1
|
Pargin E, Roach MJ, Skye A, Papudeshi B, Inglis LK, Mallawaarachchi V, Grigson SR, Harker C, Edwards RA, Giles SK. The human gut virome: composition, colonization, interactions, and impacts on human health. Front Microbiol 2023; 14:963173. [PMID: 37293229 PMCID: PMC10244655 DOI: 10.3389/fmicb.2023.963173] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 05/08/2023] [Indexed: 06/10/2023] Open
Abstract
The gut virome is an incredibly complex part of the gut ecosystem. Gut viruses play a role in many disease states, but it is unknown to what extent the gut virome impacts everyday human health. New experimental and bioinformatic approaches are required to address this knowledge gap. Gut virome colonization begins at birth and is considered unique and stable in adulthood. The stable virome is highly specific to each individual and is modulated by varying factors such as age, diet, disease state, and use of antibiotics. The gut virome primarily comprises bacteriophages, predominantly order Crassvirales, also referred to as crAss-like phages, in industrialized populations and other Caudoviricetes (formerly Caudovirales). The stability of the virome's regular constituents is disrupted by disease. Transferring the fecal microbiome, including its viruses, from a healthy individual can restore the functionality of the gut. It can alleviate symptoms of chronic illnesses such as colitis caused by Clostridiodes difficile. Investigation of the virome is a relatively novel field, with new genetic sequences being published at an increasing rate. A large percentage of unknown sequences, termed 'viral dark matter', is one of the significant challenges facing virologists and bioinformaticians. To address this challenge, strategies include mining publicly available viral datasets, untargeted metagenomic approaches, and utilizing cutting-edge bioinformatic tools to quantify and classify viral species. Here, we review the literature surrounding the gut virome, its establishment, its impact on human health, the methods used to investigate it, and the viral dark matter veiling our understanding of the gut virome.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Sarah K. Giles
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
2
|
Liu Q, Xu Z, Dai M, Su Q, Leung Chan FK, Ng SC. Faecal microbiota transplantations and the role of bacteriophages. Clin Microbiol Infect 2022:S1198-743X(22)00579-1. [PMID: 36414201 DOI: 10.1016/j.cmi.2022.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/06/2022] [Accepted: 11/13/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Bacteriophages are a major component of the human gut microbiota. Emerging evidence suggests that gut bacteriophages play an important role in the intricate dynamics with bacteria, and their transfer may be associated with the efficacy of faecal microbiota transplantation (FMT). OBJECTIVES To summarize our current knowledge of the changes in gut bacteriophage communities during FMT and their association with FMT outcome. SOURCES PubMed, Web of Science, and Google Scholar were searched for articles on FMT and bacteriophages published between May 2013 and January 2022. CONTENT Preclinical and clinical studies have reported associations between gut bacteriophage profiles and FMT. FMT was associated with donor-specific engraftment of bacteriophages, characterized by increased viral diversity and richness, and the bacteriophage composition resembled the donor's profile after FMT. Limited studies showed that cure after FMT was more likely when an increased fraction of the recipient enteric virome was occupied by donor-derived taxa, including Caudovirales in Clostridioides difficile infection. Faecal virome transplant involving the transfer of the gut virome communities alone may also induce phenotypical and microbiome improvement in various diseases. IMPLICATIONS The accumulating evidence that bacteriophages play roles in FMT efficacy has attracted considerable interest. Better characterization of bacteriophages and an understanding of their underlying mechanisms in FMT are warranted.
Collapse
Affiliation(s)
- Qin Liu
- Microbiota I-Center, Hong Kong SAR, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China; Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zhilu Xu
- Microbiota I-Center, Hong Kong SAR, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China; Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Min Dai
- Microbiota I-Center, Hong Kong SAR, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China; Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Qi Su
- Microbiota I-Center, Hong Kong SAR, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China; Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Francis Ka Leung Chan
- Microbiota I-Center, Hong Kong SAR, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China; Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Siew C Ng
- Microbiota I-Center, Hong Kong SAR, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China; Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
3
|
Boix-Amorós A, Monaco H, Sambataro E, Clemente JC. Novel technologies to characterize and engineer the microbiome in inflammatory bowel disease. Gut Microbes 2022; 14:2107866. [PMID: 36104776 PMCID: PMC9481095 DOI: 10.1080/19490976.2022.2107866] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We present an overview of recent experimental and computational advances in technology used to characterize the microbiome, with a focus on how these developments improve our understanding of inflammatory bowel disease (IBD). Specifically, we present studies that make use of flow cytometry and metabolomics assays to provide a functional characterization of microbial communities. We also describe computational methods for strain-level resolution, temporal series, mycobiome and virome data, co-occurrence networks, and compositional data analysis. In addition, we review novel techniques to therapeutically manipulate the microbiome in IBD. We discuss the benefits and drawbacks of these technologies to increase awareness of specific biases, and to facilitate a more rigorous interpretation of results and their potential clinical application. Finally, we present future lines of research to better characterize the relation between microbial communities and IBD pathogenesis and progression.
Collapse
Affiliation(s)
- Alba Boix-Amorós
- Department of Genetics and Genomic Sciences, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai. New York, NY, USA
| | - Hilary Monaco
- Department of Genetics and Genomic Sciences, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai. New York, NY, USA
| | - Elisa Sambataro
- Department of Biological Sciences, CUNY Hunter College, New York, NY, USA
| | - Jose C. Clemente
- Department of Genetics and Genomic Sciences, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai. New York, NY, USA,CONTACT Jose C. Clemente Department of Genetics and Genomic Sciences, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai. New York, NY10029USA
| |
Collapse
|
4
|
Mumu M, Das A, Emran TB, Mitra S, Islam F, Roy A, Karim MM, Das R, Park MN, Chandran D, Sharma R, Khandaker MU, Idris AM, Kim B. Fucoxanthin: A Promising Phytochemical on Diverse Pharmacological Targets. Front Pharmacol 2022; 13:929442. [PMID: 35983376 PMCID: PMC9379326 DOI: 10.3389/fphar.2022.929442] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/23/2022] [Indexed: 12/24/2022] Open
Abstract
Fucoxanthin (FX) is a special carotenoid having an allenic bond in its structure. FX is extracted from a variety of algae and edible seaweeds. It has been proved to contain numerous health benefits and preventive effects against diseases like diabetes, obesity, liver cirrhosis, malignant cancer, etc. Thus, FX can be used as a potent source of both pharmacological and nutritional ingredient to prevent infectious diseases. In this review, we gathered the information regarding the current findings on antimicrobial, antioxidant, anti-inflammatory, skin protective, anti-obesity, antidiabetic, hepatoprotective, and other properties of FX including its bioavailability and stability characteristics. This review aims to assist further biochemical studies in order to develop further pharmaceutical assets and nutritional products in combination with FX and its various metabolites.
