1
|
Tissink M, Radolinski J, Reinthaler D, Venier S, Pötsch EM, Schaumberger A, Bahn M. Individual Versus Combined Effects of Warming, Elevated CO 2 and Drought on Grassland Water Uptake and Fine Root Traits. PLANT, CELL & ENVIRONMENT 2025; 48:2083-2098. [PMID: 39552504 PMCID: PMC11788968 DOI: 10.1111/pce.15274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/19/2024]
Abstract
Increasing warming, atmospheric CO2 and drought are expected to change the water dynamics of terrestrial ecosystems. Yet, limited knowledge exists about how the interactive effects of these factors will affect grassland water uptake, and whether adaptations in fine root production and traits will alter water uptake capacity. In a managed C3 grassland, we tested the individual and combined effects of warming (+3°C), elevated CO2 (eCO2; +300 ppm) and drought on root water uptake (RWU) as well as on fine root production, trait adaptation, and fine root-to-shoot production ratios, and their relationships with RWU capacity. High temperatures, amplified by warming, exacerbated RWU reductions under drought, with negligible water-sparing effects from eCO2. Drought, both under current and future (warming, eCO2) climatic conditions, shifted RWU towards deeper soil layers. Overall, RWU capacity related positively to fine root production and specific root length (SRL), and negatively to mean root diameters. Warming effects on traits (reduced SRL, increased diameter) and the ratio of fine root-to-shoot production (increased) were offset by eCO2. We conclude that under warmer future conditions, irrespective of shifts in water sourcing, it is particularly hot droughts that will lead to increasingly severe restrictions of grassland water dynamics.
Collapse
Affiliation(s)
- Maud Tissink
- Department of EcologyUniversität InnsbruckInnsbruckAustria
| | - Jesse Radolinski
- Department of EcologyUniversität InnsbruckInnsbruckAustria
- Department of Environmental Science and TechnologyUniversity of MarylandCollege ParkMarylandUSA
| | | | - Sarah Venier
- Department of EcologyUniversität InnsbruckInnsbruckAustria
| | - Erich M. Pötsch
- Agricultural Research and Education Centre (AREC), Raumberg‐GumpensteinIrdningAustria
| | - Andreas Schaumberger
- Agricultural Research and Education Centre (AREC), Raumberg‐GumpensteinIrdningAustria
| | - Michael Bahn
- Department of EcologyUniversität InnsbruckInnsbruckAustria
| |
Collapse
|
2
|
Brodribb TJ, Bourbia I. Deadly predictions in trees. TREE PHYSIOLOGY 2025; 45:tpae155. [PMID: 39658203 DOI: 10.1093/treephys/tpae155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/22/2024] [Accepted: 12/04/2024] [Indexed: 12/12/2024]
Affiliation(s)
- Timothy J Brodribb
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Australia
| | - Ibrahim Bourbia
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Australia
| |
Collapse
|
3
|
Westoby M. Trait-based ecology, trait-free ecology, and in between. THE NEW PHYTOLOGIST 2025; 245:33-39. [PMID: 39410833 DOI: 10.1111/nph.20197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 09/28/2024] [Indexed: 12/06/2024]
Abstract
Trait-based ecology has become a popular phrase. But all species have traits, and their contributions to ecological processes are governed by those traits. So then, is not all ecology trait-based? Actually, there do exist areas of ecology that are consciously trait-free, such as neutral theory and species abundance distributions. But much of ecology could be considered actually or potentially trait-based. A spectrum is described, from trait-free through trait-implicit and trait-explicit to trait-centric. Trait-centric ecology includes positioning ecological strategies along trait dimensions, with a view to inferring commonalities and to generalizing from species studied in more detail. Trait-explicit includes physiological and functional ecology, and areas of community ecology and ecosystem function that invoke traits. Trait-implicit topics are those where it is important that species are different, but formulations did not initially characterize the differences via traits. Subsequently, strands within these trait-implicit topics have often moved towards making use of species traits, so the boundary with trait-explicit is permeable. Trait-based ecology is productive because of the dialogue between understanding processes in detail, via traits that relate most closely, and generalizing across many species, via traits that can be compared widely. An enduring key question for trait-based ecology is which traits for which processes.
