1
|
Wang J, An H, Tao N. Association of non-insulin-based insulin resistance indices, mean platelet volume and prostate cancer: a cross-sectional study. BMC Cancer 2025; 25:795. [PMID: 40295970 PMCID: PMC12039131 DOI: 10.1186/s12885-025-13839-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 02/28/2025] [Indexed: 04/30/2025] Open
Abstract
PURPOSE Insulin resistance and prostate cancer (PCa) association results remain controversial. However, few studies have compared the role of various non-insulin-based insulin resistance (NI-IR) indices and mean platelet volume (MPV) in PCa. METHODS We conducted a cross-sectional study, the case group included 354 patients with PCa, and the control group included 1,498 non-PCa participants. We performed inverse probability weighting to reduce the impact of differences in baseline information between the case and control groups on results. Weighted logistic regression analysis for assessing the relationship between NI-IR indices and PCa risk. Fitting 4-point restricted cubic spline (RCS) plots to show the trend of NI-IR indices with PCa risk. The interaction between insulin resistance and platelet volume based on generalized additive model (GAM) to reveal the impact of the interaction between insulin resistance and cardiovascular risk on PCa. In the end, we performed three sensitivity analyses to verify the stability of results. RESULTS Weighted logistic regression analysis revealed that all NI-IR indices were associated with PCa. When NI-IR indices were evaluated as continuous variables, in the all variables adjusted model (model 3), the adjusted OR of ZJU index was 1.337 (95%CI: 1.296-1.379), the adjusted OR of TyG index was 5.300 (95%CI:4.208-6.675), the adjusted OR of TG/HDL-c was 1.431 (95%CI:1.335-1.534), and the adjusted OR of METS-IR was 1.129 (95%CI:1.110-1.149). When NI-IR indices were analyzed as categorical variables, also in model 3, using Q1 as reference, the adjusted OR of ZJU index in Q5 was 15.592 (95%CI:10.809-22.492), the adjusted OR of TyG index in Q5 was 7.306 (95%CI:5.182-10.301), the adjusted OR of TG/HDL-c in Q5 was 4.790 (95%CI:3.459-6.632), and the adjusted OR of METS-IR in Q5 was 9.844 (95%CI:6.862-14.121). RCS displayed that PCa risk tended to increase as the ZJU index, TyG index, TG/HDL-c, and METS-IR increased. The interaction test based on the GAM indicated that the value of the interaction between TG/HDL-c and MPV on the PCa risk was χ2 = 6.924(P = 0.009). With the increase in TG/HDL-c and the decrease in MPV, the PCa risk progressively increases. The sensitivity analysis further confirmed the robustness of the results. CONCLUSIONS NI-IR indices were associated with an increased PCa risk. The interaction between MPV and insulin resistance may further contribute to the PCa risk.
Collapse
Affiliation(s)
- Jinru Wang
- College of Public Health, Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Hengqing An
- Department of Urology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, China.
| | - Ning Tao
- College of Public Health, Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, China.
| |
Collapse
|
2
|
Wu J, Yang Z, Ding J, Hao S, Chen H, Jin K, Zhang C, Zheng X. Proteome-wide Mendelian randomization identifies causal plasma proteins in prostate cancer development. Hum Genomics 2025; 19:17. [PMID: 39994764 PMCID: PMC11853923 DOI: 10.1186/s40246-025-00724-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/05/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND The etiology of prostate cancer remained elusive, whether plasma protein levels are associated with prostate cancer is still unknown. METHODS We have performed Mendelian randomization analyses to calculate the causal effects of plasma proteins on the risk of prostate cancer in the PRACTICAL consortium dataset using cis-protein quantitative trait loci (cis-pQTL) variants as instrumental variables for plasma proteins, and cis-expression quantitative trait locus (cis-eQTL) for the circulating gene expression. We also replicated the findings in the FinnGen consortium. RESULTS Genetically proxied levels of 4 plasma proteins (CREB3L4, HDGF, SERPINA3, GNPNAT1) were identified as positively correlated with an increased risk of prostate cancer, while an increase in genetically proxied levels of 5 plasma proteins (TNFRSF6B, GSK3A, EIF4B, CLIC1, SMAD2) were significantly associated with a decreased risk of prostate cancer in the PRACTICAL consortium. Among the identified proteins, the causal effects of six proteins including CREB3L4, HDGF, SERPINA3, TNFRSF6B, EIF4B, and SMAD2 remained significant in the replication analyses in the FinnGen consortium and when combined with meta-analyses (SMAD2: OR 0.710, 95% CI 0.578-0.873, p-value = 0.001; CREB3L4: OR 1.260, 95% CI 1.164-1.364, p-value < 0.0001; HDGF: OR 1.072, 95% CI 1.021-1.125, p-value = 0.005; SERPINA3: OR 1.138, 95% CI 1.091-1.187, p-value < 0.0001; TNFRSF6B: OR 0.656, 95% CI 0.496-0.869, p-value = 0.003; EIF4B: OR 0.701, 95% CI 0.618-0.796, p-value < 0.0001). SMAD2 and CREB3L4 gene expressions proxied with cis-expression quantitative trait loci are also significantly associated with the risk of prostate cancer in both consortiums and when combined with meta-analyses (SMAD2: OR 0.787, 95% CI 0.719-0.861, p-value = 1.00 × 10-4; CREB3L4: OR 1.219, 95% CI 1.033-1.438, p-value = 0.019). CONCLUSIONS Our consistent results highlighted the important roles of plasma SMAD2 and CREB3L4 in the risk of prostate cancer. Further investigations on these proteins may reveal their potential in the prevention and treatment of prostate cancer.
Collapse
Affiliation(s)
- Jian Wu
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
| | - Zitong Yang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
- Department of Urology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, China
| | - Jiafeng Ding
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
- Department of Urology, Lishui Hospital of Zhejiang University, Lishui, 323000, Zhejiang, China
| | - Sida Hao
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
| | - Hong Chen
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
| | - Ke Jin
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
| | - Cheng Zhang
- Department of Urology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, China.
| | - Xiangyi Zheng
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
3
|
Chen G, Wang Y, Wang X. Insulin-related traits and prostate cancer: A Mendelian randomization study. Comput Struct Biotechnol J 2024; 23:2337-2344. [PMID: 38867724 PMCID: PMC11167198 DOI: 10.1016/j.csbj.2024.05.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 06/14/2024] Open
Abstract
Investigating the causal relationship between insulin secretion and prostate cancer (PCa) development is challenging due to the multifactorial nature of PCa, which complicates the isolation of the specific impact of insulin-related factors. We conducted a Mendelian randomization (MR) study to investigate the associations between insulin secretion-related traits and PCa. We used 36, 60, 56, 23, 48, and 49 single nucleotide polymorphisms (SNPs) as instrumental variables for fasting insulin, insulin sensitivity, proinsulin, and proinsulin in nondiabetic individuals, individuals with diabetes, and individuals receiving exogenous insulin, respectively. These SNPs were selected from various genome-wide association studies. To clarify the causal relationship between insulin-related traits and PCa, we utilized a multivariable MR analysis to adjust for obesity and body fat percentage. Additionally, two-step Mendelian randomization was conducted to assess the role of insulin-like growth factor 1 (IGF-1) in the relationship between proinsulin and PCa. Two-sample MR analysis revealed strong associations between genetically predicted fasting insulin, insulin sensitivity, proinsulin, and proinsulin in nondiabetic individuals and the development of PCa. After adjustment for obesity and body fat percentage using multivariable MR analysis, proinsulin remained significantly associated with PCa, whereas other factors were not. Furthermore, two-step MR analysis demonstrated that proinsulin acts as a negative factor in prostate carcinogenesis, largely independent of IGF-1. This study provides evidence suggesting that proinsulin may act as a negative factor contributing to the development of PCa. Novel therapies targeting proinsulin may have potential benefits for PCa patients, potentially reducing the need for unnecessary surgical treatments.
Collapse
Affiliation(s)
- Guihua Chen
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yi Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Department of Urology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Xiang Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
4
|
Zhang H, Yang W, Zhang B, Wu J, Zhang W, Wang Z, Cui J. Non-alcoholic fatty liver disease increases the risk of biochemical recurrence in high-grade metastatic prostate cancer patients. Asia Pac J Clin Oncol 2024; 20:707-713. [PMID: 38970310 DOI: 10.1111/ajco.14094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/21/2024] [Accepted: 05/22/2024] [Indexed: 07/08/2024]
Abstract
INTRODUCTION Non-alcoholic fatty liver disease (NAFLD) has been reported to be helpful to identify high-risk individuals of developing prostate cancer. Our aim is to investigate the relationship between NAFLD and biochemical recurrence in metastatic prostate cancer patients. METHODS We retrospectively investigated 602 patients with metastatic prostate cancer receiving the androgen deprivation therapy. Liver fat was estimated with liver-to-spleen ratio by computed tomography (CT) scans. The relationship between NAFLD and biochemical recurrence was investigated with Cox models. The model for biochemical recurrence was adjusted for multiple variables. RESULTS NAFLD was significantly associated with biochemical recurrence in patients with Gleason score ≥4+3 when adjusting for each of body mass index (hazards ratio [HR] = 1.38; 95% confidence interval [CI] = 1.08-1.77; p = 0.01), visceral adipose tissue (HR = 1.36; 95% CI = 1.07-1.74; p = 0.01), hypertension (HR = 1.41; 95% CI = 1.10-1.80; p = 0.01), and diabetes mellitus (HR = 1.42; 95% CI = 1.11-1.82; p = 0.01), using age and prostate-specific antigen level as potential confounder. The 2-year biochemical recurrence rate in the Gleason score ≥4+3 patients with and without NAFLD was 84.0% (100/119) and 72.2% (130/180), respectively (p = 0.018). The median biochemical recurrence free survival of the Gleason score ≥4+3 patients with and without NAFLD were 17 and 21 months, respectively (p = 0.005). CONCLUSIONS NAFLD is an independent risk factor for biochemical recurrence in patients with high-grade metastatic prostate cancer. If validated in prospective studies, future research should test whether treatment of NAFLD can lead to better prognosis.
Collapse
Affiliation(s)
- Hongyi Zhang
- Department of Urology, The First Affiliated Hospital, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Wenbo Yang
- Department of Oncology, The First Affiliated Hospital, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Bin Zhang
- Department of Oncology, The First Affiliated Hospital, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Jiahui Wu
- Department of Oncology, The First Affiliated Hospital, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Wei Zhang
- Department of Urology, The Second Affiliated Hospital, Air Forth Medical University, Xi'an, Shaanxi, China
| | - Zhenlong Wang
- Department of Urology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jie Cui
- Department of General Practice, The First Affiliated Hospital, Xi'an Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
5
|
Chen P, Wang Y, Xiong Z, Luo T, Lai Y, Zhong H, Peng S, Zhuang R, Li K, Huang H. Association between autoimmunity-related disorders and prostate cancer: A Mendelian randomization study. CANCER PATHOGENESIS AND THERAPY 2024; 2:292-298. [PMID: 39371096 PMCID: PMC11447306 DOI: 10.1016/j.cpt.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 10/08/2024]
Abstract
Background Although many epidemiological studies and meta-analyses have reported an association between autoimmune disorders and prostate cancer, none has reported a clear correlation or the direction of the association. The purpose of our study was to explore the potential relationship between autoimmunity-related disorders and prostate cancer using Mendelian randomization (MR). Methods We retrieved literature from PubMed using the keywords "autoimmune disorder" AND "prostate cancer" to find more clues on the correlation between prostate cancer and autoimmunity-related disorder. Based on this literature search, we selected 16 autoimmunity-related disorders that had genome-wide association study (GWAS) data and may be associated with prostate cancer. The inverse variance weighting (IVW) method was applied as our primary analysis for two-sample MR and multivariate MR analysis to estimate the odds ratio (OR) and 95% confidence interval (CI). We further verified the robustness of our conclusions using a series of sensitivity analyses. Results The autoimmunity-related diseases selected include rheumatoid arthritis, ankylosing spondylitis, coxarthrosis, gonarthrosis, Crohn's disease, ulcerative colitis, irritable bowel syndrome, celiac disease, primary sclerosing cholangitis, asthma, type 1 diabetes, systemic lupus erythematosus, multiple sclerosis, autoimmune hyperthyroidism, psoriatic arthropathies, and polymyalgia rheumatica. The results of inverse variance weighting (IVW suggested that six diseases were associated with the development of prostate cancer. The three diseases that may increase the risk of prostate cancer are rheumatoid arthritis (P = 0.001), coxarthrosis (P < 0.001), and gonarthrosis (P = 0.008). The three possible protective factors against prostate cancer are primary sclerosing cholangitis (P = 0.001), autoimmune hyperthyroidism (P = 0.011), and psoriatic arthropathies (P = 0.001). Horizontal pleiotropy was not observed in the MR-Egger test. Conclusions Our findings provide predictive genetic evidence for an association between autoimmune disorders and prostate cancer. Further research is needed to explore the underlying mechanisms of comorbidities at the molecular level.
Collapse
Affiliation(s)
- Peixian Chen
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Yue Wang
- National Institutes for Food and Drug Control, Beijing 102629, China
| | - Zhi Xiong
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Tianlong Luo
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Yiming Lai
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Haitao Zhong
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Shirong Peng
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Ruilin Zhuang
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Kaiwen Li
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Hai Huang
- Department of Urology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, China
| |
Collapse
|
6
|
Freeman JR, Saint-Maurice PF, Watts EL, Moore SC, Shams-White MM, Wolff-Hughes DL, Russ DE, Almeida JS, Caporaso NE, Hong HG, Loftfield E, Matthews CE. Actigraphy-derived measures of sleep and risk of prostate cancer in the UK Biobank. J Natl Cancer Inst 2024; 116:434-444. [PMID: 38013591 PMCID: PMC10919343 DOI: 10.1093/jnci/djad210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/02/2023] [Accepted: 10/08/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Studies of sleep and prostate cancer are almost entirely based on self-report, with limited research using actigraphy. Our goal was to evaluate actigraphy-measured sleep and prostate cancer and to expand on findings from prior studies of self-reported sleep. METHODS We prospectively examined 34 260 men without a history of prostate cancer in the UK Biobank. Sleep characteristics were measured over 7 days using actigraphy. We calculated sleep duration, onset, midpoint, wake-up time, social jetlag (difference in weekend-weekday sleep midpoints), sleep efficiency (percentage of time spent asleep between onset and wake-up time), and wakefulness after sleep onset. Cox proportional hazards models were used to estimate covariate-adjusted hazards ratios (HRs) and 95% confidence intervals (CIs). RESULTS Over 7.6 years, 1152 men were diagnosed with prostate cancer. Sleep duration was not associated with prostate cancer risk. Sleep midpoint earlier than 4:00 am was not associated with prostate cancer risk, though sleep midpoint of 5:00 am or later was suggestively associated with lower prostate cancer risk but had limited precision (earlier than 4:00 am vs 4:00-4:59 am HR = 1.00, 95% CI = 0.87 to 1.16; 5:00 am or later vs 4:00-4:59 am HR = 0.79, 95% CI = 0.57 to 1.10). Social jetlag was not associated with greater prostate cancer risk (1 to <2 hours vs <1 hour HR = 1.06, 95% CI = 0.89 to 1.25; ≥2 hours vs <1 hour HR = 0.90, 95% CI = 0.65 to 1.26). Compared with men who averaged less than 30 minutes of wakefulness after sleep onset per day, men with 60 minutes or more had a higher risk of prostate cancer (HR = 1.20, 95% CI = 1.00 to 1.43). CONCLUSIONS Of the sleep characteristics studied, higher wakefulness after sleep onset-a measure of poor sleep quality-was associated with greater prostate cancer risk. Replication of our findings between wakefulness after sleep onset and prostate cancer are warranted.
