1
|
Cheaib A, Chieppa J, Perkowski EA, Smith NG. Soil resource acquisition strategy modulates global plant nutrient and water economics. THE NEW PHYTOLOGIST 2025; 246:1536-1553. [PMID: 40123121 DOI: 10.1111/nph.70087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/05/2025] [Indexed: 03/25/2025]
Abstract
Natural selection favors growth by selecting a combination of plant traits that maximize photosynthetic CO2 assimilation at the lowest combined carbon costs of resource acquisition and use. We quantified how soil nutrient availability, plant nutrient acquisition strategies, and aridity modulate the variability in plant costs of nutrient acquisition relative to water acquisition (β). We used an eco-evolutionary optimality framework and a global carbon isotope dataset to quantify β. Under low soil nitrogen-to-carbon (N : C) ratios, a mining strategy (symbioses with ectomycorrhizal and ericoid mycorrhizal fungi) reduced β by mining organic nitrogen, compared with a scavenging strategy (symbioses with arbuscular mycorrhizal fungi). Conversely, under high N : C ratios, scavenging strategies reduced β by effectively scavenging soluble nitrogen, compared with mining strategies. N2-fixing plants did not exhibit reduced β under low N : C ratios compared with non-N2-fixing plants. Moisture increased β only in plants using a scavenging strategy, reflecting direct impacts of aridity on the carbon costs of maintaining transpiration in these plants. Nitrogen and phosphorus colimitation further modulated β. Our findings provide a framework for simulating the variability of plant economics due to plant nutrient acquisition strategies in earth system models.
Collapse
Affiliation(s)
- Alissar Cheaib
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Jeff Chieppa
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Evan A Perkowski
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Nicholas G Smith
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| |
Collapse
|
2
|
Baird AS, Taylor SH, Pasquet‐Kok J, Vuong C, Zhang Y, Watcharamongkol T, Cochard H, Scoffoni C, Edwards EJ, Osborne CP, Sack L. Resolving the contrasting leaf hydraulic adaptation of C 3 and C 4 grasses. THE NEW PHYTOLOGIST 2025; 245:1924-1939. [PMID: 39757432 PMCID: PMC11798900 DOI: 10.1111/nph.20341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/27/2024] [Indexed: 01/07/2025]
Abstract
Grasses are exceptionally productive, yet their hydraulic adaptation is paradoxical. Among C3 grasses, a high photosynthetic rate (Aarea) may depend on higher vein density (Dv) and hydraulic conductance (Kleaf). However, the higher Dv of C4 grasses suggests a hydraulic surplus, given their reduced need for high Kleaf resulting from lower stomatal conductance (gs). Combining hydraulic and photosynthetic physiological data for diverse common garden C3 and C4 species with data for 332 species from the published literature, and mechanistic modeling, we validated a framework for linkages of photosynthesis with hydraulic transport, anatomy, and adaptation to aridity. C3 and C4 grasses had similar Kleaf in our common garden, but C4 grasses had higher Kleaf than C3 species in our meta-analysis. Variation in Kleaf depended on outside-xylem pathways. C4 grasses have high Kleaf : gs, which modeling shows is essential to achieve their photosynthetic advantage. Across C3 grasses, higher Aarea was associated with higher Kleaf, and adaptation to aridity, whereas for C4 species, adaptation to aridity was associated with higher Kleaf : gs. These associations are consistent with adaptation for stress avoidance. Hydraulic traits are a critical element of evolutionary and ecological success in C3 and C4 grasses and are crucial avenues for crop design and ecological forecasting.
