1
|
Wang MQ, Guo SK, Guo PF, Yang JJ, Chen GA, Chesters D, Orr MC, Niu ZQ, Staab M, Chen JT, Li Y, Zhou QS, Fornoff F, Shi X, Li S, Martini M, Klein AM, Schuldt A, Liu X, Ma K, Bruelheide H, Luo A, Zhu CD. Multidimensionality of tree communities structure host-parasitoid networks and their phylogenetic composition. eLife 2025; 13:RP100202. [PMID: 39996600 PMCID: PMC11856933 DOI: 10.7554/elife.100202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025] Open
Abstract
Environmental factors can influence ecological networks, but these effects are poorly understood in the realm of the phylogeny of host-parasitoid interactions. Especially, we lack a comprehensive understanding of the ways that biotic factors, including plant species richness, overall community phylogenetic and functional composition of consumers, and abiotic factors such as microclimate, determine host-parasitoid network structure and host-parasitoid community dynamics. To address this, we leveraged a 5-year dataset of trap-nesting bees and wasps and their parasitoids collected in a highly controlled, large-scale subtropical tree biodiversity experiment. We tested for effects of tree species richness, tree phylogenetic, and functional diversity, and species and phylogenetic composition on species and phylogenetic diversity of both host and parasitoid communities and the composition of their interaction networks. We show that multiple components of tree diversity and canopy cover impacted both, species and phylogenetic composition of hosts and parasitoids. Generally, phylogenetic associations between hosts and parasitoids reflected nonrandomly structured interactions between phylogenetic trees of hosts and parasitoids. Further, host-parasitoid network structure was influenced by tree species richness, tree phylogenetic diversity, and canopy cover. Our study indicates that the composition of higher trophic levels and corresponding interaction networks are determined by plant diversity and canopy cover, especially via trophic links in species-rich ecosystems.
Collapse
Affiliation(s)
- Ming-Qiang Wang
- CAS Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of SciencesBeijingChina
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of SciencesChengduChina
| | - Shi-Kun Guo
- CAS Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of SciencesBeijingChina
- College of Biological Sciences, University of Chinese Academy of SciencesBeijingChina
| | - Peng-Fei Guo
- CAS Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of SciencesBeijingChina
- College of Pharmacy, Guizhou University of Traditional Chinese MedicineGuiyangChina
| | - Juan-Juan Yang
- CAS Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of SciencesBeijingChina
- College of Biological Sciences, University of Chinese Academy of SciencesBeijingChina
| | - Guo-Ai Chen
- CAS Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of SciencesBeijingChina
- College of Biological Sciences, University of Chinese Academy of SciencesBeijingChina
| | - Douglas Chesters
- CAS Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of SciencesBeijingChina
- International College, University of Chinese Academy of SciencesBeijingChina
| | - Michael C Orr
- CAS Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of SciencesBeijingChina
- Entomologie, Staatliches Museum für Naturkunde StuttgartStuttgartGermany
| | - Ze-Qing Niu
- CAS Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Michael Staab
- Ecological Networks, Technical University DarmstadtDarmstadtGermany
| | - Jing-Ting Chen
- CAS Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of SciencesBeijingChina
- College of Biological Sciences, University of Chinese Academy of SciencesBeijingChina
| | - Yi Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of SciencesBeijingChina
| | - Qing-Song Zhou
- CAS Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of SciencesBeijingChina
- International College, University of Chinese Academy of SciencesBeijingChina
| | - Felix Fornoff
- Department of Nature Conservation and Landscape Ecology, Albert-Ludwigs-University FreiburgFreiburgGermany
| | - Xiaoyu Shi
- CAS Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Shan Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of SciencesBeijingChina
| | - Massimo Martini
- Department of Nature Conservation and Landscape Ecology, Albert-Ludwigs-University FreiburgFreiburgGermany
| | - Alexandra-Maria Klein
- Department of Nature Conservation and Landscape Ecology, Albert-Ludwigs-University FreiburgFreiburgGermany
| | - Andreas Schuldt
- Forest Nature Conservation, University of GöttingenGöttingenGermany
| | - Xiaojuan Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of SciencesBeijingChina
| | - Keping Ma
- International College, University of Chinese Academy of SciencesBeijingChina
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of SciencesBeijingChina
| | - Helge Bruelheide
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-WittenbergHalleGermany
| | - Arong Luo
- CAS Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of SciencesBeijingChina
- International College, University of Chinese Academy of SciencesBeijingChina
- National Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Chao-Dong Zhu
- CAS Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of SciencesBeijingChina
- College of Biological Sciences, University of Chinese Academy of SciencesBeijingChina
- International College, University of Chinese Academy of SciencesBeijingChina
- National Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of SciencesBeijingChina
- State Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| |
Collapse
|
2
|
Zhang X, Dalsgaard B, Staab M, Zhu C, Zhao Y, Gonçalves F, Ren P, Cai C, Qiao G, Ding P, Si X. Habitat fragmentation increases specialization of multi-trophic interactions by high species turnover. Proc Biol Sci 2023; 290:20231372. [PMID: 37876189 PMCID: PMC10598433 DOI: 10.1098/rspb.2023.1372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/02/2023] [Indexed: 10/26/2023] Open
Abstract
Habitat fragmentation is altering species interactions worldwide. However, the mechanisms underlying the response of network specialization to habitat fragmentation remain unknown, especially for multi-trophic interactions. We here collected a large dataset consisting of 2670 observations of tri-trophic interactions among plants, sap-sucking aphids and honeydew-collecting ants on 18 forested islands in the Thousand Island Lake, China. For each island, we constructed an antagonistic plant-aphid and a mutualistic aphid-ant network, and tested how network specialization varied with island area and isolation. We found that both networks exhibited higher specialization on smaller islands, while only aphid-ant networks had increased specialization on more isolated islands. Variations in network specialization among islands was primarily driven by species turnover, which was interlinked across trophic levels as fragmentation increased the specialization of both antagonistic and mutualistic networks through bottom-up effects via plant and aphid communities. These findings reveal that species on small and isolated islands display higher specialization mainly due to effects of fragmentation on species turnover, with behavioural changes causing interaction rewiring playing only a minor role. Our study highlights the significance of adopting a multi-trophic perspective when exploring patterns and processes in structuring ecological networks in fragmented landscapes.
Collapse
Affiliation(s)
- Xue Zhang
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Copenhagen 2100, Denmark
| | - Bo Dalsgaard
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Copenhagen 2100, Denmark
| | - Michael Staab
- Technical University Darmstadt, Ecological Networks, 64287 Darmstadt, Germany
| | - Chen Zhu
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Copenhagen 2100, Denmark
| | - Yuhao Zhao
- Zhejiang Zhoushan Archipelago Observation and Research Station, Institute of Eco-Chongming, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, People's Republic of China
| | - Fernando Gonçalves
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Copenhagen 2100, Denmark
| | - Peng Ren
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Chang Cai
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Gexia Qiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ping Ding
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Xingfeng Si
- Zhejiang Zhoushan Archipelago Observation and Research Station, Institute of Eco-Chongming, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, People's Republic of China
| |
Collapse
|
3
|
Staab M, Pietsch S, Yan H, Blüthgen N, Cheng A, Li Y, Zhang N, Ma K, Liu X. Dear neighbor: Trees with extrafloral nectaries facilitate defense and growth of adjacent undefended trees. Ecology 2023; 104:e4057. [PMID: 37078562 DOI: 10.1002/ecy.4057] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/22/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023]
Abstract
Plant diversity can increase productivity. One mechanism behind this biodiversity effect is facilitation, which is when one species increases the performance of another species. Plants with extrafloral nectaries (EFNs) establish defense mutualisms with ants. However, whether EFN plants facilitate defense of neighboring non-EFN plants is unknown. Synthesizing data on ants, herbivores, leaf damage, and defense traits from a forest biodiversity experiment, we show that trees growing adjacent to EFN trees had higher ant biomass and species richness and lower caterpillar biomass than conspecific controls without EFN-bearing neighbors. Concurrently, the composition of defense traits in non-EFN trees changed. Thus, when non-EFN trees benefit from lower herbivore loads as a result of ants spilling over from EFN tree neighbors, this may allow relatively reduced resource allocation to defense in the former, potentially explaining the higher growth of those trees. Via this mutualist-mediated facilitation, promoting EFN trees in tropical reforestation could foster carbon capture and multiple other ecosystem functions.
