deposition in AM soils, but additional data, for instance on the traits of fungi, may be needed to connect microbial traits with soil C and N cycling in ECM systems. Our study also highlights the potential of employing qSIP in conjunction with trait-based analytical approaches to inform how ecological processes of microbial communities influence soil functioning.
Collapse
Affiliation(s)
- Juan Piñeiro
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, West Virginia, USA
- School of Forest Engineering and Natural Resources, Polytechnic University of Madrid, Madrid, Spain
| | - Chansotheary Dang
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, West Virginia, USA
| | - Jeth G V Walkup
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, West Virginia, USA
| | - Teagan Kuzniar
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, West Virginia, USA
| | - Rachel Winslett
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, West Virginia, USA
| | | | - Zachary B Freedman
- Department of Soil Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Edward Brzostek
- Department of Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Ember M Morrissey
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
14
|
Marshall JD, Tarvainen L, Zhao P, Lim H, Wallin G, Näsholm T, Lundmark T, Linder S, Peichl M. Components explain, but do eddy fluxes constrain? Carbon budget of a nitrogen-fertilized boreal Scots pine forest. THE NEW PHYTOLOGIST 2023; 239:2166-2179. [PMID: 37148187 DOI: 10.1111/nph.18939] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 03/22/2023] [Indexed: 05/08/2023]
Abstract
Nitrogen (N) fertilization increases biomass and soil organic carbon (SOC) accumulation in boreal pine forests, but the underlying mechanisms remain uncertain. At two Scots pine sites, one undergoing annual N fertilization and the other a reference, we sought to explain these responses. We measured component fluxes, including biomass production, SOC accumulation, and respiration, and summed them into carbon budgets. We compared the resulting summations to ecosystem fluxes measured by eddy covariance. N fertilization increased most component fluxes (P < 0.05), especially SOC accumulation (20×). Only fine-root, mycorrhiza, and exudate production decreased, by 237 (SD = 28) g C m-2 yr-1 . Stemwood production increases were ascribed to this partitioning shift, gross primary production (GPP), and carbon-use efficiency, in that order. The methods agreed in their estimates of GPP in both stands (P > 0.05), but the components detected an increase in net ecosystem production (NEP) (190 (54) g C m-2 yr-1 ; P < 0.01) that eddy covariance did not (19 (62) g C m-2 yr-1 ; ns). The pairing of plots, the simplicity of the sites, and the strength of response provide a compelling description of N effects on the C budget. However, the disagreement between methods calls for further paired tests of N fertilization effects in simple forest ecosystems.
Collapse
Affiliation(s)
- John D Marshall
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), Umeå, SE-901 83, Sweden
- Leibniz-Zentrum für Agrarlandschaftsforschung, Isotopen-Biogeochemie and Gasflüsse, Müncheberg, 15374, Germany
| | - Lasse Tarvainen
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), Umeå, SE-901 83, Sweden
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, SE-405 30, Sweden
| | - Peng Zhao
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), Umeå, SE-901 83, Sweden
| | - Hyungwoo Lim
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), Umeå, SE-901 83, Sweden
- Institute of Ecology and Earth Sciences, University of Tartu, Juhan Liivi 2, Tartu, 50409, Estonia
| | - Göran Wallin
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, SE-405 30, Sweden
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, South Parks Road, Oxford, OX1 3QY, UK
| | - Torgny Näsholm
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), Umeå, SE-901 83, Sweden
| | - Tomas Lundmark
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), Umeå, SE-901 83, Sweden
| | - Sune Linder
- Southern Swedish Forest Research Centre, SLU, PO Box 190, Lomma, SE-234 22, Sweden
| | - Matthias Peichl
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), Umeå, SE-901 83, Sweden
| |
Collapse
|
15
|
Yang X, Duan P, Hicks L, Wang K, Li D. Mechanisms underlying the responses of microbial carbon and nitrogen use efficiencies to nitrogen addition are mediated by topography in a subtropical forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163236. [PMID: 37030359 DOI: 10.1016/j.scitotenv.2023.163236] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/14/2023] [Accepted: 03/29/2023] [Indexed: 04/14/2023]
Abstract
Microbial carbon use efficiency (CUE) and nitrogen use efficiency (NUE) are key parameters determining the fate of C and N in soils. Atmospheric N deposition has been found to heavily impact multiple soil C and N transformations, but we lack understanding of the responses of CUE and NUE to N deposition, and it remains uncertain whether responses may be mediated by topography. Here, a N addition experiment with three treatment levels (0, 50 and 100 kg N ha-1 yr-1) was conducted in the valley and on the slope of a subtropical karst forest. Nitrogen addition increased microbial CUE and NUE at both topographic positions, but the underlying mechanisms differed. In the valley, the increase in CUE was associated with an increase in soil fungal richness:biomass and lower litter C:N, whereas on the slope, the response was linked with a reduced ratio of dissolved soil organic C (DOC) to available phosphorus (AVP) which reduced respiration, and increased root N:P stoichiometry. In the valley, the increase in NUE was explained by stimulated microbial N growth relative to gross N mineralization, which was associated with increased ratios of soil total dissolved N:AVP and fungal richness:biomass. In contrast, on the slope, the increase in NUE was attributed to reduced gross N mineralization, linked to increased DOC:AVP. Overall, our results highlight how topography-driven soil substrate availability and microbial properties can regulate microbial CUE and NUE.