Collapse
Affiliation(s)
- Joshua R Freeman
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Pedro F Saint-Maurice
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Eleanor L Watts
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Steven C Moore
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marissa M Shams-White
- Risk Factor Assessment Branch, Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dana L Wolff-Hughes
- Risk Factor Assessment Branch, Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Daniel E Russ
- Trans-Divisional Research Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jonas S Almeida
- Trans-Divisional Research Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Neil E Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hyokyoung G Hong
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Erikka Loftfield
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Charles E Matthews
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
7
|
Pérez-Gómez JM, Porcel-Pastrana F, De La Luz-Borrero M, Montero-Hidalgo AJ, Gómez-Gómez E, Herrera-Martínez AD, Guzmán-Ruiz R, Malagón MM, Gahete MD, Luque RM. LRP10, PGK1 and RPLP0: Best Reference Genes in Periprostatic Adipose Tissue under Obesity and Prostate Cancer Conditions. Int J Mol Sci 2023; 24:15140. [PMID: 37894825 PMCID: PMC10606769 DOI: 10.3390/ijms242015140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Obesity (OB) is a metabolic disorder characterized by adipose tissue dysfunction that has emerged as a health problem of epidemic proportions in recent decades. OB is associated with multiple comorbidities, including some types of cancers. Specifically, prostate cancer (PCa) has been postulated as one of the tumors that could have a causal relationship with OB. Particularly, a specialized adipose tissue (AT) depot known as periprostatic adipose tissue (PPAT) has gained increasing attention over the last few years as it could be a key player in the pathophysiological interaction between PCa and OB. However, to date, no studies have defined the most appropriate internal reference genes (IRGs) to be used in gene expression studies in this AT depot. In this work, two independent cohorts of PPAT samples (n = 20/n = 48) were used to assess the validity of a battery of 15 literature-selected IRGs using two widely used techniques (reverse transcription quantitative PCR [RT-qPCR] and microfluidic-based qPCR array). For this purpose, ΔCt method, GeNorm (v3.5), BestKeeper (v1.0), NormFinder (v.20.0), and RefFinder software were employed to assess the overall trends of our analyses. LRP10, PGK1, and RPLP0 were identified as the best IRGs to be used for gene expression studies in human PPATs, specifically when considering PCa and OB conditions.
Collapse
Grants
- PID2022-1381850B-I00 Spanish Ministry of Science, Innovation, and Universities
- PID2019-105564RB-I00 Spanish Ministry of Science, Innovation, and Universities
- FPU18-06009 Spanish Ministry of Science, Innovation, and Universities
- PRE2020-094225 Spanish Ministry of Science, Innovation, and Universities
- FPU18-02485 Spanish Ministry of Science, Innovation, and Universities
Collapse
Affiliation(s)
- Jesús M. Pérez-Gómez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain; (J.M.P.-G.); (F.P.-P.); (M.D.L.L.-B.); (A.J.M.-H.); (E.G.-G.); (A.D.H.-M.); (R.G.-R.); (M.M.M.); (M.D.G.)
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| | - Francisco Porcel-Pastrana
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain; (J.M.P.-G.); (F.P.-P.); (M.D.L.L.-B.); (A.J.M.-H.); (E.G.-G.); (A.D.H.-M.); (R.G.-R.); (M.M.M.); (M.D.G.)
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| | - Marina De La Luz-Borrero
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain; (J.M.P.-G.); (F.P.-P.); (M.D.L.L.-B.); (A.J.M.-H.); (E.G.-G.); (A.D.H.-M.); (R.G.-R.); (M.M.M.); (M.D.G.)
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| | - Antonio J. Montero-Hidalgo
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain; (J.M.P.-G.); (F.P.-P.); (M.D.L.L.-B.); (A.J.M.-H.); (E.G.-G.); (A.D.H.-M.); (R.G.-R.); (M.M.M.); (M.D.G.)
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| | - Enrique Gómez-Gómez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain; (J.M.P.-G.); (F.P.-P.); (M.D.L.L.-B.); (A.J.M.-H.); (E.G.-G.); (A.D.H.-M.); (R.G.-R.); (M.M.M.); (M.D.G.)
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- Urology Service, Reina Sofia University Hospital, 14004 Cordoba, Spain
| | - Aura D. Herrera-Martínez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain; (J.M.P.-G.); (F.P.-P.); (M.D.L.L.-B.); (A.J.M.-H.); (E.G.-G.); (A.D.H.-M.); (R.G.-R.); (M.M.M.); (M.D.G.)
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
- Endocrinology and Nutrition Service, Reina Sofia University Hospital, 14004 Cordoba, Spain
| | - Rocío Guzmán-Ruiz
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain; (J.M.P.-G.); (F.P.-P.); (M.D.L.L.-B.); (A.J.M.-H.); (E.G.-G.); (A.D.H.-M.); (R.G.-R.); (M.M.M.); (M.D.G.)
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| | - María M. Malagón
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain; (J.M.P.-G.); (F.P.-P.); (M.D.L.L.-B.); (A.J.M.-H.); (E.G.-G.); (A.D.H.-M.); (R.G.-R.); (M.M.M.); (M.D.G.)
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| | - Manuel D. Gahete
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain; (J.M.P.-G.); (F.P.-P.); (M.D.L.L.-B.); (A.J.M.-H.); (E.G.-G.); (A.D.H.-M.); (R.G.-R.); (M.M.M.); (M.D.G.)
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| | - Raúl M. Luque
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain; (J.M.P.-G.); (F.P.-P.); (M.D.L.L.-B.); (A.J.M.-H.); (E.G.-G.); (A.D.H.-M.); (R.G.-R.); (M.M.M.); (M.D.G.)
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| |
Collapse
|
8
|
Sergeyev A, Gu L, De Hoedt AM, Amling CL, Aronson WJ, Cooperberg MR, Kane CJ, Klaassen Z, Terris MK, Guerrios-Rivera L, Freedland SJ, Csizmadi I. Diabetes and Prostate Cancer Outcomes in Men with Nonmetastatic Castration-Resistant Prostate Cancer: Results from the SEARCH Cohort. Cancer Epidemiol Biomarkers Prev 2023; 32:1208-1216. [PMID: 37294698 PMCID: PMC10529387 DOI: 10.1158/1055-9965.epi-22-1324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/27/2023] [Accepted: 06/07/2023] [Indexed: 06/11/2023] Open
Abstract
BACKGROUND The prognosis of diabetic men with advanced prostate cancer is poorly understood and understudied. Hence, we studied associations between diabetes and progression to metastases, prostate cancer-specific mortality (PCSM) and all-cause mortality (ACM) in men with nonmetastatic castration-resistant prostate cancer (nmCRPC). METHODS Data from men diagnosed with nmCRPC between 2000 and 2017 at 8 Veterans Affairs Health Care Centers were analyzed using Cox regression to determine HRs and 95% confidence intervals (CI) for associations between diabetes and outcomes. Men with diabetes were classified according to: (i) ICD-9/10 codes only, (ii) two HbA1c values > 6.4% (missing ICD-9/10 codes), and (iii) all diabetic men [(i) and (ii) combined]. RESULTS Of 976 men (median age: 76 years), 304 (31%) had diabetes at nmCRPC diagnosis, of whom 51% had ICD-9/10 codes. During a median follow-up of 6.5 years, 613 men were diagnosed with metastases, and 482 PCSM and 741 ACM events occurred. In multivariable-adjusted models, ICD-9/10 code-identified diabetes was inversely associated with PCSM (HR, 0.67; 95% CI, 0.48-0.92) while diabetes identified by high HbA1c values (no ICD-9/10 codes) was associated with an increase in ACM (HR, 1.41; 95% CI, 1.16-1.72). Duration of diabetes, prior to CRPC diagnosis was inversely associated with PCSM among men identified by ICD-9/10 codes and/or HbA1c values (HR, 0.93; 95% CI, 0.88-0.98). CONCLUSIONS In men with late-stage prostate cancer, ICD-9/10 'code-identified' diabetes is associated with better overall survival than 'undiagnosed' diabetes identified by high HbA1c values only. IMPACT Our data suggest that better diabetes detection and management may improve survival in late-stage prostate cancer.
Collapse
Affiliation(s)
- Andrei Sergeyev
- Durham Veterans Affairs Health Care System, Durham, North Carolina, USA
| | - Lin Gu
- Durham Veterans Affairs Health Care System, Durham, North Carolina, USA
| | | | | | | | - Matthew R. Cooperberg
- University of California San Francisco Medical Center, San Francisco, California, USA
| | - Christopher J. Kane
- University of California San Diego Health System, San Diego, California, USA
| | | | | | | | - Stephen J. Freedland
- Durham Veterans Affairs Health Care System, Durham, North Carolina, USA
- Cedars-Sinai Medical Center, Los Angeles, California, USA
| | | |
Collapse
|
9
|
Jia G, Wu W, Chen L, Yu Y, Tang Q, Liu H, Jiang Q, Han B. HSF1 is a novel prognostic biomarker in high-risk prostate cancer that correlates with ferroptosis. Discov Oncol 2023; 14:107. [PMID: 37351671 DOI: 10.1007/s12672-023-00715-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/05/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND Prostate cancer (PC) is the most common cancer in older men in Europe and the United States and has the second highest death rate among male cancers. The transcription of heat shock proteins by Heat shock factor 1 (HSF1) is known to regulate cell growth and stress. Nevertheless, the impact of HSF1 on ferroptosis in PC through heat shock protein 10 (HSPE1) remains unexplored. METHODS This study employed a range of analytical techniques, including proteomics sequencing, LC-MS/MS, CHIP-qPCR, Western blotting, immunohisto -chemistry, JC-1, CKK-8, MDA, and ROS assays. Bioinformatics analysis was performed using the UALCAN,GEPIA, PCaDB and Metascape platforms. RESULTS Compared with levels observed in tumor-adjacent tissue, the levels of proteins associated with fatty acids, amino acids and the oxidative phosphorylation metabolic pathway were significantly upregulated in high-risk PC tissue (Gleason score ≥ 8). HSF1 mRNA and protein levels in high-risk PC tissues were significantly higher than those observed in medium-risk PC (Gleason score = 7) and low-risk PC (Gleason score ≤ 6) tissues. ssGSEA showed that HSF1 was involved in the proliferation and anti-apoptotic processes of PC. Further bioinformatics analysis showed that HSF1 potentially affects the mitochondrial oxidative phosphorylation (OXPHOS) system by targeting HSPE1. In addition, HSF1 alleviates ROS and MDA levels to enhance the resistance of prostate cancer cells to ferroptosis by regulating HSPE1 in vitro, and HSF1 knockout promotes the susceptibility of PC to RSL3 treatment by increasing ferroptosis in vivo. CONCLUSION Collectively, our findings suggest that HSF1 exerts a significant influence on PC. HSF1 may represent a promising biomarker for identifying high-risk PC, and the elimination of HSF1 could potentially enhance the therapeutic effectiveness of RSL3.
Collapse
Affiliation(s)
- GaoZhen Jia
- Department of Urology, Shanghai General Hospital (Shanghai Peoples Hospital 1), Shanghai JiaoTong University School of Medicine, Shanghai, 200080, China
| | - WenBo Wu
- Department of Urology, Shanghai General Hospital (Shanghai Peoples Hospital 1), Shanghai JiaoTong University School of Medicine, Shanghai, 200080, China
| | - Lei Chen
- Department of Urology, Shanghai General Hospital (Shanghai Peoples Hospital 1), Shanghai JiaoTong University School of Medicine, Shanghai, 200080, China
| | - Yang Yu
- Department of Urology, Shanghai General Hospital (Shanghai Peoples Hospital 1), Shanghai JiaoTong University School of Medicine, Shanghai, 200080, China
| | - QiLin Tang
- Department of Urology, Shanghai General Hospital (Shanghai Peoples Hospital 1), Shanghai JiaoTong University School of Medicine, Shanghai, 200080, China
| | - HaiTao Liu
- Department of Urology, Shanghai General Hospital (Shanghai Peoples Hospital 1), Shanghai JiaoTong University School of Medicine, Shanghai, 200080, China
| | - Qi Jiang
- Department of Urology, Shanghai General Hospital (Shanghai Peoples Hospital 1), Shanghai JiaoTong University School of Medicine, Shanghai, 200080, China.
| | - BangMin Han
- Department of Urology, Shanghai General Hospital (Shanghai Peoples Hospital 1), Shanghai JiaoTong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
10
|
Yang J, Yang H, Cao L, Yin Y, Shen Y, Zhu W. Prognostic value of metformin in cancers: An updated meta-analysis based on 80 cohort studies. Medicine (Baltimore) 2022; 101:e31799. [PMID: 36626437 PMCID: PMC9750609 DOI: 10.1097/md.0000000000031799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Experiments have shown that metformin can inhibit cancer cell growth, but clinical observations have been inconsistent, so we pooled the currently available data to evaluate the impact of metformin on cancer survival and progression. METHODS PubMed, web of science, Embase, and Cochrane databases were searched. Pooled hazard ratios (HRs) were identified using a random-effects model to estimate the strength of the association between metformin and survival and progression in cancer patients. RESULTS We incorporated 80 articles published from all databases which satisfied the inclusion criterion. It showed that metformin was associated with better overall survival (hazard ratio [HR] = 0. 81; 95% confidence interval [CI]: [0.77-0.85]) and cancer-specific survival (HR = 0.79; 95% CI: [0.73-0.86]), and metformin was associated with progression-free survival (HR = 0.76; 95% CI: [0.66-0.87]). In patients with diabetes mellitus, the HR of overall survival was 0.79(95% CI: [0.75-0.83]), progression-free survival was 0.72(95% CI: [0.60-0.85]), and the cancer-specific survival was 0.76(95% CI: [0.68-0.86]). It was proposed that metformin can improve the prognosis of cancer patients with diabetes mellitus. CONCLUSION Based on cohort studies, metformin therapy has potential survival benefits for patients with malignancy, especially with the greatest benefits seen in breast cancer on overall survival, progression-free survival, and cancer-specific survival. And metformin also showed potential benefits in cancer-specific survival in colorectal and prostate cancer.