Collapse
Affiliation(s)
- Alec S. Baird
- Department of Ecology and Evolutionary BiologyUniversity of California Los Angeles621 Charles E. Young Dr. SouthLos AngelesCA90095USA
- Institute of Plant SciencesUniversity of BernAltenbergrain 213013BernSwitzerland
- Oeschger Centre for Climate Change ResearchUniversity of BernBern3012Switzerland
| | - Samuel H. Taylor
- Lancaster Environment CentreUniversity of LancasterLancasterLA1 4YWUK
- Plants, Photosynthesis and Soil, School of BiosciencesUniversity of SheffieldSheffieldS10 2TNUK
| | - Jessica Pasquet‐Kok
- Department of Ecology and Evolutionary BiologyUniversity of California Los Angeles621 Charles E. Young Dr. SouthLos AngelesCA90095USA
| | - Christine Vuong
- Department of Ecology and Evolutionary BiologyUniversity of California Los Angeles621 Charles E. Young Dr. SouthLos AngelesCA90095USA
| | - Yu Zhang
- Department of Ecology and Evolutionary BiologyUniversity of California Los Angeles621 Charles E. Young Dr. SouthLos AngelesCA90095USA
| | - Teera Watcharamongkol
- Plants, Photosynthesis and Soil, School of BiosciencesUniversity of SheffieldSheffieldS10 2TNUK
- Faculty of Science and TechnologyKanchanaburi Rajabhat UniversityKanchanaburi71190Thailand
| | - Hervé Cochard
- Université Clermont Auvergne, INRAE, PIAF63000Clermont‐FerrandFrance
| | - Christine Scoffoni
- Department of Biological SciencesCalifornia State University Los Angeles5151 State University Dr.Los AngelesCA90032USA
| | - Erika J. Edwards
- Department of Ecology and Evolutionary BiologyYale UniversityNew HavenCT06520USA
| | - Colin P. Osborne
- Plants, Photosynthesis and Soil, School of BiosciencesUniversity of SheffieldSheffieldS10 2TNUK
| | - Lawren Sack
- Department of Ecology and Evolutionary BiologyUniversity of California Los Angeles621 Charles E. Young Dr. SouthLos AngelesCA90095USA
| |
Collapse
|
3
|
Garen JC, Michaletz ST. Temperature governs the relative contributions of cuticle and stomata to leaf minimum conductance. THE NEW PHYTOLOGIST 2025; 245:1911-1923. [PMID: 39673247 PMCID: PMC11798895 DOI: 10.1111/nph.20346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/25/2024] [Indexed: 12/16/2024]
Abstract
During periods of stomatal closure, such as drought, plant leaves continue to lose water at a rate determined by the minimum leaf conductance, gmin. Although gmin varies with temperature, less is known about what drives this variation, including how the pathways of water loss (cuticle or stomata) vary with temperature. We used gas exchange and bench drying methods to measure gmin and cuticular conductance, gcw, across a wide temperature range (20-50°C) in 11 broadleaf species. Vapour pressure deficit (VPD) covaried with temperature from 0.83 to 10.7 kPa. The dominant pathway of water loss for gmin shifted from stomatal transpiration towards cuticular transpiration as temperature increased. Leaf traits had variable, temperature-dependent relationships with gmin and gcw, with trait-conductance relationships being generally stronger at higher temperatures. Cuticular thickness varied inversely with high-temperature gcw. Simulation results showed that gcw may impact photosynthetic capacity estimates, particularly in species with low stomatal conductance. The pathways of water loss in leaves during times of stomatal closure depend strongly on temperature. This effect may have large implications for landscape-scale water balance modelling and improving gas exchange measurements. We propose variation in VPD as a potential contributing factor in gmin and gcw variation among studies.
Collapse
Affiliation(s)
- Josef C. Garen
- Department of Botany and Biodiversity Research CentreThe University of British ColumbiaVancouverBCV6T 1Z4Canada
| | - Sean T. Michaletz
- Department of Botany and Biodiversity Research CentreThe University of British ColumbiaVancouverBCV6T 1Z4Canada
| |
Collapse
|
4
|
Potkay A, Cabon A, Peters RL, Fonti P, Sapes G, Sala A, Stefanski A, Butler E, Bermudez R, Montgomery R, Reich PB, Feng X. Generalized Stomatal Optimization of Evolutionary Fitness Proxies for Predicting Plant Gas Exchange Under Drought, Heatwaves, and Elevated CO 2. GLOBAL CHANGE BIOLOGY 2025; 31:e70049. [PMID: 39873117 PMCID: PMC11774141 DOI: 10.1111/gcb.70049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/08/2025] [Accepted: 01/15/2025] [Indexed: 01/30/2025]
Abstract
Stomata control plant water loss and photosynthetic carbon gain. Developing more generalized and accurate stomatal models is essential for earth system models and predicting responses under novel environmental conditions associated with global change. Plant optimality theories offer one promising approach, but most such theories assume that stomatal conductance maximizes photosynthetic net carbon assimilation subject to some cost or constraint of water. We move beyond this approach by developing a new, generalized optimality theory of stomatal conductance, optimizing any non-foliar proxy that requires water and carbon reserves, like growth, survival, and reproduction. We overcome two prior limitations. First, we reconcile the computational efficiency of instantaneous optimization with a more biologically meaningful dynamic feedback optimization over plant lifespans. Second, we incorporate non-steady-state physics in the optimization to account for the temporal changes in the water, carbon, and energy storage within a plant and its environment that occur over the timescales that stomata act, contrary to previous theories. Our optimal stomatal conductance compares well to observations from seedlings, saplings, and mature trees from field and greenhouse experiments. Our model predicts predispositions to mortality during the 2018 European drought and captures realistic responses to environmental cues, including the partial alleviation of heat stress by evaporative cooling and the negative effect of accumulating foliar soluble carbohydrates, promoting closure under elevated CO2. We advance stomatal optimality theory by incorporating generalized evolutionary fitness proxies and enhance its utility without compromising its realism, offering promise for future models to more realistically and accurately predict global carbon and water fluxes.