Collapse
Affiliation(s)
- Michael Staab
- Ecological Networks, Technical University Darmstadt, Darmstadt, Germany
- Nature Conservation and Landscape Ecology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Stefanie Pietsch
- Nature Conservation and Landscape Ecology, University of Freiburg, Freiburg im Breisgau, Germany
- Field Station Fabrikschleichach, University of Würzburg, Würzburg, Germany
| | - Haoru Yan
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Nico Blüthgen
- Ecological Networks, Technical University Darmstadt, Darmstadt, Germany
| | - Anpeng Cheng
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yi Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Naili Zhang
- College of Forestry, Beijing Forestry University, Beijing, China
| | - Keping Ma
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaojuan Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Zhejiang Qianjiangyuan Forest Biodiversity National Observation and Research Station, Beijing, China
| |
Collapse
|
4
|
Blanchard G, Munoz F. Revisiting extinction debt through the lens of multitrophic networks and meta‐ecosystems. OIKOS 2022. [DOI: 10.1111/oik.09435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Grégoire Blanchard
- AMAP, Univ. Montpellier, CIRAD, CNRS, INRAE, IRD Montpellier France
- AMAP, IRD, Herbier de Nouvelle Calédonie Nouméa Nouvelle Calédonie
| | | |
Collapse
|
5
|
Miao BG, Peng YQ, Yang DR, Guénard B, Liu C. Diversity begets diversity: Low resource heterogeneity reduces the diversity of nut-nesting ants in rubber plantations. INSECT SCIENCE 2022; 29:932-941. [PMID: 34423564 DOI: 10.1111/1744-7917.12964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
One of the most general patterns in ecology is the positive relationship between environmental heterogeneity and local diversity. On the one hand, increased resource heterogeneity provides more resources for diverse consumers in the community. On the other hand, increased structural heterogeneity creates variation in the environment's physical structure, thus allowing the coexistence of diverse species with different environmental requirements. Here, we examined the relative importance of resource and structural heterogeneity in determining the taxonomic, functional, and phylogenetic diversity of nut-nesting ants in natural rainforest and rubber plantation. The species richness of nut-nesting ants was 70% higher in rainforest than in rubber plantation. The clustered functional and phylogenetic structure in rubber plantation suggested a strong effect of environmental filtering in shaping ant functional and phylogenetic structure. Nesting heterogeneity (nut diversity) was the major factor explaining variation in taxonomic, functional, and phylogenetic diversity, suggesting that resource heterogeneity plays a major role in shaping the biodiversity patterns of nut-nesting ants. Overall, these results indicate that decreased resource diversity following the conversion of rainforest to rubber plantation can drive biodiversity loss in nut-nesting ants, through its effect on reducing both ant species, functional, and phylogenetic diversity. The decline in species richness and functional and phylogenetic diversity in the local ant community might have major effects on ecosystem functioning.
Collapse
Affiliation(s)
- Bai-Ge Miao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan Province, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan Province, China
| | - Yan-Qiong Peng
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan Province, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan Province, China
| | - Da-Rong Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan Province, China
| | - Benoit Guénard
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Cong Liu
- Department of Organismic and Evolutional Biology, Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
6
|
Wu D, Staab M, Yu M. Canopy Closure Retards Fine Wood Decomposition in Subtropical Regenerating Forests. Ecosystems 2021. [DOI: 10.1007/s10021-021-00622-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Understory Vegetation Composition and Stand Are Mainly Limited by Soil Moisture in Black Locust Plantations of Loess Plateau. FORESTS 2021. [DOI: 10.3390/f12020195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Forestry eco-engineering programs in China occupy 721.77 × 104 km2, among which plantations have a pivotal role in protecting the fragile ecological environment. Reforestation understory is often ignored because of the simple vertical structure. The importance of light in understory has been discovered. However, how other ecology factors (e.g., soil properties and geographical factors) influence understory composition and stratification remain unclear. In this study, we investigated the effects of understory composition and stratification on environmental factors in black locust plantations. We used systematic clustering analysis based on plant average height to describe understory stratification. The finding of this study was that black locust plantation understory consisted of three levels: (I) a low herbaceous layer (<80 cm), (II) a high herbaceous layer (80–130 cm), and (III) a shrub layer (>130 cm). Redundancy analysis indicated that soil moisture content and soil total phosphorus content were the largest contributors to the variation in understory vegetation composition. Soil moisture content, altitude, and soil organic carbon content were the largest contributors to the variation in understory stratification. Overall, by analyzing understory stratification and the relationship between soil and geographical factors, we gained a more comprehensive understanding of the interaction between understory and the microenvironment. This is especially important for reforestation management that maintains understory ecology function in the face of global climate change.
Collapse
|
8
|
Jactel H, Moreira X, Castagneyrol B. Tree Diversity and Forest Resistance to Insect Pests: Patterns, Mechanisms, and Prospects. ANNUAL REVIEW OF ENTOMOLOGY 2021; 66:277-296. [PMID: 32903046 DOI: 10.1146/annurev-ento-041720-075234] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ecological research conducted over the past five decades has shown that increasing tree species richness at forest stands can improve tree resistance to insect pest damage. However, the commonality of this finding is still under debate. In this review, we provide a quantitative assessment (i.e., a meta-analysis) of tree diversity effects on insect herbivory and discuss plausible mechanisms underlying the observed patterns. We provide recommendations and working hypotheses that can serve to lay the groundwork for research to come. Based on more than 600 study cases, our quantitative review indicates that insect herbivory was, on average, lower in mixed forest stands than in pure stands, but these diversity effects were contingent on herbivore diet breadth and tree species composition. In particular, tree species diversity mainly reduced damage of specialist insect herbivores in mixed stands with phylogenetically distant tree species. Overall, our findings provide essential guidance for forest pest management.
Collapse
Affiliation(s)
- Hervé Jactel
- INRAE, University of Bordeaux, BIOGECO, F-33610 Cestas, France;
| | - Xoaquín Moreira
- Misión Biológica de Galicia (MBG-CSIC), 36080 Pontevedra, Galicia, Spain
| | | |
Collapse
|
9
|
Staab M, Pereira-Peixoto MH, Klein AM. Exotic garden plants partly substitute for native plants as resources for pollinators when native plants become seasonally scarce. Oecologia 2020; 194:465-480. [PMID: 33079266 PMCID: PMC7644476 DOI: 10.1007/s00442-020-04785-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/10/2020] [Indexed: 11/30/2022]
Abstract
Urban green spaces such as gardens often consist of native and exotic plant species, which provide pollen and nectar for flower-visiting insects. Although some exotic plants are readily visited by pollinators, it is unknown if and at which time of the season exotic garden plants may supplement or substitute for flower resources provided by native plants. To investigate if seasonal changes in flower availability from native vs. exotic plants affect flower visits, diversity and particularly plant–pollinator interaction networks, we studied flower-visiting insects over a whole growing season in 20 urban residential gardens in Germany. Over the course of the season, visits to native plants decreased, the proportion of flower visits to exotics increased, and flower-visitor species richness decreased. Yet, the decline in flower-visitor richness over the season was slowed in gardens with a relatively higher proportion of flowering exotic plants. This compensation was more positively linked to the proportion of exotic plant species than to the proportion of exotic flower cover. Plant–pollinator interaction networks were moderately specialized. Interactions were more complex in high summer, but interaction diversity, linkage density, and specialisation were not influenced by the proportion of exotic species. Thus, later in the season when few native plants flowered, exotic garden plants partly substituted for native flower resources without apparent influence on plant–pollinator network structure. Late-flowering garden plants support pollinator diversity in cities. If appropriately managed, and risk of naturalisation is minimized, late-flowering exotic plants may provide floral resources to support native pollinators when native plants are scarce.
Collapse
Affiliation(s)
- Michael Staab
- Department of Nature Conservation and Landscape Ecology, University of Freiburg, Tennenbacher Straße 4, 79106, Freiburg, Germany
- Freiburg Institute of Advanced Studies (FRIAS), University of Freiburg, Albertstraße 19, 79104, Freiburg, Germany
| | - Maria Helena Pereira-Peixoto
- Department of Nature Conservation and Landscape Ecology, University of Freiburg, Tennenbacher Straße 4, 79106, Freiburg, Germany.
