1
|
Warang A, Deol I, Fakher S, Wu L, Hong L, Zhang S, Yu Q, Sun H. Non-Thermal Atmospheric Plasma Enhances Biological Effects of Fluoride on Oral Biofilms. J Funct Biomater 2025; 16:132. [PMID: 40278240 PMCID: PMC12027581 DOI: 10.3390/jfb16040132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/27/2025] [Accepted: 04/02/2025] [Indexed: 04/26/2025] Open
Abstract
The objective of this study was an assessment of the anti-biofilm properties of fluoride non-thermal atmospheric plasma (FNTAP) generated using argon and hydrocarbon fluoride gas 1,1,1,2-tetrafluoroethane (TFE). These properties were evaluated by measuring the destruction and recovery of in vitro dual-species biofilms of Streptococcus mutans and Streptococcus sanguinis exposed to FNTAP at 5 or 10 standard cubic centimeters per minute (sccm) or argon non-thermal atmospheric plasma (ArNTAP) for 1 or 2 min, using resazurin-based reagent viability assays, colony forming units (CFU), culture media pH and live/dead staining. Both ArNTAP and FNTAP resulted in significant immediate reductions in bacterial load as compared to the control. Although ArNTAP did not significantly reduce biofilm regrowth, FNTAP treatment showed a bacterial load reduction of more than 5 log units of biofilm regrowth. FNTAP treatments significantly reduced the acidification of the culture medium after recovery incubation, indicating reduced living bacteria, with a pH of 6.92 ± 0.02 and 6.90 ± 0.03, respectively, for the 5 sccm and 10 sccm FNTAP treatments, as compared to a pH of 5.83 ± 0.26 for the ArNTAP treatment, and a significantly acidic pH of 4.76 ± 0.04 for the no-treatment groups. Our results suggest that FNTAP has exceptional anti-biofilm effects, and future directions of our research include the assessment of potential applications of FNTAP in clinical settings.
Collapse
Affiliation(s)
- Anushri Warang
- Department of Internal Medicine, University of Missouri, Columbia, MO 65211, USA; (A.W.); (S.F.)
| | - Isha Deol
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO 65211, USA;
| | - Sarah Fakher
- Department of Internal Medicine, University of Missouri, Columbia, MO 65211, USA; (A.W.); (S.F.)
| | - Linfeng Wu
- Department of Public Health Sciences, College of Dentistry, Texas A&M University, Dallas, TX 75246, USA;
| | - Liang Hong
- Department of Public Health Sciences, College of Dentistry, Texas A&M University, Dallas, TX 75246, USA;
| | - Shaoping Zhang
- Department of Periodontics, College of Dentistry, University of Iowa, Iowa City, IA 52242, USA;
| | - Qingsong Yu
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO 65211, USA;
| | - Hongmin Sun
- Department of Internal Medicine, University of Missouri, Columbia, MO 65211, USA; (A.W.); (S.F.)
| |
Collapse
|
2
|
Todorov SD, Tagg J, Algburi A, Tiwari SK, Popov I, Weeks R, Mitrokhin OV, Kudryashov IA, Kraskevich DA, Chikindas ML. The Hygienic Significance of Microbiota and Probiotics for Human Wellbeing. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10419-9. [PMID: 39688648 DOI: 10.1007/s12602-024-10419-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2024] [Indexed: 12/18/2024]
Abstract
The human body can be viewed as a combination of ecological niches inhabited by trillions of bacteria, viruses, fungi, and parasites, all united by the microbiota concept. Human health largely depends on the nature of these relationships and how they are built and maintained. However, personal hygiene practices have historically been focused on the wholesale elimination of pathogens and "hygiene-challenging microorganisms" without considering the collateral damage to beneficial and commensal species. The microbiota can vary significantly in terms of the qualitative and quantitative composition both between different people and within one person during life, and the influence of various environmental factors, including age, nutrition, bad habits, genetic factors, physical activity, medication, and hygienic practices, facilitates these changes. Disturbance of the microbiota is a predisposing factor for the development of diseases and also greatly influences the course and severity of potential complications. Therefore, studying the composition of the microbiota of the different body systems and its appropriate correction is an urgent problem in the modern world. The application of personal hygiene products or probiotics must not compromise health through disruption of the healthy microbiota. Where changes in the composition or metabolic functions of the microbiome may occur, they must be carefully evaluated to ensure that essential biological functions are unaffected. As such, the purpose of this review is to consider the microbiota of each of the "ecological niches" of the human body and highlight the importance of the microbiota in maintaining a healthy body as well as the possibility of its modulation through the use of probiotics for the prevention and treatment of certain human diseases.
Collapse
Affiliation(s)
- Svetoslav D Todorov
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos E Nutrição Experimental, Food Research Center, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil.
- Instituto Politécnico de Viana Do Castelo, 4900-347, Viana Do Castelo, Portugal.
| | - John Tagg
- Blis Technologies, South Dunedin, 9012, New Zealand
| | - Ammar Algburi
- Department of Microbiology, College of Veterinary Medicine, University of Diyala, Baqubah, Iraq
| | - Santosh Kumar Tiwari
- Department of Genetics, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Igor Popov
- Center for Agrobiotechnology, Don State Technical University, Gagarina Sq., 1344002, Rostov-On-Don, Russia
- Division of Immunobiology and Biomedicine, Center of Genetics and Life Sciences, Sirius University of Science and Technology, Federal Territory Sirius, Olimpijskij Ave., 1, Federal Territory Sirius, Sirius, 354340, Russia
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University-Campus Venlo, Villafloraweg, 1, 5928 SZ, Venlo, The Netherlands
| | - Richard Weeks
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Oleg V Mitrokhin
- Department of General Hygiene, I.M. Sechenov First Moscow State Medical University, Moscow, 119435, Russia
| | - Ilya A Kudryashov
- Department of General Hygiene, I.M. Sechenov First Moscow State Medical University, Moscow, 119435, Russia
| | - Denis A Kraskevich
- Department of General Hygiene, I.M. Sechenov First Moscow State Medical University, Moscow, 119435, Russia
| | - Michael L Chikindas
- Center for Agrobiotechnology, Don State Technical University, Gagarina Sq., 1344002, Rostov-On-Don, Russia.
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, 08901, USA.
- Department of General Hygiene, I.M. Sechenov First Moscow State Medical University, Moscow, 119435, Russia.
| |
Collapse
|
3
|
Yu X, Devine D, Vernon J. Manipulating the diseased oral microbiome: the power of probiotics and prebiotics. J Oral Microbiol 2024; 16:2307416. [PMID: 38304119 PMCID: PMC10833113 DOI: 10.1080/20002297.2024.2307416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/11/2024] [Accepted: 01/14/2024] [Indexed: 02/03/2024] Open
Abstract
Dental caries and periodontal disease are amongst the most prevalent global disorders. Their aetiology is rooted in microbial activity within the oral cavity, through the generation of detrimental metabolites and the instigation of potentially adverse host immune responses. Due to the increasing threat of antimicrobial resistance, alternative approaches to readdress the balance are necessary. Advances in sequencing technologies have established relationships between disease and oral dysbiosis, and commercial enterprises seek to identify probiotic and prebiotic formulations to tackle preventable oral disorders through colonisation with, or promotion of, beneficial microbes. It is the metabolic characteristics and immunomodulatory capabilities of resident species which underlie health status. Research emphasis on the metabolic environment of the oral cavity has elucidated relationships between commensal and pathogenic organisms, for example, the sequential metabolism of fermentable carbohydrates deemed central to acid production in cariogenicity. Therefore, a focus on the preservation of an ecological homeostasis in the oral environment may be the most appropriate approach to health conservation. In this review we discuss an ecological approach to the maintenance of a healthy oral environment and debate the potential use of probiotic and prebiotic supplementation, specifically targeted at sustaining oral niches to preserve the delicately balanced microbiome.