Collapse
Affiliation(s)
- Aaron Potkay
- Department of Civil, Environmental, and Geo‐EngineeringUniversity of MinnesotaMinneapolisMinnesotaUSA
- Saint Anthony Falls LaboratoryUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Antoine Cabon
- Research Unit Forest DynamicsSwiss Federal Research Institute WSLBirmensdorfSwitzerland
| | - Richard L. Peters
- TUM School of Life SciencesTechnical University of MunichFreisingGermany
| | - Patrick Fonti
- Research Unit Forest DynamicsSwiss Federal Research Institute WSLBirmensdorfSwitzerland
| | - Gerard Sapes
- Agronomy DepartmentUniversity of FloridaGainesvilleFloridaUSA
| | - Anna Sala
- Division of Biological SciencesUniversity of MontanaMissoulaMontanaUSA
| | - Artur Stefanski
- Department of Forest ResourcesUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Ethan Butler
- Department of Forest ResourcesUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Raimundo Bermudez
- Department of Forest ResourcesUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Rebecca Montgomery
- Department of Forest ResourcesUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Peter B. Reich
- Department of Forest ResourcesUniversity of MinnesotaSt. PaulMinnesotaUSA
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNew South WalesAustralia
- Institute for Global Change Biology, and School for the Environment and SustainabilityUniversity of MichiganAnn ArborMichiganUSA
| | - Xue Feng
- Department of Civil, Environmental, and Geo‐EngineeringUniversity of MinnesotaMinneapolisMinnesotaUSA
- Saint Anthony Falls LaboratoryUniversity of MinnesotaMinneapolisMinnesotaUSA
| |
Collapse
|
5
|
Green JK. The intricacies of vegetation responses to changing moisture conditions. THE NEW PHYTOLOGIST 2024; 244:2156-2162. [PMID: 39370537 DOI: 10.1111/nph.20182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 09/07/2024] [Indexed: 10/08/2024]
Abstract
A long-standing debate looks at whether air or soil dryness is more limiting to vegetation water use and productivity. The answer has large implications for future ecosystem functioning, as atmospheric dryness is predicted to increase globally while changes in soil moisture are predicted to be far more variable. Here, I review the complexities that contribute to this debate, including the strong coupling between atmospheric and soil dryness, and the widespread heterogeneity in vegetation hydraulic traits, acclimations, and adaptations to water stress. I discuss solutions to improve understanding and modeling of vegetation sensitivity to dryness, including how different types of observational data can be used together to gain insight into vegetation response to water stress across spatial and temporal scales.