Collapse
Affiliation(s)
- Mumtaza Mumu
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Ayan Das
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Arpita Roy
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Md. Mobarak Karim
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Rajib Das
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Moon Nyeo Park
- Department of Pathology College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore, India
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, Bandar Sunway, Malaysia
| | - Abubakr M. Idris
- Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
| | - Bonglee Kim
- Department of Pathology College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
5
|
Roles of the gut virome and mycobiome in faecal microbiota transplantation. Lancet Gastroenterol Hepatol 2022; 7:472-484. [DOI: 10.1016/s2468-1253(21)00303-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/02/2021] [Accepted: 08/10/2021] [Indexed: 12/16/2022]
|
6
|
Waller KMJ, Leong RW, Paramsothy S. An update on fecal microbiota transplantation for the treatment of gastrointestinal diseases. J Gastroenterol Hepatol 2022; 37:246-255. [PMID: 34735024 DOI: 10.1111/jgh.15731] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 12/13/2022]
Abstract
Our understanding of the microbiome and its implications for human health and disease continues to develop. Fecal microbiota transplantation (FMT) is now an established treatment for recurrent Clostridioides difficile infection. There is also increasing evidence for the efficacy of FMT in inducing remission for mild-moderate ulcerative colitis. However, for other indications, data for FMT are limited, with randomized controlled trials rare, typically small and often conflicting. Studies are continuing to explore the role of FMT for many other conditions, including Crohn's disease, functional gut disorders, metabolic syndrome, modulating responses to chemotherapy, eradication of multidrug resistant organisms, and the gut-brain axis. In light of safety, logistical, and regulatory challenges, there is a move to standardized products including narrow spectrum consortia. However, the mechanisms underpinning FMT remain incompletely understood, including the role of non-bacterial components, which may limit success of novel microbial approaches.
Collapse
Affiliation(s)
- Karen M J Waller
- Gastroenterology and Liver Services, Concord Repatriation General Hospital, Sydney, New South Wales, Australia.,Concord Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Rupert W Leong
- Gastroenterology and Liver Services, Concord Repatriation General Hospital, Sydney, New South Wales, Australia.,Concord Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Sudarshan Paramsothy
- Gastroenterology and Liver Services, Concord Repatriation General Hospital, Sydney, New South Wales, Australia.,Concord Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
7
|
Bai GH, Lin SC, Hsu YH, Chen SY. The Human Virome: Viral Metagenomics, Relations with Human Diseases, and Therapeutic Applications. Viruses 2022; 14:278. [PMID: 35215871 PMCID: PMC8876576 DOI: 10.3390/v14020278] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 02/07/2023] Open
Abstract
The human body is colonized by a wide range of microorganisms. The field of viromics has expanded since the first reports on the detection of viruses via metagenomic sequencing in 2002. With the continued development of reference materials and databases, viral metagenomic approaches have been used to explore known components of the virome and discover new viruses from various types of samples. The virome has attracted substantial interest since the outbreak of the coronavirus disease 2019 (COVID-19) pandemic. Increasing numbers of studies and review articles have documented the diverse virome in various sites in the human body, as well as interactions between the human host and the virome with regard to health and disease. However, there have been few studies of direct causal relationships. Viral metagenomic analyses often lack standard references and are potentially subject to bias. Moreover, most virome-related review articles have focused on the gut virome and did not investigate the roles of the virome in other sites of the body in human disease. This review presents an overview of viral metagenomics, with updates regarding the relations between alterations in the human virome and the pathogenesis of human diseases, recent findings related to COVID-19, and therapeutic applications related to the human virome.
Collapse
Affiliation(s)
- Geng-Hao Bai
- School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan;
- Department of Education, Taipei Medical University Hospital, Taipei City 11031, Taiwan
| | - Sheng-Chieh Lin
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan;
- Department of Pediatrics, Division of Allergy, Asthma and Immunology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Yi-Hsiang Hsu
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA;
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Shih-Yen Chen
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan;
- Department of Pediatrics, Division of Pediatric Gastroenterology and Hepatology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| |
Collapse
|
8
|
Manrique P, Zhu Y, van der Oost J, Herrema H, Nieuwdorp M, de Vos WM, Young M. Gut bacteriophage dynamics during fecal microbial transplantation in subjects with metabolic syndrome. Gut Microbes 2022; 13:1-15. [PMID: 33794724 PMCID: PMC8023239 DOI: 10.1080/19490976.2021.1897217] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Metabolic Syndrome (MetS) is a growing public health concern worldwide. Individuals with MetS have an increased risk for cardiovascular (CV) disease and type 2 diabetes (T2D). These diseases - in part preventable with the treatment of MetS - increase the chances of premature death and pose a great economic burden to health systems. A healthy gut microbiota is associated with a reduction in MetS, T2D, and CV disease. Treatment of MetS with fecal microbiota transplantation (FMT) can be effective, however, its success rate is intermediate and difficult to predict. Because bacteriophages significantly affect the microbiota membership and function, the aim of this pilot study was to explore the dynamics of the gut bacteriophage community after FMT in MetS subjects. We performed a longitudinal study of stool bacteriophages from healthy donors and MetS subjects before and after FMT treatment. Subjects were assigned to either a control group (self-stool transplant, n = 3) or a treatment group (healthy-donor-stool transplant; n-recipients = 6, n-donors = 5). Stool samples were collected over an 18-week period and bacteriophage-like particles were purified and sequenced. We found that FMT from healthy donors significantly alters the gut bacteriophage community. Subjects with better clinical outcome clustered closer to the heathy donor group, suggesting that throughout the treatment, their bacteriophage community was more similar to healthy donors. Finally, we identified bacteriophage groups that could explain these differences and we examined their prevalence in individuals from a larger cohort of MetS FMT trial.Trial information- http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=2705; NTR 2705.
Collapse
Affiliation(s)
- Pilar Manrique
- Department of Microbiology & Immunology, Montana State University, Bozeman, MT, USA
| | - Yifan Zhu
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Hilde Herrema
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, AZ Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, AZ Amsterdam, The Netherlands
| | - Willem M. de Vos
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands,RPU Human Microbiology, University of Helsinki, Faculty of Medicine, Helsinki, Finland
| | - Mark Young
- Department of Plant Sciences & Plant Pathology, Montana State University, Bozeman, MT, USA,CONTACT Mark Young Department of Plant Sciences & Plant Pathology, Montana State University, P.O. Box 173150, Bozeman, MT59717-3150, USA
| |
Collapse
|
9
|
Garneau JR, Legrand V, Marbouty M, Press MO, Vik DR, Fortier LC, Sullivan MB, Bikard D, Monot M. High-throughput identification of viral termini and packaging mechanisms in virome datasets using PhageTermVirome. Sci Rep 2021; 11:18319. [PMID: 34526611 PMCID: PMC8443750 DOI: 10.1038/s41598-021-97867-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 08/27/2021] [Indexed: 11/13/2022] Open
Abstract
Viruses that infect bacteria (phages) are increasingly recognized for their importance in diverse ecosystems but identifying and annotating them in large-scale sequence datasets is still challenging. Although efficient scalable virus identification tools are emerging, defining the exact ends (termini) of phage genomes is still particularly difficult. The proper identification of termini is crucial, as it helps in characterizing the packaging mechanism of bacteriophages and provides information on various aspects of phage biology. Here, we introduce PhageTermVirome (PTV) as a tool for the easy and rapid high-throughput determination of phage termini and packaging mechanisms using modern large-scale metagenomics datasets. We successfully tested the PTV algorithm on a mock virome dataset and then used it on two real virome datasets to achieve the rapid identification of more than 100 phage termini and packaging mechanisms, with just a few hours of computing time. Because PTV allows the identification of free fully formed viral particles (by recognition of termini present only in encapsidated DNA), it can also complement other virus identification softwares to predict the true viral origin of contigs in viral metagenomics datasets. PTV is a novel and unique tool for high-throughput characterization of phage genomes, including phage termini identification and characterization of genome packaging mechanisms. This software should help researchers better visualize, map and study the virosphere. PTV is freely available for downloading and installation at https://gitlab.pasteur.fr/vlegrand/ptv.
