1
|
Yang Q, Li F, Ye Y, Zhang X. Antimicrobial, remineralization, and infiltration: advanced strategies for interrupting dental caries. MEDICAL REVIEW (2021) 2025; 5:87-116. [PMID: 40224367 PMCID: PMC11987509 DOI: 10.1515/mr-2024-0035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/02/2024] [Indexed: 04/15/2025]
Abstract
Dental caries, driven by plaque biofilm, poses a major oral health challenge due to imbalance in mineralization and demineralization. The primary objective in caries management is to maintain biofilm homeostasis while facilitating the repair and regeneration of dental hard tissues, thus restoring both structural integrity and functionality of affected teeth. Though antimicrobial and remineralization approaches haven shown promise, their standalone utilization without concurrent bacterial control or rebalancing lacks an integrated strategy to effectively arrest caries progression. Furthermore, according to the principles of minimally invasive dentistry, treatment materials should exhibit high permeability to ensure optimal sealing of demineralized tooth surfaces. The concept of interrupting dental caries (IDC) has emerged as a holistic approach, drawing upon extensive research encompassing three pivotal techniques: antibacterial strategies, remineralization therapies, and infiltration mechanisms, all of which are indispensable components in combating the progression of dental caries. In this review, we provide a comprehensive overview of the mechanisms and applications of antibacterial, remineralization, and infiltration technologies within the context of caries management. Additionally, we summarize advanced materials that align with the IDC concept, aiming to offer valuable insights for designing next-generation materials adept at preventing or halting caries progression efficiently.
Collapse
Affiliation(s)
- Qingyi Yang
- Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No.12 Qixiangtai Road, Heping District,Tianjin300070, PR China
- Tianjin Medical University Institute of Stomatology, No.12 Qixiangtai Road, Heping District, Tianjin300070, PR China
| | - Fan Li
- Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No.12 Qixiangtai Road, Heping District,Tianjin300070, PR China
- Tianjin Medical University Institute of Stomatology, No.12 Qixiangtai Road, Heping District, Tianjin300070, PR China
| | - Yangyang Ye
- Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No.12 Qixiangtai Road, Heping District,Tianjin300070, PR China
- Tianjin Medical University Institute of Stomatology, No.12 Qixiangtai Road, Heping District, Tianjin300070, PR China
| | - Xu Zhang
- Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No.12 Qixiangtai Road, Heping District,Tianjin300070, PR China
- Tianjin Medical University Institute of Stomatology, No.12 Qixiangtai Road, Heping District, Tianjin300070, PR China
| |
Collapse
|
2
|
Ma N, Yang W, Chen B, Bao M, Li Y, Wang M, Yang X, Liu J, Wang C, Qiu L. Exploration of the primary antibiofilm substance and mechanism employed by Lactobacillus salivarius ATCC 11741 to inhibit biofilm of Streptococcus mutans. Front Cell Infect Microbiol 2025; 15:1535539. [PMID: 40134782 PMCID: PMC11933110 DOI: 10.3389/fcimb.2025.1535539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/14/2025] [Indexed: 03/27/2025] Open
Abstract
Introduction Lactobacillus salivarius serves as a probiotic potentially capable of preventing dental caries both in vitro and in vivo. This study focused on understanding the key antibiofilm agents and the mechanisms of action of the Lactobacilli supernatant against Streptococcus mutans. Methods Streptococcus mutans biofilm was constructed and the cell-free supernatant of Lactobacillus salivarius was added. After the biofilm was collected, RNA-seq and qRT-PCR were then performed to get gene information. The influence of temperature, pH and other factors on the supernatant were measured and non-targeted metabolome analysis was performed to analyze the effective components. Results The findings indicated that the supernatant derived from Lactobacillus salivarius could inhibit the biofilm formation of Streptococcus mutans at different times. Through transcriptome analysis, we discovered that the cell-free supernatant reduced biofilm formation, by suppressing phosphoenolpyruvate-dependent phosphotransferase systems along with two ATP-binding cassette transporters, rather than directly affecting the genes that code for glucosyltransferases; additionally, the supernatant was observed to diminish the expression of genes linked to two-component systems, polyketides/non-ribosomal peptides, acid stress response, quorum sensing, and exopolysaccharide formation. Non-targeted LC-MS/MS analysis was employed to discover a variety of potential active compounds present in the cellular filtrate of Lactobacillus salivarius that hinder the growth of S. mutans, including phenyllactic acid, sorbitol, and honokiol. Discussion In summary, our findings support the evaluation of Lactobacillus salivarius as a promising oral probiotic aimed at hindering the formation of biofilms by cariogenic pathogens and the development of dental caries.
Collapse
Affiliation(s)
- Nan Ma
- Department of Periodontics, Affiliated Stomatology Hospital of Jinzhou Medical University, Jinzhou, China
- Collaborative Innovation Center for Health Promotion of Children and Adolescents of Jinzhou Medical University, Jinzhou, China
| | - Wei Yang
- Collaborative Innovation Center for Health Promotion of Children and Adolescents of Jinzhou Medical University, Jinzhou, China
- Department of Pedodontics, Affiliated Stomatology Hospital of Jinzhou Medical University, Jinzhou, China
| | - Bairu Chen
- Collaborative Innovation Center for Health Promotion of Children and Adolescents of Jinzhou Medical University, Jinzhou, China
- Department of Prosthetics, Affiliated Stomatology Hospital of Jinzhou Medical University, Jinzhou, China
| | - Meihua Bao
- Collaborative Innovation Center for Health Promotion of Children and Adolescents of Jinzhou Medical University, Jinzhou, China
- Department of Prosthetics, Affiliated Stomatology Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yimin Li
- Collaborative Innovation Center for Health Promotion of Children and Adolescents of Jinzhou Medical University, Jinzhou, China
- Department of Prosthetics, Affiliated Stomatology Hospital of Jinzhou Medical University, Jinzhou, China
| | - Meng Wang
- Collaborative Innovation Center for Health Promotion of Children and Adolescents of Jinzhou Medical University, Jinzhou, China
- Department of Prosthetics, Affiliated Stomatology Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xiaopeng Yang
- Collaborative Innovation Center for Health Promotion of Children and Adolescents of Jinzhou Medical University, Jinzhou, China
- Department of Pedodontics, Affiliated Stomatology Hospital of Jinzhou Medical University, Jinzhou, China
| | - Junyi Liu
- Jinzhou Medical University, Jinzhou, China
| | - Chengyue Wang
- Collaborative Innovation Center for Health Promotion of Children and Adolescents of Jinzhou Medical University, Jinzhou, China
- Department of Prosthetics, Affiliated Stomatology Hospital of Jinzhou Medical University, Jinzhou, China
| | - Lihong Qiu
- Department of Endodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| |
Collapse
|
3
|
Wang M, Wang Y, Chen G, Gao H, Peng Q. Chitosan-Based Multifunctional Biomaterials as Active Agents or Delivery Systems for Antibacterial Therapy. Bioengineering (Basel) 2024; 11:1278. [PMID: 39768096 PMCID: PMC11673874 DOI: 10.3390/bioengineering11121278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/07/2024] [Accepted: 12/12/2024] [Indexed: 01/04/2025] Open
Abstract
Antibiotic therapy has been a common method for treating bacterial infections over the past century, but with the rise in bacterial resistance caused by antibiotic abuse, better control and more rational use of antibiotics have been increasingly demanded. At the same time, a journey to explore alternatives to antibiotic therapies has also been undertaken. Chitosan and its derivatives, materials with good biocompatibility, biodegradability, and excellent antibacterial properties, have garnered significant attention, and more and more studies on chitosan and its derivatives have been conducted in recent years. In this work, we aim to elucidate the biological properties of chitosan and its derivatives and to track their clinical applications, as well as to propose issues that need to be addressed and possible solutions to further their future development and application.