Collapse
Affiliation(s)
- Julia K Green
- Department of Environmental Science, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
6
|
Posch BC, Bush SE, Koepke DF, Schuessler A, Anderegg LL, Aparecido LM, Blonder BW, Guo JS, Kerr KL, Moran ME, Cooper HF, Doughty CE, Gehring CA, Whitham TG, Allan GJ, Hultine KR. Intensive leaf cooling promotes tree survival during a record heatwave. Proc Natl Acad Sci U S A 2024; 121:e2408583121. [PMID: 39401366 PMCID: PMC11513916 DOI: 10.1073/pnas.2408583121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/27/2024] [Indexed: 10/30/2024] Open
Abstract
Increasing heatwaves are threatening forest ecosystems globally. Leaf thermal regulation and tolerance are important for plant survival during heatwaves, though the interaction between these processes and water availability is unclear. Genotypes of the widely distributed foundation tree species Populus fremontii were studied in a controlled common garden during a record summer heatwave-where air temperature exceeded 48 °C. When water was not limiting, all genotypes cooled leaves 2 to 5 °C below air temperatures. Homeothermic cooling was disrupted for weeks following a 72-h reduction in soil water, resulting in leaf temperatures rising 3 °C above air temperature and 1.3 °C above leaf thresholds for physiological damage, despite the water stress having little effect on leaf water potentials. Tradeoffs between leaf thermal safety and hydraulic safety emerged but, regardless of water use strategy, all genotypes experienced significant leaf mortality following water stress. Genotypes from warmer climates showed greater leaf cooling and less leaf mortality after water stress in comparison with genotypes from cooler climates. These results illustrate how brief soil water limitation disrupts leaf thermal regulation and potentially compromises plant survival during extreme heatwaves, thus providing insight into future scenarios in which ecosystems will be challenged with extreme heat and unreliable soil water access.
Collapse
Affiliation(s)
- Bradley C. Posch
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, AZ85008
- Department of Environmental Science, Policy and Management, University of California Berkeley, Berkeley, CA94720
| | - Susan E. Bush
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, AZ85008
| | - Dan F. Koepke
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, AZ85008
| | - Alexandra Schuessler
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, AZ85008
| | - Leander L.D. Anderegg
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA93106
| | | | - Benjamin W. Blonder
- Department of Environmental Science, Policy and Management, University of California Berkeley, Berkeley, CA94720
| | - Jessica S. Guo
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, AZ85008
- Arizona Experiment Station, University of Arizona, Tucson, AZ85721
| | - Kelly L. Kerr
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA93106
| | | | - Hillary F. Cooper
- Department of Biological Sciences and Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, AZ86011
| | - Christopher E. Doughty
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ86011
| | - Catherine A. Gehring
- Department of Biological Sciences and Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, AZ86011
| | - Thomas G. Whitham
- Department of Biological Sciences and Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, AZ86011
| | - Gerard J. Allan
- Department of Biological Sciences and Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, AZ86011
| | - Kevin R. Hultine
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, AZ85008
| |
Collapse
|
7
|
Middleby KB, Cheesman AW, Cernusak LA. Impacts of elevated temperature and vapour pressure deficit on leaf gas exchange and plant growth across six tropical rainforest tree species. THE NEW PHYTOLOGIST 2024; 243:648-661. [PMID: 38757766 DOI: 10.1111/nph.19822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 04/30/2024] [Indexed: 05/18/2024]
Abstract
Elevated air temperature (Tair) and vapour pressure deficit (VPDair) significantly influence plant functioning, yet their relative impacts are difficult to disentangle. We examined the effects of elevated Tair (+6°C) and VPDair (+0.7 kPa) on the growth and physiology of six tropical tree species. Saplings were grown under well-watered conditions in climate-controlled glasshouses for 6 months under three treatments: (1) low Tair and low VPDair, (2) high Tair and low VPDair, and (3) high Tair and high VPDair. To assess acclimation, physiological parameters were measured at a set temperature. Warm-grown plants grown under elevated VPDair had significantly reduced stomatal conductance and increased instantaneous water use efficiency compared to plants grown under low VPDair. Photosynthetic biochemistry and thermal tolerance (Tcrit) were unaffected by VPDair, but elevated Tair caused Jmax25 to decrease and Tcrit to increase. Sapling biomass accumulation for all species responded positively to an increase in Tair, but elevated VPDair limited growth. This study shows that stomatal limitation caused by even moderate increases in VPDair can decrease productivity and growth rates in tropical species independently from Tair and has important implications for modelling the impacts of climate change on tropical forests.