Collapse
Affiliation(s)
| | - Véronique Legrand
- Infrastructure et Ingénierie Scientifique, Institut Pasteur, 75015, Paris, France
| | - Martial Marbouty
- Institut Pasteur, Unité Régulation Spatiale des Génomes, UMR 3525, CNRS, 75015, Paris, France
| | | | - Dean R Vik
- Department of Microbiology, Ohio State University, Columbus, OH, 43210, USA
| | - Louis-Charles Fortier
- Faculty of Medicine and Health Sciences, Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
| | - Matthew B Sullivan
- Department of Microbiology, Ohio State University, Columbus, OH, 43210, USA
| | - David Bikard
- Département de Microbiologie, Institut Pasteur, Groupe Biologie de Synthèse, 75015, Paris, France
| | - Marc Monot
- Biomics Platform, C2RT, Institut Pasteur, 75015, Paris, France.
| |
Collapse
|
10
|
Blesl A, Stadlbauer V. The Gut-Liver Axis in Cholestatic Liver Diseases. Nutrients 2021; 13:nu13031018. [PMID: 33801133 PMCID: PMC8004151 DOI: 10.3390/nu13031018] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/12/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
The gut-liver axis describes the physiological interplay between the gut and the liver and has important implications for the maintenance of health. Disruptions of this equilibrium are an important factor in the evolution and progression of many liver diseases. The composition of the gut microbiome, the gut barrier, bacterial translocation, and bile acid metabolism are the key features of this cycle. Chronic cholestatic liver diseases include primary sclerosing cholangitis, the generic term secondary sclerosing cholangitis implying the disease secondary sclerosing cholangitis in critically ill patients and primary biliary cirrhosis. Pathophysiology of these diseases is not fully understood but seems to be multifactorial. Knowledge about the alterations of the gut-liver axis influencing the pathogenesis and the outcome of these diseases has considerably increased. Therefore, this review aims to describe the function of the healthy gut-liver axis and to sum up the pathological changes in these cholestatic liver diseases. The review compromises the actual level of knowledge about the gut microbiome (including the mycobiome and the virome), the gut barrier and the consequences of increased gut permeability, the effects of bacterial translocation, and the influence of bile acid composition and pool size in chronic cholestatic liver diseases. Furthermore, therapeutic implications and future scientific objectives are outlined.
Collapse
Affiliation(s)
- Andreas Blesl
- Division for Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria;
- Correspondence:
| | - Vanessa Stadlbauer
- Division for Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria;
- Center for Biomarker Research in Medicine (CBmed), 8010 Graz, Austria
| |
Collapse
|
11
|
Тикунов АЮ, Морозов ВВ, Швалов АН, Бардашева АВ, Шрайнер ЕВ, Максимова ОА, Волошина ИО, Морозова ВВ, Власов ВВ, Тикунова НВ. [Fecal microbiome change in patients with ulcerative colitis after fecal microbiota transplantation]. Vavilovskii Zhurnal Genet Selektsii 2021; 24:168-175. [PMID: 33659796 PMCID: PMC7716530 DOI: 10.18699/vj20.610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Intestinal human microbiota is a dynamic system that is under the pressures of its host organism and external factors. Microbiota disruption caused by these factors can lead to severe diseases including inflammatory and oncological diseases of the gastrointestinal tract. One of the possible approaches in managing the intestinal microbiota is fecal microbiota transplantation (FT) - transfer of the microbiota from the stool of a healthy donor to the intestinal tract of a recipient patient. Currently, this procedure is recognized as an efficacious method to normalize the intestinal microbiota mainly in inflammatory diseases of the gastrointestinal tract. In Russia, pilot studies of the effectiveness of FT in patients with ulcerative colitis have been conducted for several years, and these studies were started in Novosibirsk. The aim of this study was to assess the change of intestinal microbiome in 20 patients with ulcerative colitis after a single FT procedure. The main method is a comparative analysis of 16S ribosomal RNA sequence libraries constructed using fecal samples obtained from patients with ulcerative colitis before and after FT and sequenced on the Illumina MiSeq platform. The obtained results showed that FT led to an increase in average biodiversity in samples after FT compared to samples before FT; however, the difference was not significant. In the samples studied, the proportion of Firmicutes sequences, the major gastrointestinal microbiota of healthy people, was decreased (~32 % vs. >70 %), while the proportion of Proteobacteria sequences was increased (>9 % vs. <5 %). In some samples collected before FT, sequences of pathogenic Firmicutes and Proteobacteria were detected, including Acinetobacter spp., Enterococcus spp., Klebsiella pneumoniae, Proteus mirabilis, Staphylococcus aureus, Stenotrophomonas maltophylia, Streptococcus spp. In most cases, the proportion of such sequences after FT substantially decreased in appropriate samples. The exception was the Clostridium difficile sequences, which accounted for <0.5 % of the sequences in samples from almost half of the patients and after FT, the share of such C. difficile sequences was significantly reduced only in samples from three patients. It should be noted that the proportion of Lactobacillus spp. increased ten-fold and their species composition significantly expanded. According to the obtained results, a preliminary conclusion can be made that even a single FT procedure can lead to an increase in the biodiversity of the gastrointestinal microbiota in patients and to the optimization of the taxonomic composition of the microbiota.
Collapse
Affiliation(s)
- А Ю Тикунов
- Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук, Новосибирск, Россия
| | - В В Морозов
- Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук, Новосибирск, Россия
| | - А Н Швалов
- Государственный научный центр вирусологии и биотехнологии «Вектор» Роспотребнадзора Российской Федерации, р. п. Кольцово, Новосибирская область, Россия 3 ООО «Центр персонализированной
| | - А В Бардашева
- Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук, Новосибирск, Россия
| | - Е В Шрайнер
- Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук, Новосибирск, Россия
| | - О А Максимова
- ООО «Центр персонализированной медицины», Новосибирск, Россия
| | - И О Волошина
- ООО «Центр персонализированной медицины», Новосибирск, Россия
| | - В В Морозова
- Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук, Новосибирск, Россия
| | - В В Власов
- Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук, Новосибирск, Россия
| | - Н В Тикунова
- Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук, Новосибирск, Россия
| |
Collapse
|
12
|
Faecal microbiota transplantation for Clostridioides difficile: mechanisms and pharmacology. Nat Rev Gastroenterol Hepatol 2021; 18:67-80. [PMID: 32843743 DOI: 10.1038/s41575-020-0350-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/07/2020] [Indexed: 12/14/2022]
Abstract
Faecal microbiota transplantation (FMT) has emerged as a remarkably successful treatment for recurrent Clostridioides difficile infection that cannot be cured with antibiotics alone. Understanding the complex biology and pathogenesis of C. difficile infection, which we discuss in this Perspective, is essential for understanding the potential mechanisms by which FMT cures this disease. Although FMT has already entered clinical practice, different microbiota-based products are currently in clinical trials and are vying for regulatory approval. However, all these therapeutics belong to an entirely new class of agents that require the development of a new branch of pharmacology. Characterization of microbiota therapeutics uses novel and rapidly evolving technologies and requires incorporation of microbial ecology concepts. Here, we consider FMT within a pharmacological framework, including its essential elements: formulation, pharmacokinetics and pharmacodynamics. From this viewpoint, multiple gaps in knowledge become apparent, identifying areas that require systematic research. This knowledge is needed to help clinical providers use microbiota therapeutics appropriately and to facilitate development of next-generation microbiota products with improved safety and efficacy. The discussion here is limited to FMT as a representative of microbiota therapeutics and recurrent C. difficile as the indication; however, consideration of the intrinsic basic principles is relevant to this entire class of microbiota-based therapeutics.