Collapse
Affiliation(s)
| | | | | | | | - Qiang Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
4
|
Zhang A, Lei L, Cheng L, Yin H, Zhang C, Luo J, Wu F, Hu M, Cheng R, Hu T. Terahertz Imaging Detects Oral Cariogenic Microbial Domains Characteristics. J Dent Res 2024; 103:1428-1436. [PMID: 39569646 DOI: 10.1177/00220345241287733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024] Open
Abstract
Dental caries, associated with plaque biofilm, is highly prevalent and significantly burdens public health. Streptococcus mutans is the main cariogenic bacteria that adheres to the tooth surface and forms an abundant extracellular polysaccharide matrix (EPS) as a cariogenic biofilm scaffold. S. mutans RNase III-encoding gene (rnc) and a putative chromosome segregation protein-encoding gene (smc) are potentially associated with EPS production. In addition, complex interactions between S. mutans and other oral microorganisms synergistically or antagonistically affect the cariogenicity. Commensal streptococci suppress the growth of cariogenic pathogens, whereas Candida albicans mediates the formation of cariogenic biofilm through aggregation and dual-species biofilm formation with S. mutans. However, label-free detection of cariogenic microbial interactions with the EPS matrix is still challenging during laboratory investigations. Herein, we hypothesized that the S. mutans rnc-smc operon affects EPS production and aimed to observe streptococci, S. mutans, and S. mutans-C. albicans using terahertz scanning near-field optical microscopy (THz s-SNOM). The light in the 0.1- to 0.3-THz frequency range interacted with the sample through a nano-probe tip by a point-by-point scanning process. Additional noise reduction of the original image was achieved by a dual kernel Gaussian filter. The monospecies of streptococci, S. mutans smc/rnc mutants, and the dual-species of S. mutans-C. albicans were scanned by THz s-SNOM. This technique provided terahertz near-field scanning images of S. mutans smc/rnc mutants, streptococci, and dual-species of S. mutans-C. albicans. Additional analysis of the original images potentially revealed the structures of the strains, such as cell diameters and cell wall thickness. In conclusion, the results suggested that the S. mutans rnc-smc operon regulates EPS production. Furthermore, this novel label-free detection of a THz near-field scanning technique had the potential to observe the morphologies of bacterial cells and EPS matrix.
Collapse
Affiliation(s)
- A Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - L Lei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - L Cheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - H Yin
- Terahertz Research Center, School of Electronic Science and Engineering, Key Laboratory of Terahertz Technology of Ministry of Education, University of Electronic Science and Technology of China, Chengdu, China
| | - C Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - J Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - F Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - M Hu
- Terahertz Research Center, School of Electronic Science and Engineering, Key Laboratory of Terahertz Technology of Ministry of Education, University of Electronic Science and Technology of China, Chengdu, China
| | - R Cheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - T Hu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Haj-Yahya F, Steinberg D, Sionov RV. Trans, Trans-Farnesol Enhances the Anti-Bacterial and Anti-Biofilm Effect of Arachidonic Acid on the Cariogenic Bacteria Streptococcus mutans and Streptococcus sobrinus. Int J Mol Sci 2024; 25:11770. [PMID: 39519322 PMCID: PMC11546208 DOI: 10.3390/ijms252111770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 10/26/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Streptococcus mutans and Streptococcus sobrinus are Gram-positive bacteria involved in the development of dental caries, as they are able to form biofilms on tooth enamel, ferment sugars into acids, and survive under acidic conditions. This ultimately leads to a local lowering of the pH value on the tooth surface, which causes enamel cavities. HYPOTHESIS One measure to reduce caries is to limit the growth of cariogenic bacteria by using two anti-bacterial agents with different mechanisms of action. The hypothesis of this study was that the anti-bacterial activity of ω-6 polyunsaturated arachidonic acid (AA) against S. mutans and S. sobrinus can be enhanced by the sesquiterpene alcohol trans, trans-farnesol (t,t-farnesol). METHODS The anti-bacterial activity of single and combined treatment was determined by the checkerboard assay. Bacterial viability was assessed by live/dead SYTO 9/propidium iodide (PI) staining on flow cytometry. Anti-biofilm activity was determined by MTT metabolic assay, crystal violet staining of biofilm biomass, SYTO 9/PI staining by spinning disk confocal microscopy (SDCM) and high-resolution scanning electron microscopy (HR-SEM). RESULTS t,t-Farnesol lowered the minimum inhibitory concentration (MIC) and the minimum biofilm inhibitory concentration (MBIC) of AA at sub-MICs. AA reduced the metabolic activity of preformed mature biofilms, while t,t-farnesol had no significant effect. The enhanced anti-bacterial effect of the combined t,t-farnesol/AA treatment was further evidenced by increased PI uptake, indicating membrane perforation. The enhanced anti-biofilm effect was further verified by SDCM and HR-SEM. Gene expression studies showed reduced expression of some biofilm-related genes. CONCLUSIONS Altogether, our study suggests a potential use of the two naturally occurring compounds arachidonic acid and t,t-farnesol for preventing biofilm formation by the cariogenic bacteria S. mutans and S. sobrinus. These findings have implications for caries prevention.