Collapse
Affiliation(s)
- Jing Yang
- Oncology Center, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Wujiang, Jiangsu Province, P.R. China
| | - Hang Yang
- Oncology Center, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Wujiang, Jiangsu Province, P.R. China
| | - Ling Cao
- Oncology Center, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Wujiang, Jiangsu Province, P.R. China
| | - Yuzhen Yin
- Oncology Center, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Wujiang, Jiangsu Province, P.R. China
| | - Ying Shen
- Department of Endocrinology, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Wujiang, Jiangsu Province, P.R. China
| | - Wei Zhu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
- * Correspondence: Wei Zhu, Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210029, P.R. China (e-mail: )
| |
Collapse
|
11
|
Novel plasma exosome biomarkers for prostate cancer progression in co-morbid metabolic disease. ADVANCES IN CANCER BIOLOGY - METASTASIS 2022; 6:100073. [PMID: 36644690 PMCID: PMC9836031 DOI: 10.1016/j.adcanc.2022.100073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Comorbid Type 2 diabetes (T2D), a metabolic complication of obesity, associates with worse cancer outcomes for prostate, breast, head and neck, colorectal and several other solid tumors. However, the molecular mechanisms remain poorly understood. Emerging evidence shows that exosomes carry miRNAs in blood that encode the metabolic status of originating tissues and deliver their cargo to target tissues to modulate expression of critical genes. Exosomal communication potentially connects abnormal metabolism to cancer progression. Here, we hypothesized that T2D plasma exosomes induce epithelial-mesenchymal transition (EMT) and immune checkpoints in prostate cancer cells. We demonstrate that plasma exosomes from subjects with T2D induce EMT features in prostate cancer cells and upregulate the checkpoint genes CD274 and CD155. We demonstrate that specific exosomal miRNAs that are differentially abundant in plasma of T2D adults compared to nondiabetic controls (miR374a-5p, miR-93-5p and let-7b-3p) are delivered to cancer cells, thereby regulating critical target genes. We build on our previous reports showing BRD4 controls migration and dissemination of castration-resistant prostate cancer, and transcription of key EMT genes, to show that T2D exosomes require BRD4 to drive EMT and immune ligand expression. We validate our findings with gene set enrichment analysis of human prostate tumor tissue in TGCA genomic data. These results suggest novel, non-invasive approaches to evaluate and potentially block progression of prostate and other cancers in patients with comorbid T2D.
Collapse
|
12
|
Mukherjee AG, Wanjari UR, Gopalakrishnan AV, Bradu P, Sukumar A, Patil M, Renu K, Dey A, Vellingiri B, George A, Ganesan R. Implications of cancer stem cells in diabetes and pancreatic cancer. Life Sci 2022; 312:121211. [PMID: 36414089 DOI: 10.1016/j.lfs.2022.121211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
This review provides a detailed study of pancreatic cancer (PC) and the implication of different types of cancers concerning diabetes. The combination of anti-diabetic drugs with other anti-cancer drugs and phytochemicals can help prevent and treat this disease. PC cancer stem cells (CSCs) and how they migrate and develop into malignant tumors are discussed. A detailed explanation of the different mechanisms of diabetes development, which can enhance the pancreatic CSCs' proliferation by increasing the IGF factor levels, epigenetic modifications, DNA damage, and the influence of lifestyle factors like obesity, and inflammation, has been discussed. It also explains how cancer due to diabetes is associated with high mortality rates. One of the well-known diabetic drugs, metformin, can be combined with other anti-cancer drugs and prevent the development of PC and has been taken as one of the prime focus in this review. Overall, this paper provides insight into the relationship between diabetes and PC and the methods that can be employed to diagnose this disease at an earlier stage successfully.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| | - Pragya Bradu
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Aarthi Sukumar
- Department of Integrative Biology, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Megha Patil
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, 700073, India
| | - Balachandar Vellingiri
- Stem cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda - 151401, Punjab, India
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, 680005, Kerala, India
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, 24252, Republic of Korea
| |
Collapse
|
13
|
Wang F, He T, Wang G, Han T, Yao Z. Association of triglyceride glucose-body mass index with non-small cell lung cancer risk: A case-control study on Chinese adults. Front Nutr 2022; 9:1004179. [PMID: 36313086 PMCID: PMC9614218 DOI: 10.3389/fnut.2022.1004179] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Background and objectives Insulin resistance (IR) is closely related to non-small-cell lung cancer (NSCLC) risk. Recently, triglyceride glucose-body mass index (TyG-BMI) has been recognized as one of the simple indexes of insulin resistance (IR). However, there are limited data on the relationship between TyG-BMI and NSCLC. Here, we investigated the association of TyG-BMI with NSCLC risk in Chinese adults. Methods This study consisted of 477 NSCLC cases and 954 healthy subjects. All participants were enrolled from 3201 Hospital affiliated to the Medical Department of Xi'an Jiaotong University. TyG-BMI was calculated based on the values of fasting blood glucose, triglyceride, and BMI. The association of TyG-BMI with NSCLC risk was estimated by logistic regression analysis. Results The mean value of TyG-BMI was statistically increased in patients with NSCLC compared to the control group (201.11 ± 28.18 vs. 174 ± 23.78, P < 0.01). There was a significant positive association between TyG-BMI and NSCLC (OR = 1.014; 95% CI 1.007-1.021; P < 0.001) after controlling for confounding factors. Moreover, the prevalence of NSCLC was significantly elevated in participants in the high TyG-BMI tertiles than those in the intermediate and low TyG-BMI tertiles (60.46% vs. 12.61% vs. 26.83%, P < 0.01). Importantly, TyG-BMI achieved a significant diagnostic accuracy for NSCLC, with an AUC (area under the curve) of 0.769 and a cutoff value of 184.87. Conclusion The findings suggest that TyG-BMI is a useful tool for assessing NSCLC risk. Thus, it is essential to follow up on high TyG-BMI, and lifestyle modification is needed to prevent NSCLC in people with high TyG-BMI.
Collapse
Affiliation(s)
- Feifei Wang
- Department of Oncology, The 3201 Hospital Affiliated to Medical Department of Xi’an Jiaotong University, Hanzhong, Shaanxi, China
| | - Ting He
- Department of Oncology, The 3201 Hospital Affiliated to Medical Department of Xi’an Jiaotong University, Hanzhong, Shaanxi, China
| | - Guoliang Wang
- Department of Orthopedics, Second Affiliated Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Tuo Han
- Department of Oncology Surgery, The 3201 Hospital Affiliated to Medical Department of Xi’an Jiaotong University, Hanzhong, Shaanxi, China
| | - Zhongqiang Yao
- Department of Oncology, The 3201 Hospital Affiliated to Medical Department of Xi’an Jiaotong University, Hanzhong, Shaanxi, China,*Correspondence: Zhongqiang Yao,
| |
Collapse
|
14
|
The Beneficial Effect of a Healthy Dietary Pattern on Androgen Deprivation Therapy-Related Metabolic Abnormalities in Patients with Prostate Cancer: A Meta-Analysis Based on Randomized Controlled Trials and Systematic Review. Metabolites 2022; 12:metabo12100969. [PMID: 36295871 PMCID: PMC9611951 DOI: 10.3390/metabo12100969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 12/24/2022] Open
Abstract
Metabolic abnormalities as side effects of androgen-deprivation therapy (ADT) can accelerate progression of prostate cancer (PCa) and increase risks of cardiovascular diseases. A healthy dietary pattern (DP) plays an important role in regulating glycolipid metabolism, while evidence about DP on ADT-related metabolic abnormalities is still controversial. To explore the effect of DP on metabolic outcomes in PCa patients with ADT, PubMed, Embase, Cochrane, and CINAHL were searched from inception to 10 September 2022. Risk of biases was evaluated through Cochrane Collaboration’s Tool. If heterogeneity was low, the fixed-effects model was carried out; otherwise, the random-effects model was used. Data were determined by calculating mean difference (MD) or standardized MD (SMD) with 95% confidence intervals (CIs). Nine studies involving 421 patients were included. The results showed that healthy DP significantly improved glycated hemoglobin (MD: −0.13; 95% CI: −0.24, −0.02; p = 0.020), body mass index (MD: −1.02; 95% CI: −1.29, −0.75; p < 0.001), body fat mass (MD: −1.78; 95% CI: −2.58, −0.97; p < 0.001), triglyceride (MD: −0.28; 95% CI: −0.51, −0.04; p = 0.020), systolic blood pressure (MD: −6.30; 95% CI: −11.15, −1.44; p = 0.010), and diastolic blood pressure (MD: −2.94; 95% CI: −5.63, −0.25; p = 0.030), although its beneficial effects on other glycolipid metabolic indicators were not found. Additionally, a healthy DP also lowered the level of PSA (MD: −1.79; 95% CI: −2.25, −1.33; p < 0.001). The meta-analysis demonstrated that a healthy DP could improve ADT-related metabolic abnormalities and be worthy of being recommended for PCa patients with ADT.
Collapse
|
15
|
Vanneste D, Staal J, Haegman M, Driege Y, Carels M, Van Nuffel E, De Bleser P, Saeys Y, Beyaert R, Afonina IS. CARD14 Signalling Ensures Cell Survival and Cancer Associated Gene Expression in Prostate Cancer Cells. Biomedicines 2022; 10:biomedicines10082008. [PMID: 36009554 PMCID: PMC9405774 DOI: 10.3390/biomedicines10082008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022] Open
Abstract
Prostate cancer (PCa) is one of the most common cancer types in men and represents an increasing global problem due to the modern Western lifestyle. The signalling adapter protein CARD14 is specifically expressed in epithelial cells, where it has been shown to mediate NF-κB signalling, but a role for CARD14 in carcinoma has not yet been described. By analysing existing cancer databases, we found that CARD14 overexpression strongly correlates with aggressive PCa in human patients. Moreover, we showed that CARD14 is overexpressed in the LNCaP PCa cell line and that knockdown of CARD14 severely reduces LNCaP cell survival. Similarly, knockdown of BCL10 and MALT1, which are known to form a signalling complex with CARD14, also induced LNCaP cell death. MALT1 is a paracaspase that mediates downstream signalling by acting as a scaffold, as well as a protease. Recent studies have already indicated a role for the scaffold function of MALT1 in PCa cell growth. Here, we also demonstrated constitutive MALT1 proteolytic activity in several PCa cell lines, leading to cleavage of A20 and CYLD. Inhibition of MALT1 protease activity did not affect PCa cell survival nor activation of NF-κB and JNK signalling, but reduced expression of cancer-associated genes, including the cytokine IL-6. Taken together, our results revealed a novel role for CARD14-induced signalling in regulating PCa cell survival and gene expression. The epithelial cell type-specific expression of CARD14 may offer novel opportunities for more specific therapeutic targeting approaches in PCa.
Collapse
Affiliation(s)
- Domien Vanneste
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, 9000 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Jens Staal
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, 9000 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Mira Haegman
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, 9000 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Yasmine Driege
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, 9000 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Marieke Carels
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, 9000 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Elien Van Nuffel
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, 9000 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Pieter De Bleser
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
- Unit of Data Mining and Modeling for Biomedicine, VIB-UGent Center for Inflammation Research, 9000 Ghent, Belgium
| | - Yvan Saeys
- Unit of Data Mining and Modeling for Biomedicine, VIB-UGent Center for Inflammation Research, 9000 Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, 9000 Ghent, Belgium
| | - Rudi Beyaert
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, 9000 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
- Correspondence:
| | - Inna S. Afonina
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, 9000 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
16
|
Di Magno L, Di Pastena F, Bordone R, Coni S, Canettieri G. The Mechanism of Action of Biguanides: New Answers to a Complex Question. Cancers (Basel) 2022; 14:cancers14133220. [PMID: 35804992 PMCID: PMC9265089 DOI: 10.3390/cancers14133220] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 01/27/2023] Open
Abstract
Biguanides are a family of antidiabetic drugs with documented anticancer properties in preclinical and clinical settings. Despite intensive investigation, how they exert their therapeutic effects is still debated. Many studies support the hypothesis that biguanides inhibit mitochondrial complex I, inducing energy stress and activating compensatory responses mediated by energy sensors. However, a major concern related to this “complex” model is that the therapeutic concentrations of biguanides found in the blood and tissues are much lower than the doses required to inhibit complex I, suggesting the involvement of additional mechanisms. This comprehensive review illustrates the current knowledge of pharmacokinetics, receptors, sensors, intracellular alterations, and the mechanism of action of biguanides in diabetes and cancer. The conditions of usage and variables affecting the response to these drugs, the effect on the immune system and microbiota, as well as the results from the most relevant clinical trials in cancer are also discussed.
Collapse
Affiliation(s)
- Laura Di Magno
- Department of Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy; (L.D.M.); (F.D.P.); (R.B.); (S.C.)
| | - Fiorella Di Pastena
- Department of Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy; (L.D.M.); (F.D.P.); (R.B.); (S.C.)
| | - Rosa Bordone
- Department of Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy; (L.D.M.); (F.D.P.); (R.B.); (S.C.)
| | - Sonia Coni
- Department of Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy; (L.D.M.); (F.D.P.); (R.B.); (S.C.)
| | - Gianluca Canettieri
- Department of Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy; (L.D.M.); (F.D.P.); (R.B.); (S.C.)
- Istituto Pasteur—Fondazione Cenci—Bolognetti, 00161 Rome, Italy
- Correspondence:
| |
Collapse
|
17
|
Resurreccion EP, Fong KW. The Integration of Metabolomics with Other Omics: Insights into Understanding Prostate Cancer. Metabolites 2022; 12:metabo12060488. [PMID: 35736421 PMCID: PMC9230859 DOI: 10.3390/metabo12060488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023] Open
Abstract
Our understanding of prostate cancer (PCa) has shifted from solely caused by a few genetic aberrations to a combination of complex biochemical dysregulations with the prostate metabolome at its core. The role of metabolomics in analyzing the pathophysiology of PCa is indispensable. However, to fully elucidate real-time complex dysregulation in prostate cells, an integrated approach based on metabolomics and other omics is warranted. Individually, genomics, transcriptomics, and proteomics are robust, but they are not enough to achieve a holistic view of PCa tumorigenesis. This review is the first of its kind to focus solely on the integration of metabolomics with multi-omic platforms in PCa research, including a detailed emphasis on the metabolomic profile of PCa. The authors intend to provide researchers in the field with a comprehensive knowledge base in PCa metabolomics and offer perspectives on overcoming limitations of the tool to guide future point-of-care applications.