Collapse
|
13
|
Gregory AC, Zablocki O, Zayed AA, Howell A, Bolduc B, Sullivan MB. The Gut Virome Database Reveals Age-Dependent Patterns of Virome Diversity in the Human Gut. Cell Host Microbe 2020; 28:724-740.e8. [PMID: 32841606 PMCID: PMC7443397 DOI: 10.1016/j.chom.2020.08.003] [Citation(s) in RCA: 370] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/14/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022]
Abstract
The gut microbiome profoundly affects human health and disease, and their infecting viruses are likely as important, but often missed because of reference database limitations. Here, we (1) built a human Gut Virome Database (GVD) from 2,697 viral particle or microbial metagenomes from 1,986 individuals representing 16 countries, (2) assess its effectiveness, and (3) report a meta-analysis that reveals age-dependent patterns across healthy Westerners. The GVD contains 33,242 unique viral populations (approximately species-level taxa) and improves average viral detection rates over viral RefSeq and IMG/VR nearly 182-fold and 2.6-fold, respectively. GVD meta-analyses show highly personalized viromes, reveal that inter-study variability from technical artifacts is larger than any "disease" effect at the population level, and document how viral diversity changes from human infancy into senescence. Together, this compact foundational resource, these standardization guidelines, and these meta-analysis findings provide a systematic toolkit to help maximize our understanding of viral roles in health and disease.
Collapse
Affiliation(s)
- Ann C Gregory
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
| | - Olivier Zablocki
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA; Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - Ahmed A Zayed
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA; Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - Allison Howell
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
| | - Benjamin Bolduc
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA; Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - Matthew B Sullivan
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA; Department of Civil, Environmental and Geodetic Engineering, Ohio State University, Columbus, OH 43210, USA; Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
14
|
Phages to shape the gut microbiota? Curr Opin Biotechnol 2020; 68:89-95. [PMID: 33176253 DOI: 10.1016/j.copbio.2020.09.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 12/13/2022]
Abstract
The concept of (bacterio)phage therapy is simple; target the phage to the bacterial pathogen causing disease. As phages are natural killers of bacteria, one could expect this to be an easy task. However, when it comes to phage therapy within the gut, it might not be quite that simple. Already without exogenous intervention, a multitude of phage-bacterial interactions occur within the human gut, some of which might play a direct role in disease progression. In this perspective, we aim to summarise the current understanding of phages within our gut, moving from infancy, adulthood, and then into disease progression. We then highlight recent advances in phage-based interventions, both conventional phage therapy and the progressing field of whole virome transplant.
Collapse
|
15
|
Gutiérrez B, Domingo-Calap P. Phage Therapy in Gastrointestinal Diseases. Microorganisms 2020; 8:microorganisms8091420. [PMID: 32947790 PMCID: PMC7565598 DOI: 10.3390/microorganisms8091420] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal tract microbiota plays a key role in the regulation of the pathogenesis of several gastrointestinal diseases. In particular, the viral fraction, composed essentially of bacteriophages, influences homeostasis by exerting a selective pressure on the bacterial communities living in the tract. Gastrointestinal inflammatory diseases are mainly induced by bacteria, and have risen due to the emergence of antibiotic resistant strains. In the lack of effective treatments, phage therapy has been proposed as a clinical alternative to restore intestinal eubiosis, thanks to its immunomodulatory and bactericidal effect against bacterial pathogens, such as Clostridioides difficile in ulcerative colitis and invasive adherent Escherichia coli in Crohn’s disease. In addition, genetically modified temperate phages could be used to suppress the transcription of bacterial virulence factors. In this review, we will highlight the latest advances in research in the field, as well as the clinical trials based on phage therapy in the area of gastroenterology.
Collapse
Affiliation(s)
- Beatriz Gutiérrez
- Department of Genetics, Universitat de València, 46100 Valencia, Spain;
| | - Pilar Domingo-Calap
- Department of Genetics, Universitat de València, 46100 Valencia, Spain;
- Institute for Integrative Systems Biology, ISysBio, Universitat de València-CSIC, 46980 Valencia, Spain
- Correspondence: ; Tel.: +34-963-543-261
| |
Collapse
|
16
|
Sun X, Zhao H, Liu Z, Sun X, Zhang D, Wang S, Xu Y, Zhang G, Wang D. Modulation of Gut Microbiota by Fucoxanthin During Alleviation of Obesity in High-Fat Diet-Fed Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5118-5128. [PMID: 32309947 DOI: 10.1021/acs.jafc.0c01467] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Fucoxanthin (Fx), an allenic carotenoid from brown seaweeds or diatoms, has been demonstrated to prevent obesity. Gut dysbiosis and inflammation are two counted important incidence reasons of obesity and related diseases. In this paper, a mouse model induced by high-fat diet (HFD) was used to reveal the role of Fx in modulating intestinal homeostasis and treating obesity. In addition, 16S rRNA sequencing results inferred that Fx alleviated HFD-induced gut microbiota dysbiosis by significantly inhibiting the growth of obesity-/inflammation-related Lachnospiraceae and Erysipelotrichaceae while promoting the growth of Lactobacillus/Lactococcus, Bifidobacterium, and some butyrate-producing bacteria. The correlation analysis showed that some gut microbiota taxa were strongly correlated with obesity phenotypes and the inflammation level. In conclusion, dietary Fx has the potential to alleviate the development of obesity and related symptoms through mediating the composition of gut microbiota as demonstrated in mice. This study provides scientific evidence for the potential effects of Fx on obesity treatment.
Collapse
Affiliation(s)
- Xiaowen Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Hailong Zhao
- Research Vessel Center, Ocean University of China, Qingdao 266100, People's Republic of China
| | - Zonglin Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Xun Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Dandan Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Shuhui Wang
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao 266033, People's Republic of China
| | - Ying Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Guofang Zhang
- State Key Laboratory of Bioactive Seaweed Substances, Qingdao Brightmoon Seaweed Group Co Ltd, Qingdao 266400, People's Republic of China
| | - Dongfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, People's Republic of China
| |
Collapse
|
17
|
DuPont HL, Jiang ZD, DuPont AW, Utay NS. Abnormal Intestinal Microbiome in Medical Disorders and Potential Reversibility by Fecal Microbiota Transplantation. Dig Dis Sci 2020; 65:741-756. [PMID: 32008133 DOI: 10.1007/s10620-020-06102-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Reduction in diversity of the intestinal microbiome (dysbiosis) is being identified in many disease states, and studies are showing important biologic contributions of microbiome to health and disease. Fecal microbiota transplantation (FMT) is being evaluated as a way to reverse dysbiosis in diseases and disorders in an attempt to improve health. The published literature was reviewed to determine the value of FMT in the treatment of medical disorders for which clinical trials have recently been conducted. FMT is effective in treating recurrent C. difficile infection in one or two doses, with many healthy donors providing efficacious fecal-derived products. In inflammatory bowel disease (IBD), FMT may lead to remission in approximately one-third of moderate-to-severe illnesses with one study suggesting that more durable FMT responses may be seen when used once medical remissions have been achieved. Donor products differ in their efficacy in treatment of IBD. Combining donor products has been one way to increase the potential value of FMT in treating chronic disorders. FMT is being explored in a variety of clinical settings affecting different organ systems outside CDI, with positive preliminary signals, in treatment of functional constipation, immunotherapy-induced colitis, neurodegenerative disease, as well as prevention of cancer-related disorders like graft versus host disease and decolonization of patients with recurrent urinary tract infection due to antibiotic-resistant bacteria. Currently, intense research is underway to see how the microbiome products like FMT can be harnessed for health benefits.