- CAPES Foundation, Ministry of Education of Brazil, Brasília, DF, 70040-020, Brazil.
| | - Alexandra-Maria Klein
- Department of Nature Conservation and Landscape Ecology, University of Freiburg, Tennenbacher Straße 4, 79106, Freiburg, Germany
| |
Collapse
|
10
|
Wang MQ, Li Y, Chesters D, Bruelheide H, Ma K, Guo PF, Zhou QS, Staab M, Zhu CD, Schuldt A. Host functional and phylogenetic composition rather than host diversity structure plant-herbivore networks. Mol Ecol 2020; 29:2747-2762. [PMID: 32564434 DOI: 10.1111/mec.15518] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 06/10/2020] [Indexed: 12/18/2022]
Abstract
Declining plant diversity alters ecological networks, such as plant-herbivore interactions. However, our knowledge of the potential mechanisms underlying effects of plant species loss on plant-herbivore network structure is still limited. We used DNA barcoding to identify herbivore-host plant associations along declining levels of tree diversity in a large-scale, subtropical biodiversity experiment. We tested for effects of tree species richness, host functional and phylogenetic diversity, and host functional (leaf trait) and phylogenetic composition on species, phylogenetic and network composition of herbivore communities. We found that phylogenetic host composition and related palatability/defence traits but not tree species richness significantly affected herbivore communities and interaction network complexity at both the species and community levels. Our study indicates that evolutionary dependencies and functional traits of host plants determine the composition of higher trophic levels and corresponding interaction networks in species-rich ecosystems. Our findings highlight that characteristics of the species lost have effects on ecosystem structure and functioning across trophic levels that cannot be predicted from mere reductions in species richness.
Collapse
Affiliation(s)
- Ming-Qiang Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Forest Nature Conservation, Georg-August-University Goettingen, Goettingen, Germany
| | - Yi Li
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Douglas Chesters
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Helge Bruelheide
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Keping Ma
- Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Peng-Fei Guo
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Qing-Song Zhou
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Michael Staab
- Nature Conservation and Landscape Ecology, University of Freiburg, Freiburg, Germany
| | - Chao-Dong Zhu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Andreas Schuldt
- Forest Nature Conservation, Georg-August-University Goettingen, Goettingen, Germany
| |
Collapse
|
11
|
Fornoff F, Klein AM, Blüthgen N, Staab M. Tree diversity increases robustness of multi-trophic interactions. Proc Biol Sci 2020; 286:20182399. [PMID: 30836869 DOI: 10.1098/rspb.2018.2399] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Multi-trophic interactions maintain critical ecosystem functions. Biodiversity is declining globally, while responses of trophic interactions to biodiversity change are largely unclear. Thus, studying responses of multi-trophic interaction robustness to biodiversity change is crucial for understanding ecosystem functioning and persistence. We investigate plant-Hemiptera (antagonism) and Hemiptera-ant (mutualism) interaction networks in response to experimental manipulation of tree diversity. We show increased diversity at both higher trophic levels (Hemiptera and ants) and increased robustness through redundancy of lower level species of multi-trophic interactions when tree diversity increased. Hemiptera and ant diversity increased with tree diversity through non-additive diversity effects. Network analyses identified that tree diversity also increased the number of tree and Hemiptera species used by Hemiptera and ant species, and decreased the specialization on lower trophic level species in both mutualistic and antagonist interactions. Our results demonstrate that bottom-up effects of tree diversity ascend through trophic levels regardless of interaction type. Thus, local tree diversity is a key driver of multi-trophic community diversity and interaction robustness in forests.
Collapse
Affiliation(s)
- Felix Fornoff
- 1 Chair of Nature Conservation and Landscape Ecology, Faculty of Environment and Natural Resources, University of Freiburg , Tennenbacherstraße 4, 79196 Freiburg , Germany
| | - Alexandra-Maria Klein
- 1 Chair of Nature Conservation and Landscape Ecology, Faculty of Environment and Natural Resources, University of Freiburg , Tennenbacherstraße 4, 79196 Freiburg , Germany
| | - Nico Blüthgen
- 2 Department of Biology, Technische Universität Darmstadt , Schnittspahnstraße 3, 64287 Darmstadt , Germany
| | - Michael Staab
- 1 Chair of Nature Conservation and Landscape Ecology, Faculty of Environment and Natural Resources, University of Freiburg , Tennenbacherstraße 4, 79196 Freiburg , Germany
| |
Collapse
|
12
|
Linking Soil Fungal Generality to Tree Richness in Young Subtropical Chinese Forests. Microorganisms 2019; 7:microorganisms7110547. [PMID: 31717669 PMCID: PMC6921041 DOI: 10.3390/microorganisms7110547] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/07/2019] [Accepted: 11/07/2019] [Indexed: 11/17/2022] Open
Abstract
Soil fungi are a highly diverse group of microorganisms that provide many ecosystem services. The mechanisms of soil fungal community assembly must therefore be understood to reliably predict how global changes such as climate warming and biodiversity loss will affect ecosystem functioning. To this end, we assessed fungal communities in experimental subtropical forests by pyrosequencing of the internal transcribed spacer 2 (ITS2) region, and constructed tree-fungal bipartite networks based on the co-occurrence of fungal operational taxonomic units (OTUs) and tree species. The characteristics of the networks and the observed degree of fungal specialization were then analyzed in relation to the level of tree species diversity. Unexpectedly, plots containing two tree species had higher network connectance and fungal generality values than those with higher tree diversity. Most of the frequent fungal OTUs were saprotrophs. The degree of fungal specialization was highest in tree monocultures. Ectomycorrhizal fungi had higher specialization coefficients than saprotrophic, arbuscular mycorrhizal, and plant pathogenic fungi. High tree species diversity plots with 4 to 16 different tree species sustained the greatest number of fungal species, which is assumed to be beneficial for ecosystem services because it leads to more effective resource exploitation and greater resilience due to functional redundancy.
Collapse
|
13
|
Skarbek CJ, Noack M, Bruelheide H, Härdtle W, von Oheimb G, Scholten T, Seitz S, Staab M. A tale of scale: Plot but not neighbourhood tree diversity increases leaf litter ant diversity. J Anim Ecol 2019; 89:299-308. [DOI: 10.1111/1365-2656.13115] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 09/14/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Carl J. Skarbek
- Nature Conservation and Landscape Ecology Faculty of Environment and Natural Resources University of Freiburg Freiburg Germany
- Biometry and Environmental System Analysis Faculty of Environment and Natural Resources University of Freiburg Freiburg Germany
| | - Merle Noack
- Nature Conservation and Landscape Ecology Faculty of Environment and Natural Resources University of Freiburg Freiburg Germany
| | - Helge Bruelheide
- Institute of Biology/Geobotany and Botanical Garden Martin‐Luther‐University Halle‐Wittenberg Halle Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
| | - Werner Härdtle
- Institute of Ecology Leuphana University of Lüneburg Lüneburg Germany
| | - Goddert von Oheimb
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
- Institute of General Ecology and Environmental Protection Technische Universität Dresden Tharandt Germany
| | - Thomas Scholten
- Soil Science and Geomorphology Department of Geosciences University of Tübingen Tübingen Germany
| | - Steffen Seitz
- Soil Science and Geomorphology Department of Geosciences University of Tübingen Tübingen Germany
| | - Michael Staab
- Nature Conservation and Landscape Ecology Faculty of Environment and Natural Resources University of Freiburg Freiburg Germany
| |
Collapse
|
14
|
Araújo WSD, Moreira LT, Falcão LAD, Borges MAZ, Fagundes M, Faria MLD, Guimarães Guilherme FA. Superhost Plants Alter the Structure of Plant-Galling Insect Networks in Neotropical Savannas. PLANTS 2019; 8:plants8100369. [PMID: 31554312 PMCID: PMC6843997 DOI: 10.3390/plants8100369] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/13/2019] [Accepted: 09/19/2019] [Indexed: 11/23/2022]
Abstract
Host plants may harbor a variable number of galling insect species, with some species being able to harbor a high diversity of these insects, being therefore called superhost plants. In the present study, we tested the hypothesis that the occurrence of superhost plant species of genus Qualea (Vochysiaceae) affects the structure of plant–galling insect ecological networks in Brazilian Cerrado. We sampled a total of 1882 plants grouped in 131 species and 43 families, of which 64 species and 31 families of host plants hosted 112 galling insect species. Our results showed that occurrence of superhosts of genus Qualea increased the linkage density of plant species, number of observed interactions, and the size of plant–galling insect networks and negatively affected the network connectance (but had no effect on the residual connectance). Although the occurrence of Qualea species did not affect the plant species richness, these superhosts increased the species richness and the number of interactions of galling insects. Our study represents a step forward in relation to previous studies that investigated the effects of plant diversity on the plant–insect networks, showing that few superhost plant species alter the structure of plant–herbivore networks, even without having a significant effect on plant diversity.