Collapse
Affiliation(s)
- Kali B Middleby
- College of Science and Engineering, James Cook University, Cairns, QLD, 4878, Australia
| | - Alexander W Cheesman
- College of Science and Engineering, James Cook University, Cairns, QLD, 4878, Australia
| | - Lucas A Cernusak
- College of Science and Engineering, James Cook University, Cairns, QLD, 4878, Australia
| |
Collapse
|
8
|
Heckman RW, Pereira CG, Aspinwall MJ, Juenger TE. Physiological Responses of C 4 Perennial Bioenergy Grasses to Climate Change: Causes, Consequences, and Constraints. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:737-769. [PMID: 38424068 DOI: 10.1146/annurev-arplant-070623-093952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
C4 perennial bioenergy grasses are an economically and ecologically important group whose responses to climate change will be important to the future bioeconomy. These grasses are highly productive and frequently possess large geographic ranges and broad environmental tolerances, which may contribute to the evolution of ecotypes that differ in physiological acclimation capacity and the evolution of distinct functional strategies. C4 perennial bioenergy grasses are predicted to thrive under climate change-C4 photosynthesis likely evolved to enhance photosynthetic efficiency under stressful conditions of low [CO2], high temperature, and drought-although few studies have examined how these species will respond to combined stresses or to extremes of temperature and precipitation. Important targets for C4 perennial bioenergy production in a changing world, such as sustainability and resilience, can benefit from combining knowledge of C4 physiology with recent advances in crop improvement, especially genomic selection.
Collapse
Affiliation(s)
- Robert W Heckman
- Rocky Mountain Research Station, US Department of Agriculture Forest Service, Cedar City, Utah, USA;
| | - Caio Guilherme Pereira
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA;
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | - Thomas E Juenger
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA;
| |
Collapse
|
9
|
Aun MA, Farnese F, Loram-Lourenço L, de Abreu IMPG, Silva BRA, Freitas JCE, Filho VMA, Silva FG, Franco AC, Hammond WM, Cochard H, Menezes-Silva PE. Evidence of combined flower thermal and drought vulnerabilities portends reproductive failure under hotter-drought conditions. PLANT, CELL & ENVIRONMENT 2024; 47:1971-1986. [PMID: 38372066 DOI: 10.1111/pce.14857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/20/2024]
Abstract
Despite the abundant evidence of impairments to plant performance and survival under hotter-drought conditions, little is known about the vulnerability of reproductive organs to climate extremes. Here, by conducting a comparative analysis between flowers and leaves, we investigated how variations in key morphophysiological traits related to carbon and water economics can explain the differential vulnerabilities to heat and drought among these functionally diverse organs. Due to their lower construction costs, despite having a higher water storage capacity, flowers were more prone to turgor loss (higher turgor loss point; ΨTLP) than leaves, thus evidencing a trade-off between carbon investment and drought tolerance in reproductive organs. Importantly, the higher ΨTLP of flowers also resulted in narrow turgor safety margins (TSM). Moreover, compared to leaves, the cuticle of flowers had an overall higher thermal vulnerability, which also resulted in low leakage safety margins (LSM). As a result, the combination of low TSMs and LSMs may have negative impacts on reproduction success since they strongly influenced the time to turgor loss under simulated hotter-drought conditions. Overall, our results improve the knowledge of unexplored aspects of flower structure and function and highlight likely threats to successful plant reproduction in a warmer and drier world.