Collapse
Affiliation(s)
- Xinyi Yang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Huanjiang 547100, China
| | - Pengpeng Duan
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Huanjiang 547100, China
| | - Lettice Hicks
- Section of Microbial Ecology, Department of Biology, Lund University, Lund 223 62, Sweden
| | - Kelin Wang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Huanjiang 547100, China
| | - Dejun Li
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Huanjiang 547100, China.
| |
Collapse
|
16
|
Shao S, Wu J, He H, Moore TR, Bubier J, Larmola T, Juutinen S, Roulet NT. Ericoid mycorrhizal fungi mediate the response of ombrotrophic peatlands to fertilization: a modeling study. THE NEW PHYTOLOGIST 2023; 238:80-95. [PMID: 36300568 DOI: 10.1111/nph.18555] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Ericaceous shrubs adapt to the nutrient-poor conditions in ombrotrophic peatlands by forming symbiotic associations with ericoid mycorrhizal (ERM) fungi. Increased nutrient availability may diminish the role of ERM pathways in shrub nutrient uptake, consequently altering the biogeochemical cycling within bogs. To explore the significance of ERM fungi in ombrotrophic peatlands, we developed the model MWMmic (a peat cohort-based biogeochemical model) into MWMmic-NP by explicitly incorporating plant-soil nitrogen (N) and phosphorus (P) cycling and ERM fungi processes. The new model was applied to simulate the biogeochemical cycles in the Mer Bleue (MB) bog in Ontario, Canada, and their responses to fertilization. MWMmic_NP reproduced the carbon(C)-N-P cycles and vegetation dynamics observed in the MB bog, and their responses to fertilization. Our simulations showed that fertilization increased shrub biomass by reducing the C allocation to ERM fungi, subsequently suppressing the growth of underlying Sphagnum mosses, and decreasing the peatland C sequestration. Our species removal simulation further demonstrated that ERM fungi were key to maintaining the shrub-moss coexistence and C sink function of bogs. Our results suggest that ERM fungi play a significant role in the biogeochemical cycles in ombrotrophic peatlands and should be considered in future modeling efforts.