Collapse
Affiliation(s)
- Walter Santos de Araújo
- Departamento de Biologia Geral, Universidade Estadual de Montes Claros, Montes Claros 39401-089, Minas Gerais, Brazil.
| | - Leuzeny Teixeira Moreira
- Programa de Pós-Graduação em Biodiversidade e Uso dos Recursos Naturais, Universidade Estadual de Montes Claros, Montes Claros 39401-089, Minas Gerais, Brazil.
| | - Luiz Alberto Dolabela Falcão
- Departamento de Biologia Geral, Universidade Estadual de Montes Claros, Montes Claros 39401-089, Minas Gerais, Brazil.
| | - Magno Augusto Zazá Borges
- Departamento de Biologia Geral, Universidade Estadual de Montes Claros, Montes Claros 39401-089, Minas Gerais, Brazil.
| | - Marcílio Fagundes
- Departamento de Biologia Geral, Universidade Estadual de Montes Claros, Montes Claros 39401-089, Minas Gerais, Brazil.
| | - Maurício Lopes de Faria
- Departamento de Biologia Geral, Universidade Estadual de Montes Claros, Montes Claros 39401-089, Minas Gerais, Brazil.
| | | |
Collapse
|
15
|
Nelson AS, Symanski CT, Hecking MJ, Mooney KA. Elevational cline in herbivore abundance driven by a monotonic increase in trophic-level sensitivity to aridity. J Anim Ecol 2019; 88:1406-1416. [PMID: 31135959 DOI: 10.1111/1365-2656.13034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/01/2019] [Indexed: 11/30/2022]
Abstract
The abiotic environment drives species abundances and distributions both directly and indirectly through effects on multi-trophic species interactions. However, few studies have documented the individual and combined consequences of these direct and indirect effects. We studied an ant-tended aphid along an elevational gradient, where lower elevations were more arid. Hypotheses of stronger species interactions at lower elevations and a greater sensitivity of higher trophic levels to climate led us to predict increased top-down control of aphids by natural enemies (third trophic level) but even stronger protection from mutualist ants (fourth trophic level) with increasing aridity. As a result, we predicted that mutualism strength and aphid abundance would increase with aridity. We documented patterns of aphid abundance and tested for both the direct and multi-trophic indirect effects of aridity on aphid performance. To do so, we used both observational and manipulative methods across two years in replicate high- and low-elevation valleys, where summer temperatures decreased by 3.7°C and precipitation increased by 27 mm/mo from low to high elevations. Aphid colonies were 75% larger in the most (vs. least) arid sites, and this was best explained by changes in interactions with predators and ants. Aphids were unaffected by the direct effects of the abiotic environment or its indirect effects via host plant quality. In contrast, natural enemy effects increased with aridity; under ant exclusion, natural enemies had no effect on aphids in the least arid sites but depressed colony growth by 252% in the most arid sites. Ant activity also increased with aridity, with ants discovering more aphid colonies and experimental baits and allocating more foragers per aphid, although there was no effect of aridity on ant abundance or community composition. Correspondingly, the mutualist services provided by ants increased with aridity; ants provided no benefits to aphids in the least arid sites but doubled colony growth in the most arid sites. In summary, an elevational cline in herbivore abundance was driven by a monotonic increase in trophic-level sensitivity to aridity. These findings illustrate that predicting species responses to climate change will require a multi-trophic perspective.
Collapse
Affiliation(s)
- Annika S Nelson
- Department of Ecology and Evolutionary Biology, University of California at Irvine, Riverside, California.,Rocky Mountain Biological Laboratory, Crested Butte, Colorado
| | - Cole T Symanski
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado.,Department of Entomology, University of California at Riverside, Riverside, California
| | - Matthew J Hecking
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado.,School of Natural Sciences, Hampshire College, Amherst, Massachusetts
| | - Kailen A Mooney
- Department of Ecology and Evolutionary Biology, University of California at Irvine, Riverside, California.,Rocky Mountain Biological Laboratory, Crested Butte, Colorado
| |
Collapse
|
16
|
Nell CS, Abdala-Roberts L, Parra-Tabla V, Mooney KA. Tropical tree diversity mediates foraging and predatory effects of insectivorous birds. Proc Biol Sci 2018; 285:rspb.2018.1842. [PMID: 30404881 DOI: 10.1098/rspb.2018.1842] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/17/2018] [Indexed: 11/12/2022] Open
Abstract
Biodiversity affects the structure of ecological communities, but little is known about the interactive effects of diversity across multiple trophic levels. We used a large-scale forest diversity experiment to investigate the effects of tropical tree species richness on insectivorous birds, and the subsequent indirect effect on predation rates by birds. Diverse plots (four tree species) had higher bird abundance (61%), phylogenetic diversity (61%), and functional diversity (55%) than predicted based on single-species monocultures, which corresponded to higher attack rates on artificial caterpillars (65%). Tree diversity effects on attack rate were driven by complementarity among tree species, with increases in attack rate observed on all tree species in polycultures. Attack rates on artificial caterpillars were higher in plots with higher bird abundance and diversity, but the indirect effect of tree species richness was mediated by bird diversity, providing evidence that diversity can interact across trophic levels with consequences tied to ecosystem services and function.
Collapse
Affiliation(s)
- Colleen S Nell
- Department of Ecology and Evolutionary Biology, University of California, 92697 Irvine, CA, USA
| | - Luis Abdala-Roberts
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, 97000 Mérida, Yucatan, Mexico
| | - Victor Parra-Tabla
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, 97000 Mérida, Yucatan, Mexico
| | - Kailen A Mooney
- Department of Ecology and Evolutionary Biology, University of California, 92697 Irvine, CA, USA
| |
Collapse
|
17
|
Nelson AS, Pratt RT, Pratt JD, Smith RA, Symanski CT, Prenot C, Mooney KA. Progressive sensitivity of trophic levels to warming underlies an elevational gradient in ant–aphid mutualism strength. OIKOS 2018. [DOI: 10.1111/oik.05650] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Annika S. Nelson
- Rocky Mountain Biological Laboratory, PO Box 319 Crested Butte CO 81224 USA
- Dept of Ecology and Evolutionary Biology, Univ. of California at Irvine, 321 Steinhaus Hall Irvine CA 92697 USA
| | - Riley T. Pratt
- Rocky Mountain Biological Laboratory, PO Box 319 Crested Butte CO 81224 USA
- California State Parks San Clemente CA USA
| | - Jessica D. Pratt
- Rocky Mountain Biological Laboratory, PO Box 319 Crested Butte CO 81224 USA
- Dept of Ecology and Evolutionary Biology, Univ. of California at Irvine, 321 Steinhaus Hall Irvine CA 92697 USA
| | - Richard Alexander Smith
- Rocky Mountain Biological Laboratory, PO Box 319 Crested Butte CO 81224 USA
- Dept of Computational Medicine and Bioinformatics, Univ. of Michigan Ann Arbor MI USA
| | - Cole T. Symanski
- Rocky Mountain Biological Laboratory, PO Box 319 Crested Butte CO 81224 USA
- Dept of Entomology, Univ. of California at Riverside Riverside CA USA
| | - Cathrine Prenot
- Rocky Mountain Biological Laboratory, PO Box 319 Crested Butte CO 81224 USA
- Estacado High School Lubbock TX USA
| | - Kailen A. Mooney
- Rocky Mountain Biological Laboratory, PO Box 319 Crested Butte CO 81224 USA
- Dept of Ecology and Evolutionary Biology, Univ. of California at Irvine, 321 Steinhaus Hall Irvine CA 92697 USA
| |
Collapse
|
18
|
Landscape-level bird loss increases the prevalence of honeydew-producing insects and non-native ants. Oecologia 2018; 188:1263-1272. [PMID: 30367244 PMCID: PMC6244808 DOI: 10.1007/s00442-018-4273-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 10/15/2018] [Indexed: 11/30/2022]
Abstract
Bird exclusion experiments consistently show that birds exhibit strong top-down control of arthropods, including ants and the honeydew-producing insects (HPIs) that they tend. However, it remains unclear whether the results of these small-scale bird exclosure experiments can be extrapolated to larger spatial scales. In this study, we use a natural bird removal experiment to compare the prevalence of ants and HPIs between Guam, an island whose bird community has been extirpated since the 1980s due to the introduction of the brown tree snake, and two nearby islands (Rota and Saipan) that have more intact bird assemblages. Consistent with smaller-scale bird exclosure experiments, we show that (1) forest trees from Guam are significantly more likely to host HPIs than trees from Saipan and (2) ants are nearly four times as abundant on Guam than on both Saipan and Rota. The prevalence of HPIs varied slightly based on tree species identity, although these effects were not as strong as island-level effects associated with bird loss. Ant community composition differed between Guam and the other two islands. These results corroborate past observational studies showing increased spider densities on Guam and suggest that trophic changes associated with landscape-level bird extirpation may also involve alterations in the abundance of ants and HPIs. This study also provides a clear example of the strong indirect effects that invasive species can have on natural food webs.