Collapse
Affiliation(s)
- Herbert L DuPont
- Kelsey Research Foundation, Houston, TX, USA. .,University of Texas School of Public Health, 1200 Pressler St, Houston, TX, 77030, USA. .,University of Texas McGovern Medical School, Houston, USA. .,Baylor College of Medicine, Houston, USA. .,MD Anderson Cancer Center, Houston, USA.
| | - Zhi-Dong Jiang
- University of Texas School of Public Health, 1200 Pressler St, Houston, TX, 77030, USA
| | | | - Netanya S Utay
- Kelsey Research Foundation, Houston, TX, USA.,University of Texas McGovern Medical School, Houston, USA
| |
Collapse
|
18
|
Flux MC, Lowry CA. Finding intestinal fortitude: Integrating the microbiome into a holistic view of depression mechanisms, treatment, and resilience. Neurobiol Dis 2020; 135:104578. [PMID: 31454550 PMCID: PMC6995775 DOI: 10.1016/j.nbd.2019.104578] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 06/27/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023] Open
Abstract
Depression affects at least 322 million people globally, or approximately 4.4% of the world's population. While the earnestness of researchers and clinicians to understand and treat depression is not waning, the number of individuals suffering from depression continues to increase over and above the rate of global population growth. There is a sincere need for a paradigm shift. Research in the past decade is beginning to take a more holistic approach to understanding depression etiology and treatment, integrating multiple body systems into whole-body conceptualizations of this mental health affliction. Evidence supports the hypothesis that the gut microbiome, or the collective trillions of microbes inhabiting the gastrointestinal tract, is an important factor determining both the risk of development of depression and persistence of depressive symptoms. This review discusses recent advances in both rodent and human research that explore bidirectional communication between the gut microbiome and the immune, endocrine, and central nervous systems implicated in the etiology and pathophysiology of depression. Through interactions with circulating inflammatory markers and hormones, afferent and efferent neural systems, and other, more niche, pathways, the gut microbiome can affect behavior to facilitate the development of depression, exacerbate current symptoms, or contribute to treatment and resilience. While the challenge of depression may be the direst mental health crisis of our age, new discoveries in the gut microbiome, when integrated into a holistic perspective, hold great promise for the future of positive mental health.
Collapse
Affiliation(s)
- M C Flux
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Christopher A Lowry
- Department of Integrative Physiology, Center for Neuroscience, and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO 80309, USA; Department of Physical Medicine & Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO 80045, USA; Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO 80045, USA; Senior Fellow, VIVO Planetary Health, Worldwide Universities Network (WUN), West New York, NJ 07093, USA.
| |
Collapse
|
19
|
Harris C, Kim PT, Waterhouse D, Feng Z, Niergarth J, Lee CH. Precision medicine and gut dysbiosis. Healthc Manage Forum 2020; 33:107-110. [PMID: 31934800 DOI: 10.1177/0840470419899426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Clostridioides difficile Infection (CDI) is a leading cause of healthcare-associated infections in Canada, affecting the gastrointestinal tract which can lead to fever, abdominal pain, and diarrhea. Effective treatment for patients with Recurrent CDI (rCDI) can be achieved by Fecal Microbiota Transplantation (FMT) by introducing the gut micro-organisms of a healthy person (donor) into the bowel of the affected individual. Research has shown that an increase in the specific bacterial phyla post-FMT may be partly responsible for this gut restoration and elimination of disease. Furthermore, in understanding the key bacteria associated with successful FMT, full treatment plans can be developed for the individual needs of the patient by matching an infected individual with a donor possessing ideal microbiota for the specific patient. This development of precision medicine and more systematic adoption of FMT can be the next step toward more rapid resolution of rCDI.
Collapse
Affiliation(s)
| | - Peter T Kim
- University of Guelph, Guelph, Ontario, Canada.,Vancouver Island Health Authority, Victoria, British Columbia, Canada
| | - Dawn Waterhouse
- Vancouver Island Health Authority, Victoria, British Columbia, Canada
| | - Zeny Feng
- University of Guelph, Guelph, Ontario, Canada
| | | | - Christine H Lee
- Vancouver Island Health Authority, Victoria, British Columbia, Canada
| |
Collapse
|
20
|
Van Etten JL, Agarkova IV, Dunigan DD. Chloroviruses. Viruses 2019; 12:E20. [PMID: 31878033 PMCID: PMC7019647 DOI: 10.3390/v12010020] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/13/2019] [Accepted: 12/15/2019] [Indexed: 12/20/2022] Open
Abstract
Chloroviruses are large dsDNA, plaque-forming viruses that infect certain chlorella-like green algae; the algae are normally mutualistic endosymbionts of protists and metazoans and are often referred to as zoochlorellae. The viruses are ubiquitous in inland aqueous environments throughout the world and occasionally single types reach titers of thousands of plaque-forming units per ml of native water. The viruses are icosahedral in shape with a spike structure located at one of the vertices. They contain an internal membrane that is required for infectivity. The viral genomes are 290 to 370 kb in size, which encode up to 16 tRNAs and 330 to ~415 proteins, including many not previously seen in viruses. Examples include genes encoding DNA restriction and modification enzymes, hyaluronan and chitin biosynthetic enzymes, polyamine biosynthetic enzymes, ion channel and transport proteins, and enzymes involved in the glycan synthesis of the virus major capsid glycoproteins. The proteins encoded by many of these viruses are often the smallest or among the smallest proteins of their class. Consequently, some of the viral proteins are the subject of intensive biochemical and structural investigation.
Collapse
Affiliation(s)
- James L. Van Etten
- Department of Plant Pathology, Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583-0900, USA; (I.V.A.); (D.D.D.)
| | | | | |
Collapse
|
21
|
Broecker F, Wegner E, Seco BMS, Kaplonek P, Bräutigam M, Ensser A, Pfister F, Daniel C, Martin CE, Mattner J, Seeberger PH. Synthetic Oligosaccharide-Based Vaccines Protect Mice from Clostridioides difficile Infections. ACS Chem Biol 2019; 14:2720-2728. [PMID: 31692324 PMCID: PMC6929054 DOI: 10.1021/acschembio.9b00642] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/06/2019] [Indexed: 12/14/2022]
Abstract
Infections with Clostridioides difficile (formerly Clostridium difficile) have increased in incidence, morbidity, and mortality over the past decade. Preventing infections is becoming increasingly important, as frontline antibiotics become less effective and frequently induce recurrence by disrupting intestinal microbiota. The clinically most advanced vaccine approaches prevent symptoms once C. difficile infection is established by inducing immunity to secreted clostridial cytotoxins. However, they do not inhibit bacterial colonization and thereby favor asymptomatic carriage. Synthetic oligosaccharides resembling the C. difficile surface glycans PS-I, PS-II, and PS-III are immunogenic and serve as basis for colonization-preventing vaccines. Here, we demonstrate that glycoconjugate vaccine candidates based on synthetic oligosaccharides protected mice from infections with two different C. difficile strains. Four synthetic antigens, ranging in size from disaccharides to hexasaccharides, were conjugated to CRM197, which is a carrier protein used in commercial vaccines. The vaccine candidates induced glycan-specific antibodies in mice and substantially limited C. difficile colonization and colitis after experimental infection. The glycoconjugates ameliorated intestinal pathology more substantially than a toxin-targeting vaccine. Colonization of the gut by C. difficile was selectively inhibited while intestinal microbiota remained preserved. Passive transfer experiments with anti-PS-I serum revealed that protection is mediated by specific antiglycan antibodies; however, cell-mediated immunity likely also contributed to protection in vivo. Thus, glycoconjugate vaccines against C. difficile are a complementary approach to toxin-targeting strategies and are advancing through preclinical work.