Collapse
Affiliation(s)
- Eleazer P. Resurreccion
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40506, USA;
| | - Ka-wing Fong
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40506, USA;
- Markey Cancer Center, University of Kentucky, Lexington, KY 40506, USA
- Correspondence: ; Tel.: +1-859-562-3455
| |
Collapse
|
18
|
Jiménez-Vacas JM, Montero-Hidalgo AJ, Gómez-Gómez E, Fuentes-Fayos AC, Ruiz-Pino F, Guler I, Camargo A, Anglada FJ, Carrasco-Valiente J, Tena-Sempere M, Sarmento-Cabral A, Castaño JP, Gahete MD, Luque RM. In1-Ghrelin Splicing Variant as a Key Element in the Pathophysiological Association Between Obesity and Prostate Cancer. J Clin Endocrinol Metab 2021; 106:e4956-e4968. [PMID: 34255835 DOI: 10.1210/clinem/dgab516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
CONTEXT Recent studies emphasize the importance of considering the metabolic status to develop personalized medicine approaches. This is especially relevant in prostate cancer (PCa), wherein the diagnostic capability of prostate-specific antigen (PSA) dramatically drops when considering patients with PSA levels ranging from 3 to 10 ng/mL, the so-called grey zone. Hence, additional noninvasive diagnostic and/or prognostic PCa biomarkers are urgently needed, especially in the metabolic-status context. OBJECTIVE To assess the potential relation of urine In1-ghrelin (a ghrelin-splicing variant) levels with metabolic-related/pathological conditions (eg, obesity, diabetes, body mass index, insulin and glucose levels) and to define its potential clinical value in PCa (diagnostic/prognostic capacity) and relationship with PCa risk in patients with PSA in the grey zone. METHODS Urine In1-ghrelin levels were measured by radioimmunoassay in a clinically, metabolically, pathologically well-characterized cohort of patients without (n = 397) and with (n = 213) PCa with PSA in the grey zone. RESULTS Key obesity-related factors associated with PCa risk (BMI, diabetes, glucose and insulin levels) were strongly correlated to In1-ghrelin levels. Importantly, In1-ghrelin levels were higher in PCa patients compared to control patients with suspect of PCa but negative biopsy). Moreover, high In1-ghrelin levels were associated with increased PCa risk and linked to PCa aggressiveness (eg, tumor stage, lymphovascular invasion). In1-ghrelin levels added significant diagnostic value to a clinical model consisting of age, suspicious digital rectal exam, previous biopsy, and PSA levels. Furthermore, a multivariate model consisting of clinical and metabolic variables, including In1-ghrelin levels, showed high specificity and sensitivity to diagnose PCa (area under the receiver operating characteristic curve = 0.740). CONCLUSIONS Urine In1-ghrelin levels are associated with obesity-related factors and PCa risk and aggressiveness and could represent a novel and valuable noninvasive PCa biomarker, as well as a potential link in the pathophysiological relationship between obesity and PCa.
Collapse
Affiliation(s)
- Juan M Jiménez-Vacas
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Reina Sofia University Hospital (HURS), Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, Spain
| | - Antonio J Montero-Hidalgo
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Reina Sofia University Hospital (HURS), Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, Spain
| | - Enrique Gómez-Gómez
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain
- Reina Sofia University Hospital (HURS), Cordoba, Spain
- Urology Service, HURS/IMIBIC, Cordoba, Spain
| | - Antonio C Fuentes-Fayos
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Reina Sofia University Hospital (HURS), Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, Spain
| | - Francisco Ruiz-Pino
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Reina Sofia University Hospital (HURS), Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, Spain
| | - Ipek Guler
- Leuven Biostatistics and Statistical Bioinformatics Centre (L-BioStat), Katholiek Universiteit (KU) Leuven, University of Leuven, Leuven, Belgium
| | - Antonio Camargo
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain
- Reina Sofia University Hospital (HURS), Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, Spain
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, Cordoba, Spain
| | - Francisco J Anglada
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain
- Reina Sofia University Hospital (HURS), Cordoba, Spain
- Urology Service, HURS/IMIBIC, Cordoba, Spain
| | - Julia Carrasco-Valiente
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain
- Reina Sofia University Hospital (HURS), Cordoba, Spain
- Urology Service, HURS/IMIBIC, Cordoba, Spain
| | - Manuel Tena-Sempere
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Reina Sofia University Hospital (HURS), Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, Spain
| | - André Sarmento-Cabral
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Reina Sofia University Hospital (HURS), Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, Spain
| | - Justo P Castaño
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Reina Sofia University Hospital (HURS), Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, Spain
| | - Manuel D Gahete
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Reina Sofia University Hospital (HURS), Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, Spain
| | - Raúl M Luque
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Reina Sofia University Hospital (HURS), Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, Spain
| |
Collapse
|
19
|
Min J, Yoo S, Kim MJ, Yang E, Hwang S, Kang M, Yu MS, Yoon C, Heo JE, Choi Y, Jeon JY. Exercise participation, barriers, and preferences in Korean prostate cancer survivors. ETHNICITY & HEALTH 2021; 26:1130-1142. [PMID: 31234646 DOI: 10.1080/13557858.2019.1634184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 06/07/2019] [Indexed: 06/09/2023]
Abstract
Objective: To identify patterns of physical activity (PA) participation, exercise preference, and barriers of stage 2-3 prostate cancer survivors across cancer trajectories based on selected demographic and medical variables.Design: The current study is a descriptive cross-sectional study which included data from a total of 111 prostate cancer survivors, at Shinchon Severance Hospital, Seoul, Korea. The survey includes PA levels before and after prostate cancer diagnosis, exercise barriers, and preferences.Results: Moderate- to vigorous-intensity PA levels were significantly lower after cancer diagnosis (vigorous PA:41.9 ± 123.1 min/week vs. 4.6 ± 29.8 min/week, p < 0.001; moderate PA: 159.9 ± 240.0 min/week vs. 56.8 ± 129.7 min/week, p < .001) compared to their PA level before cancer diagnosis. Perceived exercise barriers were distinctly different according to participants' age and time since surgery. The two most prevalent exercise barriers among prostate cancer survivors <65 years were lack of time (28.6%) and poor health (26.5%), whereas the exercise barriers for prostate cancer survivors aged ≥65 years were lack of exercise facilities (21.4%) and lack of exercise information (17.9%). Furthermore, within 6 months after surgery, prostate cancer survivors perceived poor health (29.5%) and pain at the surgery site (29.5%) to be the two most prevalent exercise barriers. 6 months after surgery, prostate cancer survivors perceived lack of time (21.3%) and poor health (14.8%) to be the two most prevalent exercise barriers. Walking, pelvic floor and Kegel exercises were three most preferred exercises among prostate cancer survivors in our study, which uniquely differ according to time since surgery.Conclusion: This study showed significant reduction in PA levels among prostate cancer survivors and their perceived exercise barriers were distinct according to their age and time since surgery. Therefore, PA and exercise recommendation should be specific to their personal characteristics such as age and time since surgery.
Collapse
Affiliation(s)
- Jihee Min
- Department of Sport Industry Studies, Exercise Medicine Center for Diabetes and Cancer Patients and Cancer Prevention Center, Shinchon Severance Hospital, Yonsei University, Seoul, Republic of Korea
| | - Samuel Yoo
- Department of Sport Industry Studies, Exercise Medicine Center for Diabetes and Cancer Patients and Cancer Prevention Center, Shinchon Severance Hospital, Yonsei University, Seoul, Republic of Korea
| | - Min-Jae Kim
- Department of Sport Industry Studies, Exercise Medicine Center for Diabetes and Cancer Patients and Cancer Prevention Center, Shinchon Severance Hospital, Yonsei University, Seoul, Republic of Korea
| | - Eunwoo Yang
- Department of Sport Industry Studies, Exercise Medicine Center for Diabetes and Cancer Patients and Cancer Prevention Center, Shinchon Severance Hospital, Yonsei University, Seoul, Republic of Korea
| | - Seohyeon Hwang
- Department of Sport Industry Studies, Exercise Medicine Center for Diabetes and Cancer Patients and Cancer Prevention Center, Shinchon Severance Hospital, Yonsei University, Seoul, Republic of Korea
| | - Minjae Kang
- Department of Sport Industry Studies, Exercise Medicine Center for Diabetes and Cancer Patients and Cancer Prevention Center, Shinchon Severance Hospital, Yonsei University, Seoul, Republic of Korea
| | - Mi-Seong Yu
- Department of Sport Industry Studies, Exercise Medicine Center for Diabetes and Cancer Patients and Cancer Prevention Center, Shinchon Severance Hospital, Yonsei University, Seoul, Republic of Korea
| | - Cheolyong Yoon
- Department of Urology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji Eun Heo
- Department of Urology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Youngdeuk Choi
- Department of Urology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Justin Y Jeon
- Department of Sport Industry Studies, Exercise Medicine Center for Diabetes and Cancer Patients and Cancer Prevention Center, Shinchon Severance Hospital, Yonsei University, Seoul, Republic of Korea
- Exercise Medicine Center for Diabetes and Cancer Patients, ICONS, Yonsei University, Seoul, Republic of Korea
- Cancer Prevention Center, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
20
|
Altuna-Coy A, Ruiz-Plazas X, Alves-Santiago M, Segarra-Tomás J, Chacón MR. Serum Levels of the Cytokine TWEAK Are Associated with Metabolic Status in Patients with Prostate Cancer and Modulate Cancer Cell Lipid Metabolism In Vitro. Cancers (Basel) 2021; 13:cancers13184688. [PMID: 34572917 PMCID: PMC8465414 DOI: 10.3390/cancers13184688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/01/2021] [Accepted: 09/14/2021] [Indexed: 11/29/2022] Open
Abstract
Simple Summary TWEAK is an inflammatory cytokine related to prostate cancer (PCa) progression that exerts its effects by engaging its cognate receptor Fn14. A soluble form of TWEAK (sTWEAK) has been detected in the PCa microenvironment. Altered levels of circulating sTWEAK are associated with aberrant glucose metabolism. We show that reduced serum levels of sTWEAK are associated with the metabolic status in patients with PCa and that the treatment of PC-3 cells with sTWEAK enhances the expression of genes related to lipid, but not to glucose, metabolism. sTWEAK also increases the lipid uptake and lipid accumulation in PC-3 cells. We corroborated that the observed effects were due to TWEAK/Fn14 engagement by silencing Fn14 expression, which attenuated the aberrant gene and protein expression. Additionally, we observed that the phosphorylation of ERK1/2 and AKT (ser473) were required for TWEAK/Fn14 actions. Thus, the contribution of the sTWEAK/Fn14 axis on PCa metabolism supports its potential as a therapeutic target for PCa. Abstract Soluble TWEAK (sTWEAK) has been proposed as a prognostic biomarker of prostate cancer (PCa). We found that reduced serum levels of sTWEAK, together with higher levels of prostate-specific antigen and a higher HOMA-IR index, are independent predictors of PCa. We also showed that sTWEAK stimulus failed to alter the expression of glucose transporter genes (SLC2A4 and SLC2A1), but significantly reduced the expression of glucose metabolism-related genes (PFK, HK1 and PDK4) in PCa cells. The sTWEAK stimulation of PC-3 cells significantly increased the expression of the genes related to lipogenesis (ACACA and FASN), lipolysis (CPT1A and PNPLA2), lipid transport (FABP4 and CD36) and lipid regulation (SREBP-1 and PPARG) and increased the lipid uptake. Silencing the TWEAK receptor (Fn14) in PC-3 cells confirmed the observed lipid metabolic effects, as shown by the downregulation of ACACA, FASN, CPT1A, PNPLA2, FABP4, CD36, SREBP-1 and PPARG expression, which was paralleled by a reduction of FASN, CPT1A and FABP4 protein expression. Specific-signaling inhibitor assays show that ERK1/2 and AKT (ser473) phosphorylation can regulate lipid metabolism-related genes in PCa cells, pointing to the AKT locus as a possible target for PCa. Overall, our data support sTWEAK/Fn14 axis as a potential therapeutic target for PCa.
Collapse
Affiliation(s)
- Antonio Altuna-Coy
- Disease Biomarkers and Molecular Mechanisms Group, IISPV, Joan XXIII University Hospital, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.A.-C.); (X.R.-P.); (M.A.-S.)
| | - Xavier Ruiz-Plazas
- Disease Biomarkers and Molecular Mechanisms Group, IISPV, Joan XXIII University Hospital, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.A.-C.); (X.R.-P.); (M.A.-S.)
- Urology Unit, Joan XXIII University Hospital, 43005 Tarragona, Spain
| | - Marta Alves-Santiago
- Disease Biomarkers and Molecular Mechanisms Group, IISPV, Joan XXIII University Hospital, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.A.-C.); (X.R.-P.); (M.A.-S.)
- Urology Unit, Joan XXIII University Hospital, 43005 Tarragona, Spain
| | - José Segarra-Tomás
- Disease Biomarkers and Molecular Mechanisms Group, IISPV, Joan XXIII University Hospital, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.A.-C.); (X.R.-P.); (M.A.-S.)
- Urology Unit, Joan XXIII University Hospital, 43005 Tarragona, Spain
- Correspondence: (J.S.-T.); (M.R.C.); Tel.: +34-977295500 (ext. 3406) (J.S.-T. & M.R.C.)
| | - Matilde R. Chacón
- Disease Biomarkers and Molecular Mechanisms Group, IISPV, Joan XXIII University Hospital, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.A.-C.); (X.R.-P.); (M.A.-S.)
- Correspondence: (J.S.-T.); (M.R.C.); Tel.: +34-977295500 (ext. 3406) (J.S.-T. & M.R.C.)
| |
Collapse
|
21
|
Kim JS, Galvão DA, Newton RU, Gray E, Taaffe DR. Exercise-induced myokines and their effect on prostate cancer. Nat Rev Urol 2021; 18:519-542. [PMID: 34158658 DOI: 10.1038/s41585-021-00476-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2021] [Indexed: 02/06/2023]
Abstract
Exercise is recognized by clinicians in the field of clinical oncology for its potential role in reducing the risk of certain cancers and in reducing the risk of disease recurrence and progression; yet, the underlying mechanisms behind this reduction in risk are not fully understood. Studies applying post-exercise blood serum directly to various types of cancer cell lines provide insight that exercise might have a role in inhibiting cancer growth via altered soluble and cell-free blood contents. Myokines, which are cytokines produced by muscle and secreted into the bloodstream, might offer multiple benefits to cellular metabolism (such as a reduction in insulin resistance, improved glucose uptake and reduced adiposity), and blood myokine levels can be altered with exercise. Alterations in the levels of myokines such as IL-6, IL-15, IL-10, irisin, secreted protein acidic risk in cysteine (SPARC), myostatin, oncostatin M and decorin might exert a direct inhibitory effect on cancer growth via inhibiting proliferation, promoting apoptosis, inducing cell-cycle arrest and inhibiting the epithermal transition to mesenchymal cells. The association of insulin resistance, hyperinsulinaemia and hyperlipidaemia with obesity can create a tumour-favourable environment; exercise-induced myokines can manipulate this environment by regulating adipose tissue and adipocytes. Exercise-induced myokines also have a critical role in increasing cytotoxicity and the infiltration of immune cells into the tumour.