Collapse
Affiliation(s)
- X. Yu
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, UK
| | - D.A. Devine
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, UK
| | - J.J. Vernon
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, UK
| |
Collapse
|
4
|
Spatafora G, Li Y, He X, Cowan A, Tanner ACR. The Evolving Microbiome of Dental Caries. Microorganisms 2024; 12:121. [PMID: 38257948 PMCID: PMC10819217 DOI: 10.3390/microorganisms12010121] [Citation(s) in RCA: 57] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Dental caries is a significant oral and public health problem worldwide, especially in low-income populations. The risk of dental caries increases with frequent intake of dietary carbohydrates, including sugars, leading to increased acidity and disruption of the symbiotic diverse and complex microbial community of health. Excess acid production leads to a dysbiotic shift in the bacterial biofilm composition, demineralization of tooth structure, and cavities. Highly acidic and acid-tolerant species associated with caries include Streptococcus mutans, Lactobacillus, Actinomyces, Bifidobacterium, and Scardovia species. The differences in microbiotas depend on tooth site, extent of carious lesions, and rate of disease progression. Metagenomics and metatranscriptomics not only reveal the structure and genetic potential of the caries-associated microbiome, but, more importantly, capture the genetic makeup of the metabolically active microbiome in lesion sites. Due to its multifactorial nature, caries has been difficult to prevent. The use of topical fluoride has had a significant impact on reducing caries in clinical settings, but the approach is costly; the results are less sustainable for high-caries-risk individuals, especially children. Developing treatment regimens that specifically target S. mutans and other acidogenic bacteria, such as using nanoparticles, show promise in altering the cariogenic microbiome, thereby combatting the disease.
Collapse
Affiliation(s)
- Grace Spatafora
- Biology and Program in Molecular Biology and Biochemistry, Middlebury College, Middlebury, VT 05753, USA
| | - Yihong Li
- Department of Public and Ecosystem Health, Cornell University, Ithaca, NY 14853, USA;
| | - Xuesong He
- ADA-Forsyth Institute, Cambridge, MA 02142, USA;
| | - Annie Cowan
- The Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | | |
Collapse
|
5
|
Brookes Z, Teoh L, Cieplik F, Kumar P. Mouthwash Effects on the Oral Microbiome: Are They Good, Bad, or Balanced? Int Dent J 2023; 73 Suppl 2:S74-S81. [PMID: 37867065 PMCID: PMC10690560 DOI: 10.1016/j.identj.2023.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 10/24/2023] Open
Abstract
This narrative review describes the oral microbiome, and its role in oral health and disease, before considering the impact of commonly used over-the-counter (OTC) mouthwashes on oral bacteria, viruses, bacteriophages, and fungi that make up these microbial communities in different niches of the mouth. Whilst certain mouthwashes have proven antimicrobial actions and clinical effectiveness supported by robust evidence, this review reports more recent metagenomics evidence, suggesting that mouthwashes such as chlorhexidine may cause "dysbiosis," whereby certain species of bacteria are killed, leaving others, sometimes unwanted, to predominate. There is little known about the effects of mouthwashes on fungi and viruses in the context of the oral microbiome (virome) in vivo, despite evidence that they "kill" certain viral pathogens ex vivo. Evidence for mouthwashes, much like antibiotics, is also emerging with regards to antimicrobial resistance, and this should further be considered in the context of their widespread use by clinicians and patients. Therefore, considering the potential of currently available OTC mouthwashes to alter the oral microbiome, this article finally proposes that the ideal mouthwash, whilst combatting oral disease, should "balance" antimicrobial communities, especially those associated with health. Which antimicrobial mouthwash best fits this ideal remains uncertain.
Collapse
Affiliation(s)
- Zoë Brookes
- Peninsula Dental School, Plymouth University, Plymouth, UK.
| | - Leanne Teoh
- Melbourne Dental School, The University of Melbourne, Carlton, Victoria, Australia
| | - Fabian Cieplik
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Purnima Kumar
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, USA
| |
Collapse
|
6
|
Basha NA, Karkoutly M, Bshara N. Comparative efficacy of topical povidone-iodine and chlorhexidine gel on dental plaque regrowth in toddlers: A randomized controlled trial. Clin Exp Dent Res 2023; 9:764-771. [PMID: 37345210 PMCID: PMC10582209 DOI: 10.1002/cre2.755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/27/2023] [Accepted: 06/09/2023] [Indexed: 06/23/2023] Open
Abstract
OBJECTIVES This study aimed to compare and evaluate the efficacy of topical use of povidone-iodine (PVP-I) solution and chlorhexidine (CHX) gel on dental plaque regrowth after 3 and 7 days in toddlers aged 24-36 months. MATERIALS AND METHODS A randomized controlled trial that included 45 healthy toddlers aged 24-36 months, who were randomly assigned to three groups. The first group received a placebo (distilled water (DW)) (negative control). The second group received topical CHX gel (0.2% w/v) (positive control). The third group received topical PVP-I solution (10% w/v). Plaque accumulation was measured at the baseline (t0 ), after 3 days (t1 ) and after 7 days (t2 ) using the Turesky-modified Quigley-Hein plaque index (TMQHPI). Oral hygiene practices were prohibited during the trial period. The trial ID is ACTRN12623000567628. RESULTS In the DW group, the mean of the TMQHPI score was 1.89 ± 0.67 at t0 and decreased to 1.45 ± 0.66 at t1 (p = .028). Similarly, in the CHX group, the mean of the TMQHPI score was 1.83 ± 1.06 at t0 and decreased to 1.02 ± 0.99 at t1 (p = .033). Regarding the PVP-I group, the mean of the TMQHPI score went from 1.84 ± 0.85 to 1.01 ± 0.61 at t1 and then increased to 1.57 ± 0.74 at t2 . Those changes were statistically significant (p = .001) and (p = .002), respectively. No statistically significant difference was noted between TMQHPI scores at t0 (p = .789). Regarding t1 and t2 , no statistically significant difference was found between the three groups (p > .05). CONCLUSION CHX and PVP-I efficacy lasted only for 3 days, and PVP-I was not superior to CHX in terms of plaque control in toddlers. However, further studies are needed to determine the long-term efficacy of these antiplaque agents in toddlers.