Collapse
Affiliation(s)
- Felix Broecker
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Erik Wegner
- Mikrobiologisches
Institut−Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander
Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Bruna M. S. Seco
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Paulina Kaplonek
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Maria Bräutigam
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Armin Ensser
- Virologisches
Institut, Universitätsklinikum Erlangen,
Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Frederick Pfister
- Department
of Nephropathology, Friedrich-Alexander
University of Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Daniel
- Department
of Nephropathology, Friedrich-Alexander
University of Erlangen-Nürnberg, Erlangen, Germany
| | - Christopher E. Martin
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Jochen Mattner
- Mikrobiologisches
Institut−Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander
Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Peter H. Seeberger
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
22
|
Yalchin M, Segal JP, Mullish BH, Quraishi MN, Iqbal TH, Marchesi JR, Hart AL. Gaps in knowledge and future directions for the use of faecal microbiota transplant in the treatment of inflammatory bowel disease. Therap Adv Gastroenterol 2019; 12:1756284819891038. [PMID: 31803254 PMCID: PMC6878609 DOI: 10.1177/1756284819891038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/06/2019] [Indexed: 02/04/2023] Open
Abstract
Faecal microbiota transplant (FMT) has now been established into clinical guidelines for the treatment of recurrent and refractory Clostridioides difficile infection (CDI). Its therapeutic application in inflammatory bowel disease (IBD) is currently at an early stage. To date, there have been four randomized controlled trials for FMT in IBD and a multitude of observational studies. However, significant gaps in our knowledge regarding optimum methods for FMT preparation, technical aspects and logistics of its administration, as well as mechanistic underpinnings, still remain. In this article, we aim to highlight these gaps by reviewing evidence and making key recommendations on the direction of future studies in this field. In addition, we provide an overview of the current evidence of potential mechanisms of FMT in treating IBD.
Collapse
Affiliation(s)
- Mehmet Yalchin
- St Mark’s Hospital, Inflammatory Bowel Disease Department, Harrow HA1 UJ, UK
| | - Jonathan P. Segal
- St Mark’s Hospital, Inflammatory Bowel Disease Department, Harrow, UK
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK
| | - Benjamin H. Mullish
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK
| | - Mohammed Nabil Quraishi
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- Department of Gastroenterology, University Hospitals Birmingham, UK
| | - Tariq H. Iqbal
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- Department of Gastroenterology, University Hospitals Birmingham, UK
| | - Julian R. Marchesi
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK
- School of Biosciences, Cardiff University, UK
| | - Ailsa L. Hart
- St Mark’s Hospital, Inflammatory Bowel Disease Department, Harrow, UK
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK
| |
Collapse
|
23
|
Seo SU, Kweon MN. Virome-host interactions in intestinal health and disease. Curr Opin Virol 2019; 37:63-71. [PMID: 31295677 DOI: 10.1016/j.coviro.2019.06.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 02/06/2023]
Abstract
The enteric virome consists largely of bacteriophages and prophages related to commensal bacteria. Bacteriophages indirectly affect the host immune system by targeting their associated bacteria; however, studies suggest that bacteriophages also have distinct pathways that enable them to interact directly with the host. Eukaryotic viruses are less abundant than bacteriophages but are more efficient in the stimulation of host immune responses. Acute, permanent, and latent viral infections are detected by different types of pattern recognition receptors and induce host immune responses, including the antiviral type I interferon response. Understanding the complex interplay between commensal microorganisms and the host immune system is a prerequisite to elucidating their role in intestinal diseases.
Collapse
Affiliation(s)
- Sang-Uk Seo
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine/Asan Medical Center, Seoul 05505, South Korea.
| | - Mi-Na Kweon
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine/Asan Medical Center, Seoul 05505, South Korea.
| |
Collapse
|
24
|
Mukhopadhya I, Segal JP, Carding SR, Hart AL, Hold GL. The gut virome: the 'missing link' between gut bacteria and host immunity? Therap Adv Gastroenterol 2019; 12:1756284819836620. [PMID: 30936943 PMCID: PMC6435874 DOI: 10.1177/1756284819836620] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 02/14/2019] [Indexed: 02/04/2023] Open
Abstract
The human gut virome includes a diverse collection of viruses that infect our own cells as well as other commensal organisms, directly impacting on our well-being. Despite its predominance, the virome remains one of the least understood components of the gut microbiota, with appropriate analysis toolkits still in development. Based on its interconnectivity with all living cells, it is clear that the virome cannot be studied in isolation. Here we review the current understanding of the human gut virome, specifically in relation to other constituents of the microbiome, its evolution and life-long association with its host, and our current understanding in the context of inflammatory bowel disease and associated therapies. We propose that the gut virome and the gut bacterial microbiome share similar trajectories and interact in both health and disease and that future microbiota studies should in parallel characterize the gut virome to uncover its role in health and disease.
Collapse
Affiliation(s)
- Indrani Mukhopadhya
- Gastrointestinal Research Group, Division of Applied Medicine, University of Aberdeen, Foresterhill, Aberdeen, UK Gut Health Group, The Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - Jonathan P. Segal
- St. Mark’s Hospital, Watford Road, Harrow, UK Imperial College London, South Kensington Campus, Department of Surgery and Cancer, London, UK
| | - Simon R. Carding
- Gut Microbes and Health Research Programme, The Quadram Institute, Norwich Research Park, Norwich, Norfolk, UK Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk, UK
| | - Ailsa L. Hart
- St. Mark’s Hospital, Watford Road, Harrow, UK Imperial College London, South Kensington Campus, Department of Surgery and Cancer, London, UK
| | | |
Collapse
|
25
|
Moelling K, Broecker F. Viruses and Evolution - Viruses First? A Personal Perspective. Front Microbiol 2019; 10:523. [PMID: 30941110 PMCID: PMC6433886 DOI: 10.3389/fmicb.2019.00523] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 02/28/2019] [Indexed: 01/08/2023] Open
Abstract
The discovery of exoplanets within putative habitable zones revolutionized astrobiology in recent years. It stimulated interest in the question about the origin of life and its evolution. Here, we discuss what the roles of viruses might have been at the beginning of life and during evolution. Viruses are the most abundant biological entities on Earth. They are present everywhere, in our surrounding, the oceans, the soil and in every living being. Retroviruses contributed to about half of our genomic sequences and to the evolution of the mammalian placenta. Contemporary viruses reflect evolution ranging from the RNA world to the DNA-protein world. How far back can we trace their contribution? Earliest replicating and evolving entities are the ribozymes or viroids fulfilling several criteria of life. RNA can perform many aspects of life and influences our gene expression until today. The simplest structures with non-protein-coding information may represent models of life built on structural, not genetic information. Viruses today are obligatory parasites depending on host cells. Examples of how an independent lifestyle might have been lost include mitochondria, chloroplasts, Rickettsia and others, which used to be autonomous bacteria and became intracellular parasites or endosymbionts, thereby losing most of their genes. Even in vitro the loss of genes can be recapitulated all the way from coding to non-coding RNA. Furthermore, the giant viruses may indicate that there is no sharp border between living and non-living entities but an evolutionary continuum. Here, it is discussed how viruses can lose and gain genes, and that they are essential drivers of evolution. This discussion may stimulate the thinking about viruses as early possible forms of life. Apart from our view “viruses first”, there are others such as “proteins first” and “metabolism first.”