Collapse
Affiliation(s)
- Siya Shao
- Department of Geography, McGill University, Montreal, QC, H3A 0G4, Canada
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Jianghua Wu
- Environment and Sustainability, School of Science and the Environment, Memorial University of Newfoundland, St John's, NL, A1C 5S7, Canada
| | - Hongxing He
- Department of Geography, McGill University, Montreal, QC, H3A 0G4, Canada
| | - Tim R Moore
- Department of Geography, McGill University, Montreal, QC, H3A 0G4, Canada
| | - Jill Bubier
- Department of Environmental Studies, Mount Holyoke College, South Hadley, MA, 01075, USA
| | - Tuula Larmola
- Natural Resources Institute Finland (Luke), 00790, Helsinki, Finland
| | - Sari Juutinen
- Finnish Meteorological Institute, 00560, Helsinki, Finland
| | - Nigel T Roulet
- Department of Geography, McGill University, Montreal, QC, H3A 0G4, Canada
| |
Collapse
|
17
|
Wang L, Wu S, Liu X, Liu N. The carbon and nitrogen metabolisms of Ardisia quinquegona were altered in different degrees by canopy and understory nitrogen addition in a subtropical forest. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:57653-57666. [PMID: 36971945 DOI: 10.1007/s11356-023-26478-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 03/12/2023] [Indexed: 05/10/2023]
Abstract
Although effects of atmospheric nitrogen (N) deposition on forest plants have been widely investigated, N interception and absorption effects by forest canopy should not be neglected. Moreover, how N deposition change the molecular biological process of understory dominant plants, which was easily influenced by canopy interception so as to further change physiological performance, remains poorly understood. To assess the effects of N deposition on forest plants, we investigated the effects of understory (UAN) and canopy N addition (CAN) on the transcriptome and physiological properties of Ardisia quinquegona, a dominant subtropical understory plant species in an evergreen broad-leaved forest in China. We identified a total of 7394 differentially expressed genes (DEGs). Three of these genes were found to be co-upregulated in CAN as compared to control (CK) after 3 and 6 h of N addition treatment, while 133 and 3 genes were respectively found to be co-upregulated and co-downregulated in UAN as compared to CK. In addition, highly expressed genes including GP1 (a gene involved in cell wall biosynthesis) and STP9 (sugar transport protein 9) were detected in CAN, which led to elevated photosynthetic capacity and accumulation of protein and amino acid as well as decrease in glucose, sucrose, and starch contents. On the other hand, genes associated with transport, carbon and N metabolism, redox response, protein phosphorylation, cell integrity, and epigenetic regulation mechanism were affected by UAN, resulting in enhanced photosynthetic capacity and carbohydrates and accumulation of protein and amino acid. In conclusion, our results showed that the CAN compared to UAN treatment had less effects on gene regulation and carbon and N metabolism. Canopy interception of N should be considered through CAN treatment to simulate N deposition in nature.
Collapse
Affiliation(s)
- Liyuan Wang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Shuhua Wu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuncheng Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
- South China National Botanical Garden, Guangzhou, 510650, China.
| | - Nan Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
- College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China.
- South China National Botanical Garden, Guangzhou, 510650, China.
| |
Collapse
|
18
|
Baek G, Lim H, Noh NJ, Kim C. No impact of nitrogen fertilization on carbon sequestration in a temperate Pinus densiflora forest. Sci Rep 2023; 13:1743. [PMID: 36878968 PMCID: PMC9988963 DOI: 10.1038/s41598-023-27989-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/11/2023] [Indexed: 03/08/2023] Open
Abstract
Carbon (C) sequestration capacity in forest ecosystems is generally constrained by soil nitrogen (N) availability. Consequently, N fertilization is seen as a promising tool for enhancing ecosystem-level C sequestration in N-limited forests. We examined the responses of ecosystem C (vegetation and soil) and soil N dynamics to 3 years of annual nitrogen-phosphorus-potassium (N3P4K1 = 11.3 g N, 15.0 g P, 3.7 g K m-2 year-1) or PK fertilization (P4K1), observed over 4 years in a 40-year-old Pinus densiflora forest with poor N nutrition in South Korea. PK fertilization without N was performed to test for PK limitation other than N. Neither tree growth nor soil C fluxes responded to annual NPK or PK fertilization despite an increase in soil mineral N fluxes following NPK fertilization. NPK fertilization increased the rate of N immobilization and 80% of the added N was recovered from mineral soil in the 0-5 cm layer, suggesting that relatively little of the added N was available to trees. These results indicate that N fertilization does not always enhance C sequestration even in forests with poor N nutrition and should therefore be applied with caution.
Collapse
Affiliation(s)
- Gyeongwon Baek
- Division of Environmental and Forest Science, Gyeongsang National University, Jinju, 52725, South Korea
| | - Hyungwoo Lim
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden.,Institute of Ecology and Earth Sciences, University of Tartu, 50409, Tartu, Estonia
| | - Nam Jin Noh
- Department of Forest Resources, Kangwon National University, Chuncheon, 24341, South Korea
| | - Choonsig Kim
- Division of Environmental and Forest Science, Gyeongsang National University, Jinju, 52725, South Korea.