Collapse
Affiliation(s)
- Jin-Soo Kim
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Daniel A Galvão
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA, Australia. .,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.
| | - Robert U Newton
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Elin Gray
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Dennis R Taaffe
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
22
|
Cust AE. Strengthening melanoma prevention and early detection among people with type 2 diabetes. Br J Dermatol 2021; 185:692-693. [PMID: 34405889 DOI: 10.1111/bjd.20633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 11/30/2022]
Affiliation(s)
- A E Cust
- The Daffodil Centre, The University of Sydney, a joint venture with Cancer Council NSW, Sydney, NSW, Australia.,Melanoma Institute Australia, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
23
|
Stoica RA, Ancuceanu R, Costache A, Ștefan SD, Stoian AP, Guja C, Ștefan-van Staden RI, Popa-Tudor I, Serafinceanu C, Ionescu-Tîrgoviște C. Subclinical hypothyroidism has no association with insulin resistance indices in adult females: A case-control study. Exp Ther Med 2021; 22:1033. [PMID: 34373719 DOI: 10.3892/etm.2021.10465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/16/2021] [Indexed: 12/16/2022] Open
Abstract
Longitudinal studies have indicated an association between thyroid function and insulin resistance (IR) or a neutral relationship. Both the lowest tertile of free thyroxine (fT4) and the highest tertile of free triiodothyronine (fT3) were found to be associated with IR in cross-sectional studies. The aim of the present study was to analyze the association between IR and subclinical hypothyroidism in a female adult population from Bucharest, Romania. This is a retrospective pilot case-control study that included female patients examined by two endocrinologists and a diabetologist in an outpatient clinic. The retrospective follow-up had a one-year duration and included the evaluation of thyroid function tests and IR indices based on fasting insulinemia and C-peptide. The study included 176 women, 91 with subclinical hypothyroidism, with a median age of 60±17 years and a mean body mass index (BMI) of 27.79±4.76 kg/m2. The majority of the population (50%) was diagnosed with autoimmune thyroiditis, and 17.05% with goitre. The univariate logistic regression using hypothyroidism as the explaining variable found no evidence of a significant relationship between a decreased thyroid function and IR (OR 1.32; P=0.36). Metabolic syndrome was probably the most important determinant of IR in the population group studied. Thus, it was not the thyroid function per se, but the coexistence of other elements of this syndrome that prevailed in determining IR. Advantages to the study are the design that permitted evaluation of IR and the thyroid function at different moments in time as well as the uniformity of the blood tests. The multivariate analyses were adjusted for age, lipid profile and treatment; however, one limiting factor was the absence of other hormonal blood tests. In summary, there was no association between the thyroid function tests (TSH, fT4) and IR indices in adult Romanian women in a case-control study with one-year retrospective follow-up.
Collapse
Affiliation(s)
- Roxana Adriana Stoica
- Department of Diabetes, Nutrition and Metabolic Diseases, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Robert Ancuceanu
- Department of Botanical Pharmaceutics, 'Carol Davila' University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Adrian Costache
- Department of Pathology, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Simona Diana Ștefan
- Department of Diabetes, Nutrition and Metabolic Diseases, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Anca Pantea Stoian
- Department of Diabetes, Nutrition and Metabolic Diseases, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Cristian Guja
- Department of Diabetes, Nutrition and Metabolic Diseases, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Raluca Ioana Ștefan-van Staden
- Laboratory of Electrochemistry and PATLAB, National Institute of Research for Electrochemistry and Condensed Matter, 060021 Bucharest, Romania
| | - Ioana Popa-Tudor
- Laboratory of Electrochemistry and PATLAB, National Institute of Research for Electrochemistry and Condensed Matter, 060021 Bucharest, Romania
| | - Cristian Serafinceanu
- Department of Diabetes, Nutrition and Metabolic Diseases, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Constantin Ionescu-Tîrgoviște
- Department of Diabetes, Nutrition and Metabolic Diseases, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
24
|
Faithfull S, Lemanska A, Poole K, Aning J, Manders R, Marshall J, Saxton J, Turner L, Griffin B. Obesity and low levels of physical activity impact on cardiopulmonary fitness in older men after treatment for prostate cancer. Eur J Cancer Care (Engl) 2021; 30:e13476. [PMID: 34143537 DOI: 10.1111/ecc.13476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/21/2021] [Accepted: 05/13/2021] [Indexed: 12/24/2022]
Abstract
The purpose of this study was to compare fitness parameters and cardiovascular disease risk of older and younger men with prostate cancer (PCa) and explore how men's fitness scores compared to normative age values. 83 men were recruited post-treatment and undertook a cardiopulmonary exercise test (CPET), sit-to-stand, step-and-grip strength tests and provided blood samples for serum lipids and HbA1c. We calculated waist-to-hip ratio, cardiovascular risk (QRISK2), Charlson comorbidity index (CCI) and Godin leisure-time exercise questionnaire [GLTEQ]. Age-group comparisons were made using normative data. Men > 75 years, had lower cardiopulmonary fitness, as measured by VO2 Peak (ml/kg/min) 15.8 + 3.8 p < 0.001, and lower grip strength(28.6+5.2 kg p < 0.001) than younger men. BMI ≥30kg/m2 and higher blood pressure all contributed to a QRisk2 score indicative of 20% chance of cardiovascular risk within 10 years (mean: 36.9-6.1) p < 0.001. Age, BMI and perceived physical activity were significantly associated with lower cardiopulmonary fitness. Men with PCa > 75 years had more cardiovascular risk factors compared to normative standards for men of their age. Although ADT was more frequent in older men, this was not found to be associated with cardiopulmonary fitness, but obesity and low levels of physical activity were. Secondary prevention should be addressed in men with PCa to improve men's overall health.
Collapse
Affiliation(s)
- Sara Faithfull
- School of Health Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | - Agnieszka Lemanska
- School of Health Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | - Karen Poole
- School of Health Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | - Jonathan Aning
- Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.,Bristol Urological Institute, Southmead Hospital, Bristol, UK
| | - Ralph Manders
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - John Marshall
- PPI Representative, Prostate Cancer UK Charity, London, UK
| | - John Saxton
- Department of Sport Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, UK
| | - Lauren Turner
- Frimley Health NHS Foundation Trust, Frimley, Surrey, UK
| | - Bruce Griffin
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
25
|
Djamgoz MBA, Jentzsch V. Integrative Management of Pancreatic Cancer (PDAC): Emerging Complementary Agents and Modalities. Nutr Cancer 2021; 74:1139-1162. [PMID: 34085871 DOI: 10.1080/01635581.2021.1934043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/19/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease. The standard first-line treatment for PDAC is gemcitabine chemotherapy which, unfortunately, offers only limited chance of a lasting cure. This review further evaluates the hypothesis that the effectiveness of gemcitabine can be improved by combining it with evidence-based complementary measures. Previously, supported by clinical trial data, we suggested that a number of dietary factors and nutraceuticals can be integrated with gemcitabine therapy. Here, we evaluate a further 10 agents for which no clinical trials have (yet) been carried out but there are promising data from in vivo and/or in vitro studies including experiments involving combined treatments with gemcitabine. Two groups of complementary agents are considered: Dietary factors (resveratrol, epigallocatechin gallate, vitamin B9, capsaicin, quercetin and sulforaphane) and nutraceutical agents (artemisinin, garcinol, thymoquinone and emodin). In addition, we identified seven promising agents for which there is currently only basic (mostly in vitro) data. Finally, as a special case of combination therapy, we highlighted synergistic drug combinations involving gemcitabine with "repurposed" aspirin or metformin. We conclude overall that integrated management of PDAC currently is likely to produce the best outcome for patients and for this a wide range of complementary measures is available.
Collapse
Affiliation(s)
- Mustafa B A Djamgoz
- Department of Life Sciences, Imperial College London, London, UK
- Biotechnology Research Centre, Cyprus International University, Nicosia, Cyprus
| | - Valerie Jentzsch
- Department of Life Sciences, Imperial College London, London, UK
- Department of Health Policy, London School of Economics and Political Science, London, UK
| |
Collapse
|
26
|
Knura M, Garczorz W, Borek A, Drzymała F, Rachwał K, George K, Francuz T. The Influence of Anti-Diabetic Drugs on Prostate Cancer. Cancers (Basel) 2021; 13:cancers13081827. [PMID: 33921222 PMCID: PMC8068793 DOI: 10.3390/cancers13081827] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/27/2021] [Accepted: 04/08/2021] [Indexed: 12/13/2022] Open
Abstract
The incidences of prostate cancer (PC) and diabetes are increasing, with a sustained trend. The occurrence of PC and type 2 diabetes mellitus (T2DM) is growing with aging. The correlation between PC occurrence and diabetes is noteworthy, as T2DM is correlated with a reduced risk of incidence of prostate cancer. Despite this reduction, diabetes mellitus increases the mortality in many cancer types, including prostate cancer. The treatment of T2DM is based on lifestyle changes and pharmacological management. Current available drugs, except insulin, are aimed at increasing insulin secretion (sulfonylureas, incretin drugs), improving insulin sensitivity (biguanides, thiazolidinediones), or increasing urinary glucose excretion (gliflozin). Comorbidities should be taken into consideration during the treatment of T2DM. This review describes currently known information about the mechanism and impact of commonly used antidiabetic drugs on the incidence and progression of PC. Outcomes of pre-clinical studies are briefly presented and their correlations with available clinical trials have also been observed. Available reports and meta-analyses demonstrate that most anti-diabetic drugs do not increase the risk during the treatment of patients with PC. However, some reports show a potential advantage of treatment of T2DM with specific drugs. Based on clinical reports, use of metformin should be considered as a therapeutic option. Moreover, anticancer properties of metformin were augmented while combined with GLP-1 analogs.
Collapse
|
27
|
Kelkar S, Oyekunle T, Eisenberg A, Howard L, Aronson WJ, Kane CJ, Amling CL, Cooperberg MR, Klaassen Z, Terris MK, Freedland SJ, Csizmadi I. Diabetes and Prostate Cancer Outcomes in Obese and Nonobese Men After Radical Prostatectomy. JNCI Cancer Spectr 2021; 5:pkab023. [PMID: 34169227 PMCID: PMC8220304 DOI: 10.1093/jncics/pkab023] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/29/2021] [Accepted: 03/05/2021] [Indexed: 12/31/2022] Open
Abstract
Background The link between diabetes and prostate cancer progression is poorly understood and complicated by obesity. We investigated associations between diabetes and prostate cancer-specific mortality (PCSM), castrate-resistant prostate cancer (CRPC), and metastases in obese and nonobese men undergoing radical prostatectomy (RP). Methods We included 4688 men from the Shared Equal Access Regional Cancer Hospital cohort of men undergoing RP from 1988 to 2017. Diabetes prior to RP, anthropometric, and clinical data were abstracted from 6 Veterans Affairs Medical Centers electronic medical records. Primary and secondary outcomes were PCSM and metastases and CRPC, respectively. Multivariable-adjusted hazard ratios (adj-HRs) and 95% confidence intervals (CIs) were estimated for diabetes and PCSM, CRPC, and metastases. Adjusted hazard ratios were also estimated in analyses stratified by obesity (body mass index: nonobese <30 kg/m2; obese ≥30 kg/m2). All statistical tests were 2-sided. Results Diabetes was not associated with PCSM (adj-HR = 1.38, 95% CI = 0.86 to 2.24), CRPC (adj-HR = 1.05, 95% CI = 0.67 to 1.64), or metastases (adj-HR = 1.01, 95% CI = 0.70 to 1.46), among all men. Interaction terms for diabetes and obesity were statistically significant in multivariable models for PCSM, CRPC, and metastases (P ≤ .04). In stratified analyses, in obese men, diabetes was associated with PCSM (adj-HR = 3.06, 95% CI = 1.40 to 6.69), CRPC (adj-HR = 2.14, 95% CI = 1.11 to 4.15), and metastases (adj-HR = 1.57, 95% CI = 0.88 to 2.78), though not statistically significant for metastases. In nonobese men, inverse associations were suggested for diabetes and prostate cancer outcomes without reaching statistical significance. Conclusions Diabetes was associated with increased risks of prostate cancer progression and mortality among obese men but not among nonobese men, highlighting the importance of aggressively curtailing the increasing prevalence of obesity in prostate cancer survivors.
Collapse
Affiliation(s)
- Sonia Kelkar
- Urology Section, Veterans Affairs Medical Center, Durham, NC, USA
| | - Taofik Oyekunle
- Duke Cancer Institute Biostatistics Shared Resource, Duke University School of Medicine, Durham, NC, USA
| | - Adva Eisenberg
- Department of Medicine, Division of Endocrinology, Duke University Medical Center, Durham, NC, USA
| | - Lauren Howard
- Duke Cancer Institute Biostatistics Shared Resource, Duke University School of Medicine, Durham, NC, USA
| | - William J Aronson
- Department of Urology, University of California Los Angeles Medical Center, Los Angeles, CA, USA.,Urology Section, Wadsworth VA Medical Center, Los Angeles, CA, USA
| | - Christopher J Kane
- Department of Urology, University of California San Diego Health System, San Diego, CA, USA
| | | | - Matthew R Cooperberg
- Department of Urology, University of California San Francisco Medical Center, San Francisco, CA, USA
| | - Zachary Klaassen
- Department of Surgery, Section of Urology, Augusta University, Augusta, GA, USA
| | - Martha K Terris
- Department of Surgery, Section of Urology, Augusta University, Augusta, GA, USA
| | - Stephen J Freedland
- Urology Section, Veterans Affairs Medical Center, Durham, NC, USA.,Department of Surgery, Division of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ilona Csizmadi
- Department of Surgery, Division of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
28
|
Garay-Sevilla ME, Gomez-Ojeda A, González I, Luévano-Contreras C, Rojas A. Contribution of RAGE axis activation to the association between metabolic syndrome and cancer. Mol Cell Biochem 2021; 476:1555-1573. [PMID: 33398664 DOI: 10.1007/s11010-020-04022-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/11/2020] [Indexed: 02/07/2023]
Abstract
Far beyond the compelling proofs supporting that the metabolic syndrome represents a risk factor for diabetes and cardiovascular diseases, a growing body of evidence suggests that it is also a risk factor for different types of cancer. However, the involved molecular mechanisms underlying this association are not fully understood, and they have been mainly focused on the individual contributions of each component of the metabolic syndrome such as obesity, hyperglycemia, and high blood pressure to the development of cancer. The Receptor for Advanced Glycation End-products (RAGE) axis activation has emerged as an important contributor to the pathophysiology of many clinical entities, by fueling a chronic inflammatory milieu, and thus supporting an optimal microenvironment to promote tumor growth and progression. In the present review, we intend to highlight that RAGE axis activation is a crosswise element on the potential mechanistic contributions of some relevant components of metabolic syndrome into the association with cancer.