Collapse
|
6
|
Zhao Y, Yang X, Wen B, Li Y, Yu H. The effect of attachment systems and denture cleaning methods on microbial biomass and composition in implant-supported overdentures: an experimental study. Int J Implant Dent 2024; 10:45. [PMID: 39419937 PMCID: PMC11486873 DOI: 10.1186/s40729-024-00564-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/12/2024] [Indexed: 10/19/2024] Open
Abstract
OBJECTIVE This research endeavors to scrutinize the influence of attachment systems and denture cleaning methodologies on microbial biomass and composition within the realm of implant-supported overdentures, a crucial consideration for patients with dentition defects necessitating such prosthetic solutions. SUBJECTS AND METHODS Employing five polymethyl methacrylate specimens designed to emulate the fitting surfaces of traditional dentures and implant-supported overdentures. Following the polishing of each specimen and the quantification of its roughness, co-cultivation with three distinct microbial strains ensued, culminating in ultrasonic cleaning in water. The bar-clip group, differentiated by the depth of attachment, underwent cleaning employing four diverse methods. Biomass quantities were meticulously recorded both pre and post cleaning interventions, with subsequent data analysis via t-testing and one-way ANOVA, maintaining a significance level of α = 0.05. RESULTS The bar-clip groups demonstrated an elevated degree of microbial adhesion, with the deeper locator group exhibiting heightened biomass residue post-cleaning, indicative of increased cleaning complexity. Ultrasonic cleaning predominantly targeted biofilm and deceased bacteria, whereas chemical cleaners primarily reduced the quantity of viable bacteria. The synergistic application of ultrasonics and chemical cleaning treatments yielded the minimal biomass residue. CONCLUSION In contemplating the utilization of dentures milled by dental computer-aided design/manufacturing systems, meticulous pre-use surface polishing is imperative. The extent of biofilm adhesion correlates with the chosen attachment system. This study advocates for the incorporation of ultrasonic cleaning in conjunction with chemical cleaning solutions to optimize the removal of biofilm and live cellular entities in the context of implant-supported overdentures.
Collapse
Affiliation(s)
- Yuwei Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section of Ren Min Nan Rd., Chengdu, Sichuan, 610041, People's Republic of China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Xin Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section of Ren Min Nan Rd., Chengdu, Sichuan, 610041, People's Republic of China
| | - Bixin Wen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section of Ren Min Nan Rd., Chengdu, Sichuan, 610041, People's Republic of China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section of Ren Min Nan Rd., Chengdu, Sichuan, 610041, People's Republic of China
| | - Haiyang Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section of Ren Min Nan Rd., Chengdu, Sichuan, 610041, People's Republic of China.
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
7
|
Lin Y, Ma Q, Yan J, Gong T, Huang J, Chen J, Li J, Qiu Y, Wang X, Lei Z, Zeng J, Wang L, Zhou X, Li Y. Inhibition of Streptococcus mutans growth and biofilm formation through protein acetylation. Mol Oral Microbiol 2024; 39:334-343. [PMID: 38224336 DOI: 10.1111/omi.12452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/25/2023] [Accepted: 12/25/2023] [Indexed: 01/16/2024]
Abstract
Numerous cellular processes are regulated in response to the metabolic state of the cell, and one such regulatory mechanism involves lysine acetylation. Lysine acetylation has been proven to play an important role in the virulence of Streptococcus mutans, a major cariogenic bacterial species. S. mutans' glucosyltransferases (Gtfs) are responsible for synthesizing extracellular polysaccharides (EPS) and contributing to biofilm formation. One of the most common nonsteroidal anti-inflammatory drugs is acetylsalicylic acid (ASA), which can acetylate proteins through a nonenzymatic transacetylation reaction. Herein, we investigated the inhibitory effects of ASA on S. mutans. ASA treatment was observed to impede the growth of S. mutans, leading to a reduction in the production of water-insoluble EPS and the formation of biofilm. Moreover, ASA decreased the enzyme activity of Gtfs while increasing the protein acetylation level. The in vivo anticaries efficacy of ASA has further been proved using the rat caries model. In conclusion, ASA as an acetylation agent attenuated the cariogenic virulence of S. mutans, suggesting the potential value of protein acetylation on antimicrobial and anti-biofilm applications to S. mutans.
Collapse
Affiliation(s)
- Yongwang Lin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Qizhao Ma
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jiangchuan Yan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Tao Gong
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jun Huang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jiamin Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jing Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yang Qiu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xiaowan Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zixue Lei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jumei Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lingyun Wang
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Baus-Domínguez M, Aguilera FR, Vivancos-Cuadras F, Ferra-Domingo L, Torres-Lagares D, Gutiérrez-Pérez JL, Pereira-Riveros T, Vinuesa T, Serrera-Figallo MÁ. Mucoadhesive Pharmacology: Latest Clinical Technology in Antiseptic Gels. Gels 2023; 10:23. [PMID: 38247746 PMCID: PMC10815608 DOI: 10.3390/gels10010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/24/2023] [Accepted: 12/24/2023] [Indexed: 01/23/2024] Open
Abstract
Chlorhexidine (CHX) is one of the most widely used antiseptics in the oral cavity due to its high antimicrobial potential. However, many authors have stated that the effect of CHX in nonsurgical periodontal therapy is hampered by its rapid elimination from the oral environment. The aim of this study was to determine the antibacterial efficacy of a new compound of chlorhexidine 0.20% + cymenol (CYM) 0.10% on a multispecies biofilm. For this, an in vitro study was designed using a multispecies biofilm model of Streptococcus mutans, Fusobacterium nucleatum, Prevotella intermedia, and Porphyromonas gingivalis. Quantification of the microbial viability of the biofilm was performed using 5-cyano-2,3-ditolyl tetrazolium-chloride (CTC) to calculate the percentage of survival, and the biofilms were observed using a a confocal laser scanning microscopy (CLSM). It was observed that the bactericidal activity of the CHX + cymenol bioadhesive gel was superior to that of the CHX bioadhesive gel, in addition to higher penetrability into the biofilm. Therefore, there was greater elimination of bacterial biofilm with the new compound of chlorhexidine 0.2% plus cymenol 0.1% in a bioadhesive gel form compared to the formulation with only chlorhexidine 0.2% in a bioadhesive gel form.