Collapse
Affiliation(s)
- Karin Moelling
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.,Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Felix Broecker
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
26
|
Stefanaki C. The Gut Microbiome Beyond the Bacteriome—The Neglected Role of Virome and Mycobiome in Health and Disease. MICROBIOME AND METABOLOME IN DIAGNOSIS, THERAPY, AND OTHER STRATEGIC APPLICATIONS 2019:27-32. [DOI: 10.1016/b978-0-12-815249-2.00003-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
27
|
Moelling K, Broecker F, Willy C. A Wake-Up Call: We Need Phage Therapy Now. Viruses 2018; 10:E688. [PMID: 30563034 PMCID: PMC6316858 DOI: 10.3390/v10120688] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/27/2018] [Accepted: 12/03/2018] [Indexed: 12/11/2022] Open
Abstract
The rise of multidrug-resistant bacteria has resulted in an increased interest in phage therapy, which historically preceded antibiotic treatment against bacterial infections. To date, there have been no reports of serious adverse events caused by phages. They have been successfully used to cure human diseases in Eastern Europe for many decades. More recently, clinical trials and case reports for a variety of indications have shown promising results. However, major hurdles to the introduction of phage therapy in the Western world are the regulatory and legal frameworks. Present regulations may take a decade or longer to be fulfilled. It is of urgent need to speed up the availability of phage therapy.
Collapse
Affiliation(s)
- Karin Moelling
- Institute of Medical Microbiology, University of Zurich, 8006 Zurich, Switzerland.
- Max Planck Institute for molecular Genetics, 14195 Berlin, Germany.
| | - Felix Broecker
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Christian Willy
- Department Trauma & Orthopedic Surgery, Septic & Reconstructive Surgery, Research and Treatment Center for Complex Combat Injuries, Military Hospital Berlin, 10115 Berlin, Germany.
| |
Collapse
|
28
|
Anonye BO. Commentary: Bacteriophage transfer during faecal microbiota transplantation in Clostridium difficile infection is associated with treatment outcome. Front Cell Infect Microbiol 2018; 8:104. [PMID: 29670863 PMCID: PMC5893759 DOI: 10.3389/fcimb.2018.00104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/19/2018] [Indexed: 01/21/2023] Open
Affiliation(s)
- Blessing O Anonye
- Microbiology and Infection Unit, Division of Biomedical Sciences, Warwick Medical School, Coventry, United Kingdom.,Warwick Integrative Synthetic Biology Centre, School of Life Sciences, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
29
|
Zuo T, Wong SH, Lam K, Lui R, Cheung K, Tang W, Ching JYL, Chan PKS, Chan MCW, Wu JCY, Chan FKL, Yu J, Sung JJY, Ng SC. Bacteriophage transfer during faecal microbiota transplantation in Clostridium difficile infection is associated with treatment outcome. Gut 2018; 67:634-643. [PMID: 28539351 PMCID: PMC5868238 DOI: 10.1136/gutjnl-2017-313952] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/14/2017] [Accepted: 04/10/2017] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Faecal microbiota transplantation (FMT) is effective for the treatment of recurrent Clostridium difficile infection (CDI). Studies have shown bacterial colonisation after FMT, but data on viral alterations in CDI are scarce. We investigated enteric virome alterations in CDI and the association between viral transfer and clinical outcome in patients with CDI. DESIGN Ultra-deep metagenomic sequencing of virus-like particle preparations and bacterial 16S rRNA sequencing were performed on stool samples from 24 subjects with CDI and 20 healthy controls. We longitudinally assessed the virome and bacterial microbiome changes in nine CDI subjects treated with FMT and five treated with vancomycin. Enteric virome alterations were assessed in association with treatment response. RESULTS Subjects with CDI demonstrated a significantly higher abundance of bacteriophage Caudovirales and a lower Caudovirales diversity, richness and evenness compared with healthy household controls. Significant correlations were observed between bacterial families Proteobacteria, Actinobacteria and Caudovirales taxa in CDI. FMT treatment resulted in a significant decrease in the abundance of Caudovirales in CDI. Cure after FMT was observed when donor-derived Caudovirales contigs occupied a larger fraction of the enteric virome in the recipients (p=0.024). In treatment responders, FMT was associated with alterations in the virome and the bacterial microbiome, while vancomycin treatment led to alterations in the bacterial community alone. CONCLUSIONS In a preliminary study, CDI is characterised by enteric virome dysbiosis. Treatment response in FMT was associated with a high colonisation level of donor-derived Caudovirales taxa in the recipient. Caudovirales bacteriophages may play a role in the efficacy of FMT in CDI. TRIAL REGISTRATION NUMBER NCT02570477.
Collapse
Affiliation(s)
- Tao Zuo
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Diseases, Institute of Digestive Disease, LKS Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Sunny H Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Diseases, Institute of Digestive Disease, LKS Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Kelvin Lam
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Rashid Lui
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Kitty Cheung
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Whitney Tang
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Jessica Y L Ching
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Paul K S Chan
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Martin C W Chan
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Justin C Y Wu
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Diseases, Institute of Digestive Disease, LKS Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Francis K L Chan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Diseases, Institute of Digestive Disease, LKS Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Yu
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Diseases, Institute of Digestive Disease, LKS Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Joseph J Y Sung
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Diseases, Institute of Digestive Disease, LKS Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Siew C Ng
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Diseases, Institute of Digestive Disease, LKS Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
30
|
Colson P, Aherfi S, La Scola B. Evidence of giant viruses of amoebae in the human gut. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.humic.2017.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
31
|
Denner J. The porcine virome and xenotransplantation. Virol J 2017; 14:171. [PMID: 28874166 PMCID: PMC5585927 DOI: 10.1186/s12985-017-0836-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/27/2017] [Indexed: 12/29/2022] Open
Abstract
The composition of the porcine virome includes viruses that infect pig cells, ancient virus-derived elements including endogenous retroviruses inserted in the pig chromosomes, and bacteriophages that infect a broad array of bacteria that inhabit pigs. Viruses infecting pigs, among them viruses also infecting human cells, as well as porcine endogenous retroviruses (PERVs) are of importance when evaluating the virus safety of xenotransplantation. Bacteriophages associated with bacteria mainly in the gut are not relevant in this context. Xenotransplantation using pig cells, tissues or organs is under development in order to alleviate the shortage of human transplants. Here for the first time published data describing the viromes in different pigs and their relevance for the virus safety of xenotransplantation is analysed. In conclusion, the analysis of the porcine virome has resulted in numerous new viruses being described, although their impact on xenotransplantation is unclear. Most importantly, viruses with known or suspected zoonotic potential were often not detected by next generation sequencing, but were revealed by more sensitive methods.