Collapse
|
19
|
Grafe TU, Ahmad Sah HH, Ahmad N, Borkent A, Meuche I, Konopik O. Studying the sensory ecology of frog‐biting midges (Corethrellidae: Diptera) and their frog hosts using ecological interaction networks. J Zool (1987) 2018. [DOI: 10.1111/jzo.12612] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- T. U. Grafe
- Department of Animal Ecology and Tropical Biology University of Würzburg Würzburg Germany
- Faculty of Science and Institute for Biodiversity and Environmental Research Universiti Brunei Darussalam Gadong Brunei Darussalam
| | - H. H. Ahmad Sah
- Faculty of Science and Institute for Biodiversity and Environmental Research Universiti Brunei Darussalam Gadong Brunei Darussalam
| | - N. Ahmad
- Faculty of Science and Institute for Biodiversity and Environmental Research Universiti Brunei Darussalam Gadong Brunei Darussalam
| | - A. Borkent
- Research Associate of the Royal British Columbia Museum Salmon Arm British Columbia Canada
| | - I. Meuche
- Faculty of Science and Institute for Biodiversity and Environmental Research Universiti Brunei Darussalam Gadong Brunei Darussalam
| | - O. Konopik
- Department of Animal Ecology and Tropical Biology University of Würzburg Würzburg Germany
| |
Collapse
|
20
|
Cao HX, Klein AM, Zhu C, Staab M, Durka W, Fischer M, Fornoff F. Intra- and interspecific tree diversity promotes multitrophic plant–Hemiptera–ant interactions in a forest diversity experiment. Basic Appl Ecol 2018. [DOI: 10.1016/j.baae.2018.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Schuldt A, Fornoff F, Bruelheide H, Klein AM, Staab M. Tree species richness attenuates the positive relationship between mutualistic ant-hemipteran interactions and leaf chewer herbivory. Proc Biol Sci 2018; 284:rspb.2017.1489. [PMID: 28878067 DOI: 10.1098/rspb.2017.1489] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 07/28/2017] [Indexed: 12/27/2022] Open
Abstract
Interactions across trophic levels influence plant diversity effects on ecosystem functions, but the complexity of these interactions remains poorly explored. For example, the interplay between different interactions (e.g. mutualism, predation) might be an important moderator of biodiversity-ecosystem function relationships. We tested for relationships between trophobioses (facultative ant-hemipteran mutualism) and leaf chewer herbivory in a subtropical forest biodiversity experiment. We analysed trophobiosis and herbivory data of more than 10 000 trees along a tree species richness gradient. Against expectations, chewing damage was higher on trees with trophobioses. However, the net positive relationship between trophobioses and overall herbivory depended on tree species richness, being most pronounced at low richness. Our results point to indirect, positive effects of ant-tended sap suckers on leaf chewers, potentially by altering plant defences. Direct antagonistic relationships of trophobiotic ants and leaf-chewing herbivores-frequently reported to drive community-wide effects of trophobioses in other ecosystems-seemed less relevant. However, antagonistic interactions likely contributed to the attenuating effect of tree species richness, because trophobiotic ant and herbivore communities changed from monocultures to species-rich mixtures. Our findings, therefore, suggest that biodiversity loss might lead to complex changes in higher trophic level effects on ecosystem functions, mediated by both trophic and non-trophic interactions.
Collapse
Affiliation(s)
- Andreas Schuldt
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany .,Institute of Biology/Geobotany and Botanical Garden, Martin-Luther-University Halle-Wittenberg, Am Kirchtor 1, 06108 Halle, Germany
| | - Felix Fornoff
- University of Freiburg, Faculty of Environment and Natural Resources, Nature Conservation and Landscape Ecology, Tennenbacherstr. 4, 79106 Freiburg, Germany
| | - Helge Bruelheide
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany.,Institute of Biology/Geobotany and Botanical Garden, Martin-Luther-University Halle-Wittenberg, Am Kirchtor 1, 06108 Halle, Germany
| | - Alexandra-Maria Klein
- University of Freiburg, Faculty of Environment and Natural Resources, Nature Conservation and Landscape Ecology, Tennenbacherstr. 4, 79106 Freiburg, Germany
| | - Michael Staab
- University of Freiburg, Faculty of Environment and Natural Resources, Nature Conservation and Landscape Ecology, Tennenbacherstr. 4, 79106 Freiburg, Germany
| |
Collapse
|
22
|
Plant diversity effects on arthropods and arthropod-dependent ecosystem functions in a biodiversity experiment. Basic Appl Ecol 2018. [DOI: 10.1016/j.baae.2017.09.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Staab M, Bruelheide H, Durka W, Michalski S, Purschke O, Zhu CD, Klein AM. Tree phylogenetic diversity promotes host-parasitoid interactions. Proc Biol Sci 2017; 283:rspb.2016.0275. [PMID: 27383815 DOI: 10.1098/rspb.2016.0275] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 06/09/2016] [Indexed: 11/12/2022] Open
Abstract
Evidence from grassland experiments suggests that a plant community's phylogenetic diversity (PD) is a strong predictor of ecosystem processes, even stronger than species richness per se This has, however, never been extended to species-rich forests and host-parasitoid interactions. We used cavity-nesting Hymenoptera and their parasitoids collected in a subtropical forest as a model system to test whether hosts, parasitoids, and their interactions are influenced by tree PD and a comprehensive set of environmental variables, including tree species richness. Parasitism rate and parasitoid abundance were positively correlated with tree PD. All variables describing parasitoids decreased with elevation, and were, except parasitism rate, dependent on host abundance. Quantitative descriptors of host-parasitoid networks were independent of the environment. Our study indicates that host-parasitoid interactions in species-rich forests are related to the PD of the tree community, which influences parasitism rates through parasitoid abundance. We show that effects of tree community PD are much stronger than effects of tree species richness, can cascade to high trophic levels, and promote trophic interactions. As during habitat modification phylogenetic information is usually lost non-randomly, even species-rich habitats may not be able to continuously provide the ecosystem process parasitism if the evolutionarily most distinct plant lineages vanish.