Collapse
Affiliation(s)
- María Baus-Domínguez
- Departamento de Estomatología, Facultad de Odontología, Universidad de Sevilla, 41009 Sevilla, Spain; (J.-L.G.-P.); (M.-Á.S.-F.)
| | - Felipe-Rodrigo Aguilera
- Unit of Microbiology, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, University of Barcelona, L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (F.-R.A.); (T.P.-R.); (T.V.)
- School of Dentistry, Faculty of Medicine, Universidad Austral de Chile, Valdivia 5090000, Chile
| | | | | | - Daniel Torres-Lagares
- Departamento de Estomatología, Facultad de Odontología, Universidad de Sevilla, 41009 Sevilla, Spain; (J.-L.G.-P.); (M.-Á.S.-F.)
| | - José-Luis Gutiérrez-Pérez
- Departamento de Estomatología, Facultad de Odontología, Universidad de Sevilla, 41009 Sevilla, Spain; (J.-L.G.-P.); (M.-Á.S.-F.)
- Hospital Universitario Virgen del Rociío, Universidad de Sevilla, 41013 Sevilla, Spain
| | - Tanya Pereira-Riveros
- Unit of Microbiology, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, University of Barcelona, L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (F.-R.A.); (T.P.-R.); (T.V.)
| | - Teresa Vinuesa
- Unit of Microbiology, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, University of Barcelona, L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (F.-R.A.); (T.P.-R.); (T.V.)
| | - María-Ángeles Serrera-Figallo
- Departamento de Estomatología, Facultad de Odontología, Universidad de Sevilla, 41009 Sevilla, Spain; (J.-L.G.-P.); (M.-Á.S.-F.)
| |
Collapse
|
9
|
Baidamshina DR, Trizna EY, Goncharova SS, Sorokin AV, Lavlinskaya MS, Melnik AP, Gafarova LF, Kharitonova MA, Ostolopovskaya OV, Artyukhov VG, Sokolova EA, Holyavka MG, Bogachev MI, Kayumov AR, Zelenikhin PV. The Effect of Ficin Immobilized on Carboxymethyl Chitosan on Biofilms of Oral Pathogens. Int J Mol Sci 2023; 24:16090. [PMID: 38003281 PMCID: PMC10671066 DOI: 10.3390/ijms242216090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
In the last decade, Ficin, a proteolytic enzyme extracted from the latex sap of the wild fig tree, has been widely investigated as a promising tool for the treatment of microbial biofilms, wound healing, and oral care. Here we report the antibiofilm properties of the enzyme immobilized on soluble carboxymethyl chitosan (CMCh) and CMCh itself. Ficin was immobilized on CMCh with molecular weights of either 200, 350 or 600 kDa. Among them, the carrier with a molecular weight of 200 kDa bound the maximum amount of enzyme, binding up to 49% of the total protein compared to 19-32% of the total protein bound to other CMChs. Treatment with pure CMCh led to the destruction of biofilms formed by Streptococcus salivarius, Streptococcus gordonii, Streptococcus mutans, and Candida albicans, while no apparent effect on Staphylococcus aureus was observed. A soluble Ficin was less efficient in the destruction of the biofilms formed by Streptococcus sobrinus and S. gordonii. By contrast, treatment with CMCh200-immobilized Ficin led to a significant reduction of the biofilms of the primary colonizers S. gordonii and S. mutans. In model biofilms obtained by the inoculation of swabs from teeth of healthy volunteers, the destruction of the biofilm by both soluble and immobilized Ficin was observed, although the degree of the destruction varied between artificial plaque samples. Nevertheless, combined treatment of oral Streptococci biofilm by enzyme and chlorhexidine for 3 h led to a significant decrease in the viability of biofilm-embedded cells, compared to solely chlorhexidine application. This suggests that the use of either soluble or immobilized Ficin would allow decreasing the amount and/or concentration of the antiseptics required for oral care or improving the efficiency of oral cavity sanitization.
Collapse
Affiliation(s)
- Diana R. Baidamshina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia; (D.R.B.); (E.Y.T.); (A.P.M.); (L.F.G.); (M.A.K.); (O.V.O.); (E.A.S.); (A.R.K.)
| | - Elena Yu. Trizna
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia; (D.R.B.); (E.Y.T.); (A.P.M.); (L.F.G.); (M.A.K.); (O.V.O.); (E.A.S.); (A.R.K.)
| | - Svetlana S. Goncharova
- Department of Biophysics and Biotechnology, Voronezh State University, 394018 Voronezh, Russia; (S.S.G.); (A.V.S.); (M.S.L.); (V.G.A.); (M.G.H.)
| | - Andrey V. Sorokin
- Department of Biophysics and Biotechnology, Voronezh State University, 394018 Voronezh, Russia; (S.S.G.); (A.V.S.); (M.S.L.); (V.G.A.); (M.G.H.)
- Laboratory of Bioresource Potential of Coastal Area, Institute for Advanced Studies, Sevastopol State University, 299053 Sevastopol, Russia
| | - Maria S. Lavlinskaya
- Department of Biophysics and Biotechnology, Voronezh State University, 394018 Voronezh, Russia; (S.S.G.); (A.V.S.); (M.S.L.); (V.G.A.); (M.G.H.)
- Laboratory of Bioresource Potential of Coastal Area, Institute for Advanced Studies, Sevastopol State University, 299053 Sevastopol, Russia
| | - Anastasia P. Melnik
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia; (D.R.B.); (E.Y.T.); (A.P.M.); (L.F.G.); (M.A.K.); (O.V.O.); (E.A.S.); (A.R.K.)
| | - Leysan F. Gafarova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia; (D.R.B.); (E.Y.T.); (A.P.M.); (L.F.G.); (M.A.K.); (O.V.O.); (E.A.S.); (A.R.K.)
| | - Maya A. Kharitonova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia; (D.R.B.); (E.Y.T.); (A.P.M.); (L.F.G.); (M.A.K.); (O.V.O.); (E.A.S.); (A.R.K.)
| | - Olga V. Ostolopovskaya
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia; (D.R.B.); (E.Y.T.); (A.P.M.); (L.F.G.); (M.A.K.); (O.V.O.); (E.A.S.); (A.R.K.)
| | - Valeriy G. Artyukhov
- Department of Biophysics and Biotechnology, Voronezh State University, 394018 Voronezh, Russia; (S.S.G.); (A.V.S.); (M.S.L.); (V.G.A.); (M.G.H.)
| | - Evgenia A. Sokolova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia; (D.R.B.); (E.Y.T.); (A.P.M.); (L.F.G.); (M.A.K.); (O.V.O.); (E.A.S.); (A.R.K.)
| | - Marina G. Holyavka
- Department of Biophysics and Biotechnology, Voronezh State University, 394018 Voronezh, Russia; (S.S.G.); (A.V.S.); (M.S.L.); (V.G.A.); (M.G.H.)