| |
Collapse
|
19
|
Yang Y, Chen X, Liu L, Li T, Dou Y, Qiao J, Wang Y, An S, Chang SX. Nitrogen fertilization weakens the linkage between soil carbon and microbial diversity: A global meta-analysis. GLOBAL CHANGE BIOLOGY 2022; 28:6446-6461. [PMID: 35971768 DOI: 10.1111/gcb.16361] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Soil microbes make up a significant portion of the genetic diversity and play a critical role in belowground carbon (C) cycling in terrestrial ecosystems. Soil microbial diversity and organic C are often tightly coupled in C cycling processes; however, this coupling can be weakened or broken by rapid global change. A global meta-analysis was performed with 1148 paired comparisons extracted from 229 articles published between January 1998 and December 2021 to determine how nitrogen (N) fertilization affects the relationship between soil C content and microbial diversity in terrestrial ecosystems. We found that N fertilization decreased soil bacterial (-11%) and fungal diversity (-17%), but increased soil organic C (SOC) (+19%), microbial biomass C (MBC) (+17%), and dissolved organic C (DOC) (+25%) across different ecosystems. Organic N (urea) fertilization had a greater effect on SOC, MBC, DOC, and bacterial and fungal diversity than inorganic N fertilization. Most importantly, soil microbial diversity decreased with increasing SOC, MBC, and DOC, and the absolute values of the correlation coefficients decreased with increasing N fertilization rate and duration, suggesting that N fertilization weakened the linkage between soil C and microbial diversity. The weakened linkage might negatively impact essential ecosystem services under high rates of N fertilization; this understanding is important for mitigating the negative impact of global N enrichment on soil C cycling.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, China
- National Observation and Research Station of Earth Critical Zone on the Loess Plateau, Xi'an, China
| | - Xinli Chen
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Liangxu Liu
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
- Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou, China
| | - Ting Li
- Guangzhou Academy of Forestry and Landscape Architecture, Guangzhou, China
| | - Yanxing Dou
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
| | - Jiangbo Qiao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
| | - Yunqiang Wang
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, China
- National Observation and Research Station of Earth Critical Zone on the Loess Plateau, Xi'an, China
| | - Shaoshan An
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
| | - Scott X Chang
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
20
|
Raczka NC, Carrara JE, Brzostek ER. Plant-microbial responses to reduced precipitation depend on tree species in a temperate forest. GLOBAL CHANGE BIOLOGY 2022; 28:5820-5830. [PMID: 35833333 DOI: 10.1111/gcb.16340] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/28/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Given that global change is predicted to increase the frequency and severity of drought in temperate forests, it is critical to understand the degree to which plant belowground responses cascade through the soil system to drive ecosystem responses to water stress. While most research has focused on plant and microbial responses independently of each other, a gap in our understanding lies in the integrated response of plant-microbial interactions to water stress. We investigated the extent to which divergent belowground responses to reduced precipitation between sugar maple trees (Acer saccharum) versus oak trees (Oak spp.) may influence microbial activity via throughfall exclusion in the field. Evidence that oak trees send carbon belowground to prime microbial activity more than maples under ambient conditions and in response to water stress suggests there is the potential for corresponding impacts of reduced precipitation on microbial activity. As such, we tested the hypothesis that differences in belowground C allocation between oaks and maples would stimulate microbial activity in the oak treatment soils and reduce microbial activity in in the sugar maple treatment soils compared to their respective controls. We found that the treatment led to declines in N mineralization, soil respiration, and oxidative enzyme activity in the sugar maple treatment plot. These declines may be due to sugar maple trees reducing root C transfers to the soil. By contrast, the reduced precipitation treatment enhanced soil respiration, as well as rates of N mineralization and peroxidase activity in the oak rhizosphere. This enhanced activity suggests that oak roots provided optimal rhizosphere conditions during water stress to prime microbial activity to support net primary production. With future changes in precipitation predicted for forests in the Eastern US, we show that the strength of plant-microbial interactions drives the degree to which reduced precipitation impacts soil C and nutrient cycling.
Collapse
Affiliation(s)
- Nanette C Raczka
- Department of Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Joseph E Carrara
- Department of Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Edward R Brzostek
- Department of Biology, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
21
|
Guo X, Liu H, Ngosong C, Li B, Wang Q, Zhou W, Nie M. Response of plant functional traits to nitrogen enrichment under climate change: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155379. [PMID: 35460775 DOI: 10.1016/j.scitotenv.2022.155379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 04/14/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Soil nitrogen (N) supply is essential in influencing plant functional traits and regulating plant morphological and physiological performances. The effects of N on plants can be altered by complex environmental changes. However, conflicting results have been reported on the co-effects of N and climatic variables on plant performance, which may be attributed to differences in experiment setting and approach, e.g., ecosystem, duration, plant type, and fertilizer form. To elucidate the general response of plant performance to increasing soil N availability under climate change, a global meta-analysis was conducted to synthesize 380 publications studying interactions of N enrichment and four climatic variables (e.g., elevated atmospheric CO2 (eCO2), drought, precipitation, and warming) on performance-related traits (e.g., size, nutrient, and fitness). Results showed that N enrichment increased shoot and root size, nutrient, and fitness of terrestrial plants. The synergistic interactions of N × eCO2 and antagonistic interactions of N × drought were found on plant overall performance (mainly on plant size), indicating that the N effects can be aggregated by eCO2 and mitigated by drought. The co-effects of N and climatic variables on plant overall performance rely on experiment approach, duration, ecosystem type, or plant functional type. Synergistic interactions of N × eCO2 and antagonistic interactions of N × drought, N × precipitation, and N × warming on plant overall performance were found mainly in greenhouse experiments and short-term experiments (duration ≤ one year), but not in the field or longer-term experiments. The results highlighted that N effects on plant performance were not isolated, but can be modified by climate changes. These findings can improve the future modeling predictions of plant performance under complex climate change and provide a fundamental basis for N management strategies to optimize plant performance in production, N nutrient, and reproduction while enabling sustainability of plant production systems.
Collapse
Affiliation(s)
- Xiaohui Guo
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Hao Liu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Christopher Ngosong
- Ecology Group, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany; Department of Agronomic and Applied Molecular Sciences, Faculty of Agriculture and Veterinary Medicine, University of Buea, P.O. Box 63, Buea, South West Region, Cameroon
| | - Bo Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Qing Wang
- Shanghai Academy of Environment Sciences, Shanghai 200233, China.
| | - Wenneng Zhou
- School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China.
| | - Ming Nie
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, School of Life Sciences, Fudan University, Shanghai 200433, China.
| |
Collapse
|
22
|
Zhu X, Zhang Z, Wang Q, Peñuelas J, Sardans J, Lambers H, Li N, Liu Q, Yin H, Liu Z. More soil organic carbon is sequestered through the mycelium pathway than through the root pathway under nitrogen enrichment in an alpine forest. GLOBAL CHANGE BIOLOGY 2022; 28:4947-4961. [PMID: 35582981 DOI: 10.1111/gcb.16263] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Plant roots and associated mycorrhizae exert a large influence on soil carbon (C) cycling. Yet, little was known whether and how roots and ectomycorrhizal (ECM) extraradical mycelia differentially contribute to soil organic C (SOC) accumulation in alpine forests under increasing nitrogen (N) deposition. Using ingrowth cores, the relative contributions of the root pathway (RP; i.e., roots and rhizosphere processes) and mycelium pathway (MP; i.e., extraradical mycelia and hyphosphere processes) to SOC accumulation were distinguished and quantified in an ECM-dominated forest receiving chronic N addition (25 kg N ha-1 year-1 ). Under the non-N addition, the RP facilitated SOC accumulation, although the MP reduced SOC accumulation. Nitrogen addition enhanced the positive effect of RP on SOC accumulation from +18.02 to +20.55 mg C g-1 but counteracted the negative effect of MP on SOC accumulation from -5.62 to -0.57 mg C g-1 , compared with the non-N addition. Compared with the non-N addition, the N-induced SOC accumulation was 1.62-2.21 and 3.23-4.74 mg C g-1 , in the RP and the MP, respectively. The greater contribution of MP to SOC accumulation was mainly attributed to the higher microbial C pump (MCP) efficacy (the proportion of increased microbial residual C to the increased SOC under N addition) in the MP (72.5%) relative to the RP (57%). The higher MCP efficacy in the MP was mainly associated with the higher fungal metabolic activity (i.e., the greater fungal biomass and N-acetyl glucosidase activity) and greater binding efficiency of fungal residual C to mineral surfaces than those of RP. Collectively, our findings highlight the indispensable role of mycelia and hyphosphere processes in the formation and accumulation of stable SOC in the context of increasing N deposition.
Collapse
Affiliation(s)
- Xiaomin Zhu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Ziliang Zhang
- Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Qitong Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CEAB-UAB, Cerdanyola del Valles, Catalonia, Spain
- CREAF, Cerdanyola del Valles, Catalonia, Spain
| | - Jordi Sardans
- CSIC, Global Ecology Unit CREAF-CEAB-UAB, Cerdanyola del Valles, Catalonia, Spain
- CREAF, Cerdanyola del Valles, Catalonia, Spain
| | - Hans Lambers
- School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Na Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Qing Liu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Huajun Yin
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Zhanfeng Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems & CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
23
|
Role of Tree Species, the Herb Layer and Watershed Characteristics in Nitrate Assimilation in a Central Appalachian Hardwood Forest. NITROGEN 2022. [DOI: 10.3390/nitrogen3020022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Forest plants that can assimilate nitrate may act as nitrate sink and, consequently, reduce nitrate losses from watershed ecosystems through leaching. This study, conducted at the Fernow Experimental Forest in West Virginia, quantified via nitrogen reductase activity (NRA) the nitrate assimilation of two tree species, red maple and sugar maple, and surrounding common herb-layer species at the tissue (foliage, roots) and plot level. NRA measurements were conducted in summer and spring. Furthermore, NRA was quantified under varying levels of soil nitrate availability due to fertilization, different stages in secondary forest succession, and watershed aspect. This study confirmed that NRA of mature maples does not respond to varying levels of soil nitrate availability. However, some herb-layer species’ NRA did increase with nitrogen fertilization, and it may be greater in spring than in summer. Combined with biomass, the herb layer’s NRA at the plot-level (NRAA) comprised 9 to 41% of the total (tree + herb-layer) foliar NRAA during the growing season. This demonstrates that the herb layer contributes to nitrate assimilation disproportionally to its small biomass in the forest and may provide a vernal dam to nitrate loss not only by its early presence but also by increased spring NRA relative to summer.
Collapse
|
24
|
Jevon FV, Lang AK. Tree biomass allocation differs by mycorrhizal association. Ecology 2022; 103:e3688. [PMID: 35324010 DOI: 10.1002/ecy.3688] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 12/03/2021] [Accepted: 12/22/2021] [Indexed: 11/12/2022]
Abstract
Tree biomass allocation to leaves, roots, and wood affects the residence time of carbon in forests, with potentially dramatic implications for ecosystem carbon storage. However, drivers of tree biomass allocation remain poorly quantified. Using a combination of global datasets, we tested the relative importance of climate, leaf habit, and tree mycorrhizal associations on biomass allocation. We show that trees that associate with arbuscular mycorrhizal fungi allocate roughly 4% more of their biomass to root tissue than trees that associate with ectomycorrhizal fungi. Further, the effect of mycorrhizal association on root biomass allocation was greater than that of climate and similar in magnitude to that of leaf habit (evergreen vs. deciduous). These patterns in whole-plant biomass allocation are likely due to differences in carbon investment toward root vs fungal tissues, where trees with arbuscular mycorrhizal fungi favor root production while trees with ectomycorrhizal fungi favor fungal tissue production. These results suggest that considering tree mycorrhizal associations could improve our understanding of ecosystem carbon storage in terrestrial biosphere models: specifically, that greater within-tree allocation to root biomass in AM-associated tree species may contribute to stable soil carbon pools in forests dominated by arbuscular mycorrhizal fungi.
Collapse
Affiliation(s)
- Fiona V Jevon
- Yale School of the Environment, Yale University, New Haven, CT, USA
| | - Ashley K Lang
- Department of Biology, Indiana University, Bloomington, IN, USA
| |
Collapse
|
25
|
Rogers A, Dietz KJ, Gifford ML, Lunn JE. The importance of independent replication of treatments in plant science. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5270-5274. [PMID: 34320198 DOI: 10.1093/jxb/erab268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Affiliation(s)
- Alistair Rogers
- Environmental Sciences Department, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants-W5-134, Bielefeld University, D-33501 Bielefeld, Germany
| | - Miriam L Gifford
- School of Life Sciences and Warwick Integrative Synthetic Biology Centre, Gibbet Hill Road, University of Warwick, Coventry CV4 7AL, UK
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|