Collapse
Affiliation(s)
- Ma Eugenia Garay-Sevilla
- Department of Medical Science, Division of Health Science, University of Guanajuato, Campus León, Guanajuato, Mexico
| | - Armando Gomez-Ojeda
- Department of Medical Science, Division of Health Science, University of Guanajuato, Campus León, Guanajuato, Mexico
| | - Ileana González
- Biomedical Research Labs, Medicine Faculty, Catholic University of Maule, Talca, Chile
| | - Claudia Luévano-Contreras
- Department of Medical Science, Division of Health Science, University of Guanajuato, Campus León, Guanajuato, Mexico
| | - Armando Rojas
- Biomedical Research Labs, Medicine Faculty, Catholic University of Maule, Talca, Chile.
| |
Collapse
|
29
|
Zhai TS, Hu LT, Ma WG, Chen X, Luo M, Jin L, Zhou Z, Liu X, Kang Y, Kang YX, Zhang JX, Liu H, Lu JY, Yao XD, Ye L. Peri-prostatic adipose tissue measurements using MRI predict prostate cancer aggressiveness in men undergoing radical prostatectomy. J Endocrinol Invest 2021; 44:287-296. [PMID: 32474764 DOI: 10.1007/s40618-020-01294-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/07/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVES To evaluate the effect of peri-prostatic adipose tissue (PPAT) measurements using preoperative MRI on the prediction of prostate cancer (PCa) aggressiveness in men undergoing radical prostatectomy (RP). METHODS We performed a retrospective study on 179 consecutive patients receiving RP from June 2016 to October 2018. Clinical characteristics were collected. PPAT measurements including peri-prostatic fat area (PPFA) and peri-prostatic fat area to prostate area (PA) ratio (PPFA/PA) were calculated by MRI. Multivariable logistic regression analysis was performed to identify independent predictors of PCa lymph node metastasis (LNM). The predictive performance was estimated through ROC curves. Nomograms were created based on the predictors. RESULTS Pathologic Gleason score positively correlated with digital rectal examination (DRE), PSA, PPFA/PA, P504S, and Ki-67 (all P < 0.05). ROC curves revealed that high PPFA and high PPFA/PA were associated with LNM (both P < 0.05). Multivariate analysis revealed that high PPFA/PA, pathologic Gleason score, pT stage, and Ki-67 were independently predictive of LNM. The nomograms were created and the C-index was 0.945. CONCLUSIONS PPFA/PA is an independent predictor for LNM along with Gleason score, pT stage, and Ki-67. PPFA/PA may help predict LNM in men undergoing RP, thus providing adjunctive information for therapeutic strategy and prognosis.
Collapse
Affiliation(s)
- T -S Zhai
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301, Middle Yan-Chang Rd., Jing-An District, Shanghai, 200072, China
| | - L -T Hu
- Department of Urology, Karamay Central Hospital, No. 67, Middle Zhungaer Rd., Karamay, 834000, Xinjiang, China
| | - W -G Ma
- Department of Urology, Karamay Central Hospital, No. 67, Middle Zhungaer Rd., Karamay, 834000, Xinjiang, China
- Department of Urology, Tongxin People's Hospital, Tongxin, 751300, Ningxia, China
| | - X Chen
- Department of Urology, Karamay Central Hospital, No. 67, Middle Zhungaer Rd., Karamay, 834000, Xinjiang, China
| | - M Luo
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301, Middle Yan-Chang Rd., Jing-An District, Shanghai, 200072, China
| | - L Jin
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301, Middle Yan-Chang Rd., Jing-An District, Shanghai, 200072, China
| | - Z Zhou
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301, Middle Yan-Chang Rd., Jing-An District, Shanghai, 200072, China
- Department of Urology, First Clinical Medical College, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - X Liu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301, Middle Yan-Chang Rd., Jing-An District, Shanghai, 200072, China
- Department of Urology, Shanghai Putuo District People's Hospital, Tongji University School of Medicine, Shanghai, 200060, China
| | - Y Kang
- The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Y -X Kang
- The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - J -X Zhang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301, Middle Yan-Chang Rd., Jing-An District, Shanghai, 200072, China
| | - H Liu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301, Middle Yan-Chang Rd., Jing-An District, Shanghai, 200072, China
| | - J -Y Lu
- Department of Urology, Karamay Central Hospital, No. 67, Middle Zhungaer Rd., Karamay, 834000, Xinjiang, China.
| | - X -D Yao
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301, Middle Yan-Chang Rd., Jing-An District, Shanghai, 200072, China.
| | - L Ye
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301, Middle Yan-Chang Rd., Jing-An District, Shanghai, 200072, China.
- Department of Urology, Karamay Central Hospital, No. 67, Middle Zhungaer Rd., Karamay, 834000, Xinjiang, China.
| |
Collapse
|
30
|
Increased Expressions of Matrix Metalloproteinases (MMPs) in Prostate Cancer Tissues of Men with Type 2 Diabetes. Biomedicines 2020; 8:biomedicines8110507. [PMID: 33207809 PMCID: PMC7696165 DOI: 10.3390/biomedicines8110507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/07/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022] Open
Abstract
Type 2 diabetes (T2D) is associated with worse prognosis of prostate cancer (PCa). The molecular mechanisms behind this association are still not fully understood. The aim of this study was to identify key factors, which contribute to the more aggressive PCa phenotype in patients with concurrent T2D. Therefore, we investigated benign and PCa tissue of PCa patients with and without diabetes using real time qPCR. Compared to patients without diabetes, patients with T2D showed a decreased E-cadherin/N-cadherin (CDH1/CDH2) ratio in prostate tissue, indicating a switch of epithelial-mesenchymal transition (EMT), which is a pivotal process in carcinogenesis. In addition, the gene expression levels of matrix metalloproteinases (MMPs) and CC chemokine ligands (CCLs) were higher in prostate samples of T2D patients. Next, prostate adenocarcinoma PC3 cells were treated with increasing glucose concentrations to replicate hyperglycemia in vitro. In these cells, high glucose induced expressions of MMPs and CCLs, which showed significant positive associations with the proliferation marker proliferating cell nuclear antigen (PCNA). These results indicate that in prostate tissue of men with T2D, hyperglycemia may induce EMT, increase MMP and CCL gene expressions, which in turn activate invasion and inflammatory processes accelerating the progression of PCa.
Collapse
|
31
|
Seesen M, Lucchini RG, Siriruttanapruk S, Sapbamrer R, Hongsibsong S, Woskie S, Kongtip P. Association between Organophosphate Pesticide Exposure and Insulin Resistance in Pesticide Sprayers and Nonfarmworkers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E8140. [PMID: 33158102 PMCID: PMC7662827 DOI: 10.3390/ijerph17218140] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 10/30/2020] [Indexed: 12/19/2022]
Abstract
Insulin resistance is a risk factor for various diseases. Chronic organophosphate exposure has been reported to be a cause of insulin resistance in animal models. This cross-sectional study aimed to evaluate the association between organophosphate exposure and insulin resistance in pesticide sprayers and nonfarmworkers. Participants aged 40-60 years, consisting of 150 pesticide sprayers and 150 nonfarmworkers, were interviewed and assessed for their homeostatic model assessment of insulin resistance (HOMA-IR) level. Organophosphate (OP) exposure was measured in 37 sprayers and 46 nonfarmworkers by first morning urinary dialkyl phosphate (DAP) metabolites. The DAP metabolite levels were not different in either group except for diethylthiophosphate (DETP; p = 0.03), which was higher in sprayers. No significant association was observed between DAP metabolite levels and HOMA-IR. Wearing a mask while handling pesticides was associated with lower dimethyl metabolites (95% CI = -11.10, -0.17). Work practices of reading pesticide labels (95% CI = -81.47, -14.99) and washing hands after mixing pesticide (95% CI = -39.97, -3.35) correlated with lower diethyl alkylphosphate level. Overall, we did not observe any association between OP exposure and insulin resistance in pesticide sprayers and the general population. However, personal protective equipment (PPE) utilization and work practice were associated with OP exposure level in sprayers.
Collapse
Affiliation(s)
- Mathuramat Seesen
- Department of Community Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Roberto G. Lucchini
- School of Public Health, Florida International University, Miami, FL 33199, USA;
- Occupational Medicine, University of Brescia, 25121 Brescia, Italy
| | | | - Ratana Sapbamrer
- Department of Community Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Surat Hongsibsong
- School of Health Science Research, Research Institute for Health Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Susan Woskie
- Department of Public Health, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA;
| | - Pornpimol Kongtip
- Department of Occupational Health and Safety, Faculty of Public Health, Mahidol University, Bangkok 10400, Thailand;
- Center of Excellence on Environmental Health and Toxicology, Bangkok 10400, Thailand
| |
Collapse
|
32
|
Franko A, Berti L, Guirguis A, Hennenlotter J, Wagner R, Scharpf MO, de Angelis MH, Wißmiller K, Lickert H, Stenzl A, Birkenfeld AL, Peter A, Häring HU, Lutz SZ, Heni M. Characterization of Hormone-Dependent Pathways in Six Human Prostate-Cancer Cell Lines: A Gene-Expression Study. Genes (Basel) 2020; 11:E1174. [PMID: 33036464 PMCID: PMC7599530 DOI: 10.3390/genes11101174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/26/2020] [Accepted: 09/30/2020] [Indexed: 12/13/2022] Open
Abstract
Prostate cancer (PCa), the most incident cancer in men, is tightly regulated by endocrine signals. A number of different PCa cell lines are commonly used for in vitro experiments, but these are of diverse origin, and have very different cell-proliferation rates and hormone-response capacities. By analyzing the gene-expression pattern of main hormone pathways, we systematically compared six PCa cell lines and parental primary cells. We compared these cell lines (i) with each other and (ii) with PCa tissue samples from 11 patients. We found major differences in the gene-expression levels of androgen, insulin, estrogen, and oxysterol signaling between PCa tissue and cell lines, and between different cell lines. Our systematic characterization gives researchers a solid basis to choose the appropriate PCa cell model for the hormone pathway of interest.
Collapse
Affiliation(s)
- Andras Franko
- Department of Internal Medicine IV, Division of Diabetology, Endocrinology, and Nephrology, University Hospital Tübingen, 72076 Tübingen, Germany; (A.F.); (R.W.); (A.L.B.); (H.-U.H.); (S.Z.L.); (M.H.)
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, 72076 Tübingen, Germany;
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; (M.H.d.A.); (H.L.)
| | - Lucia Berti
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, 72076 Tübingen, Germany;
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; (M.H.d.A.); (H.L.)
| | - Alke Guirguis
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, 72076 Tübingen, Germany;
| | - Jörg Hennenlotter
- Department of Urology, University Hospital Tübingen, 72076 Tübingen, Germany; (J.H.); (A.S.)
| | - Robert Wagner
- Department of Internal Medicine IV, Division of Diabetology, Endocrinology, and Nephrology, University Hospital Tübingen, 72076 Tübingen, Germany; (A.F.); (R.W.); (A.L.B.); (H.-U.H.); (S.Z.L.); (M.H.)
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, 72076 Tübingen, Germany;
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; (M.H.d.A.); (H.L.)
| | - Marcus O. Scharpf
- Institute of Pathology, University Hospital Tübingen, 72076 Tübingen, Germany;
| | - Martin Hrabĕ de Angelis
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; (M.H.d.A.); (H.L.)
- Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Katharina Wißmiller
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany;
- Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Department of Medicine, Technical University of Munich, 81675 München, Germany
| | - Heiko Lickert
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; (M.H.d.A.); (H.L.)
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany;
- Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Department of Medicine, Technical University of Munich, 81675 München, Germany
| | - Arnulf Stenzl
- Department of Urology, University Hospital Tübingen, 72076 Tübingen, Germany; (J.H.); (A.S.)
| | - Andreas L. Birkenfeld
- Department of Internal Medicine IV, Division of Diabetology, Endocrinology, and Nephrology, University Hospital Tübingen, 72076 Tübingen, Germany; (A.F.); (R.W.); (A.L.B.); (H.-U.H.); (S.Z.L.); (M.H.)
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, 72076 Tübingen, Germany;
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; (M.H.d.A.); (H.L.)
| | - Andreas Peter
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, 72076 Tübingen, Germany;
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; (M.H.d.A.); (H.L.)
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, 72076 Tübingen, Germany;
| | - Hans-Ulrich Häring
- Department of Internal Medicine IV, Division of Diabetology, Endocrinology, and Nephrology, University Hospital Tübingen, 72076 Tübingen, Germany; (A.F.); (R.W.); (A.L.B.); (H.-U.H.); (S.Z.L.); (M.H.)
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, 72076 Tübingen, Germany;
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; (M.H.d.A.); (H.L.)
| | - Stefan Z. Lutz
- Department of Internal Medicine IV, Division of Diabetology, Endocrinology, and Nephrology, University Hospital Tübingen, 72076 Tübingen, Germany; (A.F.); (R.W.); (A.L.B.); (H.-U.H.); (S.Z.L.); (M.H.)
- Clinic for Geriatric and Orthopedic Rehabilitation Bad Sebastiansweiler, 72116 Mössingen, Germany
| | - Martin Heni
- Department of Internal Medicine IV, Division of Diabetology, Endocrinology, and Nephrology, University Hospital Tübingen, 72076 Tübingen, Germany; (A.F.); (R.W.); (A.L.B.); (H.-U.H.); (S.Z.L.); (M.H.)
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, 72076 Tübingen, Germany;
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; (M.H.d.A.); (H.L.)