Collapse
Affiliation(s)
- Mark Westoby
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| |
Collapse
|
4
|
Laughlin DC. Unifying functional and population ecology to test the adaptive value of traits. Biol Rev Camb Philos Soc 2024; 99:1976-1991. [PMID: 38855941 DOI: 10.1111/brv.13107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/11/2024]
Abstract
Plant strategies are phenotypes shaped by natural selection that enable populations to persist in a given environment. Plant strategy theory is essential for understanding the assembly of plant communities, predicting plant responses to climate change, and enhancing the restoration of our degrading biosphere. However, models of plant strategies vary widely and have tended to emphasize either functional traits or life-history traits at the expense of integrating both into a general framework to improve our ecological and evolutionary understanding of plant form and function. Advancing our understanding of plant strategies will require investment in two complementary research agendas that together will unify functional ecology and population ecology. First, we must determine what is phenotypically possible by quantifying the dimensionality of plant traits. This step requires dense taxonomic sampling of traits on species representing the broad diversity of phylogenetic clades, environmental gradients, and geographical regions found across Earth. It is important that we continue to sample traits locally and share data globally to fill biased gaps in trait databases. Second, we must test the power of traits for explaining species distributions, demographic rates, and population growth rates across gradients of resource limitation, disturbance regimes, temperature, vegetation density, and frequencies of other strategies. This step requires thoughtful, theory-driven empiricism. Reciprocal transplant experiments beyond the native range and synthetic demographic modelling are the most powerful methods to determine how trait-by-environment interactions influence fitness. Moving beyond easy-to-measure traits and evaluating the traits that are under the strongest ecological selection within different environmental contexts will improve our understanding of plant adaptations. Plant strategy theory is poised to (i) unpack the multiple dimensions of productivity and disturbance gradients and differentiate adaptations to climate and resource limitation from adaptations to disturbance, (ii) distinguish between the fundamental and realized niches of phenotypes, and (iii) articulate the distinctions and relationships between functional traits and life-history traits.
Collapse
Affiliation(s)
- Daniel C Laughlin
- Botany Department, University of Wyoming, Laramie, Wyoming, 82071, USA
| |
Collapse
|
5
|
Beccari E, Carmona CP. Aboveground and belowground sizes are aligned in the unified spectrum of plant form and function. Nat Commun 2024; 15:9199. [PMID: 39448582 PMCID: PMC11502772 DOI: 10.1038/s41467-024-53180-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024] Open
Abstract
Understanding the global variation of plant strategies is essential for unravelling eco-evolutionary processes and ecosystem functions. Variation in ten fundamental aboveground and fine-root traits is summarised in four dimensions, the first of which relates to aboveground plant size. However, there is no consensus about how root size fits within this scheme. Here, we add rooting depth and lateral spread, compiling a set of twelve key traits that define the fundamental investments of plants in growth, reproduction, and survival. We examine whether the inclusion of root size alters the dimensionality and structure of trait correlations defining plant functional strategies. Our results show that including root size traits does not alter the fundamental structure and dimensionality of the plant functional space, regardless of trait completeness and phylogenetic relatedness. Plant size defines a single continuum of allometric investments at the global scale, independent from leaf and root economic strategies.
Collapse
Affiliation(s)
- Eleonora Beccari
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, Tartu, Estonia.
| | - Carlos P Carmona
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, Tartu, Estonia
| |
Collapse
|
6
|
Zambonini D, Savi T, Rosner S, Petit G. Consistent decrease in conifer embolism resistance from the stem apex to base resulting from axial trends in tracheid and pit traits. FRONTIERS IN PLANT SCIENCE 2024; 15:1414448. [PMID: 38988629 PMCID: PMC11234846 DOI: 10.3389/fpls.2024.1414448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/03/2024] [Indexed: 07/12/2024]
Abstract
Introduction Drought-induced embolism formation in conifers is associated with several tracheid and pit traits, which vary in parallel from stem apex to base. We tested whether this axial anatomical variability is associated with a progressive variation in embolism vulnerability along the stem from apex to base. Methods We assessed the tracheid hydraulic diameter (Dh), mean pit membrane area (PMA) and the xylem pressure at 50% loss of conductivity (P50) on longitudinal stem segments extracted at different distances from the stem apex (DFA) in a Picea abies and an Abies alba tree. Results In both trees, Dh and PMA scaled with DFA 0.2. P50 varied for more than 3 MPa from the treetop to the stem base, according to a scaling of -P50 with DFA-0.2 . The largest Dh, PMA and P50 variation occurred for DFA<1.5 m. PMA and Dh scaled more than isometrically (exponent b=1.2). Pit traits vary proportionally with tracheid lumen diameter. Discussion and conclusions Apex-to-base trends in tracheid and pit traits, along with variations in P50, suggest a strong structure-function relationship that is influenced by DFA. Although the effect of DFA on P50 has not been extensively explored previously, we propose that analyzing the relationship between P50 and DFA could be crucial for a comprehensive assessment of embolism vulnerability at the individual level.