Collapse
Affiliation(s)
- Nour Al Basha
- Department of Pediatric DentistryDamascus UniversityDamascusSyrian Arab Republic
| | - Mawia Karkoutly
- Department of Pediatric DentistryDamascus UniversityDamascusSyrian Arab Republic
| | - Nada Bshara
- Department of Pediatric DentistryDamascus UniversityDamascusSyrian Arab Republic
| |
Collapse
|
7
|
Moran GP, Zgaga L, Daly B, Harding M, Montgomery T. Does fluoride exposure impact on the human microbiome? Toxicol Lett 2023; 379:11-19. [PMID: 36871794 DOI: 10.1016/j.toxlet.2023.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/17/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
Fluoride is added to drinking water in some countries to prevent tooth decay (caries). There is no conclusive evidence that community water fluoridation (CWF) at WHO recommended concentrations for caries prevention has any harmful effects. However, research is ongoing regarding potential effects of ingested fluoride on human neurodevelopment and endocrine dysfunction. Simultaneously, research has emerged highlighting the significance of the human microbiome in gastrointestinal and immune health. In this review we evaluate the literature examining the effect of fluoride exposure on the human microbiome. Unfortunately, none of the studies retrieved examined the effects of ingested fluoridated water on the human microbiome. Animal studies generally examined acute fluoride toxicity following ingestion of fluoridated food and water and conclude that fluoride exposure can detrimentally perturb the normal microbiome. These data are difficult to extrapolate to physiologically relevant human exposure dose ranges and the significance to humans living in areas with CWF requires further investigation. Conversely, evidence suggests that the use of fluoride containing oral hygiene products may have beneficial effects on the oral microbiome regarding caries prevention. Overall, while fluoride exposure does appear to impact the human and animal microbiome, the long-term consequences of this requires further study.
Collapse
Affiliation(s)
- Gary P Moran
- School of Dental Science Trinity College Dublin and Dublin Dental University Hospital, Dublin 2, Republic of Ireland.
| | - Lina Zgaga
- Department of Public Health and Primary Care, School of Medicine, Trinity College Dublin, Dublin 24, Republic of Ireland
| | - Blánaid Daly
- School of Dental Science Trinity College Dublin and Dublin Dental University Hospital, Dublin 2, Republic of Ireland
| | - Mairead Harding
- Oral Health Services Research Centre, University College Cork, Cork, Republic of Ireland
| | - Therese Montgomery
- Department of Analytical, Biopharmaceutical and Medical Sciences, Atlantic Technological University (ATU) Galway, Galway, Republic of Ireland
| |
Collapse
|
8
|
Zhang Q, Guan L, Guo J, Chuan A, Tong J, Ban J, Tian T, Jiang W, Wang S. Application of fluoride disturbs plaque microecology and promotes remineralization of enamel initial caries. J Oral Microbiol 2022; 14:2105022. [PMID: 35923900 PMCID: PMC9341347 DOI: 10.1080/20002297.2022.2105022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background The caries-preventive effect of topical fluoride application has been corroborated by a number of clinical studies. However, the effect of fluoride on oral microecology remains unclear. Objective To monitor the effect of fluoride on dental plaque microecology and demineralization/remineralization balance of enamel initial caries. Methods Three-year-old children were enrolled and treated with fluoride at baseline and 6 months. International Caries Detection and Assessment System II indices of 52 subjects were measured at baseline, 3, 6, and 12 months. Supragingival plaque samples of 12 subjects were collected at baseline, 3 and 14 days for 16S rRNA sequencing. Results Changes in microbial community structure were observed at 3 days after fluoridation. Significant changes in the relative abundance of microorganisms were observed after fluoride application, especially Capnocytophaga, unidentified Prevotellaceae and Rothia. Functional prediction revealed that cell movement, carbohydrate and energy metabolism were affected significantly after fluoride application. Fluoride significantly inhibited enamel demineralization and promoted remineralization of early demineralized caries enamel at 3 months. Conclusion Fluoride application significantly inhibited the progression of enamel initial caries and reversed the demineralization process, possibly by disturbing dental plaque microecology and modulating the physicochemical action of demineralization/remineralization. This deepened our understanding of caries-preventive effects and mechanisms of fluoride.
Collapse
Affiliation(s)
- Qianxia Zhang
- Department of Operative Dentistry & Endodontics, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, School of Stomatology, the Fourth Military Medical University, Xi’an, PR China
| | - Lingxia Guan
- Department of Preventive Dentistry, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi’an, PR China
| | - Jing Guo
- Department of Preventive Dentistry, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi’an, PR China
| | - Aiyun Chuan
- Department of Operative Dentistry & Endodontics, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, School of Stomatology, the Fourth Military Medical University, Xi’an, PR China
| | - Juan Tong
- Department of Preventive Dentistry, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi’an, PR China
| | - Jinghao Ban
- Department of Preventive Dentistry, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi’an, PR China
| | - Tian Tian
- Department of VIP Dental Care, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, The Fourth Military Medical University, Xi’an, PR China
| | - Wenkai Jiang
- Department of Operative Dentistry & Endodontics, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, School of Stomatology, the Fourth Military Medical University, Xi’an, PR China
| | - Shengchao Wang
- Department of Operative Dentistry & Endodontics, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, School of Stomatology, the Fourth Military Medical University, Xi’an, PR China
| |
Collapse
|
9
|
Jairoun A, Al-Hemyari S, Shahwan M, Jairoun O, Zyoud S. Analysis of Fluoride Concentration in Toothpastes in the United Arab Emirates: Closing the Gap between Local Regulation and Practice. COSMETICS 2021; 8:113. [DOI: 10.3390/cosmetics8040113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background: While there is much scientific evidence supporting the benefits of fluoride for oral health, the concentration of fluoride in over-the-counter fluoride toothpaste should meet United Arab Emirates (UAE) regulations of a fluoride concentration not exceeding 0.15%. Objectives: The current study examines the fluoridated toothpaste products available on the UAE market and aims to quantify their total fluoride content. Methods: A total of 50 toothpaste products were collected and analyzed in this study. Ion Chromatography (IC) conductivity analysis was performed to determine the total fluoride content. Results: Among the 50 products tested, 10 exceeded the recommended concentration of total fluoride of less than 0.15%, while 12 had a total fluoride concentration that was less than was declared on their labels. Moreover, this study has revealed that 22 of the sampled products had a total fluoride concentration below 1000 ppm fluoride. An increased risk of higher total fluoride content was observed in the toothpaste products with monofluorophosphate active ingredients than in products with potassium nitrate/sodium fluoride and sodium fluoride (p = 0.011). Conclusions: There is a need to reassess the effectiveness of current regulations in the UAE to ensure that all fluoridated toothpastes available on the market are safe and effective for the consumer. Specifically, appropriate guidelines should be established on the basis of the risks and benefits inherent in fluoride exposure. Moreover, fluoridated toothpastes need to be subject to stricter monitoring and control regarding their safety and quality through good manufacturing practices (GMPs), education, research, and adverse event reporting.