Collapse
Affiliation(s)
- Marina Alves Aun
- Federal Institute of Education, Science and Technology Goiano, Rio Verde Campus, Rio Verde, Brazil
| | - Fernanda Farnese
- Federal Institute of Education, Science and Technology Goiano, Rio Verde Campus, Rio Verde, Brazil
| | - Lucas Loram-Lourenço
- Federal Institute of Education, Science and Technology Goiano, Rio Verde Campus, Rio Verde, Brazil
| | | | | | | | | | - Fabiano Guimarães Silva
- Federal Institute of Education, Science and Technology Goiano, Rio Verde Campus, Rio Verde, Brazil
| | - Augusto Cesar Franco
- Department of Botany, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - William M Hammond
- Department of Agronomy, University of Florida, Gainesville, Florida, USA
| | - Hervé Cochard
- Université Clermont-Auvergne, INRAE, PIAF, Clermont-Ferrand, France
| | | |
Collapse
|
10
|
Sun W, Maseyk K, Lett C, Seibt U. Restricted internal diffusion weakens transpiration-photosynthesis coupling during heatwaves: Evidence from leaf carbonyl sulphide exchange. PLANT, CELL & ENVIRONMENT 2024; 47:1813-1833. [PMID: 38321806 DOI: 10.1111/pce.14840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 11/13/2023] [Accepted: 01/22/2024] [Indexed: 02/08/2024]
Abstract
Increasingly frequent and intense heatwaves threaten ecosystem health in a warming climate. However, plant responses to heatwaves are poorly understood. A key uncertainty concerns the intensification of transpiration when heatwaves suppress photosynthesis, known as transpiration-photosynthesis decoupling. Field observations of such decoupling are scarce, and the underlying physiological mechanisms remain elusive. Here, we use carbonyl sulphide (COS) as a leaf gas exchange tracer to examine potential mechanisms leading to transpiration-photosynthesis decoupling on a coast live oak in a southern California woodland in spring 2013. We found that heatwaves suppressed both photosynthesis and leaf COS uptake but increased transpiration or sustained it at non-heatwave levels throughout the day. Despite statistically significant decoupling between transpiration and photosynthesis, stomatal sensitivity to environmental factors did not change during heatwaves. Instead, midday photosynthesis during heatwaves was restricted by internal diffusion, as indicated by the lower internal conductance to COS. Thus, increased evaporative demand and nonstomatal limitation to photosynthesis act jointly to decouple transpiration from photosynthesis without altering stomatal sensitivity. Decoupling offered limited potential cooling benefits, questioning its effectiveness for leaf thermoregulation in xeric ecosystems. We suggest that adding COS to leaf and ecosystem flux measurements helps elucidate diverse physiological mechanisms underlying transpiration-photosynthesis decoupling.
Collapse
Affiliation(s)
- Wu Sun
- Department of Global Ecology, Carnegie Institution for Science, Stanford, California, USA
| | - Kadmiel Maseyk
- School of Environment, Earth and Ecosystem Sciences, The Open University, Milton Keynes, UK
| | - Céline Lett
- Department of Environmental Research and Innovation, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Ulli Seibt
- Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, California, USA
| |
Collapse
|
11
|
Liang J, Krauss KW, Finnigan J, Stuart-Williams H, Farquhar GD, Ball MC. Linking water use efficiency with water use strategy from leaves to communities. THE NEW PHYTOLOGIST 2023; 240:1735-1742. [PMID: 37823336 DOI: 10.1111/nph.19308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/04/2023] [Indexed: 10/13/2023]
Abstract
Limitations and utility of three measures of water use characteristics were evaluated: water use efficiency (WUE), intrinsic WUE and marginal water cost of carbon gain ( ∂ E / ∂ A ) estimated, respectively, as ratios of assimilation (A) to transpiration (E), of A to stomatal conductance (gs ) and of sensitivities of E and A with variation in gs . Only the measure ∂ E / ∂ A estimates water use strategy in a way that integrates carbon gain relative to water use under varying environmental conditions across scales from leaves to communities. This insight provides updated and simplified ways of estimating ∂ E / ∂ A and adds depth to understanding ways that plants balance water expenditure against carbon gain, uniquely providing a mechanistic means of predicting water use characteristics under changing environmental scenarios.