- Laboratory of Bioresource Potential of Coastal Area, Institute for Advanced Studies, Sevastopol State University, 299053 Sevastopol, Russia
| | - Mikhail I. Bogachev
- Biomedical Engineering Research Centre, St. Petersburg Electrotechnical University, 197022 St. Petersburg, Russia;
| | - Airat R. Kayumov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia; (D.R.B.); (E.Y.T.); (A.P.M.); (L.F.G.); (M.A.K.); (O.V.O.); (E.A.S.); (A.R.K.)
- Interdepartment Research Laboratory, Kazan State Academy of Veterinary Medicine Named after N. E. Bauman, 420029 Kazan, Russia
| | - Pavel V. Zelenikhin
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia; (D.R.B.); (E.Y.T.); (A.P.M.); (L.F.G.); (M.A.K.); (O.V.O.); (E.A.S.); (A.R.K.)
| |
Collapse
|
10
|
Cortez AA, de Queiroz MX, de Oliveira Arnoldi Pellegrini V, Pellegrini VOA, de Mello Capetti CC, Dabul ANG, Liberato MV, Pratavieira S, Ricomini Filho AP, Polikarpov I. Recombinant Prevotella melaninogenica α-1,3 glucanase and Capnocytophaga ochracea α-1,6 glucanase as enzymatic tools for in vitro degradation of S. mutans biofilms. World J Microbiol Biotechnol 2023; 39:357. [PMID: 37882859 DOI: 10.1007/s11274-023-03804-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/11/2023] [Indexed: 10/27/2023]
Abstract
Dental biofilms represent a serious oral health problem playing a key role in the development of caries and other oral diseases. In the present work, we cloned and expressed in E. coli two glucanases, Prevotella melaninogenica mutanase (PmGH87) and Capnocytophaga ochracea dextranase (CoGH66), and characterized them biochemically and biophysically. Their three-dimensional structures were elucidated and discussed. Furthermore, we tested the capacity of the enzymes to hydrolyze mutan and dextran to prevent formation of Streptococcus mutans biofilms, as well as to degrade pre- formed biofilms in low and abundant sugar conditions. The percentage of residual biofilm was calculated for each treatment group in relation to the control, as well as the degree of synergism. Our results suggest that both PmGH87 and CoGH66 are capable of inhibiting biofilm formation grown under limited or abundant sucrose conditions. Degradation of pre-formed biofilms experiments reveal a time-dependent effect for the treatment with each enzyme alone. In addition, a synergistic and dose-dependent effects of the combined enzymatic treatment with the enzymes were observed. For instance, the highest biomass degradation was 95.5% after 30 min treatment for the biofilm grown in low sucrose concentration, and 93.8% after 2 h treatment for the biofilm grown in sugar abundant condition. Strong synergistic effects were observed, with calculated degree of synergism of 5.54 and 3.18, respectively and their structural basis was discussed. Jointly, these data can pave the ground for the development of biomedical applications of the enzymes for controlling growth and promoting degradation of established oral biofilms.
Collapse
Affiliation(s)
- Anelyse Abreu Cortez
- São Carlos Institute of Physics, University of São Paulo, Avenida João Dagnone, nº 1100, Jardim Santa Angelina - CEP 13563-120, São Carlos, SP, Brazil
| | - Mateus Xavier de Queiroz
- Piracicaba Dental School, University of Campinas, Avenida Limeira, nº 901, CEP 13414-903, Areião, Piracicaba, SP, Brazil
| | | | - Vanessa Oliveira Arnoldi Pellegrini
- São Carlos Institute of Physics, University of São Paulo, Avenida João Dagnone, nº 1100, Jardim Santa Angelina - CEP 13563-120, São Carlos, SP, Brazil
| | - Caio Cesar de Mello Capetti
- São Carlos Institute of Physics, University of São Paulo, Avenida João Dagnone, nº 1100, Jardim Santa Angelina - CEP 13563-120, São Carlos, SP, Brazil
| | - Andrei Nicoli Gebieluca Dabul
- São Carlos Institute of Physics, University of São Paulo, Avenida João Dagnone, nº 1100, Jardim Santa Angelina - CEP 13563-120, São Carlos, SP, Brazil
| | - Marcelo Vizoná Liberato
- São Carlos Institute of Physics, University of São Paulo, Avenida João Dagnone, nº 1100, Jardim Santa Angelina - CEP 13563-120, São Carlos, SP, Brazil
| | - Sebastião Pratavieira
- São Carlos Institute of Physics, University of São Paulo, Avenida João Dagnone, nº 1100, Jardim Santa Angelina - CEP 13563-120, São Carlos, SP, Brazil
| | - Antonio Pedro Ricomini Filho
- Piracicaba Dental School, University of Campinas, Avenida Limeira, nº 901, CEP 13414-903, Areião, Piracicaba, SP, Brazil
| | - Igor Polikarpov
- São Carlos Institute of Physics, University of São Paulo, Avenida João Dagnone, nº 1100, Jardim Santa Angelina - CEP 13563-120, São Carlos, SP, Brazil.
| |
Collapse
|
11
|
Cagna DR, Donovan TE, McKee JR, Eichmiller F, Metz JE, Marzola R, Murphy KG, Troeltzsch M. Annual review of selected scientific literature: A report of the Committee on Scientific Investigation of the American Academy of Restorative Dentistry. J Prosthet Dent 2023; 130:453-532. [PMID: 37453884 DOI: 10.1016/j.prosdent.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023]
Abstract
The Scientific Investigation Committee of the American Academy of Restorative Dentistry offers this review of the 2022 dental literature to briefly touch on several topics of interest to modern restorative dentistry. Each committee member brings discipline-specific expertise in their subject areas that include (in order of the appearance in this report): prosthodontics; periodontics, alveolar bone, and peri-implant tissues; dental materials and therapeutics; occlusion and temporomandibular disorders; sleep-related breathing disorders; oral medicine and oral and maxillofacial surgery; and dental caries and cariology. The authors focused their efforts on reporting information likely to influence the daily dental treatment decisions of the reader with an emphasis on innovations, new materials and processes, and future trends in dentistry. With the tremendous volume of literature published daily in dentistry and related disciplines, this review cannot be comprehensive. Instead, its purpose is to update interested readers and provide valuable resource material for those willing to subsequently pursue greater detail on their own. Our intent remains to assist colleagues in navigating the tremendous volume of newly minted information produced annually. Finally, we hope that readers find this work helpful in managing patients.