Collapse
Affiliation(s)
- Michael Staab
- Chair of Nature Conservation and Landscape Ecology, Faculty of Environment and Natural Resources, University of Freiburg, Tennenbacher Strasse 4, 79106 Freiburg, Germany
| | - Helge Bruelheide
- Geobotany and Botanical Garden, Institute of Biology, Martin Luther University of Halle-Wittenberg, 06108 Halle (Saale), Germany German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Walter Durka
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany Department of Community Ecology (BZF), Helmholtz Centre for Environmental Research UFZ, Theodor-Lieser-Strasse 4, 06120 Halle (Saale), Germany
| | - Stefan Michalski
- Department of Community Ecology (BZF), Helmholtz Centre for Environmental Research UFZ, Theodor-Lieser-Strasse 4, 06120 Halle (Saale), Germany
| | - Oliver Purschke
- Geobotany and Botanical Garden, Institute of Biology, Martin Luther University of Halle-Wittenberg, 06108 Halle (Saale), Germany German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany Department of Computer Science, Martin Luther University of Halle-Wittenberg, Von-Seckendorff-Platz 1, 06120 Halle (Saale), Germany
| | - Chao-Dong Zhu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Alexandra-Maria Klein
- Chair of Nature Conservation and Landscape Ecology, Faculty of Environment and Natural Resources, University of Freiburg, Tennenbacher Strasse 4, 79106 Freiburg, Germany
| |
Collapse
|
24
|
Trogisch S, Schuldt A, Bauhus J, Blum JA, Both S, Buscot F, Castro-Izaguirre N, Chesters D, Durka W, Eichenberg D, Erfmeier A, Fischer M, Geißler C, Germany MS, Goebes P, Gutknecht J, Hahn CZ, Haider S, Härdtle W, He JS, Hector A, Hönig L, Huang Y, Klein AM, Kühn P, Kunz M, Leppert KN, Li Y, Liu X, Niklaus PA, Pei Z, Pietsch KA, Prinz R, Proß T, Scherer-Lorenzen M, Schmidt K, Scholten T, Seitz S, Song Z, Staab M, von Oheimb G, Weißbecker C, Welk E, Wirth C, Wubet T, Yang B, Yang X, Zhu CD, Schmid B, Ma K, Bruelheide H. Toward a methodical framework for comprehensively assessing forest multifunctionality. Ecol Evol 2017; 7:10652-10674. [PMID: 29299246 PMCID: PMC5743643 DOI: 10.1002/ece3.3488] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/27/2017] [Accepted: 09/02/2017] [Indexed: 01/30/2023] Open
Abstract
Biodiversity-ecosystem functioning (BEF) research has extended its scope from communities that are short-lived or reshape their structure annually to structurally complex forest ecosystems. The establishment of tree diversity experiments poses specific methodological challenges for assessing the multiple functions provided by forest ecosystems. In particular, methodological inconsistencies and nonstandardized protocols impede the analysis of multifunctionality within, and comparability across the increasing number of tree diversity experiments. By providing an overview on key methods currently applied in one of the largest forest biodiversity experiments, we show how methods differing in scale and simplicity can be combined to retrieve consistent data allowing novel insights into forest ecosystem functioning. Furthermore, we discuss and develop recommendations for the integration and transferability of diverse methodical approaches to present and future forest biodiversity experiments. We identified four principles that should guide basic decisions concerning method selection for tree diversity experiments and forest BEF research: (1) method selection should be directed toward maximizing data density to increase the number of measured variables in each plot. (2) Methods should cover all relevant scales of the experiment to consider scale dependencies of biodiversity effects. (3) The same variable should be evaluated with the same method across space and time for adequate larger-scale and longer-time data analysis and to reduce errors due to changing measurement protocols. (4) Standardized, practical and rapid methods for assessing biodiversity and ecosystem functions should be promoted to increase comparability among forest BEF experiments. We demonstrate that currently available methods provide us with a sophisticated toolbox to improve a synergistic understanding of forest multifunctionality. However, these methods require further adjustment to the specific requirements of structurally complex and long-lived forest ecosystems. By applying methods connecting relevant scales, trophic levels, and above- and belowground ecosystem compartments, knowledge gain from large tree diversity experiments can be optimized.
Collapse
Affiliation(s)
- Stefan Trogisch
- Institute of Biology/Geobotany and Botanical Garden Martin Luther University Halle-Wittenberg Halle (Saale) Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig Leipzig Germany
| | - Andreas Schuldt
- Institute of Biology/Geobotany and Botanical Garden Martin Luther University Halle-Wittenberg Halle (Saale) Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig Leipzig Germany
| | - Jürgen Bauhus
- Chair of Silviculture Faculty of Environment and Natural Resources University of Freiburg Freiburg Germany
| | - Juliet A Blum
- Institute of Plant Sciences University of Bern Bern Switzerland
| | - Sabine Both
- Institute of Biological and Environmental Sciences University of Aberdeen Aberdeen UK
| | - François Buscot
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig Leipzig Germany.,Department of Soil Ecology Helmholtz Centre for Environmental Research - UFZ Halle (Saale) Germany
| | - Nadia Castro-Izaguirre
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
| | | | - Walter Durka
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig Leipzig Germany.,Department of Community Ecology Helmholtz Centre for Environmental Research - UFZ Halle (Saale) Germany
| | - David Eichenberg
- Institute of Biology/Geobotany and Botanical Garden Martin Luther University Halle-Wittenberg Halle (Saale) Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig Leipzig Germany.,Institute of Biology University of Leipzig Leipzig Germany
| | - Alexandra Erfmeier
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig Leipzig Germany.,Institute for Ecosystem Research/Geobotany Kiel University Kiel Germany
| | - Markus Fischer
- Institute of Plant Sciences University of Bern Bern Switzerland
| | - Christian Geißler
- Institute of Geography, Soil Science and Geomorphology University of Tübingen Tübingen Germany
| | - Markus S Germany
- Institute of Biology/Geobotany and Botanical Garden Martin Luther University Halle-Wittenberg Halle (Saale) Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig Leipzig Germany.,Institute for Ecosystem Research/Geobotany Kiel University Kiel Germany
| | - Philipp Goebes
- Institute of Geography, Soil Science and Geomorphology University of Tübingen Tübingen Germany
| | - Jessica Gutknecht
- Department of Soil Ecology Helmholtz Centre for Environmental Research - UFZ Halle (Saale) Germany.,Department of Soil, Water, and Climate University of Minnesota, Twin Cities Saint Paul MN USA
| | - Christoph Zacharias Hahn
- Department of Community Ecology Helmholtz Centre for Environmental Research - UFZ Halle (Saale) Germany
| | - Sylvia Haider
- Institute of Biology/Geobotany and Botanical Garden Martin Luther University Halle-Wittenberg Halle (Saale) Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig Leipzig Germany
| | - Werner Härdtle
- Institute of Ecology Leuphana University of Lüneburg Lüneburg Germany
| | - Jin-Sheng He
- Department of Ecology College of Urban and Environmental Sciences Key Laboratory for Earth Surface Processes of the Ministry of Education Peking University Beijing China
| | - Andy Hector
- Department of Plant Sciences University of Oxford Oxford UK
| | - Lydia Hönig
- Institute of Biology/Geobotany and Botanical Garden Martin Luther University Halle-Wittenberg Halle (Saale) Germany
| | - Yuanyuan Huang
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
| | - Alexandra-Maria Klein
- Nature Conservation and Landscape Ecology Faculty of Environment and Natural Resources University of Freiburg Freiburg Germany
| | - Peter Kühn
- Institute of Geography, Soil Science and Geomorphology University of Tübingen Tübingen Germany
| | - Matthias Kunz
- Institute of General Ecology and Environmental Protection Technische Universität Dresden Tharandt Germany
| | - Katrin N Leppert
- Faculty of Biology University of Freiburg Geobotany, Freiburg Germany
| | - Ying Li
- Faculty of Soil and Water Conservation Beijing Forestry University Haidian District Beijing China
| | - Xiaojuan Liu
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing China
| | - Pascal A Niklaus
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
| | - Zhiqin Pei
- Department of Soil Ecology Helmholtz Centre for Environmental Research - UFZ Halle (Saale) Germany
| | | | - Ricarda Prinz
- Institute of Biology/Geobotany and Botanical Garden Martin Luther University Halle-Wittenberg Halle (Saale) Germany.,Senckenberg Biodiversity and Climate Research Centre (BIK-F) Frankfurt am Main Germany
| | - Tobias Proß
- Institute of Biology/Geobotany and Botanical Garden Martin Luther University Halle-Wittenberg Halle (Saale) Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig Leipzig Germany
| | | | - Karsten Schmidt
- Institute of Geography, Soil Science and Geomorphology University of Tübingen Tübingen Germany
| | - Thomas Scholten
- Institute of Geography, Soil Science and Geomorphology University of Tübingen Tübingen Germany
| | - Steffen Seitz
- Institute of Geography, Soil Science and Geomorphology University of Tübingen Tübingen Germany
| | - Zhengshan Song