Collapse
Affiliation(s)
- Ammar Jairoun
- Discipline of Social and Administrative Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Pulau Pinang 1800, Malaysia
- Health and Safety Department, Dubai Municipality, Dubai 67, United Arab Emirates
| | - Sabaa Al-Hemyari
- Discipline of Social and Administrative Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Pulau Pinang 1800, Malaysia
- Pharmacy Department, Emirates Health Services, Dubai 1853, United Arab Emirates
| | - Moyad Shahwan
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
| | - Obaida Jairoun
- College of Dentistry, Clinical Sciences Department, Ajman University, Ajman 346, United Arab Emirates
| | - Sa’ed Zyoud
- Poison Control and Drug Information Center (PCDIC), College of Medicine and Health Sciences, An-Najah National University, Nablus 44839, Palestine
- Clinical Research Centre, An-Najah National University Hospital, Nablus 44839, Palestine
| |
Collapse
|
10
|
Lugo-Flores MA, Quintero-Cabello KP, Palafox-Rivera P, Silva-Espinoza BA, Cruz-Valenzuela MR, Ortega-Ramirez LA, Gonzalez-Aguilar GA, Ayala-Zavala JF. Plant-Derived Substances with Antibacterial, Antioxidant, and Flavoring Potential to Formulate Oral Health Care Products. Biomedicines 2021; 9:1669. [PMID: 34829898 PMCID: PMC8615420 DOI: 10.3390/biomedicines9111669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 12/26/2022] Open
Abstract
Bacterial diseases and reactive oxygen species can cause dental caries and oral cancer. Therefore, the present review analyzes and discusses the antibacterial and antioxidant properties of synthetic and plant-derived substances and their current and future patents to formulate dental products. The reviewed evidence indicates that chlorhexidine, fluorides, and hydrogen peroxide have adverse effects on the sensory acceptability of oral care products. As an alternative, plant-derived substances have antimicrobial and antioxidant properties that can be used in their formulation. Also, adding plant metabolites favors the sensory acceptability of dental products compared with synthetic compounds. Therefore, plant-derived substances have antibacterial, antioxidant, and flavoring activity with the potential to be used in the formulation of toothpaste, mouth rinses, dentures cleansers-fixatives, and saliva substitutes.
Collapse
Affiliation(s)
- Marco A. Lugo-Flores
- Centro de Investigacion en Alimentacion y Desarrollo, A.C., Carretera Gustavo Enrique Astiazaran Rosas, No. 46, Col. La Victoria, Hermosillo C.P. 83304, Sonora, Mexico; (M.A.L.-F.); (K.P.Q.-C.); (P.P.-R.); (B.A.S.-E.); (M.R.C.-V.); (G.A.G.-A.)
| | - Karen P. Quintero-Cabello
- Centro de Investigacion en Alimentacion y Desarrollo, A.C., Carretera Gustavo Enrique Astiazaran Rosas, No. 46, Col. La Victoria, Hermosillo C.P. 83304, Sonora, Mexico; (M.A.L.-F.); (K.P.Q.-C.); (P.P.-R.); (B.A.S.-E.); (M.R.C.-V.); (G.A.G.-A.)
| | - Patricia Palafox-Rivera
- Centro de Investigacion en Alimentacion y Desarrollo, A.C., Carretera Gustavo Enrique Astiazaran Rosas, No. 46, Col. La Victoria, Hermosillo C.P. 83304, Sonora, Mexico; (M.A.L.-F.); (K.P.Q.-C.); (P.P.-R.); (B.A.S.-E.); (M.R.C.-V.); (G.A.G.-A.)
| | - Brenda A. Silva-Espinoza
- Centro de Investigacion en Alimentacion y Desarrollo, A.C., Carretera Gustavo Enrique Astiazaran Rosas, No. 46, Col. La Victoria, Hermosillo C.P. 83304, Sonora, Mexico; (M.A.L.-F.); (K.P.Q.-C.); (P.P.-R.); (B.A.S.-E.); (M.R.C.-V.); (G.A.G.-A.)
| | - Manuel Reynaldo Cruz-Valenzuela
- Centro de Investigacion en Alimentacion y Desarrollo, A.C., Carretera Gustavo Enrique Astiazaran Rosas, No. 46, Col. La Victoria, Hermosillo C.P. 83304, Sonora, Mexico; (M.A.L.-F.); (K.P.Q.-C.); (P.P.-R.); (B.A.S.-E.); (M.R.C.-V.); (G.A.G.-A.)
| | - Luis Alberto Ortega-Ramirez
- Unidad Académica San Luis Río Colorado, Universidad Estatal de Sonora, Carretera, Sonoyta-San Luis Río Colorado km. 6.5, Parque Industrial, San Luis Río Colorado C.P. 83500, Sonora, Mexico;
| | - Gustavo Adolfo Gonzalez-Aguilar
- Centro de Investigacion en Alimentacion y Desarrollo, A.C., Carretera Gustavo Enrique Astiazaran Rosas, No. 46, Col. La Victoria, Hermosillo C.P. 83304, Sonora, Mexico; (M.A.L.-F.); (K.P.Q.-C.); (P.P.-R.); (B.A.S.-E.); (M.R.C.-V.); (G.A.G.-A.)
| | - Jesus Fernando Ayala-Zavala
- Centro de Investigacion en Alimentacion y Desarrollo, A.C., Carretera Gustavo Enrique Astiazaran Rosas, No. 46, Col. La Victoria, Hermosillo C.P. 83304, Sonora, Mexico; (M.A.L.-F.); (K.P.Q.-C.); (P.P.-R.); (B.A.S.-E.); (M.R.C.-V.); (G.A.G.-A.)
| |
Collapse
|
11
|
Adjunctive dental therapies in caries-active children: Shifting the cariogenic salivary microbiome from dysbiosis towards non-cariogenic health. ACTA ACUST UNITED AC 2021; 18. [PMID: 34485763 PMCID: PMC8415465 DOI: 10.1016/j.humic.2020.100077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Background: The oral microbiome is a complex assembly of microbial species, whose constituents can tilt the balance towards progression of oral disease or sustained health. Recently we identified sex-specific differences in the salivary microbiome contained within caries-active and caries-free children. In this study, we sought to ascertain if adjunctive dental therapies, including povidone iodine and chlorhexidine, were effective in shifting the cariogenic microbiome from dysbiosis to non-cariogenic health. Design: We recruited young children (ages 2–12 years) to enter five enrollment groups, with each group (N = 9–30 participants/group) receiving caries restorative and/or adjunctive therapies, either singularly or in combination (OHSU IRB #6535). Saliva specimens were collected pre- and post-treatment (4–8 weeks) of caries preventive measures, and oral microbiota were identified using next generation sequencing (HOMINGS, Forsyth Institute, Cambridge, MA). Results: With the use of multi-dimensional scaling plots, support vector machine learning, odds ratio analysis, and other statistical methods, we have determined that treatment with povidone iodine can shift the composition of the salivary cariogenic microbiome to include higher proportions of aerobic microorganisms, such as Stentrophomonas maltophila, as well as non-cariogenic, anaerobic microorganisms including Poryphyromonas and Fusobacterium species. Conclusion: We have identified microorganisms that are associated with caries-active children and have determined that povidone iodine is an effective adjunctive therapy that has the potential to shift the composition of the cariogenic microbiome to one more closely aligned with non-cariogenic health.