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, 72076 Tübingen, Germany;
| |
Collapse
|
33
|
Franko A, Berti L, Hennenlotter J, Rausch S, Scharpf MO, de Angelis MH, Stenzl A, Birkenfeld AL, Peter A, Lutz SZ, Häring HU, Heni M. Transcript Levels of Aldo-Keto Reductase Family 1 Subfamily C (AKR1C) Are Increased in Prostate Tissue of Patients with Type 2 Diabetes. J Pers Med 2020; 10:jpm10030124. [PMID: 32932589 PMCID: PMC7564141 DOI: 10.3390/jpm10030124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/03/2020] [Accepted: 09/09/2020] [Indexed: 02/07/2023] Open
Abstract
Aldo-keto reductase family 1 (AKR1) enzymes play a crucial role in diabetic complications. Since type 2 diabetes (T2D) is associated with cancer progression, we investigated the impact of diabetes on AKR1 gene expression in the context of prostate cancer (PCa) development. In this study, we analyzed benign (BEN) prostate and PCa tissue of patients with and without T2D. Furthermore, to replicate hyperglycemia in vitro, we treated the prostate adenocarcinoma cell line PC3 with increasing glucose concentrations. Gene expression was quantified using real-time qPCR. In the prostate tissue of patients with T2D, AKR1C1 and AKR1C2 transcripts were higher compared to samples of patients without diabetes. In PC3 cells, high glucose treatment induced the gene expression levels of AKR1C1, C2, and C3. Furthermore, both in human tissue and in PC3 cells, the transcript levels of AKR1C1, C2, and C3 showed positive associations with oncogenes, which are involved in proliferation processes and HIF1α and NFκB pathways. These results indicate that in the prostate glands of patients with T2D, hyperglycemia could play a pivotal role by inducing the expression of AKR1C1, C2, and C3. The higher transcript level of AKR1C was furthermore associated with upregulated HIF1α and NFκB pathways, which are major drivers of PCa carcinogenesis.
Collapse
Affiliation(s)
- Andras Franko
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, 72076 Tübingen, Germany; (A.F.); (A.L.B.); (S.Z.L.); (H.-U.H.)
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Centre Munich, University of Tübingen, 72076 Tübingen, Germany;
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany;
| | - Lucia Berti
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Centre Munich, University of Tübingen, 72076 Tübingen, Germany;
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany;
| | - Jörg Hennenlotter
- Department of Urology, University Hospital Tübingen, 72076 Tübingen, Germany; (J.H.); (S.R.); (A.S.)
| | - Steffen Rausch
- Department of Urology, University Hospital Tübingen, 72076 Tübingen, Germany; (J.H.); (S.R.); (A.S.)
| | - Marcus O. Scharpf
- Institute of Pathology, University Hospital Tübingen, 72076 Tübingen, Germany;
| | - Martin Hrabĕ de Angelis
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany;
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Arnulf Stenzl
- Department of Urology, University Hospital Tübingen, 72076 Tübingen, Germany; (J.H.); (S.R.); (A.S.)
| | - Andreas L. Birkenfeld
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, 72076 Tübingen, Germany; (A.F.); (A.L.B.); (S.Z.L.); (H.-U.H.)
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Centre Munich, University of Tübingen, 72076 Tübingen, Germany;
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany;
| | - Andreas Peter
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Centre Munich, University of Tübingen, 72076 Tübingen, Germany;
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany;
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, 72076 Tübingen, Germany; (A.P.)
| | - Stefan Z. Lutz
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, 72076 Tübingen, Germany; (A.F.); (A.L.B.); (S.Z.L.); (H.-U.H.)
- Clinic for Geriatric and Orthopedic Rehabilitation Bad Sebastiansweiler, 72116 Mössingen, Germany
| | - Hans-Ulrich Häring
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, 72076 Tübingen, Germany; (A.F.); (A.L.B.); (S.Z.L.); (H.-U.H.)
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Centre Munich, University of Tübingen, 72076 Tübingen, Germany;
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany;
| | - Martin Heni
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, 72076 Tübingen, Germany; (A.F.); (A.L.B.); (S.Z.L.); (H.-U.H.)
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Centre Munich, University of Tübingen, 72076 Tübingen, Germany;
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany;
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, 72076 Tübingen, Germany; (A.P.)
- Correspondence: ; Tel.: +49-7071-29-82714
| |
Collapse
|
34
|
Vincent EE, Yaghootkar H. Using genetics to decipher the link between type 2 diabetes and cancer: shared aetiology or downstream consequence? Diabetologia 2020; 63:1706-1717. [PMID: 32705315 PMCID: PMC7406536 DOI: 10.1007/s00125-020-05228-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/18/2020] [Indexed: 12/11/2022]
Abstract
Recent developments in the field of genetics have accelerated our understanding of the aetiology of complex diseases. Type 2 diabetes mellitus and cancer are no exception, with large-scale genome-wide association studies (GWAS) facilitating exploration of the underlying pathology. Here, we discuss how genetics studies can be used to investigate the relationship between these complex diseases. Observational epidemiological studies consistently report that people with type 2 diabetes have a higher risk of several types of cancer. Indeed, type 2 diabetes and cancer share many common risk factors, such as obesity, ageing, poor diet and low levels of physical activity. However, questions remain regarding the biological mechanisms that link these two diseases. Large-scale GWAS of type 2 diabetes and cancer allow us to consider the evidence for shared genetic architecture. Several shared susceptibility genes have been identified, yet tissue specificity and direction of effect must be taken into account when considering common genetic aetiology. We also consider how GWAS, and associated techniques such as Mendelian randomisation, allow us to dissect the link between the two diseases and address questions such as 'Does type 2 diabetes cause cancer or is the increased risk observed driven by higher adiposity or another associated metabolic feature?' Graphical abstract.
Collapse
Affiliation(s)
- Emma E Vincent
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, Bristol, UK.
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
- School of Cellular and Molecular Medicine, Biomedical Science Building, University of Bristol, Bristol, BS8 1TW, UK.
| | - Hanieh Yaghootkar
- Genetics of Complex Traits, University of Exeter Medical School, Royal Devon & Exeter Hospital, Exeter, UK
- School of Life Sciences, College of Liberal Arts and Science, University of Westminster, London, UK
- Division of Medical Sciences, Department of Health Sciences, Luleå University of Technology, Luleå, Sweden
| |
Collapse
|
35
|
Kucera R, Pecen L, Topolcan O, Dahal AR, Costigliola V, Giordano FA, Golubnitschaja O. Prostate cancer management: long-term beliefs, epidemic developments in the early twenty-first century and 3PM dimensional solutions. EPMA J 2020; 11:399-418. [PMID: 32843909 PMCID: PMC7429585 DOI: 10.1007/s13167-020-00214-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/05/2020] [Indexed: 12/20/2022]
Abstract
In the early twenty-first century, societies around the world are facing the paradoxal epidemic development of PCa as a non-communicable disease. PCa is the most frequently diagnosed cancer for men in several countries such as the USA. Permanently improving diagnostics and treatments in the PCa management causes an impressive divergence between, on one hand, permanently increasing numbers of diagnosed PCa cases and, on the other hand, stable or even slightly decreasing mortality rates. Still, aspects listed below are waiting for innovate solutions in the context of predictive approaches, targeted prevention and personalisation of medical care (PPPM / 3PM).A.PCa belongs to the cancer types with the highest incidence worldwide. Corresponding economic burden is enormous. Moreover, the costs of treating PCa are currently increasing more quickly than those of any other cancer. Implementing individualised patient profiles and adapted treatment algorithms would make currently too heterogeneous landscape of PCa treatment costs more transparent providing clear "road map" for the cost saving.B.PCa is a systemic multi-factorial disease. Consequently, predictive diagnostics by liquid biopsy analysis is instrumental for the disease prediction, targeted prevention and curative treatments at early stages.C.The incidence of metastasising PCa is rapidly increasing particularly in younger populations. Exemplified by trends observed in the USA, prognosis is that the annual burden will increase by over 40% in 2025. To this end, one of the evident deficits is the reactive character of medical services currently provided to populations. Innovative screening programmes might be useful to identify persons in suboptimal health conditions before the clinical onset of metastasising PCa. Strong predisposition to systemic hypoxic conditions and ischemic lesions (e.g. characteristic for individuals with Flammer syndrome phenotype) and low-grade inflammation might be indicative for specific phenotyping and genotyping in metastasising PCa screening and disease management. Predictive liquid biopsy tests for CTC enumeration and their molecular characterisation are considered to be useful for secondary prevention of metastatic disease in PCa patients.D.Particular rapidly increasing PCa incidence rates are characteristic for adolescents and young adults aged 15-40 years. Patients with early onset prostate cancer pose unique challenges; multi-factorial risks for these trends are proposed. Consequently, multi-level diagnostics including phenotyping and multi-omics are considered to be the most appropriate tool for the risk assessment, prediction and prognosis. Accumulating evidence suggests that early onset prostate cancer is a distinct phenotype from both aetiological and clinical perspectives deserving particular attention from view point of 3P medical approaches.
Collapse
Affiliation(s)
- Radek Kucera
- Department of Immunochemistry Diagnostics, University Hospital and Faculty of Medicine, Pilsen, Czech Republic
| | - Ladislav Pecen
- Department of Immunochemistry Diagnostics, University Hospital and Faculty of Medicine, Pilsen, Czech Republic
| | - Ondrej Topolcan
- Department of Immunochemistry Diagnostics, University Hospital and Faculty of Medicine, Pilsen, Czech Republic
| | - Anshu Raj Dahal
- Center of Molecular Biotechnology, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | | | - Frank A. Giordano
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany
| |
Collapse
|
36
|
Sun X, Ye D, Du L, Qian Y, Jiang X, Mao Y. Genetically predicted levels of circulating cytokines and prostate cancer risk: A Mendelian randomization study. Int J Cancer 2020; 147:2469-2478. [PMID: 33460126 DOI: 10.1002/ijc.33221] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/18/2020] [Accepted: 07/13/2020] [Indexed: 12/24/2022]
Abstract
Inflammation is considered to play a pivotal role in the pathogenesis of cancer, and observational studies have reported a relationship between circulating inflammation markers and the risk of prostate cancer. Using summary data of >140 000 individuals, two-sample Mendelian randomization (MR) analyses were performed to evaluate whether circulating levels of 27 cytokines and growth factors have a causal effect on the risk of developing prostate cancer. Genetically predicted elevated levels of monocyte chemotactic protein-1 (MCP-1) were associated with an increased risk of prostate cancer (odds ratio (OR) per 1 SD increase = 1.06, 95% confidence interval (CI): 1.04-1.09) at Bonferroni-adjusted level of significance (P < 1.85 × 10-3). Results were stable across sensitivity analyses, and there was no evidence of directional pleiotropy. Under MR assumptions, our findings suggested a risk-increasing effect of circulating MCP-1 levels on prostate cancer. Whether targeting MCP-1 or its downstream effectors are useful in reducing prostate cancer incidence needs further investigation.
Collapse
Affiliation(s)
- Xiaohui Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ding Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Lingbin Du
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Beijing, China.,Department of Cancer Prevention, Cancer Hospital of the University of Chinese Academy of Sciences, Beijing, China.,Department of Cancer Prevention, Zhejiang Cancer Hospital, Zhejiang, China
| | - Yu Qian
- Department of Epidemiology and Biostatistics, School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xia Jiang
- Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Yingying Mao
- Department of Epidemiology and Biostatistics, School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
37
|
Franko A, Shao Y, Heni M, Hennenlotter J, Hoene M, Hu C, Liu X, Zhao X, Wang Q, Birkenfeld AL, Todenhöfer T, Stenzl A, Peter A, Häring HU, Lehmann R, Xu G, Lutz SZ. Human Prostate Cancer is Characterized by an Increase in Urea Cycle Metabolites. Cancers (Basel) 2020; 12:E1814. [PMID: 32640711 PMCID: PMC7408908 DOI: 10.3390/cancers12071814] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/18/2022] Open
Abstract
Despite it being the most common incident of cancer among men, the pathophysiological mechanisms contributing to prostate cancer (PCa) are still poorly understood. Altered mitochondrial metabolism is postulated to play a role in the development of PCa. To determine the key metabolites (which included mitochondrial oncometabolites), benign prostatic and cancer tissues of patients with PCa were analyzed using capillary electrophoresis and liquid chromatography coupled with mass spectrometry. Gene expression was studied using real-time PCR. In PCa tissues, we found reduced levels of early tricarboxylic acid cycle metabolites, whereas the contents of urea cycle metabolites including aspartate, argininosuccinate, arginine, proline, and the oncometabolite fumarate were higher than that in benign controls. Fumarate content correlated positively with the gene expression of oncogenic HIF1α and NFκB pathways, which were significantly higher in the PCa samples than in the benign controls. Furthermore, data from the TCGA database demonstrated that prostate cancer patients with activated NFκB pathway had a lower survival rate. In summary, our data showed that fumarate content was positively associated with carcinogenic genes.
Collapse
Affiliation(s)
- Andras Franko
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, 72076 Tübingen, Germany; (A.F.); (M.H.); (A.L.B.); (H.-U.H); (S.Z.L.)
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, 72076 Tübingen, Germany
- German Center for Diabetes Research (DZD), 72076 Tübingen, Germany
| | - Yaping Shao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Y.S.); (C.H.); (X.L.); (X.Z.); (Q.W)
| | - Martin Heni
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, 72076 Tübingen, Germany; (A.F.); (M.H.); (A.L.B.); (H.-U.H); (S.Z.L.)
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, 72076 Tübingen, Germany
- German Center for Diabetes Research (DZD), 72076 Tübingen, Germany
| | - Jörg Hennenlotter
- Department of Urology, University Hospital Tübingen, 72076 Tübingen, Germany; (J.H.); (T.T.); (A.S.)
| | - Miriam Hoene
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, 72076 Tübingen, Germany; (M.H.); (A.P.)
| | - Chunxiu Hu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Y.S.); (C.H.); (X.L.); (X.Z.); (Q.W)
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Y.S.); (C.H.); (X.L.); (X.Z.); (Q.W)
| | - Xinjie Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Y.S.); (C.H.); (X.L.); (X.Z.); (Q.W)
| | - Qingqing Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Y.S.); (C.H.); (X.L.); (X.Z.); (Q.W)
| | - Andreas L. Birkenfeld
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, 72076 Tübingen, Germany; (A.F.); (M.H.); (A.L.B.); (H.-U.H); (S.Z.L.)
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, 72076 Tübingen, Germany
- German Center for Diabetes Research (DZD), 72076 Tübingen, Germany
| | - Tilman Todenhöfer
- Department of Urology, University Hospital Tübingen, 72076 Tübingen, Germany; (J.H.); (T.T.); (A.S.)
| | - Arnulf Stenzl
- Department of Urology, University Hospital Tübingen, 72076 Tübingen, Germany; (J.H.); (T.T.); (A.S.)
| | - Andreas Peter
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, 72076 Tübingen, Germany; (M.H.); (A.P.)
| | - Hans-Ulrich Häring
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, 72076 Tübingen, Germany; (A.F.); (M.H.); (A.L.B.); (H.-U.H); (S.Z.L.)