- Institute of Geography, Soil Science and Geomorphology University of Tübingen Tübingen Germany
| | - Michael Staab
- Nature Conservation and Landscape Ecology Faculty of Environment and Natural Resources University of Freiburg Freiburg Germany
| | - Goddert von Oheimb
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig Leipzig Germany.,Institute of General Ecology and Environmental Protection Technische Universität Dresden Tharandt Germany
| | - Christina Weißbecker
- Department of Soil Ecology Helmholtz Centre for Environmental Research - UFZ Halle (Saale) Germany
| | - Erik Welk
- Institute of Biology/Geobotany and Botanical Garden Martin Luther University Halle-Wittenberg Halle (Saale) Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig Leipzig Germany
| | - Christian Wirth
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig Leipzig Germany.,Institute of Biology University of Leipzig Leipzig Germany
| | - Tesfaye Wubet
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig Leipzig Germany.,Department of Soil Ecology Helmholtz Centre for Environmental Research - UFZ Halle (Saale) Germany
| | - Bo Yang
- Institute of Biology/Geobotany and Botanical Garden Martin Luther University Halle-Wittenberg Halle (Saale) Germany.,Key Laboratory of Speciality Plant Resources of Jiangxi Province Jingdezhen University Jingdezhen China
| | - Xuefei Yang
- Kunming Institute of Botany Chinese Academy of Sciences Kunming China
| | - Chao-Dong Zhu
- Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Bernhard Schmid
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
| | - Keping Ma
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing China
| | - Helge Bruelheide
- Institute of Biology/Geobotany and Botanical Garden Martin Luther University Halle-Wittenberg Halle (Saale) Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig Leipzig Germany
| |
Collapse
|
25
|
Staab M, Fornoff F, Klein AM, Blüthgen N. Ants at Plant Wounds: A Little-Known Trophic Interaction with Evolutionary Implications for Ant-Plant Interactions. Am Nat 2017; 190:442-450. [PMID: 28829637 DOI: 10.1086/692735] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Extrafloral nectaries (EFNs) allow plants to engage in mutualisms with ants, preventing herbivory in exchange for food. EFNs occur scattered throughout the plant phylogeny and likely evolved independent from herbivore-created wounds subsequently visited by ants collecting leaked sap. Records of wound-feeding ants are, however, anecdotal. By surveying 38,000 trees from 40 species, we conducted the first quantitative ecological study of this overlooked behavior. Ant-wound interactions were widespread (0.5% of tree individuals) and occurred on 23 tree species. Interaction networks were opportunistic, closely resembling ant-EFN networks. Fagaceae, a family lacking EFNs, was strongly overrepresented. For Fagaceae, ant occurrence at wounds correlated with species-level leaf damage, potentially indicating that wounds may attract mutualistic ants, which supports the hypothesis of ant-tended wounds as precursors of ant-EFN mutualisms. Given that herbivore wounds are common, wound sap as a steadily available food source might further help to explain the overwhelming abundance of ants in (sub)tropical forest canopies.
Collapse
|
26
|
Leles B, Xiao X, Pasion BO, Nakamura A, Tomlinson KW. Does plant diversity increase top-down control of herbivorous insects in tropical forest? OIKOS 2017. [DOI: 10.1111/oik.03562] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bruno Leles
- Program for Field Studies in Tropical Asia, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla; Yunnan PR China
| | - Xue Xiao
- Program for Field Studies in Tropical Asia, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla; Yunnan PR China
| | - Bonifacio O. Pasion
- Program for Field Studies in Tropical Asia, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla; Yunnan PR China
- Dept of Biology; Univ. of Naples FredericoII; IT-80126 Naples Italy
- Univ. of Chinese Academy of Sciences; Beijing PR China
| | - Akihiro Nakamura
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla; Yunnan PR China
| | - Kyle W. Tomlinson
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla; Yunnan PR China
| |
Collapse
|
27
|
Yeeles P, Lach L, Hobbs RJ, van Wees M, Didham RK. Woody plant richness does not influence invertebrate community reassembly trajectories in a tree diversity experiment. Ecology 2017; 98:500-511. [PMID: 27864933 DOI: 10.1002/ecy.1662] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 10/21/2016] [Accepted: 11/07/2016] [Indexed: 11/07/2022]
Abstract
Understanding the relationship between plant diversity and diversity at higher trophic levels is important from both conservation and restoration perspectives. Although there is strong evidence for bottom-up maintenance of biodiversity, this is based largely on studies of simplified grassland systems. Recently, studies in the TreeDivNet global network of tree diversity experiments have begun to test whether these findings are generalizable to more complex ecosystems, such as woodlands. We monitored invertebrate community reassembly over 5 yr of experimental woodland restoration at the TreeDivNet Ridgefield site in southwest Australia, testing the effects of woody plant species richness and herb-layer manipulation on invertebrate community structure and ant species composition. From 2010 to 2014, we sampled ground-dwelling invertebrates using pitfall traps in herbicide vs. no-herbicide subplots nested within each of 10 woody plant treatments varying in richness from zero (bare controls) to eight species, which produced a total of 211, 235 invertebrates, including 98, 979 ants belonging to 74 species. In mixed model analyses, the presence of woody plants was an important driver of faunal community reassembly (relative to bare control plots), but faunal responses to woody plant treatment combinations were idiosyncratic and unrelated to woody plant richness across treatments. We also found that a herbicide-induced reduction in herbaceous plant cover and richness had a positive effect on ant richness and caused more rapid convergence of invertebrate community composition toward the composition of a woodland reference site. These findings show that woody plant richness did not have direct positive effects on the diversity and community reassembly trajectories of higher trophic levels in our woodland system. From a management perspective, this suggests that even low-diversity restoration or carbon sequestration plantings can potentially lead to faunal reassembly outcomes that are comparable to more complex re-planting designs.
Collapse
Affiliation(s)
- Peter Yeeles
- School of Animal Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| | - Lori Lach
- School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia.,Centre for Tropical Environmental and Sustainability Science, James Cook University, Cairns, Queensland, 4870, Australia
| | - Richard J Hobbs
- School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| | - Mary van Wees
- School of Animal Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| | - Raphael K Didham
- School of Animal Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia.,Centre for Environment and Life Sciences, CSIRO Land & Water, Underwood Avenue, Floreat, Western Australia, 6014, Australia
| |
Collapse
|
28
|
Wein A, Bauhus J, Bilodeau-Gauthier S, Scherer-Lorenzen M, Nock C, Staab M. Tree Species Richness Promotes Invertebrate Herbivory on Congeneric Native and Exotic Tree Saplings in a Young Diversity Experiment. PLoS One 2016; 11:e0168751. [PMID: 27992554 PMCID: PMC5161486 DOI: 10.1371/journal.pone.0168751] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 12/06/2016] [Indexed: 12/02/2022] Open
Abstract
Tree diversity in forests is an important driver of ecological processes including herbivory. Empirical evidence suggests both negative and positive effects of tree diversity on herbivory, which can be, respectively, attributed to associational resistance or associational susceptibility. Tree diversity experiments allow testing for associational effects, but evidence regarding which pattern predominates is mixed. Furthermore, it is unknown if herbivory on tree species of native vs. exotic origin is influenced by changing tree diversity in a similar way, or if exotic tree species escape natural enemies, resulting in lower damage that is unrelated to tree diversity. To address these questions, we established a young tree diversity experiment in temperate southwestern Germany that uses high planting density (49 trees per plot; plot size 13 m2). The species pool consists of six congeneric species pairs of European and North American origin (12 species in total) planted in monocultures and mixtures (1, 2, 4, 6 species). We assessed leaf damage by leaf-chewing insects on more than 5,000 saplings of six broadleaved tree species. Plot-level tree species richness increased leaf damage, which more than doubled from monocultures to six-species mixtures, strongly supporting associational susceptibility. However, leaf damage among congeneric native and exotic species pairs was similar. There were marked differences in patterns of leaf damage across tree genera, and only the genera likely having a predominately generalist herbivore community showed associational susceptibility, irrespective of the geographical origin of a tree species. In conclusion, an increase in tree species richness in young temperate forests may result in associational susceptibility to feeding by generalist herbivores.