Collapse
|
12
|
Yan X, Chen X, Tian X, Qiu Y, Wang J, Yu G, Dong N, Feng J, Xie J, Nalesnik M, Niu R, Xiao B, Song G, Quinones S, Ren X. Co-exposure to inorganic arsenic and fluoride prominently disrupts gut microbiota equilibrium and induces adverse cardiovascular effects in offspring rats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144924. [PMID: 33636766 DOI: 10.1016/j.scitotenv.2020.144924] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/07/2020] [Accepted: 12/26/2020] [Indexed: 06/12/2023]
Abstract
Co-exposure to inorganic arsenic (iAs) and fluoride (F-) and their collective actions on cardiovascular systems have been recognized as a global public health concern. Emerging studies suggest an association between the perturbation of gut bacterial microbiota and adverse cardiovascular effects (CVEs), both of which are the consequence of iAs and F- exposure in human and experimental animals. The aim of this study was to fill the gap of understanding the relationship among co-exposure to iAs and F-, gut microbiota perturbation, and adverse CVEs. We systematically assessed cardiac morphology and functions (blood pressure, echocardiogram, and electrocardiogram), and generated gut microbiota profiles using 16S rRNA gene sequencing on rats exposed to iAs (50 mg/L NaAsO2), F- (100 mg/L NaF) or combined iAs and F- (50 mg/L NaAsO2 + 100 mg/L NaF), in utero and during early postnatal periods (postnatal day 90). Correlation analysis was then performed to examine relationship between significantly altered microbiota and cardiac performance indices. Our results showed that co-exposure to iAs and F- resulted in more prominent effects in CVEs and perturbation of gut microbiota profiles, compared to iAs or F- treatment alone. Furthermore, nine bacterial genera (Adlercreutzia, Clostridium sensu stricto 1, Coprococcus 3, Romboutsia, [Bacteroides] Pectinophilus group, Lachnospiraceae NC2004 group, Desulfovibrio, and two unidentified genera in Muribaculaceae and Ruminococcaceae family), which differed significantly in relative abundance between control and iAs and F- co-exposure group, were strongly correlated with the higher risk of CVEs (correlation coefficient = 0.70-0.88, p < 0.05). Collectively, these results suggest that co-exposure to iAs and F- poses a higher risk of CVEs, and the part of the mode of action is potentially through inducing gut microbiota disruption, and the strong correlations between them indicate a high potential for the development of novel microbiome-based biomarkers of iAs and/or F- associated CVEs.
Collapse
Affiliation(s)
- Xiaoyan Yan
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, PR China.
| | - Xushen Chen
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA
| | - Xiaolin Tian
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, PR China; Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, PR China
| | - Yulan Qiu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Jie Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Guan Yu
- Department of Biostatistics, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA
| | - Nisha Dong
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Jing Feng
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, PR China; Shanxi Key Laboratory of Experimental Animal and Human Disease Animal Models, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Jiaxin Xie
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Morgan Nalesnik
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Ruiyan Niu
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, PR China
| | - Bo Xiao
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Guohua Song
- Shanxi Key Laboratory of Experimental Animal and Human Disease Animal Models, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Sarah Quinones
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA
| | - Xuefeng Ren
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA; Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
13
|
Gupta A, Nishant, Sharda S, Kumar A, Goyal A, Gauba K. Comparing the Effectiveness of Topical Fluoride and Povidone Iodine with Topical Fluoride Alone for the Prevention of Dental Caries among Children: A Systematic Review and Meta-analysis. Int J Clin Pediatr Dent 2021; 13:559-565. [PMID: 33623347 PMCID: PMC7887176 DOI: 10.5005/jp-journals-10005-1844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Combined use of povidone iodine (PI) along with topical fluorides (TF) has been suggested as a promising strategy to reduce dental caries incidence and cariogenic bacterial load. However, the available literature presents mixed evidence regarding its effectiveness as compared to TF application alone. Aim and objective 'TF + PI' vs TF alone in the prevention of dental caries among 1-12-year-old children assessed through caries increment and mean S. mutans and Lactobacillus counts. Materials and methods Five databases (Cochrane Central Register of Controlled Trials, EBSCOhost, PubMed/Medline, Scopus, and Web of Science) were searched for relevant literature. Out of 72 studies that were screened, 7 eligible studies were included out of which 4 studies were subjected to meta-analysis. The generic inverse variance test was used to assess the primary outcome reported as mean ± SD/events occurred (caries incidence), whereas for mean post-intervention S. mutans colony count, inverse variance function was used. The Cochrane's Collaboration tool and Modified Downs and Black scoring criteria were used to evaluate the quality of the included articles. Heterogeneity across the studies was assessed using the I 2 statistic. Statistical significance was set at p < 0.05. Results Overall, for primary and permanent dentition combined, the dental caries incidence was found to be significantly lower in the 'TF + PI' combined therapy group as compared to TF alone [SMD -0.4 (-0.78 to -0.03), p = 0.04]. The two groups showed no significant difference with respect to post-intervention S. mutans count [SMD -0.1 (-0.57 to +0.37), p = 0.69]. No study was found that compared post-intervention Lactobacillus count between the two groups. Conclusion Based on the pooled analysis from the limited literature available, there is a very low quality of evidence that 'TF + PI' combined therapy is more effective in the prevention of new caries lesions among 1-12-year-old children as compared to TF use alone. Future clinical trials with robust methodologies are recommended to generate conclusive evidence. Clinical significance PI application might exert an added benefit with TF in preventing the occurrence of new carious lesions among 1-12-year-old children. How to cite this article Gupta A, Nishant, Sharda S, et al. Comparing the Effectiveness of Topical Fluoride and Povidone Iodine with Topical Fluoride Alone for the Prevention of Dental Caries among Children: A Systematic Review and Meta-analysis. Int J Clin Pediatr Dent 2020;13(5):559-565.