Collapse
Affiliation(s)
- David R Cagna
- Professor, Associate Dean, Chair, and Residency Director, Department of Prosthodontics, University of Tennessee Health Sciences Center College of Dentistry, Memphis, Tenn.
| | - Terence E Donovan
- Professor, Department of Comprehensive Oral Health, University of North Carolina School of Dentistry, Chapel Hill, NC
| | - James R McKee
- Private practice, Restorative Dentistry, Downers Grove, Ill
| | - Frederick Eichmiller
- Vice President and Science Officer (Emeritus), Delta Dental of Wisconsin, Stevens Point, Wis
| | - James E Metz
- Private practice, Restorative Dentistry, Columbus, Ohio
| | | | - Kevin G Murphy
- Associate Clinical Professor, Department of Periodontics, University of Maryland College of Dentistry, Baltimore, Md
| | - Matthias Troeltzsch
- Private practice, Oral, Maxillofacial, and Facial Plastic Surgery, Ansbach, Germany; Department of Oral and Maxillofacial Surgery and Facial Plastic Surgery, University Hospital, Ludwig Maximilian University of Munich (LMU), Munich, Germany
| |
Collapse
|
12
|
Mu R, Zhang H, Zhang Z, Li X, Ji J, Wang X, Gu Y, Qin X. Trans-cinnamaldehyde loaded chitosan based nanocapsules display antibacterial and antibiofilm effects against cavity-causing Streptococcus mutans. J Oral Microbiol 2023; 15:2243067. [PMID: 37546377 PMCID: PMC10402844 DOI: 10.1080/20002297.2023.2243067] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/07/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023] Open
Abstract
Background Dental caries is a multifactorial disease, and the bacteria such as Streptococcus mutans (S. mutans) is one of the risk factors. The poor effect of existing anti-bacterial is mainly related to drug resistance, the short time of drug action, and biofilm formation. Methods To address this concern, we report here on the cinnamaldehyde (CA) loaded chitosan (CS) nanocapsules (CA@CS NC) sustained release CA for antibacterial treatment. The size, ζ-potential, and morphology were characterized. The antibacterial activities in vitro were studied by growth curve assay, pH drop assay, biofilm assay, and qRT-PCR In addition, cytotoxicity assay, organ index, body weight, and histopathology results were analyzed to evaluate the safety and biocompatibility in a rat model. Results CA@CS NC can adsorb the bacterial membrane due to electronic interaction, releasing CA slowly for a long time. At the same time, it has reliable antibacterial activity against S. mutans and downregulated the expression levels of QS, virulence, biofilm, and adhesion genes. In addition, it greatly reduced the cytotoxicity of CA and significantly inhibited dental caries in rats without obvious toxicity. Conclusion Our results showed that CA@CS NC had antibacterial and antibiofilm effects on S. mutans and inhibit dental caries. Besides, it showed stronger efficacy and less toxicity, and was able to adsorb bacteria releasing CA slowly, providing a new nanomaterial solution for the treatment of dental caries.
Collapse
Affiliation(s)
- Ran Mu
- School of Biological Engineering, Zhuhai Campus of Zunyi Medical University, Guangdong, China
- Department of Clinical Medicine, The Fifth Clinical Institute, Zhuhai Campus of Zunyi Medical University, Guangdong, China
| | - Hanyi Zhang
- School of Biological Engineering, Zhuhai Campus of Zunyi Medical University, Guangdong, China
| | - Zhiyuan Zhang
- School of Biological Engineering, Zhuhai Campus of Zunyi Medical University, Guangdong, China
| | - Xinyue Li
- School of Biological Engineering, Zhuhai Campus of Zunyi Medical University, Guangdong, China
| | - Jiaxuan Ji
- Department of Clinical Medicine, The Fifth Clinical Institute, Zhuhai Campus of Zunyi Medical University, Guangdong, China
| | - Xinyue Wang
- Department of Clinical Medicine, The Fifth Clinical Institute, Zhuhai Campus of Zunyi Medical University, Guangdong, China
| | - Yu Gu
- School of Stomatology, Zhuhai Campus of Zunyi Medical University, Guangdong, China
| | - Xiaofei Qin
- School of Biological Engineering, Zhuhai Campus of Zunyi Medical University, Guangdong, China
| |
Collapse
|
13
|
Yang X, Liu R, Zhu J, Luo T, Zhan Y, Li C, Li Y, Yu H. Evaluating the microbial aerosol generated by dental instruments: addressing new challenges for oral healthcare in the hospital infection. BMC Oral Health 2023; 23:409. [PMID: 37344797 DOI: 10.1186/s12903-023-03109-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 06/06/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND Using a rotary instrument or ultrasonic instrument for tooth preparation is a basic operation in the dental clinic that can produce a significant number of droplets and aerosols. The dental droplet and aerosol can lead to the transfer of harmful germs. The goal of this study was to analyze the properties of microbiological aerosol created by droplets and aerosol generated by three common tooth-preparation instruments. METHODS Streptococcus mutans UA159 was used as the biological tracer to visualize the droplets and aerosols. The passive sampling method was used to map the three-dimensional spatial distribution and the six-stage Andersen microbial sampler (AMS) was used as the active sampling method to catch aerosol particles at a specific time. RESULTS The aerosol concentration is related to instruments, three-dimensional spatial distribution, and dissipation time. Most aerosols were generated by air turbines. More microorganisms are concentrated at the 1.5 m plane. The majority of the post dental procedure contamination was detected within the 0-10-min period and it decreased rapidly within 30 min. CONCLUSION This study is conducive to the proposal and improvement of relevant infection control measures in dental procedures and provides a basis for the assessment of measures, reducing the risk of nosocomial infection.