Collapse
Affiliation(s)
- Annika Wein
- Department of Nature Conservation and Landscape Ecology, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, Germany
| | - Jürgen Bauhus
- Department of Silviculture, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, Germany
| | - Simon Bilodeau-Gauthier
- Centre for Forest Research, Université du Québec à Montréal, Centre-ville Station, QC H3C 3P8 Montréal, Canada
| | | | - Charles Nock
- Department of Silviculture, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, Germany
- Department of Geobotany, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Michael Staab
- Department of Nature Conservation and Landscape Ecology, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, Germany
- * E-mail:
| |
Collapse
|
29
|
Abdala-Roberts L, Hernández-Cumplido J, Chel-Guerrero L, Betancur-Ancona D, Benrey B, Moreira X. Effects of plant intraspecific diversity across three trophic levels: Underlying mechanisms and plant traits. AMERICAN JOURNAL OF BOTANY 2016; 103:1810-1818. [PMID: 27756730 DOI: 10.3732/ajb.1600234] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 08/30/2016] [Indexed: 06/06/2023]
Abstract
PREMISE OF STUDY Although there is increasing recognition of the effects of plant intraspecific diversity on consumers, the mechanisms by which such effects cascade-up to higher trophic levels remain elusive. METHODS We evaluated the effects of plant (lima bean, Phaseolus lunatus) intraspecific diversity on a suite of insect herbivores (leaf-chewers, aphids, and seed-eating beetles) and their third trophic-level associates (parasitoids and aphid-tending ants). We established plots of three plants, classified as monocultures of one population source or polycultures with mixtures of three of the four population sources (N = 16 plots per level of diversity). Within each plot, plants were individually placed in pots and canopy contact was prevented, therefore eliminating diversity effects on consumers arising from changes in plant traits due to plant physical interactions. KEY RESULTS Plant diversity reduced damage by leaf-chewers as well as aphid abundance, and the latter effect in turn reduced ant abundance. In contrast, plant diversity increased the abundance of seed-eating beetles, but did not influence their associated parasitoids. There were no effects of diversity on seed traits potentially associated with seed predation, suggesting that differences in early season herbivory between monocultures and polycultures (a likely mechanism of diversity effects on plants since plant interactions were prevented) did not drive concomitant changes in plant traits. CONCLUSIONS This study emphasizes that effects of plant intraspecific diversity on consumers are contingent upon differences in associate responses within and among higher trophic levels and suggests possible mechanisms by which such effects propagate up this food web.
Collapse
Affiliation(s)
- Luis Abdala-Roberts
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán. Km. 15.5 Carretera Mérida-Xmatkuil. 97000. Mérida, Yucatán, México
| | | | - Luis Chel-Guerrero
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán. Periférico Norte, Km. 33.5, Colonia Chuburná de Hidalgo Inn. 97203. Mérida, Yucatán, México
| | - David Betancur-Ancona
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán. Periférico Norte, Km. 33.5, Colonia Chuburná de Hidalgo Inn. 97203. Mérida, Yucatán, México
| | - Betty Benrey
- Institute of Biology, Laboratory of Evolutionary Entomology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Xoaquín Moreira
- Misión Biológica de Galicia (MBG-CSIC), Apdo. 28 36080 Pontevedra, Galicia, Spain
| |
Collapse
|
30
|
Evans DM, Kitson JJN, Lunt DH, Straw NA, Pocock MJO. Merging
DNA
metabarcoding and ecological network analysis to understand and build resilient terrestrial ecosystems. Funct Ecol 2016. [DOI: 10.1111/1365-2435.12659] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Darren M. Evans
- School of Biology Newcastle University Newcastle upon Tyne NE1 7RU UK
- School of Biological, Biomedical and Environmental Sciences University of Hull Hull HU6 7RX UK
| | - James J. N. Kitson
- School of Biological, Biomedical and Environmental Sciences University of Hull Hull HU6 7RX UK
| | - David H. Lunt
- School of Biological, Biomedical and Environmental Sciences University of Hull Hull HU6 7RX UK
| | - Nigel A. Straw
- Forest Research Alice Holt Lodge Farnham, Surrey GU10 4LH UK
| | - Michael J. O. Pocock
- Centre for Ecology & Hydrology Crowmarsh Gifford Wallingford, Oxfordshire OX10 8BB UK
| |
Collapse
|
31
|
Structure of mutualistic ant–treehopper interactions in the Brazilian Atlantic Forest. JOURNAL OF TROPICAL ECOLOGY 2016. [DOI: 10.1017/s0266467416000183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Abstract:Ant–treehopper mutualisms are centred on the availability of honeydew, a sugary fluid offered by treehoppers to attract ants, which respond by defending their hosts against predators and parasitoids. However, due to differences in the treehopper social behaviour (i.e. the amount of food resource available) ants can monopolize treehopper aggregations in many ways. Here we evaluated the topological structure of quantitative ant–treehopper interaction networks in three Brazilian Atlantic Forest localities. Moreover, we specifically investigated the role of ant recruitment strategy and treehopper behaviour in the structure of these networks. For this, we sampled ant–treehopper interactions along representative transects (6 km per site) within each studied site and recorded the mean number of individuals of treehopper and ant species. We found that independent of variation in environmental factors among study sites, ant–treehopper networks were highly compartmentalized (Mean ± SD: Q = 0.34 ± 0.1) when compared with null models, and exhibit low connectance (C = 0.18 ± 0.01) and specialization (H2’ = 0.36 ± 0.08) values. In addition, we also observed that larger aggregations of treehoppers interacted with a higher number of ant species and ants that were locally dominant and showed massive recruitment interacted with a larger number of treehopper species. In summary, our results illustrate the importance of foraging strategies in shaping ecological interactions in tropical environments.
Collapse
|
32
|
Ivens ABF, von Beeren C, Blüthgen N, Kronauer DJC. Studying the Complex Communities of Ants and Their Symbionts Using Ecological Network Analysis. ANNUAL REVIEW OF ENTOMOLOGY 2016; 61:353-371. [PMID: 26982442 DOI: 10.1146/annurev-ento-010715-023719] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Ant colonies provide well-protected and resource-rich environments for a plethora of symbionts. Historically, most studies of ants and their symbionts have had a narrow taxonomic scope, often focusing on a single ant or symbiont species. Here we discuss the prospects of studying these assemblies in a community ecology context using the framework of ecological network analysis. We introduce three basic network metrics that we consider particularly relevant for improving our knowledge of ant-symbiont communities: interaction specificity, network modularity, and phylogenetic signal. We then discuss army ant symbionts as examples of large and primarily parasitic communities, and symbiotic sternorrhynchans as examples of generally smaller and primarily mutualistic communities in the context of these network analyses. We argue that this approach will provide new and complementary insights into the evolutionary and ecological dynamics between ants and their many associates, and will facilitate comparisons across different ant-symbiont assemblages as well as across different types of ecological networks.
Collapse
Affiliation(s)
- Aniek B F Ivens
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, New York 10065; , ,
| | - Christoph von Beeren
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, New York 10065; , ,
| | - Nico Blüthgen
- Department of Biology, Ecological Networks, Technical University Darmstadt, 64287 Darmstadt, Germany;
| | - Daniel J C Kronauer
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, New York 10065; , ,
| |
Collapse
|
33
|
Martinez JJI. Monopolization of resources by ground-nesting ants foraging on trees in Mediterranean forests. ACTA OECOLOGICA 2015. [DOI: 10.1016/j.actao.2015.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
34
|
Schuldt A, Staab M. Tree Species Richness Strengthens Relationships between Ants and the Functional Composition of Spider Assemblages in a Highly Diverse Forest. Biotropica 2015. [DOI: 10.1111/btp.12209] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Andreas Schuldt
- Leuphana University Lüneburg; Institute of Ecology; Scharnhorststr. 1 D-21335 Lüneburg Germany
| | - Michael Staab
- University of Freiburg; Institute of Earth and Environmental Sciences; Tennenbacherstr. 4 D-79106 Freiburg Germany
| |
Collapse
|