Collapse
Affiliation(s)
- Dario Zambonini
- Dept. Territorio e Sistemi Agro-Forestali, Università degli Studi di Padova, Legnaro (PD), Italy
| | - Tadeja Savi
- Department of Integrative Biology and Biodiversity Research, University of Natural Resources and Life Sciences, Vienna (BOKU), Institute of Botany, Vienna, Austria
| | - Sabine Rosner
- Department of Integrative Biology and Biodiversity Research, University of Natural Resources and Life Sciences, Vienna (BOKU), Institute of Botany, Vienna, Austria
| | - Giai Petit
- Dept. Territorio e Sistemi Agro-Forestali, Università degli Studi di Padova, Legnaro (PD), Italy
| |
Collapse
|
7
|
Bachofen C, Tumber-Dávila SJ, Mackay DS, McDowell NG, Carminati A, Klein T, Stocker BD, Mencuccini M, Grossiord C. Tree water uptake patterns across the globe. THE NEW PHYTOLOGIST 2024; 242:1891-1910. [PMID: 38649790 DOI: 10.1111/nph.19762] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/13/2024] [Indexed: 04/25/2024]
Abstract
Plant water uptake from the soil is a crucial element of the global hydrological cycle and essential for vegetation drought resilience. Yet, knowledge of how the distribution of water uptake depth (WUD) varies across species, climates, and seasons is scarce relative to our knowledge of aboveground plant functions. With a global literature review, we found that average WUD varied more among biomes than plant functional types (i.e. deciduous/evergreen broadleaves and conifers), illustrating the importance of the hydroclimate, especially precipitation seasonality, on WUD. By combining records of rooting depth with WUD, we observed a consistently deeper maximum rooting depth than WUD with the largest differences in arid regions - indicating that deep taproots act as lifelines while not contributing to the majority of water uptake. The most ubiquitous observation across the literature was that woody plants switch water sources to soil layers with the highest water availability within short timescales. Hence, seasonal shifts to deep soil layers occur across the globe when shallow soils are drying out, allowing continued transpiration and hydraulic safety. While there are still significant gaps in our understanding of WUD, the consistency across global ecosystems allows integration of existing knowledge into the next generation of vegetation process models.
Collapse
Affiliation(s)
- Christoph Bachofen
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, 1015, Lausanne, Switzerland
- Functional Plant Ecology, Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, 1015, Lausanne, Switzerland
| | - Shersingh Joseph Tumber-Dávila
- Department of Environmental Studies, Dartmouth College, Hanover, NH, 03755, USA
- Harvard Forest, Harvard University, Petersham, MA, 01316, USA
| | - D Scott Mackay
- Department of Geography, University at Buffalo, Buffalo, NY, 14261, USA
| | - Nate G McDowell
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- School of Biological Sciences, Washington State University, Pullman, WA, 99163, USA
| | - Andrea Carminati
- Physics of Soils and Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, 8092, Zürich, Switzerland
| | - Tamir Klein
- Plant & Environmental Sciences Department, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Benjamin D Stocker
- Institute of Geography, University of Bern, Bern, 3013, Switzerland
- Oeschger Centre for Climate Change Research, University of Bern, 3013, Bern, Switzerland
| | - Maurizio Mencuccini
- CREAF, Cerdanyola del Vallès, Barcelona, 08193, Spain
- ICREA at CREAF, Cerdanyola del Vallès, Barcelona, 08193, Spain
| | - Charlotte Grossiord
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, 1015, Lausanne, Switzerland
- Functional Plant Ecology, Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, 1015, Lausanne, Switzerland
| |
Collapse
|