Collapse
Affiliation(s)
- Xin Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, 3Rd Section of Ren Min Nan Rd, Chengdu, 610041, Sichuan Province, China
| | - Ruolan Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, 3Rd Section of Ren Min Nan Rd, Chengdu, 610041, Sichuan Province, China
| | - Jiakang Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, 3Rd Section of Ren Min Nan Rd, Chengdu, 610041, Sichuan Province, China
| | - Tian Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, 3Rd Section of Ren Min Nan Rd, Chengdu, 610041, Sichuan Province, China
| | - Yu Zhan
- Department of Environmental Science and Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Chunyuan Li
- Department of Environmental Science and Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Haiyang Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, 3Rd Section of Ren Min Nan Rd, Chengdu, 610041, Sichuan Province, China.
| |
Collapse
|
14
|
Lang Y, Wang B, Chang MW, Sun R, Zhang L. Sandwich-structured electrospun pH-responsive dental pastes for anti-caries. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
15
|
Guo W, Li Y, Wang S, Wang Y, Li C, Jin Y, Li Y, Chen X, Miao W. Photodynamic nano hydroxyapatite with biofilm penetration capability for dental plaque eradication and prevention of demineralization. Colloids Surf B Biointerfaces 2023; 225:113242. [PMID: 36905831 DOI: 10.1016/j.colsurfb.2023.113242] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/15/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023]
Abstract
Dental caries represents one of the most prevalent diseases worldwide, characteristic of the growth of dental plaque and demineralization of tooth enamel. Current medications for eradication of dental plaques and prevention of demineralization suffer from several limitations to overcome, calling for novel strategies with great potency in eliminating cariogenic bacteria and dental plaque that forms, as well as in inhibiting the demineralization of enamel, into an integrated system. Considering the potency of photodynamic therapy in bacteria inactivation and the composition of enamel, we herein report that the novel photodynamic nano hydroxyapatite (nHAP), named Ce6 @QCS/nHAP, was useful for this purpose. Ce6 @QCS/nHAP, comprised of quaternary chitosan (QCS)-coated nHAP loaded with chlorin e6 (Ce6), exhibited good biocompatibility and non-compromised photodynamic activity. In vitro studies revealed that Ce6 @QCS/nHAP could effectively associate with cariogenic Streptococcus mutans (S. mutans), leading to a significant antibacterial effect through photodynamic killing and physical inactivation against the planktonic microbe. Three-dimensional fluorescence imaging suggested that Ce6 @QCS/nHAP exhibited a superior S. mutans biofilm penetration capacity to free Ce6, resulting in effective dental plaque eradiation when light irradiation was applied. The number of surviving bacteria in biofilm was at least 2.8 log units lower in the Ce6 @QCS/nHAP group compared to that in the free Ce6 group. Further, in the S. mutans biofilm-infected artificial tooth model, treatment with Ce6 @QCS/nHAP also resulted in the significant prevention of hydroxyapatite disks from demineralization, with lower percentage of fragmentation and weight loss These data suggest that our photodynamic nanosystem can effectively eradicate dental plaque while also significantly protecting artificial tooth from demineralization, opening up new possibilities in treating bacterium-associated dental caries.
Collapse
Affiliation(s)
- Wenjing Guo
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China
| | - Yang Li
- Department of Stomatology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing 210011, PR China
| | - Siyuan Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China
| | - Yueying Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China
| | - Chenhui Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China
| | - Yangye Jin
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China
| | - Yuanyuan Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China
| | - Xu Chen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, PR China; Department of Periodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, PR China.
| | - Wenjun Miao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China.
| |
Collapse
|
16
|
Zhao Z, Wu J, Sun Z, Fan J, Liu F, Zhao W, Liu WH, Zhang M, Hung WL. Postbiotics Derived from L. paracasei ET-22 Inhibit the Formation of S. mutans Biofilms and Bioactive Substances: An Analysis. Molecules 2023; 28:molecules28031236. [PMID: 36770903 PMCID: PMC9919839 DOI: 10.3390/molecules28031236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/31/2023] Open
Abstract
Globally, dental caries is one of the most common non-communicable diseases for patients of all ages; Streptococcus mutans (S. mutans) is its principal pathogen. Lactobacillus paracasei (L. paracasei) shows excellent anti-pathogens and immune-regulation functions in the host. The aim of this study is to evaluate the effects of L. paracasei ET-22 on the formation of S. mutans biofilms. The living bacteria, heat-killed bacteria, and secretions of L. paracasei ET-22 were prepared using the same number of bacteria. In vitro, they were added into artificial-saliva medium, and used to coculture with the S. mutans. Results showed that the living bacteria and secretions of L. paracasei ET-22 inhibited biofilm-growth, the synthesis of water-soluble polysaccharide and water-insoluble polysaccharide, and virulence-gene-expression levels related to the formation of S. mutans biofilms. Surprisingly, the heat-killed L. paracasei ET-22, which is a postbiotic, also showed a similar regulation function. Non-targeted metabonomics technology was used to identify multiple potential active-substances in the postbiotics of L. paracasei ET-22 that inhibit the formation of S. mutans biofilms, including phenyllactic acid, zidovudine monophosphate, and citrulline. In conclusion, live bacteria and its postbiotics of L. paracasei ET-22 all have inhibitory effects on the formation of S. mutans biofilm. The postbiotics of L. paracasei ET-22 may be a promising biological anticariogenic-agent.
Collapse
Affiliation(s)
- Zhi Zhao
- School of Food and Health, Beijing Technology and Business University, Beijing 100024, China
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China
| | - Jianmin Wu
- China Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Zhe Sun
- School of Food and Health, Beijing Technology and Business University, Beijing 100024, China
| | - Jinbo Fan
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China
| | - Fudong Liu
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot 010110, China
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot 010110, China
| | - Wen Zhao
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot 010110, China
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot 010110, China
| | - Wei-Hsien Liu
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot 010110, China
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot 010110, China
| | - Ming Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing 100024, China
- Correspondence: (M.Z.); (W.-L.H.)
| | - Wei-Lian Hung
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot 010110, China
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot 010110, China
- Correspondence: (M.Z.); (W.-L.H.)
| |
Collapse
|
17
|
Iacopetta D, Ceramella J, Catalano A, D’Amato A, Lauria G, Saturnino C, Andreu I, Longo P, Sinicropi MS. Diarylureas: New Promising Small Molecules against Streptococcus mutans for the Treatment of Dental Caries. Antibiotics (Basel) 2023; 12:112. [PMID: 36671313 PMCID: PMC9855158 DOI: 10.3390/antibiotics12010112] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Dental caries is a biofilm-mediated disease that represents a worldwide oral health issue. Streptococcus mutans has been ascertained as the main cariogenic pathogen responsible for human dental caries, with a high ability to form biofilms, regulated by the quorum sensing. Diarylureas represent a class of organic compounds that show numerous biological activities, including the antimicrobial one. Two small molecules belonging to this class, specifically to diphenylureas, BPU (1,3-bis[3,5-bis(trifluoromethyl)phenyl]urea) and DMTU (1,3-di-m-tolyl-urea), showed interesting results in studies regarding the antimicrobial activity against the cariogenic bacterium S. mutans. Since there are not many antimicrobials used for the prevention and treatment of caries, further studies on these two interesting compounds and other diarylureas against S. mutans may be useful to design new effective agents for the treatment of caries with generally low cytotoxicity.