Collapse
Affiliation(s)
- Jie Liang
- Plant Science Division, Research School of Biology, Australian National University, Acton, ACT, 2601, Australia
| | - Ken W Krauss
- Wetland and Aquatic Research Center, US Geological Survey, 70506, LA, Lafayette, USA
| | - John Finnigan
- Plant Science Division, Research School of Biology, Australian National University, Acton, ACT, 2601, Australia
| | - Hilary Stuart-Williams
- Plant Science Division, Research School of Biology, Australian National University, Acton, ACT, 2601, Australia
| | - Graham D Farquhar
- Plant Science Division, Research School of Biology, Australian National University, Acton, ACT, 2601, Australia
| | - Marilyn C Ball
- Plant Science Division, Research School of Biology, Australian National University, Acton, ACT, 2601, Australia
| |
Collapse
|
12
|
Marchin RM, Medlyn BE, Tjoelker MG, Ellsworth DS. Decoupling between stomatal conductance and photosynthesis occurs under extreme heat in broadleaf tree species regardless of water access. GLOBAL CHANGE BIOLOGY 2023; 29:6319-6335. [PMID: 37698501 DOI: 10.1111/gcb.16929] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/09/2023] [Indexed: 09/13/2023]
Abstract
High air temperatures increase atmospheric vapor pressure deficit (VPD) and the severity of drought, threatening forests worldwide. Plants regulate stomata to maximize carbon gain and minimize water loss, resulting in a close coupling between net photosynthesis (Anet ) and stomatal conductance (gs ). However, evidence for decoupling of gs from Anet under extreme heat has been found. Such a response both enhances survival of leaves during heat events but also quickly depletes available water. To understand the prevalence and significance of this decoupling, we measured leaf gas exchange in 26 tree and shrub species growing in the glasshouse or at an urban site in Sydney, Australia on hot days (maximum Tair > 40°C). We hypothesized that on hot days plants with ample water access would exhibit reduced Anet and use transpirational cooling leading to stomatal decoupling, whereas plants with limited water access would rely on other mechanisms to avoid lethal temperatures. Instead, evidence for stomatal decoupling was found regardless of plant water access. Transpiration of well-watered plants was 23% higher than model predictions during heatwaves, which effectively cooled leaves below air temperature. For hotter, droughted plants, the increase in transpiration during heatwaves was even more pronounced-gs was 77% higher than model predictions. Stomatal decoupling was found for most broadleaf evergreen and broadleaf deciduous species at the urban site, including some wilted trees with limited water access. Decoupling may simply be a passive consequence of the physical effects of high temperature on plant leaves through increased cuticular conductance of water vapor, or stomatal decoupling may be an adaptive response that is actively regulated by stomatal opening under high temperatures. This temperature response is not yet included in any land surface model, suggesting that model predictions of evapotranspiration may be underpredicted at high temperature and high VPD.
Collapse
Affiliation(s)
- Renée M Marchin
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Belinda E Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Mark G Tjoelker
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - David S Ellsworth
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| |
Collapse
|
13
|
Potkay A, Feng X. Dynamically optimizing stomatal conductance for maximum turgor-driven growth over diel and seasonal cycles. AOB PLANTS 2023; 15:plad044. [PMID: 37899972 PMCID: PMC10601388 DOI: 10.1093/aobpla/plad044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 07/04/2023] [Indexed: 10/31/2023]
Abstract
Stomata have recently been theorized to have evolved strategies that maximize turgor-driven growth over plants' lifetimes, finding support through steady-state solutions in which gas exchange, carbohydrate storage and growth have all reached equilibrium. However, plants do not operate near steady state as plant responses and environmental forcings vary diurnally and seasonally. It remains unclear how gas exchange, carbohydrate storage and growth should be dynamically coordinated for stomata to maximize growth. We simulated the gas exchange, carbohydrate storage and growth that dynamically maximize growth diurnally and annually. Additionally, we test whether the growth-optimization hypothesis explains nocturnal stomatal opening, particularly through diel changes in temperature, carbohydrate storage and demand. Year-long dynamic simulations captured realistic diurnal and seasonal patterns in gas exchange as well as realistic seasonal patterns in carbohydrate storage and growth, improving upon unrealistic carbohydrate responses in steady-state simulations. Diurnal patterns of carbohydrate storage and growth in day-long simulations were hindered by faulty modelling assumptions of cyclic carbohydrate storage over an individual day and synchronization of the expansive and hardening phases of growth, respectively. The growth-optimization hypothesis cannot currently explain nocturnal stomatal opening unless employing corrective 'fitness factors' or reframing the theory in a probabilistic manner, in which stomata adopt an inaccurate statistical 'memory' of night-time temperature. The growth-optimization hypothesis suggests that diurnal and seasonal patterns of stomatal conductance are driven by a dynamic carbon-use strategy that seeks to maintain homeostasis of carbohydrate reserves.
Collapse
Affiliation(s)
- Aaron Potkay
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Twin Cities, 500 Pillsbury Drive S.E., Minneapolis, MN 55455, USA
- Saint Anthony Falls Laboratory, University of Minnesota, Twin Cities, 23rd Ave SE, Minneapolis, MN 55414, USA
| | - Xue Feng
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Twin Cities, 500 Pillsbury Drive S.E., Minneapolis, MN 55455, USA
- Saint Anthony Falls Laboratory, University of Minnesota, Twin Cities, 23rd Ave SE, Minneapolis, MN 55414, USA
| |
Collapse
|