Collapse
Affiliation(s)
- Arpit Gupta
- Oral Health Sciences Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Nishant
- Oral Health Sciences Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Shweta Sharda
- Oral Health Sciences Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Amit Kumar
- Oral Health Sciences Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashima Goyal
- Oral Health Sciences Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Krishan Gauba
- Oral Health Sciences Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
14
|
Qiu Y, Chen X, Yan X, Wang J, Yu G, Ma W, Xiao B, Quinones S, Tian X, Ren X. Gut microbiota perturbations and neurodevelopmental impacts in offspring rats concurrently exposure to inorganic arsenic and fluoride. ENVIRONMENT INTERNATIONAL 2020; 140:105763. [PMID: 32371304 DOI: 10.1016/j.envint.2020.105763] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/14/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
Many "hot spot" geographic areas across the world with drinking water co-contaminated with inorganic arsenic (iAs) and fluoride (F-), two of the most common natural contaminants in drinking water. Both iAs and F- are known neurotoxins and affect neurodevelopment of children. However, very few studies have investigated the neurodevelopmental effects of concurrent exposure to iAs and F-, which could potentially pose a greater risk than iAs or F- exposure alone. Further, perturbations of gut microbiota, which plays a regulatory role in neurodevelopment, resulting from iAs and F- exposure has been reported in numerous studies. There is lacking of information regarding to the relationship among concurrent iAs and F- exposure, microbiome disruption, and neurodevelopmental impacts. To fill these gaps, we treated offspring rats to iAs (50 mg/L NaAsO2) and F- (100 mg/L NaF), alone or combined from early life (in utero and childhood) to puberty. We applied Morris water maze test to assess spatial learning and memory of these rats and generated gut microbiome profiles using 16S rRNA gene sequencing. We showed that concurrent iAs and F- exposure caused more prominent neurodevelopmental effects in rats than either iAs or F- exposure alone. Moreover, Unsupervised Principal Coordinates Analysis (PCoA) and Linear Discriminant Analysis Effect Size (LEfSe) analysis of gut microbiome sequencing results separated concurrent exposure group from others, indicating a more sophisticated change of gut microbial communities occurred under the concurrent exposure condition. Further, a correlation analysis between indices of the water maze test and microbial composition at the genus level identified featured genera that were clearly associated with neurobehavioral performance of rats. 75% (9 out of 12) genera, which had a remarkable difference in relative abundance between the control and combined iAs and F- exposure groups, showed significantly strong correlations (r = 0.70-0.90) with the water maze performance indicators. Collectively, these results suggest that concurrent iAs and F- exposure led to more prominent effects on neurodevelopment and gut microbiome composition structures in rats, and the strong correlation between them indicates a high potential for the development of novel microbiome-based biomarkers of iAs and/or F- associated neurodevelopmental deficits.
Collapse
Affiliation(s)
- Yulan Qiu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Xushen Chen
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA
| | - Xiaoyan Yan
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Jie Wang
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA; Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Guan Yu
- Department of Biostatistics, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA
| | - Wenyan Ma
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Bo Xiao
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Sarah Quinones
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA
| | - Xiaolin Tian
- Shanxi Key Laboratory of Experimental Animal and Human Disease Animal Models, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Xuefeng Ren
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA; Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
15
|
Frank S, Capriotti J, Brown SM, Tessema B. Povidone-Iodine Use in Sinonasal and Oral Cavities: A Review of Safety in the COVID-19 Era. EAR, NOSE & THROAT JOURNAL 2020; 99:586-593. [PMID: 32520599 DOI: 10.1177/0145561320932318] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVES Approaches to nasal and oral decontamination with povidone-iodine (PVP-I) have been published to reduce nosocomial spread of Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2). The safety of PVP-I topically applied to the nasal and oral cavity is addressed by a literature review. The specific efficacy of PVP-I against coronaviruses and its potential efficacy against SARS-CoV-2 is discussed. METHODS A review was performed utilizing PubMed and Cochrane Databases. All citations in protocols for nasal and oral PVP-I use regarding COVID-19 were independently reviewed. RESULTS Povidone-iodine has been safely administered for up to 5 months in the nasal cavity and 6 months in the oral cavity. Concentrations less than 2.5% in vitro do not reduce ciliary beat frequency or cause pathological changes in ciliated nasal epithelium, upper respiratory, or mucosal cells. Adverse events with oral use have not been reported in conscious adults or children. Allergy and contact sensitivity is rare. Chronic mucosal use up to 5% has not been shown to result in clinical thyroid disease. PVP-I is rapidly virucidal and inactivates coronaviruses, including SARS-CoV and Middle East Respiratory Syndrome (MERS). CONCLUSIONS Povidone-iodine can safely be used in the nose at concentrations up to 1.25% and in the mouth at concentrations up to 2.5% for up to 5 months. Povidone-iodine rapidly inactivates coronaviruses, including SARS and MERS, when applied for as little as 15 seconds. There is optimism that PVP-I can inactivate SARS-CoV-2, but in vitro efficacy has not yet been demonstrated.
Collapse
Affiliation(s)
- Samantha Frank
- University of Connecticut School of Medicine, Farmington, USA
| | | | - Seth M Brown
- University of Connecticut School of Medicine, Farmington, USA.,ProHealth Ear Nose and Throat, Farmington, CT, USA
| | - Belachew Tessema
- University of Connecticut School of Medicine, Farmington, USA.,ProHealth Ear Nose and Throat, Farmington, CT, USA
| |
Collapse
|
16
|
Milgrom P, Tut O, Rothen M, Mancl L, Gallen M, Tanzer JM. Addition of Povidone-Iodine to Fluoride Varnish for Dental Caries: A Randomized Clinical Trial. JDR Clin Trans Res 2020; 6:195-204. [PMID: 32437626 DOI: 10.1177/2380084420922968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Dental caries is the most common chronic childhood disease. Products of metabolism by bacteria populating the tooth surface induce development and progression of cavities. OBJECTIVES We sought to determine whether a polyvinylpyrrolidone-iodine (PVP-I; povidone-iodine) and NaF topical varnish was superior to one containing only NaF in prevention of new dental caries lesions in a single-center randomized active-controlled trial based on a double-blind, parallel-group design. METHODS The site was Pohnpei State, Federated States of Micronesia. The study population was healthy children 49 to 84 mo old who were enrolled in early childhood education: 284 were randomized (1:1 allocation), and 273 were included in year 1 analysis and 262 in year 2. The test varnish contained 10% PVP-I and 5.0% NaF. The comparator contained only 5.0% NaF but was otherwise identical. Varnishes were applied every 3 mo during 2 y. The primary outcome was the surface-level primary molar caries lesion increment (d2-4mfs) at 2 y. Caries lesion increments from baseline to year 1 and year 2 were compared between conditions with log-linear regression, adjusting for age and sex and whether the tooth was sound at baseline (free of caries lesions). RESULTS At year 1, the caries lesion increment for primary molars sound at baseline was 0.9 surfaces (SD = 1.5) for the test varnish versus 1.8 (SD = 2.2) for the comparator varnish with fluoride alone (adjusted rate ratio, 0.50; 95% CI, 0.31 to 0.81; P = .005). At year 2, the caries lesion increment for primary molars sound at baseline was 2.3 surfaces (SD = 2.8) for the test varnish as compared with 3.3 (SD = 2.7) for the comparator (adjusted rate ratio, 0.74; 95% CI, 0.52 to 1.03; P = .073). Teeth that were already cavitated at baseline did not show a preventive effect. There were no harms. CONCLUSIONS A dental varnish containing PVP-I and NaF is effective in the primary prevention of cavities in the primary dentition (NCT03082196). KNOWLEDGE TRANSFER STATEMENT This study demonstrates that periodic application of a varnish containing NaF and PVP-I is effective in prevention of caries lesions and useful in assessing the potential of combined treatment.