Collapse
Affiliation(s)
- Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy
| | - Assunta D’Amato
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Graziantonio Lauria
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy
| | - Carmela Saturnino
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Inmaculada Andreu
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
- Unidad Mixta de Investigación UPV-IIS La Fe, Hospital Universitari i Politècnic La Fe, Avenida de Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Pasquale Longo
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| |
Collapse
|
18
|
Pang L, Lin H, Yang F, Deng D. Editorial: Mechanisms of biofilm development and antibiofilm strategies. Front Microbiol 2023; 14:1190611. [PMID: 37082178 PMCID: PMC10111000 DOI: 10.3389/fmicb.2023.1190611] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 04/22/2023] Open
Affiliation(s)
- Liangyue Pang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huancai Lin
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
- *Correspondence: Huancai Lin
| | - Fang Yang
- Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Dongmei Deng
- Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
19
|
Amarante VDOZ, Delbem ACB, Sampaio C, de Morais LA, de Camargo ER, Monteiro DR, Pessan JP, Hosida TY. Activity of Sodium Trimetaphosphate Nanoparticles on Cariogenic-Related Biofilms In Vitro. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:170. [PMID: 36616080 PMCID: PMC9824195 DOI: 10.3390/nano13010170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
In light of the promising effect of sodium trimetaphosphate nanoparticles (TMPn) on dental enamel, in addition to the scarce evidence of the effects of these nanoparticles on biofilms, this study evaluated the activity of TMPn with/without fluoride (F) on the pH, inorganic composition and extracellular matrix (ECM) components of dual-species biofilms of Streptococcus mutans and Candida albicans. The biofilms were cultivated in artificial saliva in microtiter plates and treated with solutions containing 1% or 3% conventional/microparticulate TMP (TMPm) or TMPn, with or without F. After the last treatment, the protein and carbohydrate content of the ECM was analyzed, and the pH and F, calcium (Ca), phosphorus (P), and TMP concentrations of the biofilms were determined. In another set of experiments, after the last treatment, the biofilms were exposed to a 20% sucrose solution, and their matrix composition, pH, and inorganic component contents were evaluated. 3% TMPn/F significantly reduced ECM carbohydrate and increased biofilm pH (after sucrose exposure) than other treatments. Also, it significantly increased P and F levels before sucrose exposure in comparison to 3% TMPm/F. In conclusion, 3% TMPn/F affected the biofilm ECM and pH, besides influencing inorganic biofilm composition by increasing P and F levels in the biofilm fluid.
Collapse
Affiliation(s)
- Viviane de Oliveira Zequini Amarante
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Rua José Bonifácio, 1193, Araçatuba 16015-050, SP, Brazil
| | - Alberto Carlos Botazzo Delbem
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Rua José Bonifácio, 1193, Araçatuba 16015-050, SP, Brazil
| | - Caio Sampaio
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Rua José Bonifácio, 1193, Araçatuba 16015-050, SP, Brazil
| | - Leonardo Antônio de Morais
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Rua José Bonifácio, 1193, Araçatuba 16015-050, SP, Brazil
| | | | - Douglas Roberto Monteiro
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Rua José Bonifácio, 1193, Araçatuba 16015-050, SP, Brazil
- Postgraduate Program in Health Sciences, University of Western São Paulo (UNOESTE), Presidente Prudente 19050-920, SP, Brazil
| | - Juliano Pelim Pessan
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Rua José Bonifácio, 1193, Araçatuba 16015-050, SP, Brazil
| | - Thayse Yumi Hosida
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Rua José Bonifácio, 1193, Araçatuba 16015-050, SP, Brazil
| |
Collapse
|
20
|
The Bovhyaluronidase Azoximer (Longidaza ®) Disrupts Candida albicans and Candida albicans-Bacterial Mixed Biofilms and Increases the Efficacy of Antifungals. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58121710. [PMID: 36556912 PMCID: PMC9782602 DOI: 10.3390/medicina58121710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022]
Abstract
Background and Objectives: Candida albicans causes various diseases ranging from superficial mycoses to life-threatening systemic infections often associated with biofilm formation, including mixed fungal−bacterial consortia. The biofilm matrix protects cells, making Candida extremely resistant to treatment. Here, we show that the bovhyaluronidase azoximer (Longidaza®) in vitro destroys the biofilm formed by either C. albicans alone or mixed with bacteria, this way decreasing the concentrations of antimicrobials required for the pathogen’s eradication. Materials and Methods: Bovhyaluronidase azoximer, Longidaza® was obtained from NPO Petrovax Pharm Ltd., Moscow, Russia as lyophilized powder. The antifungal activity was assessed by microdilution assay and CFUs counting. Antibiofilm activity was evaluated via biofilms staining and scanning electron microscopy. Results: Thus, treatment with Longidaza® reduced the biofilm biomass of nine C. albicans clinical isolates by 30−60%, while mixed biofilms of C. albicans with various bacteria were destroyed by 30−40%. Furthermore, the concentration of fluconazole required to achieve a similar reduction of the residual respiratory activity of detached cell clumps of four C. albicans isolates has been reduced four-fold when combined with Longidaza®. While in the biofilm, two of four isolates became significantly more susceptible to fluconazole in combination with Longidaza®. Conclusion: Taken together, our data indicate that Longidaza® is capable of suppression of tissues and artificial surfaces biofouling by C. albicans biofilms, as well as facilitating drug penetration into the cell clumps, this way decreasing the effective MIC of antifungals.
Collapse
|
21
|
Šurín Hudáková N, Kačírová J, Sondorová M, Šelianová S, Mucha R, Maďar M. Inhibitory Effect of Bacillus licheniformis Strains Isolated from Canine Oral Cavity. Life (Basel) 2022; 12:life12081238. [PMID: 36013417 PMCID: PMC9409769 DOI: 10.3390/life12081238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/04/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Bacillus licheniformis is used in a broad spectrum of areas, including some probiotic preparations for human and veterinary health. