1
|
Liu DH, Liu QR, Tojibaev KS, Sukhorukov AP, Wariss HM, Zhao Y, Yang L, Li WJ. Phylogenomics provides new insight into the phylogeny and diversification of Asian Lappula (Boraginaceae). Mol Phylogenet Evol 2025; 208:108361. [PMID: 40287026 DOI: 10.1016/j.ympev.2025.108361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/26/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
The application of omics data serves as a powerful tool for investigating the roles of incomplete lineage sorting (ILS) and hybridization in shaping genomic diversity, offering deeper insights into complex evolutionary processes. In this study, we utilized deep genome sequencing data from 76 individuals of Lappula and its closely allied genera, collected from China and Central Asia. By employing the HybPiper and Easy353 pipelines, we recovered 262-279 single-copy nuclear genes (SCNs) and 352-353 Angiosperms353 genes, respectively. We analyzed multiple datasets, including complete chloroplast genomes and a filtered set of 475 SCNs, to conduct phylogenetic analyses using both concatenated and coalescent-based methods. Furthermore, we employed Quartet Sampling (QS), coalescent simulations, MSCquartets, HyDe, and reticulate network analyses to investigate the sources of phylogenetic discordance. Our results confirm that Lappula is polyphyletic, with L. mogoltavica clustering with Pseudolappula sinaica and forming a sister relationship with other taxa included in this study. Additionally, three Lepechiniella taxa nested within distinct clades of Lappula. Significant gene tree discordance was observed at several nodes within Lappula. Coalescent simulations and hybrid detection analyses suggest that both ILS and hybridization contribute to these discrepancies. Flow cytometry (FCM) analyses confirmed the presence of both diploid and tetraploid taxa within Lappula. Phylogenetic network analyses further revealed that Clades IV and VII likely originated through hybridization, with the tetraploids in Clade IV arising from two independent hybridization events. Additionally, the "ghost lineage" identified as sister to Lappula redowskii serves as one of the donors in allopolyploidization. In conclusion, our study provides new insights into the deep phylogenetic relationships of Asian Lappula and its closely allied genera, contributing to a more comprehensive understanding of the evolution and diversification of Lappula.
Collapse
Affiliation(s)
- Dan-Hui Liu
- State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; China-Tajikistan Belt and Road Joint Laboratory on Biodiversity Conservation and Sustainable Use, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Quan-Ru Liu
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Komiljon Sh Tojibaev
- Institute of Botany, Uzbekistan Academy of Sciences, Tashkent 100125, Uzbekistan
| | - Alexander P Sukhorukov
- Department of Higher Plants, Biological Faculty, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Hafiz Muhammad Wariss
- State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Department of Botany, University of Sargodha, Sargodha, 40100, Pakistan
| | - Yue Zhao
- State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Lei Yang
- State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen-Jun Li
- State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; China-Tajikistan Belt and Road Joint Laboratory on Biodiversity Conservation and Sustainable Use, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Peng HW, Lian L, Xiang KL, Li HL, Erst AS, Jabbour F, Ortiz RDC, Wang W. The historical connection of the Arctic and Qinghai-Tibet Plateau floras and their asynchronous diversification in response to Cenozoic climate cooling. Evolution 2025; 79:1007-1019. [PMID: 40080687 DOI: 10.1093/evolut/qpaf048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/24/2025] [Accepted: 03/06/2025] [Indexed: 03/15/2025]
Abstract
The Arctic and the Qinghai-Tibet Plateau (QTP) are two northern regions with the most extensive cold habitats on Earth and have undergone dramatic warming in recent decades. However, we know little about the historical connection between the Arctic and QTP biotas and their respective diversification processes. Here, we used Meconopsis and Oreomecon, an Arctic-QTP disjunct angiosperm genus pair with poor seed dispersal abilities, to shed light on the evolutionary connection of the Arctic and QTP floras and their respective diversification patterns. Our results show that the Meconopsis-Oreomecon clade colonized the Arctic from the QTP in the Late Eocene, suggesting the hitherto earliest known dispersal event between two regions. The Arctic Oreomecon split from the QTP Meconopsis at ~34 Ma, associated with their climatic niche differentiation and aridification of the Asian interior. Although both Oreomecon and Meconopsis preadapted to open and low-temperature environments and had similar diversification patterns, they diversified asynchronously in respondence to different Cenozoic climate cooling events. The Arctic is approaching its carrying capacity, whereas the QTP is still far from saturation. These findings improve knowledge of the evolutionary connection and difference between Arctic and QTP floras and have important conservation implications given enhanced warming in both regions.
Collapse
Affiliation(s)
- Huan-Wen Peng
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lian Lian
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Kun-Li Xiang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Hong-Lei Li
- Chongqing Engineering Research Center for Horticultural Plant, College of Smart Agriculture, Chongqing University of Arts and Sciences, Chongqing, China
| | - Andrey S Erst
- Laboratory of Herbarium, Central Siberian Botanical Garden, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Florian Jabbour
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, Université des Antilles, EPHE, Paris, France
| | | | - Wei Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Xu H, Han Y, Chi X, Yu J, Xia M, Han S, Niu Y, Zhang F, Chen S. Integration of De Novo Chromosome-Level Genome and Population Resequencing of Peganum (Nitrariaceae): A Case Study of Speciation and Evolutionary Trajectories in Arid Central Asia. Mol Ecol Resour 2025; 25:e14078. [PMID: 39925320 DOI: 10.1111/1755-0998.14078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 12/19/2024] [Accepted: 01/27/2025] [Indexed: 02/11/2025]
Abstract
Natural hybridization is a significant driving force in plant evolution and speciation. Understanding the genetic mechanism and dynamic evolutionary trajectories of divergence between species and hybrids remains a central goal in evolutionary biology. Here, we examined the genetic divergence of Peganum and their intermittent and hybrid entities (IHEs) from large-scale sympatric and allopatric regions. We sequenced the genomes of Peganum from the Arid Central Asia (ACA) region and its surrounding areas, discovering that the origin of Peganum could be traced to the Hexi Corridor in eastern Central Asia, where migration led to geographic and environmental isolation, giving rise to new species based on natural selection. Different Peganum species, exhibiting excellent dispersal abilities, migrated to the same regions and underwent hybridization. The descendant species of Peganum inherited and developed adaptive traits from parent species through gene flow and introgression, particularly in DNA repair and wax layer formation, leading to the speciation of the IHEs. This study clarified the transition stages in hybrid speciation and identified the Mixing-Isolation-Mixing cycles (MIM) model as a speciation framework suitable for Peganum, marking the initial identification of this unique evolutionary model in the ACA region.
Collapse
Affiliation(s)
- Hao Xu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology & Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yun Han
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology & Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaofeng Chi
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology & Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, Xining, China
| | - Jingya Yu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology & Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mingze Xia
- School of Pharmacy, Shandong Second Medical University, Weifang, China
| | - Shuang Han
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology & Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu Niu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology & Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Faqi Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology & Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining, China
- Xining Botanical Garden, Xining, China
| | - Shilong Chen
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology & Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining, China
| |
Collapse
|
4
|
Min Q, Zheng K, Pang Y, Fang Y, Zhang Y, Qiao F, Su X, Chen J, Han S. Transcription factors in Orinus: novel insights into transcription regulation for speciation adaptation on the Qinghai-Xizang (Tibet) Plateau. BMC PLANT BIOLOGY 2025; 25:560. [PMID: 40301765 PMCID: PMC12042605 DOI: 10.1186/s12870-025-06602-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Accepted: 04/22/2025] [Indexed: 05/01/2025]
Abstract
BACKGROUND Transcription factors (TFs) are crucial regulators of plant growth, development, and resistance to environmental stresses. However, comprehensive understanding of the roles of TFs in speciation of Orinus, an extreme-habitat plant on the Qinghai-Xizang (Tibet) Plateau, is limited. RESULTS Here, we identified 52 TF families, including 2125 members in Orinus, by methodically analysing domain findings, gene structures, chromosome locations, conserved motifs, and phylogenetic relationships. Phylogenetic trees were produced for each Orinus TF family using protein sequences together with wheat (Triticum aestivum L.) TFs to indicate the subgroups. The differences between Orinus and wheat species in terms of TF family size implies that both Orinus- and wheat-specific subfamily contractions (and expansions) contributed to the high adaptability of Orinus. Based on deep mining of RNA-Seq data between two species of Orinus, O. thoroldii and O. kokonoricus, we obtained differentially expressed TFs (DETFs) in 20 families, most of which were expressed higher in O. thoroldii than in O. kokonoricus. In addition, Cis-element analysis shows that MYC and G-box elements are enriched in the promoter region of DETFs, suggesting that jasmonic acid (JA) and abscisic acid (ABA) act synergistically in Orinus to enhance the signalling of related abiotic stress responses, ultimately leading to an improvement in the stress tolerance and speciation adaptation of Orinus. CONCLUSIONS Our data serve as a genetic resource for Orinus, not only filling the gap in studies of TF families within this genus but also providing preliminary insights into the molecular mechanisms underlying speciation in Orinus.
Collapse
Affiliation(s)
- Qinyue Min
- Key Laboratory of Biodiversity Formation Mechanism and Comprehensive Utilization of the Qinghai-Tibet Plateau in Qinghai Province, College of Life Sciences, Qinghai Normal University, Xining, Qinghai, 810008, China
| | - Kaifeng Zheng
- College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yanrong Pang
- College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yue Fang
- Key Laboratory of Biodiversity Formation Mechanism and Comprehensive Utilization of the Qinghai-Tibet Plateau in Qinghai Province, College of Life Sciences, Qinghai Normal University, Xining, Qinghai, 810008, China
| | - Yanfen Zhang
- Key Laboratory of Biodiversity Formation Mechanism and Comprehensive Utilization of the Qinghai-Tibet Plateau in Qinghai Province, College of Life Sciences, Qinghai Normal University, Xining, Qinghai, 810008, China
| | - Feng Qiao
- Key Laboratory of Biodiversity Formation Mechanism and Comprehensive Utilization of the Qinghai-Tibet Plateau in Qinghai Province, College of Life Sciences, Qinghai Normal University, Xining, Qinghai, 810008, China
| | - Xu Su
- Key Laboratory of Biodiversity Formation Mechanism and Comprehensive Utilization of the Qinghai-Tibet Plateau in Qinghai Province, College of Life Sciences, Qinghai Normal University, Xining, Qinghai, 810008, China
| | - Jinyuan Chen
- Key Laboratory of Biodiversity Formation Mechanism and Comprehensive Utilization of the Qinghai-Tibet Plateau in Qinghai Province, College of Life Sciences, Qinghai Normal University, Xining, Qinghai, 810008, China.
| | - Shengcheng Han
- College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
- Academy of Plateau Science and Sustainability of the People's Government of Qinghai Province & Beijing Normal University, Qinghai Normal University, Xining, Qinghai, 810008, China.
| |
Collapse
|
5
|
Xiong Y, Yuan S, Xiong Y, Li L, Peng J, Zhang J, Fan X, Jiang C, Sha LN, Wang Z, Peng X, Zhang Z, Yu Q, Lei X, Dong Z, Liu Y, Zhao J, Li G, Yang Z, Jia S, Li D, Sun M, Bai S, Liu J, Yang Y, Ma X. Analysis of allohexaploid wheatgrass genome reveals its Y haplome origin in Triticeae and high-altitude adaptation. Nat Commun 2025; 16:3104. [PMID: 40164609 PMCID: PMC11958778 DOI: 10.1038/s41467-025-58341-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 03/19/2025] [Indexed: 04/02/2025] Open
Abstract
Phylogenetic origin of the Y haplome present in allopolyploid Triticeae species remains unknown. Here, we report the 10.47 Gb chromosome-scale genome of allohexaploid Elymus nutans (StStYYHH). Phylogenomic analyses reveal that the Y haplome is sister to the clade comprising V and Jv haplomes from Dasypyrum and Thinopyum. In addition, H haplome from the Hordeum-like ancestor, St haplome from the Pseudoroegneria-like ancestor and Y haplome are placed in the successively diverged clades. Resequencing data reveal the allopolyploid origins with St, Y, and H haplome combinations in Elymus. Population genomic analyses indicate that E. nutans has expanded from medium to high/low-altitude regions. Phenotype/environmental association analyses identify MAPKKK18 promoter mutations reducing its expression, aiding UV-B adaptation in high-altitude populations. These findings enhance understanding of allopolyploid evolution and aid in breeding forage and cereal crops through intergeneric hybridization within Triticeae.
Collapse
Affiliation(s)
- Yi Xiong
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Shuai Yuan
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Yanli Xiong
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Sichuan Academy of Grassland Sciences, Chengdu, Sichuan, 611700, China
| | - Lizuiyue Li
- National Plateau Wetlands Research Center, Southwest Forestry University, Kunming, 650224, China
- Yunnan Key Laboratory of Plateau Wetland Conservation Restoration and Ecological Services, Southwest Forestry University, Kunming, 650224, China
| | - Jinghan Peng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jin Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Chengzhi Jiang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Li-Na Sha
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Zhaoting Wang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xue Peng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Zecheng Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Qingqing Yu
- Sichuan Academy of Grassland Sciences, Chengdu, Sichuan, 611700, China
| | - Xiong Lei
- Sichuan Academy of Grassland Sciences, Chengdu, Sichuan, 611700, China
| | - Zhixiao Dong
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yingjie Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Junming Zhao
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Guangrong Li
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Zujun Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Shangang Jia
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Daxu Li
- Sichuan Academy of Grassland Sciences, Chengdu, Sichuan, 611700, China
| | - Ming Sun
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Shiqie Bai
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China.
| | - Jianquan Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China.
| | - Yongzhi Yang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China.
| | - Xiao Ma
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
6
|
Wang C, Wang M, Zhu S, Wu X, Yang S, Yan Y, Wen Y. Multiple Ecological Niche Modeling Reveals Niche Conservatism and Divergence in East Asian Yew ( Taxus). PLANTS (BASEL, SWITZERLAND) 2025; 14:1094. [PMID: 40219162 PMCID: PMC11990852 DOI: 10.3390/plants14071094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/28/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025]
Abstract
Understanding ecological niche evolution patterns is crucial for elucidating biogeographic history and guiding biodiversity conservation. Taxus is a Tertiary relict gymnosperm with 11 lineages mainly distributed across East Asia, spanning from tropical to subarctic regions. However, the spatiotemporal dynamics of its ecological niche evolution and the roles of ecological and geographical factors in lineage diversification, remain unclear. Using occurrence records, environmental data, and reconstructed phylogenies, we employed ensemble ecological niche models (eENMs), environmental principle components analysis (PCA-env), and phyloclimatic modeling to analyze niche similarity and evolution among 11 Taxus lineages. Based on reconstructed Bayesian trees and geographical distribution characteristics, we classified the eleven lineages into four clades: Northern (T. cuspidata), Central (T. chinensis, T. qinlingensis, and the Emei type), Western (T. wallichiana, T. florinii, and T. contorta), and Southern (T. calcicola, T. phytonii, T. mairei, and the Huangshan type). Orogenic activities and climate changes in the Tibetan Plateau since the Late Miocene likely facilitated the local adaptation of ancestral populations in Central China, the Hengduan Mountains, and the Yunnan-Guizhou Plateau, driving their expansion and diversification towards the west and south. Key environmental variables, including extreme temperature, temperature and precipitation variability, light, and altitude, were identified as major drivers of current niche divergence. Both niche conservatism and divergence were observed, with early conservatism followed by recent divergence. The Southern clade exhibits high heat and moisture tolerance, suggesting an adaptive shift, while the Central and Western clades retain ancestral drought and cold tolerance, displaying significant phylogenetic niche conservatism (PNC). We recommend prioritizing the conservation of T. qinlingensis, which exhibits the highest PNC level, particularly in the Qinling, Daba, and Taihang Mountains, which are highly degraded and vulnerable to future climate fluctuations.
Collapse
Affiliation(s)
- Chuncheng Wang
- College of Landscape and Architecture, Central South University of Forestry and Technology, Changsha 410004, China (S.Y.)
- Hunan Big Data Engineering Technology Research Center of Natural Protected Areas Landscape Resources, Changsha 410004, China
- Yuelushan Laboratory Carbon Sinks Forests Variety Innovation Center, Changsha 410004, China
| | - Minqiu Wang
- College of Landscape and Architecture, Central South University of Forestry and Technology, Changsha 410004, China (S.Y.)
- Hunan Big Data Engineering Technology Research Center of Natural Protected Areas Landscape Resources, Changsha 410004, China
- Yuelushan Laboratory Carbon Sinks Forests Variety Innovation Center, Changsha 410004, China
| | - Shanshan Zhu
- College of Landscape and Architecture, Central South University of Forestry and Technology, Changsha 410004, China (S.Y.)
| | - Xingtong Wu
- College of Landscape and Architecture, Central South University of Forestry and Technology, Changsha 410004, China (S.Y.)
- Hunan Big Data Engineering Technology Research Center of Natural Protected Areas Landscape Resources, Changsha 410004, China
- Yuelushan Laboratory Carbon Sinks Forests Variety Innovation Center, Changsha 410004, China
| | - Shaolong Yang
- College of Landscape and Architecture, Central South University of Forestry and Technology, Changsha 410004, China (S.Y.)
- Hunan Big Data Engineering Technology Research Center of Natural Protected Areas Landscape Resources, Changsha 410004, China
- Yuelushan Laboratory Carbon Sinks Forests Variety Innovation Center, Changsha 410004, China
| | - Yadan Yan
- College of Landscape and Architecture, Central South University of Forestry and Technology, Changsha 410004, China (S.Y.)
- Hunan Big Data Engineering Technology Research Center of Natural Protected Areas Landscape Resources, Changsha 410004, China
- Yuelushan Laboratory Carbon Sinks Forests Variety Innovation Center, Changsha 410004, China
| | - Yafeng Wen
- College of Landscape and Architecture, Central South University of Forestry and Technology, Changsha 410004, China (S.Y.)
- Hunan Big Data Engineering Technology Research Center of Natural Protected Areas Landscape Resources, Changsha 410004, China
- Yuelushan Laboratory Carbon Sinks Forests Variety Innovation Center, Changsha 410004, China
| |
Collapse
|
7
|
Chen KY, Wang JD, Xiang RQ, Yang XD, Yun QZ, Huang Y, Sun H, Chen JH. Backbone phylogeny of Salix based on genome skimming data. PLANT DIVERSITY 2025; 47:178-188. [PMID: 40182486 PMCID: PMC11963080 DOI: 10.1016/j.pld.2024.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 04/05/2025]
Abstract
The genus Salix is a common component of the Northern Hemisphere dendroflora with important ecological and economic value. However, taxonomy and systematics of Salix is extremely difficult and relationships between main lineages, especially deep phylogenies, remain largely unresolved. In this study, we used genome-skimming, plastome assembly, and single-copy orthologs (SCOs) from 66 Salix accessions, along with publicly available plastome and sequence read archive (SRA) datasets to obtain a robust backbone phylogeny of Salix, clarify relationships between its main lineages, and gain a more precise understanding of the origin and diversification of this species-rich genus. The plastome and SCO datasets resolved Salix into two robust clades, with plastome-based phylogenies lacking inner resolution and SCO offering fully resolved phylogenies. Our results support the classification of Salix into five subgenera: Salix, Urbaniana, Triandrae, Longifoliae and Vetrix. We observed a significant acceleration in the diversification rate within the Chamaetia-Vetrix clade, while Salix exhibited increased rates of diversification spanning from the early Oligocene to the late Miocene. These changes coincided with contemporaneous tectonic and climate change events. Our results provide a foundation for future systematic and evolutionary studies of Salix. Additionally, we showed that genome skimming data is an efficient, rapid, and reliable approach for obtaining extensive genomic data for phylogenomic studies, enabling the comprehensive elucidation of Salix relationships.
Collapse
Affiliation(s)
- Kai-Yun Chen
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China
| | - Jin-Dan Wang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Rui-Qi Xiang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xue-Dan Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China
| | - Quan-Zheng Yun
- Beijing Ori-Gene Science and Technology Co Ltd, Beijing 102206, PR China
| | - Yuan Huang
- School of Life Sciences, Yunnan Normal University, Kunming 650092, Yunnan, PR China
| | - Hang Sun
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China
| | - Jia-Hui Chen
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China
| |
Collapse
|
8
|
Shi Y, Huang J, Wan X, Shi J, Chen Z, Zeng W. The population chloroplast genomes of Populus reveal the phylogenetic relationship between three new taxa of sect. Leucoides and their parents. BMC Genomics 2025; 26:156. [PMID: 39962394 PMCID: PMC11834202 DOI: 10.1186/s12864-024-11099-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 11/27/2024] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Poplars are important woody plants, which are widely distributed in the forests from the subtropics to the north of the Northern Hemisphere. Poplars have high ecological and economic value. However, there are frequent interspecific and intraspecific hybrids in Populus, resulting in a large number of intermediate taxa, which makes the morphological identification of Populus very challenging. Plastid genome is an important tool to study the evolutionary relationship of plants. Therefore, comparison and phylogenetic analysis were carried out based on the population chloroplast genomes of 34 individuals from 7 taxa. RESULTS In this study, seven newly assembled and annotated chloroplast genomes of Populus were reported. They all had typical quadripartite structures with the same GC content (37.6%), but there were differences within the population, and the genome size ranged from 155,736 bp to 156,812 bp. In all Populus species, 134 genes were identified, including 88 protein coding genes (PCGs), 37 tRNA and 8 rRNA genes. The gene sequences alignment of different taxa showed that the gene sequences and content were relatively conservative, there was no gene rearrangement, and only 3 highly variable regions (psbZ-trnG, ndhC-trnV and trnN-trnR) were identified, which can be used as molecular markers. Most PCGs had high codon usage bias and 3 positive selection genes (rps7, rps12 and rpl16) have been identified. The analysis of population genetic structure and phylogeny showed that the chloroplast genomes supported that Populus was a monophyletic taxon, which could be divided into four sections (Abaso, Turanga, Populus and ATL (Aigeiros, Tacamahaca and Leucoides)). Among them, P. dafengensis, P. butuoensis and P. szechuanica had the closest genetic relationship, P. gonggaensis and P. cathayana had the closest genetic relationship, it was speculated that the taxa of Sect. Tacamahaca may be the main female parent of the three new taxa from Sect. Leucoides. CONCLUSION In general, this study provides valuable insights for new species identification, phylogenetic relationships, breeding and resource development, and genetic diversity of Populus.
Collapse
Affiliation(s)
- Yujie Shi
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, College of Life Sciences, Taizhou University, Taizhou, 318000, China
| | - Jingliang Huang
- Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xueqin Wan
- Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Jinglian Shi
- School of electronics and information engineering, Taizhou University, Taizhou, 318000, China
| | - Zhen Chen
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, College of Life Sciences, Taizhou University, Taizhou, 318000, China
| | - Wei Zeng
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, College of Life Sciences, Taizhou University, Taizhou, 318000, China.
| |
Collapse
|
9
|
He J, Li M, Wu H, Cheng J, Xie L. Unraveling the Ancient Introgression History of Xanthoceras (Sapindaceae): Insights from Phylogenomic Analysis. Int J Mol Sci 2025; 26:1581. [PMID: 40004047 PMCID: PMC11855356 DOI: 10.3390/ijms26041581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Ancient introgression is an infrequent evolutionary process often associated with conflicts between nuclear and organellar phylogenies. Determining whether such conflicts arise from introgression, incomplete lineage sorting (ILS), or other processes is essential to understanding plant diversification. Previous studies have reported phylogenetic discordance in the placement of Xanthoceras, but its causes remain unclear. Here, we analyzed transcriptome data from 41 Sapindaceae samples to reconstruct phylogenies and investigate this discordance. While nuclear phylogenies consistently placed Xanthoceras as sister to subfam. Hippocastanoideae, plastid data positioned it as the earliest-diverging lineage within Sapindaceae. Our coalescent simulations suggest that this cyto-nuclear discordance is unlikely to be explained by ILS alone. HyDe and PhyloNet analyses provided strong evidence that Xanthoceras experienced ancient introgression, incorporating approximately 16% of its genetic material from ancestral subfam. Sapindoideae lineages. Morphological traits further support this evolutionary history, reflecting characteristics of both contributing subfamilies. Likely occurring during the Paleogene, this introgression represents a rare instance of cross-subfamily gene flow shaping the evolutionary trajectory of a major plant lineage. Our findings clarify the evolutionary history of Xanthoceras and underscore the role of ancient introgression in driving phylogenetic conflicts, offering a rare example of introgression-driven diversification in angiosperms.
Collapse
Affiliation(s)
- Jian He
- Correspondence: (J.H.); (L.X.)
| | | | | | | | - Lei Xie
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China; (M.L.); (H.W.); (J.C.)
| |
Collapse
|
10
|
Wang C, Wang M, Yang S, Wu X, Zhu S, Yan Y, Xu J, Wen Y. Taxonomic status and spatial genetic pattern of Taxus in northern and central China: insights from integrative taxonomy, ecology and phylogeography. BMC PLANT BIOLOGY 2025; 25:181. [PMID: 39934695 PMCID: PMC11818355 DOI: 10.1186/s12870-025-06142-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/21/2025] [Indexed: 02/13/2025]
Abstract
BACKGROUND Phenotypic, ecological, and genetic differences are crucial for species delimitation and understanding speciation. However, the defining the distribution boundaries and mechanisms driving lineage differentiation of Taxus species in northern and central China remain unclear. This study combines three molecular markers (trnL-trnF, rbcL, ITS), leaf morphological, and ecological data, integrating multiple taxonomy, ecology, and phylogeography approaches to systematically investigate the taxonomic status and spatial genetic patterns of Taxus species in these regions. RESULTS A total of 177 samples from 27 populations, representing the natural distribution of Taxus in central and northern China, were collected. T. chinensis (TC) mainly occurs from 1000-2400 m in the south of Qinling Mountains, T. mairei (TM) from 100-1000 m in the south of Daba Mountains, and T. qinlingensis (TQ) from 900-1800 m in the north of Qinling Mountains. The three species overlap in the central Qinling, eastern Daba, and Wushan Mountains at elevations of 900-1800 m. Seventeen haplotypes and 21 ribotypes were identified, forming three clusters corresponding to TC, TM, and TQ. Both cpDNA and nDNA data reveals distinct phylogeographic structures, significant genetic differentiation, and smaller bidirectional gene flow among species. Genetic and niche play a more prominent role in species divergence than morphological traits. Effective population sizes and genetic diversity are higher in TC and TM than in TQ. Suitable habitats expanded southwestward after the Last Glacial Maximum (LGM) and are projected to shift northwestward and contract under future warming scenarios. CONCLUSION Geologic movement (rapid uplift of the Qinling and surrounding mountains), climate fluctuations (cold-drying effect, and glacial-interglacial cycles), and habitat heterogeneity (gradients in geography and elevation) together shaped interspecific adaptive differentiation and shifts in population dynamics of the three Taxus species. The Qinling-Daba-Wushan mountain range likely played a key role in the independent evolution of these species in local glacial refugia and their post-glacial recontact at the intersection of these mountain ranges. This study provides new insights into the taxonomic status and genetic variation pattern of Taxus species in central and northern China.
Collapse
Affiliation(s)
- Chuncheng Wang
- College of Landscape Architecture, College of Landscape Architecture, Central South University of Forestry and Technology, Hunan, 410004, China
- Hunan Big Data Engineering Technology Research Center of Natural Protected Areas Landscape Resources, Changsha, 410004, China
- Yuelushan Laboratory Carbon Sinks Forests Variety Innovation Center, Changsha, 410004, China
| | - Minqiu Wang
- College of Landscape Architecture, College of Landscape Architecture, Central South University of Forestry and Technology, Hunan, 410004, China
- Hunan Big Data Engineering Technology Research Center of Natural Protected Areas Landscape Resources, Changsha, 410004, China
- Yuelushan Laboratory Carbon Sinks Forests Variety Innovation Center, Changsha, 410004, China
| | - Shaolong Yang
- College of Landscape Architecture, College of Landscape Architecture, Central South University of Forestry and Technology, Hunan, 410004, China
- Hunan Big Data Engineering Technology Research Center of Natural Protected Areas Landscape Resources, Changsha, 410004, China
- Yuelushan Laboratory Carbon Sinks Forests Variety Innovation Center, Changsha, 410004, China
| | - Xintong Wu
- College of Landscape Architecture, College of Landscape Architecture, Central South University of Forestry and Technology, Hunan, 410004, China
- Hunan Big Data Engineering Technology Research Center of Natural Protected Areas Landscape Resources, Changsha, 410004, China
- Yuelushan Laboratory Carbon Sinks Forests Variety Innovation Center, Changsha, 410004, China
| | - Shanshan Zhu
- College of Landscape Architecture, College of Landscape Architecture, Central South University of Forestry and Technology, Hunan, 410004, China
- Yuelushan Laboratory Carbon Sinks Forests Variety Innovation Center, Changsha, 410004, China
| | - Yadan Yan
- College of Landscape Architecture, College of Landscape Architecture, Central South University of Forestry and Technology, Hunan, 410004, China
- Hunan Big Data Engineering Technology Research Center of Natural Protected Areas Landscape Resources, Changsha, 410004, China
- Yuelushan Laboratory Carbon Sinks Forests Variety Innovation Center, Changsha, 410004, China
| | - Jing Xu
- College of Landscape Architecture, College of Landscape Architecture, Central South University of Forestry and Technology, Hunan, 410004, China
- Hunan Big Data Engineering Technology Research Center of Natural Protected Areas Landscape Resources, Changsha, 410004, China
- Yuelushan Laboratory Carbon Sinks Forests Variety Innovation Center, Changsha, 410004, China
| | - Yafeng Wen
- College of Landscape Architecture, College of Landscape Architecture, Central South University of Forestry and Technology, Hunan, 410004, China.
- Hunan Big Data Engineering Technology Research Center of Natural Protected Areas Landscape Resources, Changsha, 410004, China.
- Yuelushan Laboratory Carbon Sinks Forests Variety Innovation Center, Changsha, 410004, China.
| |
Collapse
|
11
|
Fu PC, Mo BJ, Wan HX, Yang SW, Xing R, Sun SS. Divergence of alpine plant populations of three Gentianaceae species in the Qinling sky Island. BMC PLANT BIOLOGY 2025; 25:144. [PMID: 39905316 PMCID: PMC11792570 DOI: 10.1186/s12870-025-06165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/28/2025] [Indexed: 02/06/2025]
Abstract
BACKGROUND Known for their unique biodiversity, the Qinling Mountains are considered the only area in which alpine biomes occur in central China. Given that the alpine biomes are particularly sensitive to global warming, understanding how alpine plants respond to climatic fluctuations is essential for the evolution and conservation of biodiversity. To address this issue, three alpine species of the Gentianaceae (Gentiana crassuloides, G. hexaphylla and Swertia bifolia) that represent different life types and diverse genera were selected. RESULTS Genetic clustering analysis according to around 33,317 to 185,133 SNPs showed that the Qinling population was a separate lineage within each species. A high level of genetic differentiation was observed among the Qinling populations and the other populations of each species. Divergence time estimation based on plastomes and approximate Bayesian computation based on genomic SNPs showed that Qinling populations of the three Gentianaceae species originated at different periods under various patterns including primary source and hybridization. Significant signals of isolation by distance and isolation by environment were found in all three species. The redundancy and gradient forest analyses revealed that several temperature- and precipitation-related variables mainly contributed to shaping the genetic differentiation among the Qinling populations and others, indicating that the three species exhibited a similar pattern of adaptations to local environments. CONCLUSIONS This study unveiled the unique genetic and evolutionary features of the Qinling populations of these three species and elucidated the contributing role of both the environmental gradient and geographical isolation in genetic differentiation, which scientifically supports future conservation efforts.
Collapse
Affiliation(s)
- Peng-Cheng Fu
- School of Life Science, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Bing-Jie Mo
- School of Life Science, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - He-Xin Wan
- School of Life Science, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Shu-Wen Yang
- School of Life Science, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Rui Xing
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, P. R. China
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining, P. R. China
| | - Shan-Shan Sun
- School of Life Science, Luoyang Normal University, Luoyang, 471934, P. R. China.
| |
Collapse
|
12
|
Lukubye B, Civitello DJ. Integrating hybridization and introgression into host-parasite epidemiology, ecology, and evolution. Trends Parasitol 2025; 41:129-137. [PMID: 39794180 DOI: 10.1016/j.pt.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/14/2024] [Accepted: 12/15/2024] [Indexed: 01/13/2025]
Abstract
Hybridization and introgression between host species or between parasite species are emerging challenges for human, plant, and animal health, especially as global trends like climate change and urbanization increase overlap of species ranges. This creates opportunities for heterospecific crosses between diverged taxa that could generate novel host and parasite genotypes with unique traits (e.g., transmission rate, virulence, susceptibility, and resistance) compared with their parental taxa. However, there seems to be slow appreciation of this biological phenomenon in empirical and theoretical approaches to host-parasite interactions. This limits our understanding of the effects of hybridization on epidemiology, ecology, and evolution. Here, we address some pressing questions regarding the emergence and relevance of eukaryotic hybrid genotypes for disease dynamics.
Collapse
Affiliation(s)
- Ben Lukubye
- Department of Biology, Emory University, Atlanta, GA 30322, USA.
| | | |
Collapse
|
13
|
Lin Y, Chen Y, Zhao Y, Wu W, Yang C, Zheng Y, Huang M. Comparative Analysis of Complete Chloroplast Genomes and Phylogenetic Relationships in Medicinally Important Pantropical Genus Bauhinia s.s. (Leguminosae) from Southern Africa and Eastern Asia. Int J Mol Sci 2025; 26:397. [PMID: 39796252 PMCID: PMC11720137 DOI: 10.3390/ijms26010397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/29/2024] [Accepted: 01/04/2025] [Indexed: 01/13/2025] Open
Abstract
Bauhinia s.s. belongs to the Cercidoideae subfamily, located at the base of the Leguminosae family. It displays a variety of growth habits and morphologies, and is widely utilized as both ornamental and medicinal plants globally. The objective of this research is to uncover chloroplast genomes of species from Eastern Asia and Southern Africa, thereby advancing our understanding of the diversity within this genus. This study sequenced Bauhinia purpurea, Bauhinia brachycarpa var. microphylla, Bauhinia variegata var. candida, Bauhinia galpinii, and Bauhinia monandra using the Illumina platform and conducted the construction of phylogenetic trees as well as the estimation of divergence times. Compared to Asian species, the IR regions of African species underwent a contraction of approximately 100-400 bp. The phylogenetic analysis indicated that Asian and African species clustered into two distinct clades, with high support. The divergence of Bauhinia s.s. species occurred in the late Paleocene, and the rps18 and cemA genes were under positive selection. Six hypervariable regions were screened for evolutionary studies and the super-barcode data were used for species delimitation. The results revealed certain differences between African and Asian species in their chloroplast genomes of Bauhinia species.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mingqing Huang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (Y.C.); (Y.Z.); (W.W.); (C.Y.); (Y.Z.)
| |
Collapse
|
14
|
Wei ZR, Jiao D, Wehenkel CA, Wei XX, Wang XQ. Phylotranscriptomic and ecological analyses reveal the evolution and morphological adaptation of Abies. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2664-2682. [PMID: 39152659 DOI: 10.1111/jipb.13760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/19/2024]
Abstract
Coniferous forests are under severe threat of the rapid anthropogenic climate warming. Abies (firs), the fourth-largest conifer genus, is a keystone component of the boreal and temperate dark-coniferous forests and harbors a remarkably large number of relict taxa. However, the uncertainty of the phylogenetic and biogeographic history of Abies significantly impedes our prediction of future dynamics and efficient conservation of firs. In this study, using 1,533 nuclear genes generated from transcriptome sequencing and a complete sampling of all widely recognized species, we have successfully reconstructed a robust phylogeny of global firs, in which four clades are strongly supported and all intersectional relationships are resolved, although phylogenetic discordance caused mainly by incomplete lineage sorting and hybridization was detected. Molecular dating and ancestral area reconstruction suggest a Northern Hemisphere high-latitude origin of Abies during the Late Cretaceous, but all extant firs diversified during the Miocene to the Pleistocene, and multiple continental and intercontinental dispersals took place in response to the late Neogene climate cooling and orogenic movements. Notably, four critically endangered firs endemic to subtropical mountains of China, including A. beshanzuensis, A. ziyuanensis, A. fanjingshanensis and A. yuanbaoshanensis from east to west, have different origins and evolutionary histories. Moreover, three hotspots of species richness, including western North America, central Japan, and the Hengduan Mountains, were identified in Abies. Elevation and precipitation, particularly precipitation of the coldest quarter, are the most significant environmental factors driving the global distribution pattern of fir species diversity. Some morphological traits are evolutionarily constrained, and those linked to elevational variation (e.g., purple cone) and cold resistance (e.g., pubescent branch and resinous bud) may have contributed to the diversification of global firs. Our study sheds new light on the spatiotemporal evolution of global firs, which will be of great help to forest management and species conservation in a warming world.
Collapse
Affiliation(s)
- Zhou-Rui Wei
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dan Jiao
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
| | - Christian Anton Wehenkel
- Instituto de Silvicultura e Industria de la Madera, Universidad Juárez del Estado de Durango, Durango, 34000, Mexico
| | - Xiao-Xin Wei
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Xiao-Quan Wang
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
15
|
Xie DF, Li J, Sun JH, Cheng RY, Wang Y, Song BN, He XJ, Zhou SD. Peering through the hedge: Multiple datasets yield insights into the phylogenetic relationships and incongruences in the tribe Lilieae (Liliaceae). Mol Phylogenet Evol 2024; 200:108182. [PMID: 39222738 DOI: 10.1016/j.ympev.2024.108182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 08/06/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The increasing use of genome-scale data has significantly facilitated phylogenetic analyses, contributing to the dissection of the underlying evolutionary mechanisms that shape phylogenetic incongruences, such as incomplete lineage sorting (ILS) and hybridization. Lilieae, a prominent member of the Liliaceae family, comprises four genera and approximately 260 species, representing 43% of all species within Liliaceae. They possess high ornamental, medicinal and edible values. Yet, no study has explored the validity of various genome-scale data in phylogenetic analyses within this tribe, nor have potential evolutionary mechanisms underlying its phylogenetic incongruences been investigated. Here, transcriptome, Angiosperms353, plastid and mitochondrial data, were collected from 50 to 93 samples of Lilieae, covering all four recognized genera. Multiple datasets were created and used for phylogenetic analyses based on concatenated and coalescent-based methods. Evolutionary rates of different datasets were calculated, and divergence times were estimated. Various approaches, including coalescence simulation, Quartet Sampling (QS), calculation of concordance factors (gCF and sCF), as well as MSCquartets and reticulate network inference, were carried out to infer the phylogenetic discordances and analyze their underlying mechanisms using a reduced 33-taxon dataset. Despite extensive phylogenetic discordances among gene trees, robust phylogenies were inferred from nuclear and plastid data compared to mitochondrial data, with lower synonymous substitution detected in mitochondrial genes than in nuclear and plastid genes. Significant ILS was detected across the phylogeny of Lilieae, with clear evidence of reticulate evolution identified. Divergence time estimation indicated that most of lineages in Lilieae diverged during a narrow time frame (ranging from 5.0 Ma to 10.0 Ma), consistent with the notion of rapid radiation evolution. Our results suggest that integrating transcriptomic and plastid data can serve as cost-effective and efficient tools for phylogenetic inference and evolutionary analysis within Lilieae, and Angiosperms353 data is also a favorable choice. Mitochondrial data are more suitable for phylogenetic analyses at higher taxonomic levels due to their stronger conservation and lower synonymous substitution rates. Significant phylogenetic incongruences detected in Lilieae were caused by both incomplete lineage sorting (ILS) and reticulate evolution, with hybridization and "ghost introgression" likely prevalent in the evolution of Lilieae species. Our findings provide new insights into the phylogeny of Lilieae, enhancing our understanding of the evolution of species in this tribe.
Collapse
Affiliation(s)
- Deng-Feng Xie
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065 Chengdu, Sichuan, PR China.
| | - Juan Li
- Southwest Minzu University, Institute Of Qinghai-Tibetan Plateau, 610225 Chengdu, Sichuan, PR China
| | - Jia-Hui Sun
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Rui-Yu Cheng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065 Chengdu, Sichuan, PR China
| | - Yuan Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065 Chengdu, Sichuan, PR China
| | - Bo-Ni Song
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065 Chengdu, Sichuan, PR China
| | - Xing-Jin He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065 Chengdu, Sichuan, PR China
| | - Song-Dong Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065 Chengdu, Sichuan, PR China.
| |
Collapse
|
16
|
Sun M, Zhu Z, Li R. The Complete Chloroplast Genome of Meconopsis simplicifolia and Its Genetic Comparison to Other Meconopsis Species. Genes (Basel) 2024; 15:1301. [PMID: 39457425 PMCID: PMC11507337 DOI: 10.3390/genes15101301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Chloroplasts, due to their high conservation and lack of recombination, serve as important genetic resources for the classification and evolutionary analysis of closely related species that are difficult to distinguish based on their morphological features. Meconopsis simplicifolia (M. simplicifolia), an endangered herb within the Meconopsis genus, has demonstrated therapeutic potential in treating various diseases. However, the highly polymorphic morphology of this species poses a challenge for accurate identification. Methods: In this study, the complete chloroplast genome of M. simplicifolia was sequenced and assembled using Illumina sequencing technology. Simple sequence repeats (SSRs) and repetitive sequences were characterized. In addition, a comparative analysis was conducted with the chloroplast genomes of six other Meconopsis species. Results: The chloroplast genome of M. simplicifolia has a quadripartite circular structure with a total length of 152,772 bp. It consists of a large single-copy region of 83,824 bp and a small single-copy region of 17,646 bp, separated by a pair of inverted repeat sequences (IRa and IRb, 25,651 bp). The genome contains 131 genes, 33 SSRs, and 27 long repetitive sequences. Comparative analysis with six other chloroplast genomes of Meconopsis revealed that M. simplicifolia is closely related to M. betonicifolia and that the rpl2 (ribosomal protein L2) gene in the IRb region has been deleted. This deletion is of significant importance for future taxonomic studies of M. simplicifolia. Conclusions: This study provides a valuable reference for the identification of M. simplicifolia and contributes to a deeper understanding of the phylogeny and evolution of the Meconopsis genus.
Collapse
Affiliation(s)
- Min Sun
- Institute of Advanced Study, Chengdu University, Chengdu 610106, China;
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu 610000, China;
| | - Zhidan Zhu
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu 610000, China;
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Rui Li
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu 610000, China;
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| |
Collapse
|
17
|
Lu X, Gong G, Zhang Q, Yang S, Wu H, Zhao M, Wang X, Shen Q, Ji L, Liu Y, Wang Y, Liu J, Suolang S, Ma X, Shan T, Zhang W. Metagenomic analysis reveals high diversity of gut viromes in yaks (Bos grunniens) from the Qinghai-Tibet Plateau. Commun Biol 2024; 7:1097. [PMID: 39242698 PMCID: PMC11379701 DOI: 10.1038/s42003-024-06798-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024] Open
Abstract
The Qinghai-Tibet Plateau (QTP), renowned for its exceptional biological diversity, is home to numerous endemic species. However, research on the virology of vulnerable vertebrates like yaks remains limited. In this study, our objective was to use metagenomics to provide a comprehensive understanding of the diversity and evolution of the gut virome in yak populations across different regions of the QTP. Our findings revealed a remarkably diverse array of viruses in the gut of yaks, including those associated with vertebrates and bacteriophages. Notably, some vertebrate-associated viruses, such as astrovirus and picornavirus, showed significant sequence identity across diverse yak populations. Additionally, we observed differences in the functional profiles of genes carried by the yak gut virome across different regions. Moreover, the virus-bacterium symbiotic network that we discovered holds potential significance in maintaining the health of yaks. Overall, this research expands our understanding of the viral communities in the gut of yaks and highlights the importance of further investigating the interactions between viruses and their hosts. These data will be beneficial for revealing the crucial role that viruses play in the yak gut ecology in future studies.
Collapse
Affiliation(s)
- Xiang Lu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ga Gong
- Animal Science College, Tibet Agriculture and Animal Husbandry University, Nyingchi, Tibet, China
| | - Qing Zhang
- Qinghai Institute of Endemic Disease Prevention and Control, Xining, China
| | - Shixing Yang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Haisheng Wu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
- Qinghai Institute of Endemic Disease Prevention and Control, Xining, China
| | - Min Zhao
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiaochun Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Quan Shen
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Likai Ji
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yuwei Liu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yongshun Wang
- Qinghai Institute of Endemic Disease Prevention and Control, Xining, China
| | - Jia Liu
- Qinghai Institute of Endemic Disease Prevention and Control, Xining, China
| | - Sizhu Suolang
- Animal Science College, Tibet Agriculture and Animal Husbandry University, Nyingchi, Tibet, China.
| | - Xiao Ma
- Qinghai Institute of Endemic Disease Prevention and Control, Xining, China.
| | - Tongling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Wen Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
18
|
Lin H, Chen L, Cai C, Ma J, Li J, Ashman TL, Liston A, Dong M. Genomic data provides insights into the evolutionary history and adaptive differentiation of two tetraploid strawberries. HORTICULTURE RESEARCH 2024; 11:uhae194. [PMID: 39257537 PMCID: PMC11384118 DOI: 10.1093/hr/uhae194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/05/2024] [Indexed: 09/12/2024]
Abstract
Over the decades, evolutionists and ecologists have shown intense interest in the role of polyploidization in plant evolution. Without clear knowledge of the diploid ancestor(s) of polyploids, we would not be able to answer fundamental ecological questions such as the evolution of niche differences between them or its underlying genetic basis. Here, we explored the evolutionary history of two Fragaria tetraploids, Fragaria corymbosa and Fragaria moupinensis. We de novo assembled five genomes including these two tetraploids and three diploid relatives. Based on multiple lines of evidence, we found no evidence of subgenomes in either of the two tetraploids, suggesting autopolyploid origins. We determined that Fragaria chinensis was the diploid ancestor of F. corymbosa while either an extinct species affinitive to F. chinensis or an unsampled population of F. chinensis could be the progenitor of F. moupinensis. Meanwhile, we found introgression signals between F. chinensis and Fragaria pentaphylla, leading to the genomic similarity between these two diploids. Compared to F. chinensis, gene families related to high ultraviolet (UV)-B and DNA repair were expanded, while those that responded towards abiotic and biotic stresses (such as salt stress, wounding, and various pathogens) were contracted in both tetraploids. Furthermore, the two tetraploids tended to down-regulate defense response genes but up-regulate UV-B response, DNA repairing, and cell division gene expression compared to F. chinensis. These findings may reflect adaptions toward high-altitude habitats. In summary, our work provides insights into the genome evolution of wild Fragaria tetraploids and opens up an avenue for future works to answer deeper evolutionary and ecological questions regarding the strawberry genus.
Collapse
Affiliation(s)
- Hanyang Lin
- School of Advanced Study, Taizhou University, Taizhou 318000, China
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou 318000, China
| | - Luxi Chen
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou 318000, China
| | - Chaonan Cai
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou 318000, China
| | - Junxia Ma
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou 318000, China
| | - Junmin Li
- School of Advanced Study, Taizhou University, Taizhou 318000, China
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou 318000, China
| | - Tia-Lynn Ashman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Aaron Liston
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Ming Dong
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
19
|
Fan X, Yan X, Qian C, Awuku I, Zhao P, Liao Y, Li Z, Li X, Ma X. Phylogeographic analysis reveals multiple origins of the desert shrub Reaumuria songarica in northern Xinjiang, involving homoploid and tetraploid hybrids. Ecol Evol 2024; 14:e70199. [PMID: 39219573 PMCID: PMC11362504 DOI: 10.1002/ece3.70199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/20/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Hybrid speciation plays an important role in species diversification. The establishment of reproductive isolation is crucial for hybrid speciation, and the identification of diverse types of hybrids, particularly homoploid hybrid species, contributes to a comprehensive understanding of this process. Reaumuria songarica is a constructive shrub widespread in arid Central Asia. Previous studies have inferred that the R. songarica populations in the Gurbantunggut Desert (GuD) originated from homoploid hybridizations between its eastern and western lineages and may have evolved into an incipient species. To further elucidate the genetic composition of different hybrid populations and to determine the species boundary of this hybrid lineage, we investigated the overall phylogeographic structure of R. songarica based on variation patterns of five cpDNA and one nrITS sequences across 32 populations. Phylogenetic analyses demonstrated that within the GuD lineage, the Wuerhe population evolved directly from ancestral lineages, whereas the others originated from hybridizations between the eastern and western lineages. PCoA and genetic barrier analysis supported the subdivision of the GuD lineage into the southern (GuD-S) and northern (GuD-N) groups. Populations in the GuD-S group had a consistent genetic composition and the same ancestral female parent, indicating that they belonged to a homoploid hybrid lineage. However, the GuD-N group experienced genetic admixture of the eastern and western lineages on nrITS and cpDNA, with some populations inferred to be allopolyploid based on ploidy data. Based on cpDNA haplotypes, BEAST analyses showed that the GuD-S and GuD-N groups originated after 0.5 Ma. Our results suggest that multiple expansions and contractions of GuD, driven by Quaternary climatic oscillations and the Kunlun-Yellow River tectonic movement, are important causes of the complex origins of R. songarica populations in northern Xinjiang. This study highlights the complex origins of the Junggar Basin flora and the underappreciated role of hybridization in increasing its species diversity.
Collapse
Affiliation(s)
- Xingke Fan
- Key Laboratory of Ecological Safety and Sustainable Development in Arid LandsNorthwest Institute of Eco‐Environment and Resources, Chinese Academy of SciencesLanzhouChina
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco‐Environment and Resources, Chinese Academy of SciencesLanzhouChina
| | - Xia Yan
- Key Laboratory of Eco‐Hydrology of Inland River Basin, Northwest Institute of Eco‐Environment and ResourcesChinese Academy of SciencesLanzhouChina
| | - Chaoju Qian
- Key Laboratory of Ecological Safety and Sustainable Development in Arid LandsNorthwest Institute of Eco‐Environment and Resources, Chinese Academy of SciencesLanzhouChina
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco‐Environment and Resources, Chinese Academy of SciencesLanzhouChina
| | - Ibrahim Awuku
- Key Laboratory of Ecological Safety and Sustainable Development in Arid LandsNorthwest Institute of Eco‐Environment and Resources, Chinese Academy of SciencesLanzhouChina
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco‐Environment and Resources, Chinese Academy of SciencesLanzhouChina
- College of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Pengshu Zhao
- Key Laboratory of Ecological Safety and Sustainable Development in Arid LandsNorthwest Institute of Eco‐Environment and Resources, Chinese Academy of SciencesLanzhouChina
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco‐Environment and Resources, Chinese Academy of SciencesLanzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yuqiu Liao
- Key Laboratory of Ecological Safety and Sustainable Development in Arid LandsNorthwest Institute of Eco‐Environment and Resources, Chinese Academy of SciencesLanzhouChina
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco‐Environment and Resources, Chinese Academy of SciencesLanzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhijun Li
- Key Laboratory of Protection and Utilization of Biological Resources in Tarim BasinXinjiang Production and Construction CorpsAlarChina
| | - Xinrong Li
- Key Laboratory of Ecological Safety and Sustainable Development in Arid LandsNorthwest Institute of Eco‐Environment and Resources, Chinese Academy of SciencesLanzhouChina
- Shapotou Desert Research and Experiment StationNorthwest Institute of Eco‐Environment and Resources, Chinese Academy of SciencesLanzhouChina
| | - Xiao‐Fei Ma
- Key Laboratory of Ecological Safety and Sustainable Development in Arid LandsNorthwest Institute of Eco‐Environment and Resources, Chinese Academy of SciencesLanzhouChina
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco‐Environment and Resources, Chinese Academy of SciencesLanzhouChina
| |
Collapse
|
20
|
Li XQ, Peng HW, Xiang KL, Xiang XG, Jabbour F, Ortiz RDC, Soltis PS, Soltis DE, Wang W. Phylogenetic evidence clarifies the history of the extrusion of Indochina. Proc Natl Acad Sci U S A 2024; 121:e2322527121. [PMID: 39159371 PMCID: PMC11363272 DOI: 10.1073/pnas.2322527121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/16/2024] [Indexed: 08/21/2024] Open
Abstract
The southeastward extrusion of Indochina along the Ailao Shan-Red River shear zone (ARSZ) is one of two of the most prominent consequences of the India-Asia collision. This plate-scale extrusion has greatly changed Southeast Asian topography and drainage patterns and effected regional climate and biotic evolution. However, little is known about how Indochina was extruded toward the southeast over time. Here, we sampled 42 plant and animal clades (together encompassing 1,721 species) that are distributed across the ARSZ and are not expected to disperse across long distances. We first assess the possible role of climate on driving the phylogenetic separations observed across the ARSZ. We then investigate the temporal dynamics of the extrusion of Indochina through a multitaxon analysis. We show that the lineage divergences across the ARSZ were most likely associated with the Indochinese extrusion rather than climatic events. The lineage divergences began at ~53 Ma and increased sharply ~35 Ma, with two peaks at ~19 Ma and ~7 Ma, and one valley at ~13 Ma. Our results suggest a two-phase model for the extrusion of Indochina, and in each phase, the extrusion was subject to periods of acceleration and decrease, in agreement with the changes of the India-Asia convergence rate and angle from the early Eocene to the late Miocene. This study highlights that a multitaxon analysis can illuminate the timing of subtle historical events that may be difficult for geological data to pinpoint and can be used to explore other tectonic events.
Collapse
Affiliation(s)
- Xiao-Qian Li
- State Key Laboratory of Plant Diversity and Prominent Crops, Institute of Botany, Chinese Academy of Sciences, Beijing100093, China
- China National Botanical Garden, Beijing100093, China
| | - Huan-Wen Peng
- State Key Laboratory of Plant Diversity and Prominent Crops, Institute of Botany, Chinese Academy of Sciences, Beijing100093, China
- China National Botanical Garden, Beijing100093, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Kun-Li Xiang
- State Key Laboratory of Plant Diversity and Prominent Crops, Institute of Botany, Chinese Academy of Sciences, Beijing100093, China
- China National Botanical Garden, Beijing100093, China
| | - Xiao-Guo Xiang
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, Jiangxi330031, China
| | - Florian Jabbour
- Institut de Systématique, Evolution, Biodiversité, Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris75005, France
| | | | - Pamela S. Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL32611
| | - Douglas E. Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL32611
- Department of Biology, University of Florida, Gainesville, FL32611
| | - Wei Wang
- State Key Laboratory of Plant Diversity and Prominent Crops, Institute of Botany, Chinese Academy of Sciences, Beijing100093, China
- China National Botanical Garden, Beijing100093, China
- University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
21
|
Feng H, Banerjee AK, Guo W, Yuan Y, Duan F, Ng WL, Zhao X, Liu Y, Li C, Liu Y, Li L, Huang Y. Origin and evolution of a new tetraploid mangrove species in an intertidal zone. PLANT DIVERSITY 2024; 46:476-490. [PMID: 39280974 PMCID: PMC11390703 DOI: 10.1016/j.pld.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 09/18/2024]
Abstract
Polyploidy is a major factor in the evolution of plants, yet we know little about the origin and evolution of polyploidy in intertidal species. This study aimed to identify the evolutionary transitions in three true-mangrove species of the genus Acanthus distributed in the Indo-West Pacific region. For this purpose, we took an integrative approach that combined data on morphology, cytology, climatic niche, phylogeny, and biogeography of 493 samples from 42 geographic sites. Our results show that the Acanthus ilicifolius lineage distributed east of the Thai-Malay Peninsula possesses a tetraploid karyotype, which is morphologically distinct from that of the lineage on the west side. The haplotype networks and phylogenetic trees for the chloroplast genome and eight nuclear genes reveal that the tetraploid species has two sub-genomes, one each from A. ilicifolius and A . ebracteatus, the paternal and maternal parents, respectively. Population structure analysis also supports the hybrid speciation history of the new tetraploid species. The two sub-genomes of the tetraploid species diverged from their diploid progenitors during the Pleistocene. Environmental niche models revealed that the tetraploid species not only occupied the near-entire niche space of the diploids, but also expanded into novel environments. Our findings suggest that A. ilicifolius species distributed on the east side of the Thai-Malay Peninsula should be regarded as a new species, A. tetraploideus, which originated from hybridization between A. ilicifolius and A. ebracteatus, followed by chromosome doubling. This is the first report of a true-mangrove allopolyploid species that can reproduce sexually and clonally reproduction, which explains the long-term adaptive potential of the species.
Collapse
Affiliation(s)
- Hui Feng
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Achyut Kumar Banerjee
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Wuxia Guo
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, Guangdong, China
| | - Yang Yuan
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Fuyuan Duan
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Wei Lun Ng
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia
| | - Xuming Zhao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Yuting Liu
- School of Agriculture, Sun Yat-sen University, Shenzhen 518107, Guangdong, China
| | - Chunmei Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Ying Liu
- School of Ecology, Sun Yat-sen University, Shenzhen 518107, Guangdong, China
| | - Linfeng Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Yelin Huang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| |
Collapse
|
22
|
Liu Y, Xiao W, Wang F, Wang Y, Dong Y, Nie W, Tan C, An S, Chang E, Jiang Z, Wang J, Jia Z. Adaptive divergence, historical population dynamics, and simulation of suitable distributions for Picea Meyeri and P. Mongolica at the whole-genome level. BMC PLANT BIOLOGY 2024; 24:479. [PMID: 38816690 PMCID: PMC11137980 DOI: 10.1186/s12870-024-05166-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024]
Abstract
The taxonomic classification of Picea meyeri and P. mongolica has long been controversial. To investigate the genetic relatedness, evolutionary history, and population history dynamics of these species, genotyping-by-sequencing (GBS) technology was utilized to acquire whole-genome single nucleotide polymorphism (SNP) markers, which were subsequently used to assess population structure, population dynamics, and adaptive differentiation. Phylogenetic and population structural analyses at the genomic level indicated that although the ancestor of P. mongolica was a hybrid of P. meyeri and P. koraiensis, P. mongolica is an independent Picea species. Additionally, P. mongolica is more closely related to P. meyeri than to P. koraiensis, which is consistent with its geographic distribution. There were up to eight instances of interspecific and intraspecific gene flow between P. meyeri and P. mongolica. The P. meyeri and P. mongolica effective population sizes generally decreased, and Maxent modeling revealed that from the Last Glacial Maximum (LGM) to the present, their habitat areas decreased initially and then increased. However, under future climate scenarios, the habitat areas of both species were projected to decrease, especially under high-emission scenarios, which would place P. mongolica at risk of extinction and in urgent need of protection. Local adaptation has promoted differentiation between P. meyeri and P. mongolica. Genotype‒environment association analysis revealed 96,543 SNPs associated with environmental factors, mainly related to plant adaptations to moisture and temperature. Selective sweeps revealed that the selected genes among P. meyeri, P. mongolica and P. koraiensis are primarily associated in vascular plants with flowering, fruit development, and stress resistance. This research enhances our understanding of Picea species classification and provides a basis for future genetic improvement and species conservation efforts.
Collapse
Affiliation(s)
- Yifu Liu
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, 100091, China
| | - Wenfa Xiao
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, 100091, China
| | - Fude Wang
- Heilongjiang Forestry Research Institute, Harbin, 150080, China
| | - Ya Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yao Dong
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, 100091, China
| | - Wen Nie
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, 100091, China
| | - Cancan Tan
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, 100091, China
| | - Sanping An
- Research Institute of Forestry of Xiaolong Mountain, Gansu Provincial Key Laboratory of Secondary Forest Cultivation, Tianshui, 741022, China
| | - Ermei Chang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Zeping Jiang
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, 100091, China
| | - Junhui Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
| | - Zirui Jia
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
| |
Collapse
|
23
|
Tang J, Fan X, Milne RI, Yang H, Tao W, Zhang X, Guo M, Li J, Mao K. Across two phylogeographic breaks: Quaternary evolutionary history of a mountain aspen ( Populus rotundifolia) in the Hengduan Mountains. PLANT DIVERSITY 2024; 46:321-332. [PMID: 38798733 PMCID: PMC11119543 DOI: 10.1016/j.pld.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/31/2024] [Accepted: 03/31/2024] [Indexed: 05/29/2024]
Abstract
Biogeographical barriers to gene flow are central to plant phylogeography. In East Asia, plant distribution is greatly influenced by two phylogeographic breaks, the Mekong-Salween Divide and Tanaka-Kaiyong Line, however, few studies have investigated how these barriers affect the genetic diversity of species that are distributed across both. Here we used 14 microsatellite loci and four chloroplast DNA fragments to examine genetic diversity and distribution patterns of 49 populations of Populus rotundifolia, a species that spans both the Mekong-Salween Divide and the Tanaka-Kaiyong Line in southwestern China. Demographic and migration hypotheses were tested using coalescent-based approaches. Limited historical gene flow was observed between the western and eastern groups of P. rotundifolia, but substantial flow occurred across both the Mekong-Salween Divide and Tanaka-Kaiyong Line, manifesting in clear admixture and high genetic diversity in the central group. Wind-borne pollen and seeds may have facilitated the dispersal of P. rotundifolia following prevalent northwest winds in the spring. We also found that the Hengduan Mountains, where multiple genetic barriers were detected, acted on the whole as a barrier between the western and eastern groups of P. rotundifolia. Ecological niche modeling suggested that P. rotundifolia has undergone range expansion since the last glacial maximum, and demographic reconstruction indicated an earlier population expansion around 600 Ka. The phylogeographic pattern of P. rotundifolia reflects the interplay of biological traits, wind patterns, barriers, niche differentiation, and Quaternary climate history. This study emphasizes the need for multiple lines of evidence in understanding the Quaternary evolution of plants in topographically complex areas.
Collapse
Affiliation(s)
- Jieshi Tang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, PR China
| | - Xiaoyan Fan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, PR China
| | - Richard I. Milne
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3JH, UK
| | - Heng Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, PR China
| | - Wenjing Tao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, PR China
| | - Xinran Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, PR China
| | - Mengyun Guo
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, PR China
| | - Jialiang Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, PR China
| | - Kangshan Mao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, PR China
- School of Ecology and Environment, Tibet University, Lhasa 850000, PR China
| |
Collapse
|
24
|
Wróbel A, Klichowska E, Nobis M. Hybrids as mirrors of the past: genomic footprints reveal spatio-temporal dynamics and extinction risk of alpine extremophytes in the mountains of Central Asia. FRONTIERS IN PLANT SCIENCE 2024; 15:1369732. [PMID: 38693932 PMCID: PMC11061500 DOI: 10.3389/fpls.2024.1369732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/02/2024] [Indexed: 05/03/2024]
Abstract
Hybridization is one of the key processes shaping lineage diversification, particularly in regions that experienced strong climate oscillations. The alpine biome with its rich history of glacial-interglacial cycles and complex patterns of species distribution shifts offers an excellent system to investigate the impact of gene flow on population dynamics and speciation, important issues for evolutionary biology and biodiversity conservation. In this study, we combined genomic data (DArTseq), chloroplast markers, and morphology to examine phylogenetic relationships and the permeability of species boundaries and their evolutionary outcomes among the alpine extremophilic species of Puccinellia (Poaceae) in the Pamir Mountains, a part of the Mountains of Central Asia biodiversity hotspot. We determined the occurrence of interspecific hybrids between P. himalaica and P. pamirica, which demonstrated almost symmetric ancestry from their parental species and did not show signals of introgression. According to our integrative revision, the natural hybrids between P. himalaica and P. pamirica should be classified as Puccinellia ×vachanica (pro species). Using approximate Bayesian computation for population history inference, we uncovered that P. himalaica hybridized with P. pamirica independently in multiple localities over the Holocene. Hybrids inherited the fine-scale genetic structure from their parental species, which developed these patterns earlier, during the Late Pleistocene. Hybridization had different consequences for the involved parental lineages, likely playing an important role in a continuing decline of P. himalaica in the Pamir Mountains over the Holocene. Our results show that P. himalaica should be considered a critically endangered species in the Pamir Mountains and could also be retreating across its entire range of distribution in High Mountain Asia. Using a comparative phylogeographic framework, we revealed the risk of extinction of a cold-adapted alpine species in a global biodiversity hotspot. This study highlights that genomics could unravel diversity trends under climate change and provides valuable evidence for conservation management.
Collapse
Affiliation(s)
- Anna Wróbel
- Institute of Botany, Faculty of Biology, Jagiellonian University, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Ewelina Klichowska
- Institute of Botany, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Marcin Nobis
- Institute of Botany, Faculty of Biology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
25
|
Hao Y, Wang XF, Guo Y, Li TY, Yang J, Ainouche ML, Salmon A, Ju RT, Wu JH, Li LF, Li B. Genomic and phenotypic signatures provide insights into the wide adaptation of a global plant invader. PLANT COMMUNICATIONS 2024; 5:100820. [PMID: 38221758 PMCID: PMC11009367 DOI: 10.1016/j.xplc.2024.100820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/18/2023] [Accepted: 01/10/2024] [Indexed: 01/16/2024]
Abstract
Invasive alien species are primary drivers of biodiversity loss and species extinction. Smooth cordgrass (Spartina alterniflora) is one of the most aggressive invasive plants in coastal ecosystems around the world. However, the genomic bases and evolutionary mechanisms underlying its invasion success have remained largely unknown. Here, we assembled a chromosome-level reference genome and performed phenotypic and population genomic analyses between native US and introduced Chinese populations. Our phenotypic comparisons showed that introduced Chinese populations have evolved competitive traits, such as early flowering time and greater plant biomass, during secondary introductions along China's coast. Population genomic and transcriptomic inferences revealed distinct evolutionary trajectories of low- and high-latitude Chinese populations. In particular, genetic mixture among different source populations, together with independent natural selection acting on distinct target genes, may have resulted in high genome dynamics of the introduced Chinese populations. Our study provides novel phenotypic and genomic evidence showing how smooth cordgrass rapidly adapts to variable environmental conditions in its introduced ranges. Moreover, candidate genes related to flowering time, fast growth, and stress tolerance (i.e., salinity and submergence) provide valuable genetic resources for future improvement of cereal crops.
Collapse
Affiliation(s)
- Yan Hao
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xin-Feng Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yaolin Guo
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Tian-Yang Li
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ji Yang
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Malika L Ainouche
- UMR CNRS 6553, Université of Rennes, Campus de Beaulieu, 35042 Rennes Cedex Paris, France
| | - Armel Salmon
- UMR CNRS 6553, Université of Rennes, Campus de Beaulieu, 35042 Rennes Cedex Paris, France
| | - Rui-Ting Ju
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ji-Hua Wu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China.
| | - Lin-Feng Li
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai 200438, China; State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| | - Bo Li
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai 200438, China; Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650504, China.
| |
Collapse
|
26
|
Fu PC, Guo QQ, Chang D, Gao QB, Sun SS. Cryptic diversity and rampant hybridization in annual gentians on the Qinghai-Tibet Plateau revealed by population genomic analysis. PLANT DIVERSITY 2024; 46:194-205. [PMID: 38807911 PMCID: PMC11128845 DOI: 10.1016/j.pld.2023.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 05/30/2024]
Abstract
Understanding the evolutionary and ecological processes involved in population differentiation and speciation provides critical insights into biodiversity formation. In this study, we employed 29,865 single nucleotide polymorphisms (SNPs) and complete plastomes to examine genomic divergence and hybridization in Gentiana aristata, which is endemic to the Qinghai-Tibet Plateau (QTP) region. Genetic clustering revealed that G. aristata is characterized by geographic genetic structures with five clusters (West, East, Central, South and North). The West cluster has a specific morphological character (i.e., blue corolla) and higher values of FST compared to the remaining clusters, likely the result of the geological barrier formed by the Yangtze River. The West cluster diverged from the other clusters in the Early Pliocene; these remaining clusters diverged from one another in the Early Quaternary. Phylogenetic reconstructions based on SNPs and plastid data revealed substantial cyto-nuclear conflicts. Genetic clustering and D-statistics demonstrated rampant hybridization between the Central and North clusters, along the Bayankala Mountains, which form the geological barrier between the Central and North clusters. Species distribution modeling demonstrated the range of G. aristata expanded since the Last Interglacial period. Our findings provide genetic and morphological evidence of cryptic diversity in G. aristata, and identified rampant hybridization between genetic clusters along a geological barrier. These findings suggest that geological barriers and climatic fluctuations have an important role in triggering diversification as well as hybridization, indicating that cryptic diversity and hybridization are essential factors in biodiversity formation within the QTP region.
Collapse
Affiliation(s)
- Peng-Cheng Fu
- School of Life Science, Luoyang Normal University, Luoyang 471934, PR China
| | - Qiao-Qiao Guo
- School of Life Science, Luoyang Normal University, Luoyang 471934, PR China
| | - Di Chang
- School of Life Science, Luoyang Normal University, Luoyang 471934, PR China
| | - Qing-Bo Gao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, PR China
| | - Shan-Shan Sun
- School of Life Science, Luoyang Normal University, Luoyang 471934, PR China
| |
Collapse
|
27
|
Jiao X, Wu L, Zhang D, Wang H, Dong F, Yang L, Wang S, Amano HE, Zhang W, Jia C, Rheindt FE, Lei F, Song G. Landscape Heterogeneity Explains the Genetic Differentiation of a Forest Bird across the Sino-Himalayan Mountains. Mol Biol Evol 2024; 41:msae027. [PMID: 38318973 PMCID: PMC10919924 DOI: 10.1093/molbev/msae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/07/2024] Open
Abstract
Mountains are the world's most important centers of biodiversity. The Sino-Himalayan Mountains are global biodiversity hotspot due to their extremely high species richness and endemicity. Ample research investigated the impact of the Qinghai-Tibet Plateau uplift and Quaternary glaciations in driving species diversification in plants and animals across the Sino-Himalayan Mountains. However, little is known about the role of landscape heterogeneity and other environmental features in driving diversification in this region. We utilized whole genomes and phenotypic data in combination with landscape genetic approaches to investigate population structure, demography, and genetic diversity in a forest songbird species native to the Sino-Himalayan Mountains, the red-billed leiothrix (Leiothrix lutea). We identified 5 phylogeographic clades, including 1 in the East of China, 1 in Yunnan, and 3 in Tibet, roughly consistent with differences in song and plumage coloration but incongruent with traditional subspecies boundaries. Isolation-by-resistance model best explained population differentiation within L. lutea, with extensive secondary contact after allopatric isolation leading to admixture among clades. Ecological niche modeling indicated relative stability in the extent of suitable distribution areas of the species across Quaternary glacial cycles. Our results underscore the importance of mountains in the diversification of this species, given that most of the distinct genetic clades are concentrated in a relatively small area in the Sino-Himalayan Mountain region, while a single shallow clade populates vast lower-lying areas to the east. This study highlights the crucial role of landscape heterogeneity in promoting differentiation and provides a deep genomic perspective on the mechanisms through which diversity hotspots form.
Collapse
Affiliation(s)
- Xiaolu Jiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lei Wu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Dezhi Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Huan Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Feng Dong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Le Yang
- Tibet Plateau Institute of Biology, Lhasa 850000, China
| | - Shangyu Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | | | - Weiwei Zhang
- Center for Wildlife Resources Conservation Research, Jiangxi Agricultural University, Nanchang, China
| | - Chenxi Jia
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Frank E Rheindt
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Gang Song
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
28
|
Zhao S, Gao X, Yu X, Yuan T, Zhang G, Liu C, Li X, Wei P, Li X, Liu X. Comparative Analysis of Chloroplast Genome of Meconopsis (Papaveraceae) Provides Insights into Their Genomic Evolution and Adaptation to High Elevation. Int J Mol Sci 2024; 25:2193. [PMID: 38396871 PMCID: PMC10888623 DOI: 10.3390/ijms25042193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The Meconopsis species are widely distributed in the Qinghai-Tibet Plateau, Himalayas, and Hengduan Mountains in China, and have high medicinal and ornamental value. The high diversity of plant morphology in this genus poses significant challenges for species identification, given their propensity for highland dwelling, which makes it a question worth exploring how they cope with the harsh surroundings. In this study, we recently generated chloroplast (cp) genomes of two Meconopsis species, Meconopsis paniculata (M. paniculata) and M. pinnatifolia, and compared them with those of ten Meconopsis cp genomes to comprehend cp genomic features, their phylogenetic relationships, and what part they might play in plateau adaptation. These cp genomes shared a great deal of similarities in terms of genome size, structure, gene content, GC content, and codon usage patterns. The cp genomes were between 151,864 bp and 154,997 bp in length, and contain 133 predictive genes. Through sequence divergence analysis, we identified three highly variable regions (trnD-psbD, ccsA-ndhD, and ycf1 genes), which could be used as potential markers or DNA barcodes for phylogenetic analysis. Between 22 and 38 SSRs and some long repeat sequences were identified from 12 Meconopsis species. Our phylogenetic analysis confirmed that 12 species of Meconopsis clustered into a monophyletic clade in Papaveraceae, which corroborated their intrageneric relationships. The results indicated that M. pinnatifolia and M. paniculata are sister species in the phylogenetic tree. In addition, the atpA and ycf2 genes were positively selected in high-altitude species. The functions of these two genes might be involved in adaptation to the extreme environment in the cold and low CO2 concentration conditions at the plateau.
Collapse
Affiliation(s)
- Shuqi Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China; (S.Z.); (X.Y.); (G.Z.); (C.L.); (P.W.)
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibet Plateau of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaoman Gao
- Laboratory of Extreme Environment Biological Resources and Adaptive Evolution, School of Ecology and Environment, Tibet University, Lhasa 850000, China; (X.G.); (T.Y.); (X.L.)
| | - Xiaolei Yu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China; (S.Z.); (X.Y.); (G.Z.); (C.L.); (P.W.)
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibet Plateau of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Tao Yuan
- Laboratory of Extreme Environment Biological Resources and Adaptive Evolution, School of Ecology and Environment, Tibet University, Lhasa 850000, China; (X.G.); (T.Y.); (X.L.)
| | - Guiyu Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China; (S.Z.); (X.Y.); (G.Z.); (C.L.); (P.W.)
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibet Plateau of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Chenlai Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China; (S.Z.); (X.Y.); (G.Z.); (C.L.); (P.W.)
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibet Plateau of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xinzhong Li
- Laboratory of Extreme Environment Biological Resources and Adaptive Evolution, School of Ecology and Environment, Tibet University, Lhasa 850000, China; (X.G.); (T.Y.); (X.L.)
| | - Pei Wei
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China; (S.Z.); (X.Y.); (G.Z.); (C.L.); (P.W.)
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibet Plateau of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaoyan Li
- Biology Experimental Teaching Center, School of Life Science, Wuhan University, Wuhan 430072, China;
| | - Xing Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China; (S.Z.); (X.Y.); (G.Z.); (C.L.); (P.W.)
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibet Plateau of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Laboratory of Extreme Environment Biological Resources and Adaptive Evolution, School of Ecology and Environment, Tibet University, Lhasa 850000, China; (X.G.); (T.Y.); (X.L.)
| |
Collapse
|
29
|
Yang L, Zhu X, Song W, Shi X, Huang X. Predicting the potential distribution of 12 threatened medicinal plants on the Qinghai-Tibet Plateau, with a maximum entropy model. Ecol Evol 2024; 14:e11042. [PMID: 38362168 PMCID: PMC10867876 DOI: 10.1002/ece3.11042] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/14/2024] [Accepted: 02/03/2024] [Indexed: 02/17/2024] Open
Abstract
Climate change is a vital driver of biodiversity patterns and species distributions, understanding how organisms respond to climate change will shed light on the conservation of endangered species. In this study, the MaxEnt model was used to predict the potential suitable area of 12 threatened medicinal plants in the QTP (Qinghai-Tibet Plateau) under the current and future (2050s, 2070s) three climate scenarios (RCP2.6, RCP4.5, RCP8.5). The results showed that the climatically suitable habitats for the threatened medicinal plants were primarily found in the eastern, southeast, southern, and some parts of the central regions on the QTP. Moreover, 25% of the threatened medicinal plants would have reduced suitable habitat areas within the next 30-50 years in the different future global warming scenarios. Among these medicinal plants, RT (Rheum tanguticum) would miss the most habitat (98.97%), while the RAN (Rhododendron anthopogonoides) would miss the least habitat (10.15%). Nevertheless, 33.3% of the threatened medicinal plants showed an increase in their future habitat area because of their physiological characteristics which are more adaptable to a wide range of climates. The climatic suitable habitat for 50% of the threatened medicinal plants would migrate to higher altitudes or higher latitudes regions. This study provides a data foundation for the conservation of biodiversity and wild medicinal plants on the QTP.
Collapse
Affiliation(s)
- Lucun Yang
- Qinghai Province Key Laboratory of Qinghai‐Tibet Plateau Biological Resources, Northwest Institute of Plateau BiologyChinese Academy of SciencesXiningChina
| | - Xiaofeng Zhu
- Gande County Animal Disease Prevention and Control CenterGandeQinghaiChina
| | - Wenzhu Song
- Qinghai Province Key Laboratory of Qinghai‐Tibet Plateau Biological Resources, Northwest Institute of Plateau BiologyChinese Academy of SciencesXiningChina
| | | | - Xiaotao Huang
- School of Geographical Sciences and TourismZhaotong UniversityZhaotongYunnanChina
| |
Collapse
|
30
|
Zhang TT, Yan CL, Qiao JX, Yang AS, Liu ML, Kou YX, Li ZH. Demographic dynamics and molecular evolution of the rare and endangered subsect. Gerardianae of Pinus: insights from chloroplast genomes and mitochondrial DNA markers. PLANTA 2024; 259:45. [PMID: 38281265 DOI: 10.1007/s00425-023-04316-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/21/2023] [Indexed: 01/30/2024]
Abstract
MAIN CONCLUSION The divergence of subsect. Gerardianae was likely triggered by the uplift of the Qinghai-Tibetan Plateau and adjacent mountains. Pinus bungeana might have probably experienced expansion since Last Interglacial period. Historical geological and climatic oscillations have profoundly affected patterns of nucleotide variability, evolutionary history, and species divergence in numerous plants of the Northern Hemisphere. However, how long-lived conifers responded to geological and climatic fluctuations in East Asia remain poorly understood. Here, based on paternally inherited chloroplast genomes and maternally inherited mitochondrial DNA markers, we investigated the population demographic history and molecular evolution of subsect. Gerardianae (only including three species, Pinus bungeana, P. gerardiana, and P. squamata) of Pinus. A low level of nucleotide diversity was found in P. bungeana (π was 0.00016 in chloroplast DNA sequences, and 0.00304 in mitochondrial DNAs). The haplotype-based phylogenetic topology and unimodal distributions of demographic analysis suggested that P. bungeana probably originated in the southern Qinling Mountains and experienced rapid population expansion since Last Interglacial period. Phylogenetic analysis revealed that P. gerardiana and P. squamata had closer genetic relationship. The species divergence of subsect. Gerardianae occurred about 27.18 million years ago (Mya) during the middle to late Oligocene, which was significantly associated with the uplift of the Qinghai-Tibetan Plateau and adjacent mountains from the Eocene to the mid-Pliocene. The molecular evolutionary analysis showed that two chloroplast genes (psaI and ycf1) were under positive selection, the genetic lineages of P. bungeana exhibited higher transition and nonsynonymous mutations, which were involved with the strongly environmental adaptation. These findings shed light on the population evolutionary history of white pine species and provide striking insights for comprehension of their species divergence and molecular evolution.
Collapse
Affiliation(s)
- Ting-Ting Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Chun-Li Yan
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Jin-Xia Qiao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Ao-Shuang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Mi-Li Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Yi-Xuan Kou
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zhong-Hu Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
31
|
Song BN, Liu CK, Zhao AQ, Tian RM, Xie DF, Xiao YL, Chen H, Zhou SD, He XJ. Phylogeny and diversification of genus Sanicula L. (Apiaceae): novel insights from plastid phylogenomic analyses. BMC PLANT BIOLOGY 2024; 24:70. [PMID: 38263006 PMCID: PMC10807117 DOI: 10.1186/s12870-024-04750-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/12/2024] [Indexed: 01/25/2024]
Abstract
BACKGROUND The genus Sanicula L. is a unique perennial herb that holds important medicinal values. Although the previous studies on Sanicula provided us with a good research basis, its taxonomic system and interspecific relationships have not been satisfactorily resolved, especially for those endemic to China. Moreover, the evolutionary history of this genus also remains inadequately understood. The plastid genomes possessing highly conserved structure and limited evolutionary rate have proved to be an effective tool for studying plant phylogeny and evolution. RESULTS In the current study, we newly sequenced and assembled fifteen Sanicula complete plastomes. Combined with two previously reported plastomes, we performed comprehensively plastid phylogenomics analyses to gain novel insights into the evolutionary history of this genus. The comparative results indicated that the seventeen plastomes exhibited a high degree of conservation and similarity in terms of their structure, size, GC content, gene order, IR borders, codon bias patterns and SSRs profiles. Such as all of them displayed a typical quadripartite structure, including a large single copy region (LSC: 85,074-86,197 bp), a small single copy region (SSC: 17,047-17,132 bp) separated by a pair of inverted repeat regions (IRs: 26,176-26,334 bp). And the seventeen plastomes had similar IR boundaries and the adjacent genes were identical. The rps19 gene was located at the junction of the LSC/IRa, the IRa/SSC junction region was located between the trnN gene and ndhF gene, the ycf1 gene appeared in the SSC/IRb junction and the IRb/LSC boundary was located between rpl12 gene and trnH gene. Twelve specific mutation hotspots (atpF, cemA, accD, rpl22, rbcL, matK, ycf1, trnH-psbA, ycf4-cemA, rbcL-accD, trnE-trnT and trnG-trnR) were identified that can serve as potential DNA barcodes for species identification within the genus Sanicula. Furthermore, the plastomes data and Internal Transcribed Spacer (ITS) sequences were performed to reconstruct the phylogeny of Sanicula. Although the tree topologies of them were incongruent, both provided strong evidence supporting the monophyly of Saniculoideae and Apioideae. In addition, the sister groups between Saniculoideae and Apioideae were strongly suggested. The Sanicula species involved in this study were clustered into a clade, and the Eryngium species were also clustered together. However, it was clearly observed that the sections of Sanicula involved in the current study were not respectively recovered as monophyletic group. Molecular dating analysis explored that the origin of this genus was occurred during the late Eocene period, approximately 37.84 Ma (95% HPD: 20.33-52.21 Ma) years ago and the diversification of the genus was occurred in early Miocene 18.38 Ma (95% HPD: 10.68-25.28 Ma). CONCLUSION The plastome-based tree and ITS-based tree generated incongruences, which may be attributed to the event of hybridization/introgression, incomplete lineage sorting (ILS) and chloroplast capture. Our study highlighted the power of plastome data to significantly improve the phylogenetic supports and resolutions, and to efficiently explore the evolutionary history of this genus. Molecular dating analysis explored that the diversification of the genus occurred in the early Miocene, which was largely influenced by the prevalence of the East Asian monsoon and the uplift of the Hengduan Mountains (HDM). In summary, our study provides novel insights into the plastome evolution, phylogenetic relationships, taxonomic framework and evolution of genus Sanicula.
Collapse
Affiliation(s)
- Bo-Ni Song
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Chang-Kun Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - An-Qi Zhao
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Rong-Ming Tian
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Deng-Feng Xie
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yu-Lin Xiao
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Huai Chen
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Song-Dong Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| | - Xing-Jin He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
32
|
Huang DQ, Ma XG, Sun H. Phylogenomic analyses and chromosome ploidy identification reveal multiple cryptic species in Allium sikkimense complex (Amaryllidaceae). FRONTIERS IN PLANT SCIENCE 2024; 14:1268546. [PMID: 38239226 PMCID: PMC10794568 DOI: 10.3389/fpls.2023.1268546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/06/2023] [Indexed: 01/22/2024]
Abstract
Polyploidization is a process that typically leads to instantaneous reproductive isolation and has, therefore, been considered as one of the major evolutionary forces in the species-rich Hengduan Mountains (HM), yet this topic remains poorly studied in the region. Allium sikkimense and its relatives (about eight species) compose a natural diploid-polyploid complex with the highest diversity in the HM and adjacent areas. A combination of nuclear ribosomal DNA (nrDNA), plastome, transcriptome, and ploidy identification through chromosome counting and flow cytometry is employed to reconstruct the phylogenetic relationships in this complex and to investigate the frequency and the evolutionary significance of polyploidy in the complex. The plastome failed to resolve the phylogenetic relationships of the different species in the A. sikkimense complex, and the phylogenetic tree based on nrDNA also has limited resolution. However, our study reveals a well-resolved phylogenetic framework for species in the A. sikkimense complex using more than 1,000 orthologous genes from the transcriptome data. Previously recognized morphospecies A. sikkimense are non-monophyletic and comprise at least two independently evolved lineages (i.e., cryptic species), each forming a clade with different diploid species in this complex. The embedded pattern of octoploid A. jichouense and tetraploid A. sp. nov. within different polyploid samples of A. sikkimense supports a possible scenario of budding speciation (via niche divergence). Furthermore, our results reveal that co-occurring species in the A. sikkimense complex usually have different ploidy levels, suggesting that polyploidy is an important process for reproductive isolation of sympatric Allium species. Phylogenetic network analyses suggested that the phylogenetic relationships of the A. sikkimense complex, allowing for reticulation events, always fit the dataset better than a simple bifurcating tree. In addition, the included or exserted filaments, which have long been used to delimit species, are highly unreliable taxonomically due to their extensive parallel and convergent evolution.
Collapse
Affiliation(s)
- De-Qing Huang
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Xiang-Guang Ma
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Hang Sun
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
33
|
Xiang X, Zhou X, Zi H, Wei H, Cao D, Zhang Y, Zhang L, Hu J. Populus cathayana genome and population resequencing provide insights into its evolution and adaptation. HORTICULTURE RESEARCH 2024; 11:uhad255. [PMID: 38274646 PMCID: PMC10809908 DOI: 10.1093/hr/uhad255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/20/2023] [Indexed: 01/27/2024]
Abstract
Populus cathayana Rehder, an indigenous poplar species of ecological and economic importance, is widely distributed in a high-elevation range from southwest to northeast China. Further development of this species as a sustainable poplar resource has been hindered by a lack of genome information the at the population level. Here, we produced a chromosome-level genome assembly of P. cathayana, covering 406.55 Mb (scaffold N50 = 20.86 Mb) and consisting of 19 chromosomes, with 35 977 protein-coding genes. Subsequently, we made a genomic variation atlas of 438 wild individuals covering 36 representative geographic areas of P. cathayana, which were divided into four geographic groups. It was inferred that the Northwest China regions served as the genetic diversity centers and a population bottleneck happened during the history of P. cathayana. By genotype-environment association analysis, 947 environment-association loci were significantly associated with temperature, solar radiation, precipitation, and altitude variables. We identified local adaptation genes involved in DNA repair and UV radiation response, among which UVR8, HY5, and CUL4 had key roles in high-altitude adaptation of P. cathayana. Predictions of adaptive potential under future climate conditions showed that P. cathayana populations in areas with drastic climate change were anticipated to have greater maladaptation risk. These results provide comprehensive insights for understanding wild poplar evolution and optimizing adaptive potential in molecular breeding.
Collapse
Affiliation(s)
- Xiaodong Xiang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xinglu Zhou
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Hailing Zi
- Novogene Bioinformatics Institute, Beijing 100083, China
| | - Hantian Wei
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Demei Cao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Yahong Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Lei Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jianjun Hu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
34
|
Shi BY, Pan D, Zhang KQ, Gu TY, Yeo DCJ, Ng PKL, Cumberlidge N, Sun HY. Diversification of freshwater crabs on the sky islands in the Hengduan Mountains Region, China. Mol Phylogenet Evol 2024; 190:107955. [PMID: 37898294 DOI: 10.1016/j.ympev.2023.107955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
The numerous naturally-fragmented sky islands (SIs) in the Hengduan Mountains Region (HMR) of southwestern China constitute discontinuous landscapes where montane habitats are isolated by dry-hot valleys which have fostered exceptional species diversification and endemicity. However, studies documenting the crucial role of SI on the speciation dynamics of native freshwater organisms are scarce. Here we used a novel set of comprehensive genetic markers (24 nuclear DNA sequences and complete mitogenomes), morphological characters, and biogeographical information to reveal the evolutionary history and speciation mechanisms of a group of small-bodied montane potamids in the genus Tenuipotamon. Our results provide a robustly supported phylogeny, and suggest that the vicariance events of these montane crabs correlate well with the emergence of SIs due to the uplift of the HMR during the Late Oligocene. Furthermore, ancestrally, mountain ridges provided corridors for the dispersal of these montane crabs that led to the colonization of moist montane-specific habitats, aided by past climatic conditions that were the crucial determinants of their evolutionary history. The present results illustrated that the mechanisms isolating SIs are reinforced by the harsh-dry isolating climatic features of dry-hot valleys separating SIs and continue to affect local diversification. This offers insights into the causes of the high biodiversity and endemism shown by the freshwater crabs of the HMR-SIs in southwestern China.
Collapse
Affiliation(s)
- Bo-Yang Shi
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Da Pan
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Kang-Qin Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Tian-Yu Gu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Darren C J Yeo
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Republic of Singapore; Lee Kong Chian Natural History Museum, National University of Singapore, 2 Conservatory Drive, Singapore 117377, Republic of Singapore
| | - Peter K L Ng
- Lee Kong Chian Natural History Museum, National University of Singapore, 2 Conservatory Drive, Singapore 117377, Republic of Singapore
| | - Neil Cumberlidge
- Department of Biology, Northern Michigan University, Marquette, MI 49855, USA
| | - Hong-Ying Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
35
|
Fu PC, Twyford AD, Hao YT, Zhang Y, Chen SL, Sun SS. Hybridization and divergent climatic preferences drive divergence of two allopatric Gentiana species on the Qinghai-Tibet Plateau. ANNALS OF BOTANY 2023; 132:1271-1288. [PMID: 37963010 PMCID: PMC10902892 DOI: 10.1093/aob/mcad179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/19/2023] [Accepted: 11/13/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND AND AIMS Exploring how species diverge is vital for understanding the drivers of speciation. Factors such as geographical separation and ecological selection, hybridization, polyploidization and shifts in mating system are all major mechanisms of plant speciation, but their contributions to divergence are rarely well understood. Here we test these mechanisms in two plant species, Gentiana lhassica and G. hoae, with the goal of understanding recent allopatric species divergence on the Qinghai-Tibet Plateau (QTP). METHODS We performed Bayesian clustering, phylogenetic analysis and estimates of hybridization using 561 302 nuclear genomic single nucleotide polymorphisms (SNPs). We performed redundancy analysis, and identified and annotated species-specific SNPs (ssSNPs) to explore the association between climatic preference and genetic divergence. We also estimated genome sizes using flow cytometry to test for overlooked polyploidy. KEY RESULTS Genomic evidence confirms that G. lhassica and G. hoae are closely related but distinct species, while genome size estimates show divergence occurred without polyploidy. Gentiana hoae has significantly higher average FIS values than G. lhassica. Population clustering based on genomic SNPs shows no signature of recent hybridization, but each species is characterized by a distinct history of hybridization with congeners that has shaped genome-wide variation. Gentiana lhassica has captured the chloroplast and experienced introgression with a divergent gentian species, while G. hoae has experienced recurrent hybridization with related taxa. Species distribution modelling suggested range overlap in the Last Interglacial Period, while redundancy analysis showed that precipitation and temperature are the major climatic differences explaining the separation of the species. The species differ by 2993 ssSNPs, with genome annotation showing missense variants in genes involved in stress resistance. CONCLUSIONS This study suggests that the distinctiveness of these species on the QTP is driven by a combination of hybridization, geographical isolation, mating system differences and evolution of divergent climatic preferences.
Collapse
Affiliation(s)
- Peng-Cheng Fu
- School of Life Science, Luoyang Normal University, 6 Jiqing Road, Luoyang 471934, P. R. China
| | - Alex D Twyford
- Institute of Ecology and Evolution, The University of Edinburgh, Edinburgh, EH9 3FL, UK
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh, EH3 5LR, UK
| | - Yu-Tong Hao
- School of Life Science, Luoyang Normal University, 6 Jiqing Road, Luoyang 471934, P. R. China
| | - Yue Zhang
- School of Life Science, Luoyang Normal University, 6 Jiqing Road, Luoyang 471934, P. R. China
| | - Shi-Long Chen
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 810001 Xining, P. R. China
| | - Shan-Shan Sun
- School of Life Science, Luoyang Normal University, 6 Jiqing Road, Luoyang 471934, P. R. China
| |
Collapse
|
36
|
Kou Y, Fan D, Cheng S, Yang Y, Wang M, Wang Y, Zhang Z. Peripatric speciation within Torreya fargesii (Taxaceae) in the Hengduan Mountains inferred from multi-loci phylogeography. BMC Ecol Evol 2023; 23:74. [PMID: 38087226 PMCID: PMC10714551 DOI: 10.1186/s12862-023-02183-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND The Hengduan Mountains (HDM) are one of the major global biodiversity hotspots in the world. Several evolutionary scenarios, especially in-situ diversification, have been proposed to account for the high species richness of temperate plants. However, peripatric speciation, an important mode of allopatric speciation, has seldom been reported in this region. RESULTS Here, two chloroplast DNA regions and 14 nuclear loci were sequenced for 112 individuals from 10 populations of Torreya fargesii var. fargesii and 63 individuals from 6 populations of T. fargesii var. yunnanensis. Population genetic analyses revealed that the two varieties are well differentiated genetically (FST, 0.5765) and have uneven genetic diversity (π, 0.00221 vs. 0.00073 on an average of nuclear loci). The gene genealogical relationship showed that T. fargesii var. yunnanensis is inferred as derived from T. fargesii var. fargesii, which was further supported by the coalescent simulations (DIYABC, fastsimcoal2 and IMa2). By the coalescent simulations, the divergence time (~ 2.50-3.65 Ma) and the weak gene flow between the two varieties were detected. The gene flow was asymmetrical and only occurred in later stages of divergence, which is caused by second contact due to the population expansion (~ 0.61 Ma) in T. fargesii var. fargesii. In addition, niche modeling indicated that the two varieties are differentiated geographically and ecologically and have unbalanced distribution range. CONCLUSIONS Overall, T. fargesii var. fargesii is always parapatric with respect to T. fargesii var. yunnanensis, and the latter derived from the former in peripatry of the HDM following a colonization from central China during the late Pliocene. Our findings demonstrate that peripatric speciation following dispersal events may be an important evolutionary scenario for the formation of biodiversity hotspot of the HDM.
Collapse
Affiliation(s)
- Yixuan Kou
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, China
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang, China
| | - Dengmei Fan
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang, China
| | - Shanmei Cheng
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang, China
| | - Yi Yang
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang, China
| | - Meixia Wang
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang, China
| | - Yujin Wang
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China.
| | - Zhiyong Zhang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin, China.
- Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, China.
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang, China.
| |
Collapse
|
37
|
Hu H, Wang Q, Hao G, Zhou R, Luo D, Cao K, Yan Z, Wang X. Insights into the phylogenetic relationships and species boundaries of the Myricaria squamosa complex (Tamaricaceae) based on the complete chloroplast genome. PeerJ 2023; 11:e16642. [PMID: 38099308 PMCID: PMC10720482 DOI: 10.7717/peerj.16642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/19/2023] [Indexed: 12/17/2023] Open
Abstract
Myricaria plants are widely distributed in Eurasia and are helpful for windbreak and embankment protection. Current molecular evidence has led to controversy regarding species boundaries within the Myricaria genus and interspecific phylogenetic relationships between three specific species-M. bracteata, M. paniculata and M. squamosa-which have remained unresolved. This study treated these three unresolved taxa as a species complex, named the M. squamosa complex. The genome skimming approach was used to determine 35 complete plastome sequences and nuclear ribosomal DNA sequences for the said complex and other closely related species, followed by de novo assembly. Comparative analyses were conducted across Myricaria to identify the genome size, gene content, repeat type and number, SSR (simple sequence repeat) abundance, and codon usage bias of chloroplast genomes. Tree-based species delimitation results indicated that M. bracteata, M. paniculata and M. squamosa could not be distinguished and formed two monophyletic lineages (P1 and P2) that were clustered together. Compared to plastome-based species delimitation, the standard nuclear DNA barcode had the lowest species resolution, and the standard chloroplast DNA barcode and group-specific barcodes delimitated a maximum of four out of the five species. Plastid phylogenomics analyses indicated that the monophyletic M. squamosa complex is comprised of two evolutionarily significant units: one in the western Tarim Basin and the other in the eastern Qinghai-Tibet Plateau. This finding contradicts previous species discrimination and promotes the urgent need for taxonomic revision of the threatened genus Myricaria. Dense sampling and plastid genomes will be essential in this effort. The super-barcodes and specific barcode candidates outlined in this study will aid in further studies of evolutionary history.
Collapse
Affiliation(s)
- Huan Hu
- Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Zunyi Medical University, Zunyi, China
| | - Qian Wang
- Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Zunyi Medical University, Zunyi, China
| | - Guoqian Hao
- School of Life Science and Food Engineering, Yibin University, Yibin, China
| | - Ruitao Zhou
- School of Preclinical Medicine, Zunyi Medical University, Zunyi, China
| | - Dousheng Luo
- School of Preclinical Medicine, Zunyi Medical University, Zunyi, China
| | - Kejun Cao
- School of Preclinical Medicine, Zunyi Medical University, Zunyi, China
| | - Zhimeng Yan
- School of Medical Information Engineering, Zunyi Medical University, Zunyi, China
| | - Xinyu Wang
- Key Laboratory of Medical Electrophysiology, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
38
|
Qin HT, Mӧller M, Milne R, Luo YH, Zhu GF, Li DZ, Liu J, Gao LM. Multiple paternally inherited chloroplast capture events associated with Taxus speciation in the Hengduan Mountains. Mol Phylogenet Evol 2023; 189:107915. [PMID: 37666379 DOI: 10.1016/j.ympev.2023.107915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 06/16/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
Mountainous regions provide a multitude of habitats and opportunities for complex speciation scenarios. Hybridization leading to chloroplast capture, which can be revealed by incongruent phylogenetic trees, is one possible outcome. Four allopatric Taxus lineages (three species and an undescribed lineage) from the Hengduan Mountains, southwest China, exhibit conflicting phylogenetic relationships between nuclear and chloroplast phylogenies. Here, we use multi-omic data at the population level to investigate their historical speciation processes. Population genomic analysis based on ddRAD-seq data revealed limited contemporary inter-specific gene flow involving only populations located close to another species. In a historical context, chloroplast and nuclear data (transcriptome) consistently showed conflicting phylogenetic relationships for T. florinii and the Emei type lineage. ILS and chloroplast recombination were excluded as possible causes, and transcriptome and ddRAD-seq data revealed an absence of the mosaic nuclear genomes that characterize hybrid origin scenarios. Therefore, T. florinii appears to have originated when a lineage of T. florinii captured the T. chinensis plastid type, whereas plastid introgression in the opposite direction generated the Emei Type. All four species have distinct ecological niche based on community investigations and ecological niche analyses. We propose that the origins of both species represent very rare examples of chloroplast capture events despite the paternal cpDNA inheritance of gymnosperms. Specifically, allopatrically and/or ecologically diverged parental species experienced a rare secondary contact, subsequent hybridization and reciprocal chloroplast capture, generating two new lineages, each of which acquired a unique ecological niche. These events might have been triggered by orogenic activities of the Hengduan Mountains and an intensification of the Asian monsoon in the late Miocene, and may represent a scenario more common in these mountains than presently known.
Collapse
Affiliation(s)
- Han-Tao Qin
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Michael Mӧller
- Royal Botanic Garden Edinburgh, Edinburgh EH3 5LR, United Kingdom
| | - Richard Milne
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JH, United Kingdom
| | - Ya-Huang Luo
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang 674100, Yunnan, China
| | - Guang-Fu Zhu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - De-Zhu Li
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; University of Chinese Academy of Sciences, Beijing 100049, China; Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang 674100, Yunnan, China.
| | - Jie Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China.
| | - Lian-Ming Gao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang 674100, Yunnan, China.
| |
Collapse
|
39
|
Sha N, Li Z, Sun Q, Han Y, Tian L, Wu Y, Li X, Shi Y, Zhang J, Peng J, Wang L, Dang Z, Liang C. Elucidation of the evolutionary history of Stipa in China using comparative transcriptomic analysis. FRONTIERS IN PLANT SCIENCE 2023; 14:1275018. [PMID: 38148860 PMCID: PMC10751131 DOI: 10.3389/fpls.2023.1275018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/08/2023] [Indexed: 12/28/2023]
Abstract
Phylogenetic analysis provides crucial insights into the evolutionary relationships and diversification patterns within specific taxonomic groups. In this study, we aimed to identify the phylogenetic relationships and explore the evolutionary history of Stipa using transcriptomic data. Samples of 12 Stipa species were collected from the Qinghai-Tibet Plateau and Mongolian Plateau, where they are widely distributed, and transcriptome sequencing was performed using their fresh spikelet tissues. Using bidirectional best BLAST analysis, we identified two sets of one-to-one orthologous genes shared between Brachypodium distachyon and the 12 Stipa species (9397 and 2300 sequences, respectively), as well as 62 single-copy orthologous genes. Concatenation methods were used to construct a robust phylogenetic tree for Stipa, and molecular dating was used to estimate divergence times. Our results indicated that Stipa originated during the Pliocene. In approximately 0.8 million years, it diverged into two major clades each consisting of native species from the Mongolian Plateau and the Qinghai-Tibet Plateau, respectively. The evolution of Stipa was closely associated with the development of northern grassland landscapes. Important external factors such as global cooling during the Pleistocene, changes in monsoonal circulation, and tectonic movements contributed to the diversification of Stipa. This study provided a highly supported phylogenetic framework for understanding the evolution of the Stipa genus in China and insights into its diversification patterns.
Collapse
Affiliation(s)
- Na Sha
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Ministry of Education of China, Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and Environment, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Zhiyong Li
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Ministry of Education of China, Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and Environment, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Qiang Sun
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Ministry of Education of China, Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and Environment, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Ying Han
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Ministry of Education of China, Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and Environment, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Li Tian
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Ministry of Education of China, Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and Environment, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Yantao Wu
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Ministry of Education of China, Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and Environment, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Xing Li
- Institute of Landscape and Environment, Inner Mongolia Academy of Forestry Science, Hohhot, Inner Mongolia, China
| | - Yabo Shi
- School of Resources and Environment, Baotou Teachers’ College, Baotou, Inner Mongolia, China
| | - Jinghui Zhang
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Ministry of Education of China, Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and Environment, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Jiangtao Peng
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Ministry of Education of China, Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and Environment, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Lixin Wang
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Ministry of Education of China, Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and Environment, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Zhenhua Dang
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Ministry of Education of China, Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and Environment, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Cunzhu Liang
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Ministry of Education of China, Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and Environment, Inner Mongolia University, Hohhot, Inner Mongolia, China
| |
Collapse
|
40
|
Shi B, Pan D, Sun H. A taxonomic revision of the freshwater crab genus Parvuspotamon Dai & Bo, 1994 (Decapoda, Brachyura, Potamidae), with descriptions of a new genus and two new species. Zookeys 2023; 1183:13-38. [PMID: 38059261 PMCID: PMC10696613 DOI: 10.3897/zookeys.1183.109948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/30/2023] [Indexed: 12/08/2023] Open
Abstract
The taxonomy of the potamid crab genus Parvuspotamon Dai & Bo, 1994, with two species native to Yunnan province of southwest China, is revised based on morphological and molecular data. In order to stabilise the taxonomy of these species (and the genus), two separate genera are hereby designated: Parvuspotamon and Songpotamongen. nov. While Parvuspotamon is restricted to P.yuxiense Dai & Bo, 1994, as a monotypic genus, P.dixuense Naruse, Chia & Zhou, 2018, is transferred to a new genus, Songpotamongen. nov. In addition, two new species of Songpotamongen. nov. are described herein: S.funingensesp. nov. and S.malipoensesp. nov.Songpotamongen. nov. morphologically most resembles Parvuspotamon and Chinapotamon Dai & Naiyanetr, 1994, but can be distinguished by the combination of characters in the carapace, third maxilliped, thoracic sternites, and male first gonopod. The genetic data derived from the mitochondrial 16S rDNA also supports the monophyly of these new taxa.
Collapse
Affiliation(s)
- Boyang Shi
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, ChinaNanjing Normal UniversityNanjingChina
| | - Da Pan
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, ChinaNanjing Normal UniversityNanjingChina
| | - Hongying Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, ChinaNanjing Normal UniversityNanjingChina
| |
Collapse
|
41
|
Chen C, Liu J. Hybridization and polyploidization generate evolutionary diversification of the genus Buddleja in the Sino-Himalayan region. A commentary on 'Deciphering complex reticulate evolution of Asian Buddleja (Scrophulariaceae): insights into the taxonomy and speciation of polyploid taxa in the Sino-Himalayan region'. ANNALS OF BOTANY 2023; 132:v-vii. [PMID: 37543850 PMCID: PMC10550270 DOI: 10.1093/aob/mcad074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2023]
Abstract
This article comments on:
Fengmao Yang, Jia Ge, Yongjie Guo, Richard Olmstead and Weibang Sun. Deciphering complex reticulate evolution of Asian Buddleja (Scrophulariaceae): insights into the taxonomy and speciation of polyploid taxa in the Sino-Himalayan region, Annals of Botany, Volume 132, Issue 1, 01 July 2023, Pages 15–28, https://doi.org/10.1093/aob/mcad022
Collapse
Affiliation(s)
- Chunlin Chen
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jianquan Liu
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
42
|
Yang F, Ge J, Guo Y, Olmstead R, Sun W. Deciphering complex reticulate evolution of Asian Buddleja (Scrophulariaceae): insights into the taxonomy and speciation of polyploid taxa in the Sino-Himalayan region. ANNALS OF BOTANY 2023; 132:15-28. [PMID: 36722368 PMCID: PMC10550280 DOI: 10.1093/aob/mcad022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND AND AIMS Species of the genus Buddleja in Asia are mainly distributed in the Sino-Himalayan region and form a challenging taxonomic group, with extensive hybridization and polyploidization. A phylogenetic approach to unravelling the history of reticulation in this lineage will deepen our understanding of the speciation in biodiversity hotspots. METHODS For this study, we obtained 80 accessions representing all the species in the Asian Buddleja clade, and the ploidy level of each taxon was determined by flow cytometry analyses. Whole plastid genomes, nuclear ribosomal DNA, single nucleotide polymorphisms and a large number of low-copy nuclear genes assembled from genome skimming data were used to investigate the reticulate evolutionary history of Asian Buddleja. Complex cytonuclear conflicts were detected through a comparison of plastid and species trees. Gene tree incongruence was also analysed to detect any reticulate events in the history of this lineage. KEY RESULTS Six hybridization events were detected, which are able to explain the cytonuclear conflict in Asian Buddleja. Furthermore, PhyloNet analysis combining species ploidy data indicated several allopolyploid speciation events. A strongly supported species tree inferred from a large number of low-copy nuclear genes not only corrected some earlier misinterpretations, but also indicated that there are many Asian Buddleja species that have been lumped mistakenly. Divergent time estimation shows two periods of rapid diversification (8-10 and 0-3 Mya) in the Asian Buddleja clade, which might coincide with the final uplift of the Hengduan Mountains and Quaternary climate fluctuations, respectively. CONCLUSIONS This study presents a well-supported phylogenetic backbone for the Asian Buddleja species, elucidates their complex and reticulate evolutionary history and suggests that tectonic activity, climate fluctuations, polyploidization and hybridization together promoted the diversification of this lineage.
Collapse
Affiliation(s)
- Fengmao Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming 650201, Yunnan, China
| | - Jia Ge
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming 650201, Yunnan, China
| | - Yongjie Guo
- Germplasm Bank of Wild Species of China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Richard Olmstead
- Department of Biology and Burke Museum, University of Washington, Seattle, WA 98195, USA
| | - Weibang Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming 650201, Yunnan, China
| |
Collapse
|
43
|
Li J, Zhang C, Mipam TD, Zhou Q, Chen S. Effects of Climatic Change on Phylogeography and Ecological Niche of the Endemic Herb Elymus breviaristatus on the Qinghai-Tibet Plateau. PLANTS (BASEL, SWITZERLAND) 2023; 12:3326. [PMID: 37765492 PMCID: PMC10535585 DOI: 10.3390/plants12183326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Past climatic and topographic variations have created strong biogeographic barriers for alpine species and are key drivers of the distribution of genetic variation and population dynamics of species on the Qinghai-Tibet Plateau (QTP). Therefore, to better conserve and use germplasm resources, it is crucial to understand the distribution and differentiation of genetic variation within species. Elymus breviaristatus, an ecologically important rare grass species with strong resistance, is restricted to a limited area of the QTP. In this study, we investigated the phylogeography of E. breviaristatus using five chloroplast genes and spacer regions in natural populations distributed along the eastern QTP. We identified a total of 25 haplotypes among 216 individuals from 18 E. breviaristatus populations, which were further classified into four haplogroups based on geographical distribution and haplotype network analysis. Notably, we did not observe any signs of population expansion. High genetic diversity was exhibited at both species and population levels, with precipitation being the main limiting factor for population genetic diversity levels. Higher genetic diversity was exhibited by populations located near the Mekong-Salween Divide genetic barrier, suggesting that they may have served as a glacial refuge. The significant pattern of genetic differentiation by environmental isolation highlights the influence of heterogeneous environments on the genetic structure of E. breviaristatus populations. Additionally, the results of ecological niche models indicated that the geographic distribution of E. breviaristatus populations has decreased rapidly since the Last Glacial Maximum but is not threatened by future global warming.
Collapse
Affiliation(s)
- Jin Li
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Southwest Minzu University, Chengdu 610041, China
| | | | - Tserang Donko Mipam
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Southwest Minzu University, Chengdu 610041, China
| | - Qingping Zhou
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Southwest Minzu University, Chengdu 610041, China
| | - Shiyong Chen
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Southwest Minzu University, Chengdu 610041, China
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
44
|
Wang XF, Zhang YX, Niu YQ, Sha Y, Wang ZH, Zhang ZB, Yang J, Liu B, Li LF. Post-hybridization introgression and natural selection promoted genomic divergence of Aegilops speltoides and the four S*-genome diploid species. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1500-1513. [PMID: 37313760 DOI: 10.1111/tpj.16334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/15/2023]
Abstract
Understanding how different driving forces have promoted biological divergence and speciation is one of the central issues in evolutionary biology. The Triticum/Aegilops species complex contains 13 diploid species belonging to the A-, B- and D-lineages and offers an ideal system to address the evolutionary dynamics of lineage fusion and splitting. Here, we sequenced the whole genomes of one S-genome species (Aegilops speltoides) of the B-lineage and four S*-genome diploid species (Aegilops bicornis, Aegilops longissima, Aegilops sharonensis and Aegilops searsii) of the D-lineage at the population level. We performed detailed comparisons of the five species and with the other four representative A-, B- and D-lineage species. Our estimates identified frequent genetic introgressions from A- and B-lineages to the D-lineage species. A remarkable observation is the contrasting distributions of putative introgressed loci by the A- and B-lineages along all the seven chromosomes to the extant D-lineage species. These genetic introgressions resulted in high levels of genetic divergence at centromeric regions between Ae. speltoides (B-lineage) and the other four S*-genome diploid species (D-lineage), while natural selection is a potential contributor to divergence among the four S*-genome species at telomeric regions. Our study provides a genome-wide view on how genetic introgression and natural selection acted together yet chromosome-regionally divided to promote genomic divergence among the five S- and S*-genome diploid species, which provides new and nuanced insights into the evolutionary history of the Triticum/Aegilops species complex.
Collapse
Affiliation(s)
- Xin-Feng Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yu-Xin Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yu-Qian Niu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yan Sha
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Zhen-Hui Wang
- Faculty of Agronomy, Jilin Agricultural University, Changchun, 130118, China
| | - Zhi-Bin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Ji Yang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Lin-Feng Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| |
Collapse
|
45
|
Wang Z, Kang Y, Wang Y, Tan Y, Yao B, An K, Su J. Himalayan Marmot ( Marmota himalayana) Redistribution to High Latitudes under Climate Change. Animals (Basel) 2023; 13:2736. [PMID: 37684999 PMCID: PMC10486415 DOI: 10.3390/ani13172736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Climate warming and human activities impact the expansion and contraction of species distribution. The Himalayan marmot (Marmota himalayana) is a unique mammal and an ecosystem engineer in the Qinghai-Tibet Plateau (QTP). This pest aggravates grassland degradation and is a carrier and transmitter of plagues. Therefore, exploring the future distribution of Himalayan marmots based on climate change and human activities is crucial for ecosystem management, biodiversity conservation, and public health safety. Here, a maximum entropy model was explored to forecast changes in the distribution and centroid migration of the Himalayan marmot in the 2050s and 2070s. The results implied that the human footprint index (72.80%) and altitude (16.40%) were the crucial environmental factors affecting the potential distribution of Himalayan marmots, with moderately covered grassland being the preferred habitat of the Himalayan marmot. Over the next 30-50 years, the area of suitable habitat for the Himalayan marmot will increase slightly and the distribution center will shift towards higher latitudes in the northeastern part of the plateau. These results demonstrate the influence of climate change on Himalayan marmots and provide a theoretical reference for ecological management and plague monitoring.
Collapse
Affiliation(s)
- Zhicheng Wang
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China; (Z.W.); (K.A.)
- Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou 730070, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Yukun Kang
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China; (Z.W.); (K.A.)
- Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou 730070, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Yan Wang
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China; (Z.W.); (K.A.)
- Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou 730070, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuchen Tan
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China; (Z.W.); (K.A.)
- Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou 730070, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Baohui Yao
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China; (Z.W.); (K.A.)
- Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou 730070, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Kang An
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China; (Z.W.); (K.A.)
- Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou 730070, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Junhu Su
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China; (Z.W.); (K.A.)
- Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou 730070, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
46
|
Yang X, Zhang X, Xue T, Zhang X, Yang F, Yu J, Janssens SB, Bussmann RW, Yu S. Phylogenomics and historical biogeography of Hydrangeeae (Hydrangeaceae) elucidate the effects of geologic and climatic dynamics on diversification. Proc Biol Sci 2023; 290:20230659. [PMID: 37491959 PMCID: PMC10369024 DOI: 10.1098/rspb.2023.0659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/03/2023] [Indexed: 07/27/2023] Open
Abstract
Demonstrating the process of transregional biogeography and mechanisms underlying evolutionary radiations is crucial to understanding biological evolution. Here, we use Hydrangeeae (Hydrangeaceae), a tribe with a unique disjunct distribution and complex trait variations, using a solid phylogenetic framework, to investigate how geographical and climatic factors interact with functional traits to trigger plant evolutionary radiations. We constructed the first highly supported and dated phylogenetic framework using 79 protein-coding genes obtained from 81 plastomes, representing 63 species and all major clades, and found that most extant species originated from asynchronous diversification of two lineages undergoing repeated expansion and retraction, at middle and high latitudes of the Northern Hemisphere between East Asia and North America, during the Eocene to Pleistocene (driven by geologic and climatic dynamics). In accordance with these drivers, interactions of flora between central-eastern China and Japan occurred frequently after the Late Tertiary. We found that resource limitation and range fragmentation probably accelerated the diversification of Hydrangeeae, which supports the resource-use hypothesis. Our study sheds light on the evolutionary radiation and assembly of flora within East Asia, and the East Asian-North American disjunction, through integration of phylogenomic and biogeographic data with functional trait and ecological data.
Collapse
Affiliation(s)
- Xudong Yang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xu Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Chinese Academy of Sciences, Wuhan Botanical Garden, Wuhan 430074, People's Republic of China
| | - Tiantian Xue
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xiaoxia Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Fusheng Yang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jianghong Yu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China
- College of Forestry, Guizhou University, Guiyang 550025, People's Republic of China
| | - Steven B. Janssens
- Meise Botanic Garden, Nieuwelaan 38, 1860 Meise, Belgium
- Department of Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
| | - Rainer W. Bussmann
- Institute of Botany and Bakuriani Alpine Botanical Garden, Ilia State University, Botanical Street 1, 0105 Tbilisi, Georgia
- Department of Botany, State Museum for Natural History Karlsruhe, Erbprinzenstraße 13, 76133 Karlsruhe, Germany
| | - Shengxiang Yu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
47
|
Ren CQ, Zhang DQ, Liu XY, Zhang JQ. Genomic data provide a robust phylogeny backbone for Rhodiola L. (Crassulaceae) and reveal extensive reticulate evolution during its rapid radiation. Mol Phylogenet Evol 2023:107863. [PMID: 37329933 DOI: 10.1016/j.ympev.2023.107863] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/19/2023]
Abstract
The Tibetan Plateau and adjacent mountain regions (TP; including the Tibetan Plateau, Himalaya, Hengduan Mountains and Mountains of Central Asia) harbor great biodiversity, some lineages on which may have undergone rapid radiations. However, only a few studies have investigated the evolutionary pattern of such diversification in depth using genomic data. In this study, we reconstructed a robust phylogeny backbone of Rhodiola, a lineage that may have undergone rapid radiation in the TP, using Genotyping-by-sequencing data, and conducted a series of gene flow and diversification analyses. The concatenation and coalescent-based methods yield similar tree topologies, and five well-supported clades were revealed. Potential gene flow and introgression events were detected, both between species from different major clades and closely related species, suggesting pervasive hybridization and introgression. An initial rapid and later slowdown of the diversification rate was revealed, indicating niche filling. Molecular dating and correlation analyses showed that the uplift of TP and global cooling in the mid-Miocene might have played an important role in promoting the rapid radiation of Rhodiola. Our work demonstrates that gene flow and introgression might be an important contributor to rapid radiation possibly by quickly reassembling old genetic variation into new combinations.
Collapse
Affiliation(s)
- Chun-Qian Ren
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China; Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of Education, Shaanxi Normal University, Xi'an 710119, China
| | - Dan-Qing Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China; Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of Education, Shaanxi Normal University, Xi'an 710119, China
| | - Xiao-Ying Liu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China; Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of Education, Shaanxi Normal University, Xi'an 710119, China
| | - Jian-Qiang Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China; Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of Education, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
48
|
Zhang W, Wang H, Zhang T, Fang X, Liu M, Xiao H. Geographic-genomic and geographic-phenotypic differentiation of the Aquilegia viridiflora complex. HORTICULTURE RESEARCH 2023; 10:uhad041. [PMID: 37159802 PMCID: PMC10163360 DOI: 10.1093/hr/uhad041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/05/2023] [Indexed: 05/11/2023]
Abstract
How species diverge into different lineages is a central issue in evolutionary biology. Despite the increasing evidence indicating that such divergences do not need geographic isolation, the correlation between lineage divergence and the adaptive ecological divergence of phenotype corresponding to distribution is still unknown. In addition, gene flow has been widely detected during and through such diverging processes. We used one widely distributed Aquilegia viridiflora complex as a model system to examine genomic differentiation and corresponding phenotypic variations along geographic gradients. Our phenotypic analyses of 20 populations from northwest to northeast China identified two phenotypic groups along the geographic cline. All examined traits are distinct from each other, although a few intermediate individuals occur in their contacting regions. We further sequenced the genomes of representative individuals of each population. However, four distinct genetic lineages were detected based on nuclear genomes. In particular, we recovered numerous genetic hybrids in the contact regions of four lineages. Gene flow is widespread and continuous between four lineages but much higher between contacting lineages than geographically isolated lineages. Gene flow and natural selection might result in inconsistency between heredity and phenotype. Moreover, many genes with fast lineage-specific mutations were identified to be involved in local adaptation. Our results suggest that both geographic isolation and local selection exerted by the environment and pollinators may together create geographic distributions of phenotypic variations as well as the underlying genomic divergences in numerous lineages.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun 130024, China
| | | | - Tengjiao Zhang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Xiaoxue Fang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Meiying Liu
- Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun 130024, China
| | | |
Collapse
|
49
|
Yu J, Niu Y, You Y, Cox CJ, Barrett RL, Trias-Blasi A, Guo J, Wen J, Lu L, Chen Z. Integrated phylogenomic analyses unveil reticulate evolution in Parthenocissus (Vitaceae), highlighting speciation dynamics in the Himalayan-Hengduan Mountains. THE NEW PHYTOLOGIST 2023; 238:888-903. [PMID: 36305244 DOI: 10.1111/nph.18580] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Hybridization caused by frequent environmental changes can lead both to species diversification (speciation) and to speciation reversal (despeciation), but the latter has rarely been demonstrated. Parthenocissus, a genus with its trifoliolate lineage in the Himalayan-Hengduan Mountains (HHM) region showing perplexing phylogenetic relationships, provides an opportunity for investigating speciation dynamics based on integrated evidence. We investigated phylogenetic discordance and reticulate evolution in Parthenocissus based on rigorous analyses of plastome and transcriptome data. We focused on reticulations in the trifoliolate lineage in the HHM region using a population-level genome resequencing dataset, incorporating evidence from morphology, distribution, and elevation. Comprehensive analyses confirmed multiple introgressions within Parthenocissus in a robust temporal-spatial framework. Around the HHM region, at least three hybridization hot spots were identified, one of which showed evidence of ongoing speciation reversal. We present a solid case study using an integrative methodological approach to investigate reticulate evolutionary history and its underlying mechanisms in plants. It demonstrates an example of speciation reversal through frequent hybridizations in the HHM region, which provides new perspectives on speciation dynamics in mountainous areas with strong topographic and environmental heterogeneity.
Collapse
Affiliation(s)
- Jinren Yu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanting Niu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- China National Botanical Garden, Beijing, 100093, China
| | - Yichen You
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cymon J Cox
- Centro de Ciências do Mar, Universidade do Algarve, Gambelas, Faro, 8005-319, Portugal
| | - Russell L Barrett
- National Herbarium of New South Wales, Australian Botanic Garden, Locked Bag 6002, Mount Annan, 2567, NSW, Australia
| | | | - Jing Guo
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Jun Wen
- Department of Botany, National Museum of Natural History, MRC-166, Smithsonian Institution, Washington, DC, 20013-7012, USA
| | - Limin Lu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Zhiduan Chen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
50
|
Wang Y, Jiang Z, Qin A, Wang F, Chang E, Liu Y, Nie W, Tan C, Yuan Y, Dong Y, Huang R, Jia Z, Wang J. Population Structure, Genetic Diversity and Candidate Genes for the Adaptation to Environmental Stress in Picea koraiensis. PLANTS (BASEL, SWITZERLAND) 2023; 12:1266. [PMID: 36986954 PMCID: PMC10055018 DOI: 10.3390/plants12061266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Picea koraiensis is major silvicultural and timber species in northeast China, and its distribution area is an important transition zone for genus spruce migration. The degree of intraspecific differentiation of P. koraiensis is high, but population structure and differentiation mechanisms are not clear. In this study, 523,761 single nucleotide polymorphisms (SNPs) were identified in 113 individuals from 9 populations of P. koraiensis by genotyping-by-sequencing (GBS). Population genomic analysis showed that P. koraiensis was divided into three geoclimatic regions: Great Khingan Mountains climatic region, Lesser Khingan Mountains climatic region, and Changbai Mountain climatic region. Mengkeshan (MKS) population on the northern edge of the distribution area and Wuyiling (WYL) population located in the mining area are two highly differentiated groups. Selective sweep analysis showed that MKS and WYL populations had 645 and 1126 selected genes, respectively. Genes selected in the MKS population were associated with flowering and photomorphogenesis, cellular response to water deficit, and glycerophospholipid metabolism; genes selected in the WYL population were associated with metal ion transport, biosynthesis of macromolecules, and DNA repair. Climatic factors and heavy metal stress drives divergence in MKS and WYL populations, respectively. Our findings provide insights into adaptive divergence mechanisms in Picea and will contribute to molecular breeding studies.
Collapse
Affiliation(s)
- Ya Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Zeping Jiang
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Aili Qin
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Fude Wang
- Forestry Research Institute in Heilongjiang Province, Harbin 150081, China
| | - Ermei Chang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Yifu Liu
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Wen Nie
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Cancan Tan
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Yanchao Yuan
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Yao Dong
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Ruizhi Huang
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Zirui Jia
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Junhui Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|