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, 72076 Tübingen, Germany
- German Center for Diabetes Research (DZD), 72076 Tübingen, Germany
| | - Rainer Lehmann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, 72076 Tübingen, Germany
- German Center for Diabetes Research (DZD), 72076 Tübingen, Germany
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, 72076 Tübingen, Germany; (M.H.); (A.P.)
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Y.S.); (C.H.); (X.L.); (X.Z.); (Q.W)
| | - Stefan Z. Lutz
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, 72076 Tübingen, Germany; (A.F.); (M.H.); (A.L.B.); (H.-U.H); (S.Z.L.)
- Clinic for Geriatric and Orthopedic Rehabilitation Bad Sebastiansweiler, 72116 Mössingen, Germany
| |
Collapse
|
38
|
Holly JMP, Biernacka K, Perks CM. The role of insulin-like growth factors in the development of prostate cancer. Expert Rev Endocrinol Metab 2020; 15:237-250. [PMID: 32441162 DOI: 10.1080/17446651.2020.1764844] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/01/2020] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Preclinical, clinical, and population studies have provided robust evidence for an important role for the insulin-like growth factor (IGF) system in the development of prostate cancer. AREAS COVERED An overview of the IGF system is provided. The evidence implicating the IGF system in the development of prostate cancer is summarized. The compelling evidence culminated in a number of clinical trials of agents targeting the system; the reasons for the failure of these trials are discussed. EXPERT OPINION Clinical trials of agents targeting the IGF system in prostate cancer were terminated due to limited objective clinical responses and are unlikely to be resumed unless a convincing predictive biomarker is identified that would enable the selection of likely responders. The aging population and increased screening will lead to greater diagnosis of prostate cancer. Although the vast majority will be indolent disease, the epidemics of obesity and diabetes will increase the proportion that progress to clinical disease. The increased population of worried men will result in more trials aimed to reduce the risk of disease progression; actual clinical endpoints will be challenging and the IGFs remain the best intermediate biomarkers to indicate a response that could alter the course of disease.
Collapse
Affiliation(s)
- Jeff M P Holly
- IGFs & Metabolic Endocrinology Group, Faculty of Health Sciences, School of Translational Health Science, University of Bristol, Southmead Hospital , Bristol, UK
| | - Kalina Biernacka
- IGFs & Metabolic Endocrinology Group, Faculty of Health Sciences, School of Translational Health Science, University of Bristol, Southmead Hospital , Bristol, UK
| | - Claire M Perks
- IGFs & Metabolic Endocrinology Group, Faculty of Health Sciences, School of Translational Health Science, University of Bristol, Southmead Hospital , Bristol, UK
| |
Collapse
|
39
|
Treviño S, Diaz A. Vanadium and insulin: Partners in metabolic regulation. J Inorg Biochem 2020; 208:111094. [PMID: 32438270 DOI: 10.1016/j.jinorgbio.2020.111094] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022]
Abstract
Since the 1970s, the biological role of vanadium compounds has been discussed as insulin-mimetic or insulin-enhancer agents. The action of vanadium compounds has been investigated to determine how they influence the insulin signaling pathway. Khan and coworkers proposed key proteins for the insulin pathway study, introducing the concept "critical nodes". In this review, we also considered critical kinases and phosphatases that participate in this pathway, which will permit a better comprehension of a critical node, where vanadium can act: a) insulin receptor, insulin receptor substrates, and protein tyrosine phosphatases; b) phosphatidylinositol 3'-kinase, 3-phosphoinositide-dependent protein kinase and mammalian target of rapamycin complex, protein kinase B, and phosphatase and tensin homolog; and c) insulin receptor substrates and mitogen-activated protein kinases, each node having specific negative modulators. Additionally, leptin signaling was considered because together with insulin, it modulates glucose and lipid homeostasis. Even in recent literature, the possibility of vanadium acting against metabolic diseases or cancer is confirmed although the mechanisms of action are not well understood because these critical nodes have not been systematically investigated. Through this review, we establish that vanadium compounds mainly act as phosphatase inhibitors and hypothesize on their capacity to affect kinases, which are critical to other hormones that also act on common parts of the insulin pathway.
Collapse
Affiliation(s)
- Samuel Treviño
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, University Autonomous of Puebla, 14 South. FCQ1, University City, Puebla, C.P. 72560, Mexico.
| | - Alfonso Diaz
- Department of Pharmacy, Faculty of Chemistry Science, University Autonomous of Puebla, 22 South, FCQ9, University City, Puebla, C.P. 72560, Mexico.
| |
Collapse
|
40
|
Lu Y, Zhang L, Zhu R, Zhou H, Fan H, Wang Q. PFKFB3, a key glucose metabolic enzyme regulated by pathogen recognition receptor TLR4 in liver cells. Ther Adv Endocrinol Metab 2020; 11:2042018820923474. [PMID: 32523673 PMCID: PMC7257845 DOI: 10.1177/2042018820923474] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/02/2020] [Indexed: 12/13/2022] Open
Abstract
AIMS Toll-like receptor 4 (TLR4) and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase (PFKFB3) are involved in the progress of inflammation and glucose metabolism. Here, we aimed to assess the relationship between TLR4 and PFKFB3 in liver cells. METHODS We detected the expression of TLR4 and PFKFB3 in both normal liver cell lines and liver cancer cell lines. Then, a small interfering RNA (siRNA) was used to knock down the expression of TLR4 and analyze the expression of PFKFB3 in the HL-7702 cell line. Further, following stimulation of the HL-7702 cell line with free fatty acids (FFA) or insulin, we observed the expression of TLR4 and PFKFB3, respectively. RESULTS Knocking down siRNA-mediated TLR4 significantly reduced PFKFB3 expression at the mRNA and protein level. Furthermore, activating TLR4 with FFA dramatically increased PFKFB3 expression. Insulin increased the expression of TLR4 and PFKFB3, which could be inhibited by TLR siRNA. CONCLUSION These findings suggest that PFKFB3 expression is regulated via the TLR4-PFKFB3 axis, which might be a bridge linking fat and glucose metabolism.
Collapse
Affiliation(s)
| | | | - Ran Zhu
- Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, School of Radiation, Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Huijuan Zhou
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Huaying Fan
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qiang Wang
- Department of General Surgery, Jiangsu Shengze Hospital, Suzhou, Jiangsu 215228, China
| |
Collapse
|
41
|
Nogueira-Lima E, Lamas CDA, Baseggio AM, do Vale JSF, Maróstica Junior MR, Cagnon VHA. High-fat diet effects on the prostatic adenocarcinoma model and jaboticaba peel extract intake: protective response in metabolic disorders and liver histopathology. Nutr Cancer 2019; 72:1366-1377. [DOI: 10.1080/01635581.2019.1684526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ellen Nogueira-Lima
- Department of Structural and Functional Biology, University of Campinas, São Paulo, Brazil
| | | | - Andressa Mara Baseggio
- Department of Structural and Functional Biology, University of Campinas, São Paulo, Brazil
- Department of Food and Nutrition, University of Campinas, São Paulo, Brazil
| | | | | | | |
Collapse
|
42
|
Zhang GD, Black LJ, Cooper MN, Lucas RM, Gorman S. Significant Associations Between Sun Exposure and Adiposity Were Not Observed in Breast and Prostate Cancer Patients in a Cross-sectional Analysis. Photochem Photobiol 2019; 95:1433-1440. [PMID: 31359445 DOI: 10.1111/php.13145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/25/2019] [Indexed: 11/27/2022]
Abstract
Obesity is a significant health problem worldwide. Exposure to low-dose ultraviolet radiation (like that in sunlight) suppresses the development of obesity in mice; however, the nature of the associations between sun exposure and adiposity is not well understood in humans. The present study characterized cross-sectional relationships between sun exposure and adiposity in a convenience cohort of breast (n = 269; mean age = 58 years) and prostate (n = 78; mean age = 69 years) cancer patients. Participants were enrolled in a 3-month exercise program in Perth, Australia. Self-reported questionnaires measured time spent outdoors (previous week, winter and summer), sex, age, treatment received and physical activity levels. Adiposity measures included body mass index, waist-hip ratio and body fat percentage (measured via DXA). In unadjusted models, greater time spent outdoors across all times was significantly associated with lower waist-hip ratio, while greater time spent outdoors in the last winter was associated with lower body fat percentage, but not when stratified by sex. There were no statistically significant associations between time spent outdoors and adiposity after adjusting for sex, age, treatments received and physical activity. Longitudinal studies in larger populations may elucidate significant associations not found in our study due to the cross-sectional design and power limitations.
Collapse
Affiliation(s)
- Gary D Zhang
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Lucinda J Black
- School of Public Health, Curtin University, Perth, WA, Australia
| | - Matthew N Cooper
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Robyn M Lucas
- National Centre for Epidemiology and Public Health, Research School of Population Health, Australian National University, Canberra, ACT, Australia.,Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, WA, Australia
| | - Shelley Gorman
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
43
|
Staal J, Beyaert R. Inflammation and NF-κB Signaling in Prostate Cancer: Mechanisms and Clinical Implications. Cells 2018; 7:E122. [PMID: 30158439 PMCID: PMC6162478 DOI: 10.3390/cells7090122] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 12/26/2022] Open
Abstract
Prostate cancer is a highly prevalent form of cancer that is usually slow-developing and benign. Due to its high prevalence, it is, however, still the second most common cause of death by cancer in men in the West. The higher prevalence of prostate cancer in the West might be due to elevated inflammation from metabolic syndrome or associated comorbidities. NF-κB activation and many other signals associated with inflammation are known to contribute to prostate cancer malignancy. Inflammatory signals have also been associated with the development of castration resistance and resistance against other androgen depletion strategies, which is a major therapeutic challenge. Here, we review the role of inflammation and its link with androgen signaling in prostate cancer. We further describe the role of NF-κB in prostate cancer cell survival and proliferation, major NF-κB signaling pathways in prostate cancer, and the crosstalk between NF-κB and androgen receptor signaling. Several NF-κB-induced risk factors in prostate cancer and their potential for therapeutic targeting in the clinic are described. A better understanding of the inflammatory mechanisms that control the development of prostate cancer and resistance to androgen-deprivation therapy will eventually lead to novel treatment options for patients.
Collapse
Affiliation(s)
- Jens Staal
- VIB-UGent Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, 9052 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Rudi Beyaert
- VIB-UGent Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, 9052 Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
44
|
Arcidiacono D, Dedja A, Giacometti C, Fassan M, Nucci D, Francia S, Fabris F, Zaramella A, Gallagher EJ, Cassaro M, Rugge M, LeRoith D, Alberti A, Realdon S. Hyperinsulinemia Promotes Esophageal Cancer Development in a Surgically-Induced Duodeno-Esophageal Reflux Murine Model. Int J Mol Sci 2018; 19:1198. [PMID: 29662006 PMCID: PMC5979452 DOI: 10.3390/ijms19041198] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 04/08/2018] [Accepted: 04/11/2018] [Indexed: 01/10/2023] Open
Abstract
Hyperinsulinemia could have a role in the growing incidence of esophageal adenocarcinoma (EAC) and its pre-cancerous lesion, Barrett's Esophagus, a possible consequence of Gastro-Esophageal Reflux Disease. Obesity is known to mediate esophageal carcinogenesis through different mechanisms including insulin-resistance leading to hyperinsulinemia, which may mediate cancer progression via the insulin/insulin-like growth factor axis. We used the hyperinsulinemic non-obese FVB/N (Friend leukemia virus B strain) MKR (muscle (M)-IGF1R-lysine (K)-arginine (R) mouse model to evaluate the exclusive role of hyperinsulinemia in the pathogenesis of EAC related to duodeno-esophageal reflux. FVB/N wild-type (WT) and MKR mice underwent jejunum-esophageal anastomosis side-to end with the exclusion of the stomach. Thirty weeks after surgery, the esophagus was processed for histological, immunological and insulin/Insulin-like growth factor 1 (IGF1) signal transduction analyses. Most of the WT mice (63.1%) developed dysplasia, whereas most of the MKR mice (74.3%) developed squamous cell and adenosquamous carcinomas, both expressing Human Epidermal growth factor receptor 2 (HER2). Hyperinsulinemia significantly increased esophageal cancer incidence in the presence of duodenal-reflux. Insulin receptor (IR) and IGF1 receptor (IGF1R) were overexpressed in the hyperinsulinemic condition. IGF1R, through ERK1/2 mitogenic pattern activation, seems to be involved in cancer onset. Hyperinsulinemia-induced IGF1R and HER2 up-regulation could also increase the possibility of forming of IGF1R/HER2 heterodimers to support cell growth/proliferation/progression in esophageal carcinogenesis.
Collapse
Affiliation(s)
- Diletta Arcidiacono
- Digestive Endoscopy Unit, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata, 64, 35128 Padua, Italy.
| | - Arben Dedja
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, via Giustiniani 2, 35128 Padua, Italy.
| | - Cinzia Giacometti
- Anatomic Pathology Unit, ULSS 6 Euganea, via Cosma, 1, Camposampiero, 35012 Padua, Italy.
| | - Matteo Fassan
- Department of Medicine, Surgical Pathology & Cytopathology Unit, University of Padua, via Giustiniani 2, 35128 Padua, Italy.
| | - Daniele Nucci
- Digestive Endoscopy Unit, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata, 64, 35128 Padua, Italy.
| | - Simona Francia
- Venetian Institute of Molecular Medicine-VIMM, via Orus, 2, 35129 Padua, Italy.
- Department of Biomedical Sciences, University of Padua, via Bassi, 58/B, 35131, Padua, Italy.
| | - Federico Fabris
- Venetian Institute of Molecular Medicine-VIMM, via Orus, 2, 35129 Padua, Italy.
- Department of Molecular Medicine, University of Padua, via Gabelli, 63, 35128 Padua, Italy.
| | - Alice Zaramella
- Venetian Institute of Molecular Medicine-VIMM, via Orus, 2, 35129 Padua, Italy.
- Department of Molecular Medicine, University of Padua, via Gabelli, 63, 35128 Padua, Italy.
| | - Emily J Gallagher
- Division of Endocrinology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA.
| | - Mauro Cassaro
- Anatomic Pathology Unit, ULSS 6 Euganea, via Cosma, 1, Camposampiero, 35012 Padua, Italy.
| | - Massimo Rugge
- Department of Medicine, Surgical Pathology & Cytopathology Unit, University of Padua, via Giustiniani 2, 35128 Padua, Italy.
| | - Derek LeRoith
- Division of Endocrinology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA.
| | - Alfredo Alberti
- Venetian Institute of Molecular Medicine-VIMM, via Orus, 2, 35129 Padua, Italy.
- Department of Molecular Medicine, University of Padua, via Gabelli, 63, 35128 Padua, Italy.
| | - Stefano Realdon
- Digestive Endoscopy Unit, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata, 64, 35128 Padua, Italy.
| |
Collapse
|