Collapse
Affiliation(s)
- P Milgrom
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, USA.,Advantage Silver Dental Arrest, LLC, Salem, Oregon
| | - O Tut
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, USA
| | - M Rothen
- Regional Clinical Dental Research Center, Institute of Translational Health Sciences, University of Washington, Seattle, WA, USA
| | - L Mancl
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, USA
| | - M Gallen
- Department of Dental Services, Pohnpei State Department of Health Services, Kolonia, Federated States of Micronesia
| | - J M Tanzer
- Department of Oral and Maxillofacial Diagnostic Sciences, University of Connecticut Health, Farmington, CT, USA
| |
Collapse
|
17
|
Kanagalingam J, Amtha R. Povidone-iodine in dental and oral health: a narrative review. J Int Oral Health 2020. [DOI: 10.4103/jioh.jioh_89_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
18
|
Wolff D, Frese C, Schoilew K, Dalpke A, Wolff B, Boutin S. Amplicon-based microbiome study highlights the loss of diversity and the establishment of a set of species in patients with dentin caries. PLoS One 2019; 14:e0219714. [PMID: 31365560 PMCID: PMC6668773 DOI: 10.1371/journal.pone.0219714] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/28/2019] [Indexed: 12/13/2022] Open
Abstract
Objectives To elicit patterns in pathogenic biofilm composition we characterized the oral microbiome present in patients with dentin caries in comparison to healthy subjects. Methods 16S amplicon sequencing was used to analyse a total of 56 patients; 19 samples of carious dentin (pooled from at least three teeth) and 37 supragingival samples (pooled from three healthy tooth surfaces). Oral and periodontal status and socio-demographic parameters were recorded. Group assignment, smoking and further socio-demographic parameters were used as explanatory variables in the microbiome composition analysis. Results Overall, a total of 4,110,020 DNA high-quality sequences were yielded. Using a threshold of similarity >97% for assigning operational taxonomic units (OTU), a total of 1,537 OTUs were identified. PERMANOVA showed significant differences in microbiome composition between the groups caries/healthy (p = 0.001), smoking/non-smoking (p = 0.007) and fluoride intake during childhood yes/no (tablets p = 0.003, salt p = 0.023). The healthy microbiome had a significantly higher diversity (alpha diversity, p<0.001) and a lower dominance (Berger-Parker index, p<0.001). It was dominated by Fusobacteria. A linear discriminant analysis effect size (LEfSe) yielded a set of 39 OTUs being more abundant in carious dentin samples, including Atopobium spp. (14.9 log2FoldChange), Lactobacillus casei (11.6), Acinetobacter spp. (10.8), Lactobacillus gasseri (10.6), Parascardovia denticolens (10.5), Olsenella profusa (10.4), and others. Also Propionibacterium acidifaciens (7.2) and Streptococcus mutans (5.2) were overabundant in caries lesions. Conclusions The healthy microbiome was highly diverse. The advanced caries microbiome was dominated by a set of carious associated bacteria where S. mutans played only a minor role. Smoking and fluoride intake during childhood influenced the microbiome composition significantly. Clinical significance The presented investigation adds knowledge to the still not fully comprehended patterns of oral microbiomes in caries compared with oral health. By analysing the genetics of biofilm samples from oral health and severe tooth decay we found distinct discriminating species which could be targets for future therapeutic approaches.
Collapse
Affiliation(s)
- Diana Wolff
- Department of Conservative Dentistry, Centre of Dentistry, Oral Medicine and Maxillofacial Surgery, University of Tuebingen, Tuebingen, Germany
- * E-mail:
| | - Cornelia Frese
- Department of Conservative Dentistry, School of Dental Medicine, Ruprecht-Karls-University of Heidelberg, Heidelberg, Germany
| | - Kyrill Schoilew
- Department of Conservative Dentistry, School of Dental Medicine, Ruprecht-Karls-University of Heidelberg, Heidelberg, Germany
| | - Alexander Dalpke
- Medical Microbiology and Hygiene, Technical University Dresden, Dresden, Germany
| | - Bjoern Wolff
- Department of Conservative Dentistry, School of Dental Medicine, Ruprecht-Karls-University of Heidelberg, Heidelberg, Germany
| | - Sébastien Boutin
- Department of Infectious Diseases-Medical Microbiology and Hygiene, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
19
|
Philip N, Leishman SJ, Bandara HMHN, Healey DL, Walsh LJ. Randomized Controlled Study to Evaluate Microbial Ecological Effects of CPP-ACP and Cranberry on Dental Plaque. JDR Clin Trans Res 2019; 5:118-126. [PMID: 31283892 DOI: 10.1177/2380084419859871] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION Ecological approaches to dental caries prevention play a key role in attaining long-term control over the disease and maintaining a symbiotic oral microbiome. OBJECTIVES This study aimed to investigate the microbial ecological effects of 2 interventional dentifrices: a casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) dentifrice and the same dentifrice supplemented with a polyphenol-rich cranberry extract. METHODS The interventional toothpastes were compared with each other and with an active control fluoride dentifrice in a double-blinded randomized controlled trial. Real-time quantitative polymerase chain reaction (qPCR) analysis was used to determine changes in the bacterial loads of 14 key bacterial species (8 caries associated and 6 health associated) in the dental plaque of trial participants after they used the dentifrices for 5 to 6 wk. RESULTS From the baseline to the recall visit, significant differences were observed between the treatment groups in the bacterial loads of 2 caries-associated bacterial species (Streptococcus mutans [P < 0.001] and Veillonella parvula [P < 0.001]) and 3 health-associated bacterial species (Corynebacterium durum [P = 0.008], Neisseria flavescens [P = 0.005], and Streptococcus sanguinis [P < 0.001]). Compared to the fluoride control dentifrice, the CPP-ACP dentifrice demonstrated significant differences for S. mutans (P = 0.032), C. durum (P = 0.007), and S. sanguinis (P < 0.001), while combination CPP-ACP-cranberry dentifrice showed significant differences for S. mutans (P < 0.001), V. parvula (P < 0.001), N. flavescens (P = 0.003), and S. sanguinis (P < 0.001). However, no significant differences were observed in the bacterial load comparisons between the CPP-ACP and combination dentifrices for any of the targeted bacterial species (P > 0.05). CONCLUSIONS Overall, the results indicate that dentifrices containing CPP-ACP and polyphenol-rich cranberry extracts can influence a species-level shift in the ecology of the oral microbiome, resulting in a microbial community less associated with dental caries (Australian New Zealand Clinical Trial Registry ANZCTR 12618000095268). KNOWLEDGE TRANSFER STATEMENT The results of this randomized controlled trial indicate that dentifrices containing casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) and polyphenol-rich cranberry extracts were able to beneficially modulate the microbial ecology of dental plaque in a group of high caries-risk patients. This could contribute toward lowering the risk of developing new caries lesions, an important goal sought by patients, clinicians, and policy makers.