Collapse
Affiliation(s)
- Joachim Denner
- Robert Koch Fellow, Robert Koch Institute, Nordufer, 20, Berlin, Germany.
| |
Collapse
|
32
|
Sommer F, Anderson JM, Bharti R, Raes J, Rosenstiel P. The resilience of the intestinal microbiota influences health and disease. Nat Rev Microbiol 2017. [DOI: 10.1038/nrmicro.2017.58] [Citation(s) in RCA: 460] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
33
|
The Human Gut Phage Community and Its Implications for Health and Disease. Viruses 2017; 9:v9060141. [PMID: 28594392 PMCID: PMC5490818 DOI: 10.3390/v9060141] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/23/2017] [Accepted: 06/02/2017] [Indexed: 12/23/2022] Open
Abstract
In this review, we assess our current understanding of the role of bacteriophages infecting the human gut bacterial community in health and disease. In general, bacteriophages contribute to the structure of their microbial communities by driving host and viral diversification, bacterial evolution, and by expanding the functional diversity of ecosystems. Gut bacteriophages are an ensemble of unique and shared phages in individuals, which encompass temperate phages found predominately as prophage in gut bacteria (prophage reservoir) and lytic phages. In healthy individuals, only a small fraction of the prophage reservoir is activated and found as extracellular phages. Phage community dysbiosis is characterized by a shift in the activated prophage community or an increase of lytic phages, and has been correlated with disease, suggesting that a proper balance between lysis and lysogeny is needed to maintain health. Consequently, the concept of microbial dysbiosis might be extended to the phage component of the microbiome as well. Understanding the dynamics and mechanisms to restore balance after dysbiosis is an active area of research. The use of phage transplants to re-establish health suggests that phages can be used as disease treatment. Such advances represent milestones in our understanding of gut phages in human health and should fuel research on their role in health and disease.
Collapse
|
34
|
Affiliation(s)
- Alexander Khoruts
- Department of Medicine, Division of Gastroenterology, Center for Immunology and the BioTechnology Institute, University of Minnesota, Minneapolis, MN, USA,CONTACT Alexander Khoruts Department of Medicine, Division of Gastroenterology, Center for Immunology and the BioTechnology Institute, University of Minnesota, Minneapolis, MN 55414, USA
| |
Collapse
|
35
|
Abstract
We recently described the 4.5-year time course of the enteric bacterial microbiota and virome of a patient cured from recurrent Clostridium difficile infection (rCDI) by fecal microbiota transplantation (FMT). Here, we extended the virome analyses and found the patient's phage population to exhibit highly donor-similar characteristics following FMT, which remained stable for the whole period tested (up to 7 months). Moreover, the detected viral populations of donor and patient exhibited comparable diversity and richness. These findings were unexpected since enteric viromes are normally highly variable, assumed to influence the bacterial host community and change with environmental conditions. In contrast to the virome, the bacterial microbiota varied indeed for more than 7 months with ongoing dysbiosis before it reached donor similarity. Our findings that are based on sequence information and protein domain analysis seem to suggest that stable phage properties correlate with successful FMT better than the changing bacterial communities. We speculate that we here preferentially detected a stable core virome, which dominated over a variable flexible virome that may have been too heterogeneous for experimental detection or was underrepresented in the databases. It will be interesting to analyze whether the enteric virome allows predictions for the clinical outcome of FMT for rCDI and other diseases such as inflammatory bowel disease or obesity.
Collapse
Affiliation(s)
- Felix Broecker
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland,Max Planck Institute for Molecular Genetics, Berlin, Germany,Present address: Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA,CONTACT Felix Broecker ; Karin Moelling
| | - Giancarlo Russo
- Functional Genomics Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Jochen Klumpp
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Karin Moelling
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland,Max Planck Institute for Molecular Genetics, Berlin, Germany,CONTACT Felix Broecker ; Karin Moelling
| |
Collapse
|
36
|
Moelling K, Broecker F. Fecal microbiota transplantation to fight Clostridium difficile infections and other intestinal diseases. BACTERIOPHAGE 2016; 6:e1251380. [PMID: 28090385 DOI: 10.1080/21597081.2016.1251380] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/13/2016] [Accepted: 10/18/2016] [Indexed: 12/16/2022]
Abstract
We have analyzed fecal bacterial and viral communities of a patient with recurrent C. difficile infection (rCDI) who was cured by fecal microbiota transplantation (FMT). The "Zürich Patient" experienced immediate cure and has remained free of symptoms for now over 5 y. Donor-similar bacterial compositions after 4.5 y post-FMT demonstrated sustainable engraftment of donor microbiota predominated by Bacteroidetes and Firmicutes bacteria. Appearance of beneficial species Faecalibacterium prausnitzii and Akkermansia municiphila was detected while disease-related Proteobacteria decreased. Stabilization of the microbiota took longer than expected from the rapidly improving clinical symptoms, suggesting the need for longer-lasting patient observation. The virome was mainly composed of Caudovirales bacteriophages but surprisingly also contained sequences related to a Chlorella giant virus that normally infects green algae not known to inhabitate the human intestine. FMT is highly effective against rCDI and is presently broadening its application to other conditions including inflammatory bowel disease (IBD). Here, we discuss the prospects and challenges of FMT against rCDI and other indications including a focus on bacteriophages.
Collapse
Affiliation(s)
- Karin Moelling
- Max Planck Institute for Molecular Genetics, Berlin, Germany; Institute for Medical Microbiology, Unversity of Zürich, Zürich, Switzerland
| | - Felix Broecker
- Max Planck Institute for Molecular Genetics, Berlin, Germany; Institute for Medical Microbiology, Unversity of Zürich, Zürich, Switzerland; Max Planck Institute of Colloids and Interfaces, Potsdam, Germany; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
37
|
Moos WH, Pinkert CA, Irwin MH, Faller DV, Kodukula K, Glavas IP, Steliou K. Epigenetic Treatment of Persistent Viral Infections. Drug Dev Res 2016; 78:24-36. [PMID: 27761936 DOI: 10.1002/ddr.21366] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Preclinical Research Approximately 2,500 years ago, Hippocrates used the word herpes as a medical term to describe lesions that appeared to creep or crawl on the skin, advocating heat as a possible treatment. During the last 50 years, pharmaceutical research has made great strides, and therapeutic options have expanded to include small molecule antiviral agents, protease inhibitors, preventive vaccines for a handful of the papillomaviruses, and even cures for hepatitis C virus infections. However, effective treatments for persistent and recurrent viral infections, particularly the highly prevalent herpesviruses, continue to represent a significant unmet medical need, affecting the majority of the world's population. Exploring the population diversity of the human microbiome and the effects its compositional variances have on the immune system, health, and disease are the subjects of intense investigational research and study. Among the collection of viruses, bacteria, fungi, and single-cell eukaryotes that comprise the human microbiome, the virome has been grossly understudied relative to the influence it exerts on human pathophysiology, much as mitochondria have until recently failed to receive the attention they deserve, given their critical biomedical importance. Fortunately, cellular epigenetic machinery offers a wealth of druggable targets for therapeutic intervention in numerous disease indications, including those outlined above. With advances in synthetic biology, engineering our body's commensal microorganisms to seek out and destroy pathogenic species is clearly on the horizon. This is especially the case given recent breakthroughs in genetic manipulation with tools such as the CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated) gene-editing platforms. Tying these concepts together with our previous work on the microbiome and neurodegenerative and neuropsychiatric diseases, we suggest that, because mammalian cells respond to a viral infection by triggering a cascade of antiviral innate immune responses governed substantially by the cell's mitochondria, small molecule carnitinoids represent a new class of therapeutics with potential widespread utility against many infectious insults. Drug Dev Res 78 : 24-36, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Walter H Moos
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, California
| | - Carl A Pinkert
- Department of Biological Sciences, College of Arts and Sciences, The University of Alabama, Tuscaloosa, Alabama
| | - Michael H Irwin
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Douglas V Faller
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts.,Boston University School of Medicine, Cancer Research Center, Boston, Massachusetts
| | | | - Ioannis P Glavas
- Department of Ophthalmology, New York University School of Medicine, New York
| | - Kosta Steliou
- Boston University School of Medicine, Cancer Research Center, Boston, Massachusetts.,PhenoMatriX, Boston, Massachusetts
| |
Collapse
|