Collapse
Affiliation(s)
- N Philip
- The University of Queensland School of Dentistry, Brisbane, Australia
| | - S J Leishman
- The University of Queensland School of Dentistry, Brisbane, Australia
| | | | - D L Healey
- The University of Queensland School of Dentistry, Brisbane, Australia
| | - L J Walsh
- The University of Queensland School of Dentistry, Brisbane, Australia
| |
Collapse
|
20
|
Philip N, Leishman SJ, Bandara HMHN, Walsh LJ. Casein Phosphopeptide-Amorphous Calcium Phosphate Attenuates Virulence and Modulates Microbial Ecology of Saliva-Derived Polymicrobial Biofilms. Caries Res 2019; 53:643-649. [PMID: 31163430 DOI: 10.1159/000499869] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/25/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) acts as a salivary biomimetic that provides bioavailable calcium and phosphate ions to augment fluoride-mediated remineralisation of early caries lesions. However, there are indications that it may also have beneficial ecological effects on the oral microbiome. OBJECTIVE This in vitro study investigated whether CPP-ACP could influence microbial counts, acidogenicity, and the relative abundance of specific caries- and health-associated bacterial -species in polymicrobial biofilms. METHODS Saliva-derived polymicrobial biofilms were grown for 96 h in a cariogenic environment and treated every 12 h with 2% CPP-ACP or vehicle control. Colony forming units (CFUs) and acidogenicity were estimated from the treated biofilms. Microbial ecological effects of CPP-ACP were assessed based on the relative abundance of 14 specific caries- and health-associated -bacterial species using a real-time quantitative PCR assay. -Results: CPP-ACP-treated biofilms showed relatively modest, but significant, reductions in microbial CFUs (21% reduction, p = 0.008) and acidogenicity (33% reduction, p < 0.001), compared to the control-treated biofilms. The CPP-ACP treated biofilms also exhibited significantly lower bacterial loads of cariogenic Scardovia wiggsiae (fold change 0.017, p < 0.001) and Prevotella denticola(fold change 0.005, p < 0.001), and higher bacterial loads of commensal Streptococcus sanguinis(fold change 30.22, p < 0.001), S. mitis/oralis(fold change 9.66, p = 0.012), and S. salivarius/thermophilus(fold change 89.35, p < 0.001) than the control-treated biofilms. CONCLUSIONS The results indicate that CPP-ACP has virulence-attenuating attributes that can influence a beneficial microbial ecological change in the biofilm.
Collapse
Affiliation(s)
- Nebu Philip
- The University of Queensland School of Dentistry, Brisbane, Queensland, Australia,
| | - Shaneen J Leishman
- The University of Queensland School of Dentistry, Brisbane, Queensland, Australia
| | - H M H N Bandara
- Bristol Dental School, University of Bristol, Bristol, United Kingdom
| | - Laurence J Walsh
- The University of Queensland School of Dentistry, Brisbane, Queensland, Australia
| |
Collapse
|
21
|
Fluoride Depletes Acidogenic Taxa in Oral but Not Gut Microbial Communities in Mice. mSystems 2017; 2:mSystems00047-17. [PMID: 28808691 PMCID: PMC5547758 DOI: 10.1128/msystems.00047-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/18/2017] [Indexed: 01/22/2023] Open
Abstract
Fluoridation of drinking water and dental products prevents dental caries primarily by inhibiting energy harvest in oral cariogenic bacteria (such as Streptococcus mutans and Streptococcus sanguinis), thus leading to their depletion. However, the extent to which oral and gut microbial communities are affected by host fluoride exposure has been underexplored. In this study, we modeled human fluoride exposures to municipal water and dental products by treating mice with low or high levels of fluoride over a 12-week period. We then used 16S rRNA gene amplicon and shotgun metagenomic sequencing to assess fluoride's effects on oral and gut microbiome composition and function. In both the low- and high-fluoride groups, several operational taxonomic units (OTUs) belonging to acidogenic bacterial genera (such as Parabacteroides, Bacteroides, and Bilophila) were depleted in the oral community. In addition, fluoride-associated changes in oral community composition resulted in depletion of gene families involved in central carbon metabolism and energy harvest (2-oxoglutarate ferredoxin oxidoreductase, succinate dehydrogenase, and the glyoxylate cycle). In contrast, fluoride treatment did not induce a significant shift in gut microbial community composition or function in our mouse model, possibly due to absorption in the upper gastrointestinal tract. Fluoride-associated perturbations thus appeared to have a selective effect on the composition of the oral but not gut microbial community in mice. Future studies will be necessary to understand possible implications of fluoride exposure for the human microbiome. IMPORTANCE Fluoride has been added to drinking water and dental products since the 1950s. The beneficial effects of fluoride on oral health are due to its ability to inhibit the growth of bacteria that cause dental caries. Despite widespread human consumption of fluoride, there have been only two studies of humans that considered the effect of fluoride on human-associated microbial communities, which are increasingly understood to play important roles in health and disease. Notably, neither of these studies included a true cross-sectional control lacking fluoride exposure, as study subjects continued baseline fluoride treatment in their daily dental hygiene routines. To our knowledge, this work (in mice) is the first controlled study to assess the independent effects of fluoride exposure on the oral and gut microbial communities. Investigating how fluoride interacts with host-associated microbial communities in this controlled setting represents an effort toward understanding how common environmental exposures may potentially influence health.
Collapse
|
22
|
Garcia SS, Blackledge MS, Michalek S, Su L, Ptacek T, Eipers P, Morrow C, Lefkowitz EJ, Melander C, Wu H. Targeting of Streptococcus mutans Biofilms by a Novel Small Molecule Prevents Dental Caries and Preserves the Oral Microbiome. J Dent Res 2017; 96:807-814. [PMID: 28571487 DOI: 10.1177/0022034517698096] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dental caries is a costly and prevalent disease characterized by the demineralization of the tooth's enamel. Disease outcome is influenced by host factors, dietary intake, cariogenic bacteria, and other microbes. The cariogenic bacterial species Streptococcus mutans metabolizes sucrose to initiate biofilm formation on the tooth surface and consequently produces lactic acid to degrade the tooth's enamel. Persistence of S. mutans biofilms in the oral cavity can lead to tooth decay. To date, no anticaries therapies that specifically target S. mutans biofilms but do not disturb the overall oral microbiome are available. We screened a library of 2-aminoimidazole antibiofilm compounds with a biofilm dispersion assay and identified a small molecule that specifically targets S. mutans biofilms. At 5 µM, the small molecule annotated 3F1 dispersed 50% of the established S. mutans biofilm but did not disperse biofilms formed by the commensal species Streptococcus sanguinis or Streptococcus gordonii. 3F1 dispersed S. mutans biofilms independently of biofilm-related factors such as antigen I/II and glucosyltransferases. 3F1 treatment effectively prevented dental caries by controlling S. mutans in a rat caries model without perturbing the oral microbiota. Our study demonstrates that selective targeting of S. mutans biofilms by 3F1 was able to effectively reduce dental caries in vivo without affecting the overall oral microbiota shaped by the intake of dietary sugars, suggesting that the pathogenic biofilm-specific treatment is a viable strategy for disease prevention.
Collapse
Affiliation(s)
- S S Garcia
- 1 Department of Pediatric Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA.,2 Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - M S Blackledge
- 3 Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - S Michalek
- 2 Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - L Su
- 1 Department of Pediatric Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - T Ptacek
- 2 Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.,4 Schools of Dentistry and Medicine, Center for Clinical and Translational Science, University of Alabama at Birmingham, Birmingham, AL, USA
| | - P Eipers
- 5 Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - C Morrow
- 5 Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - E J Lefkowitz
- 5 Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - C Melander
- 3 Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - H Wu
- 1 Department of Pediatric Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|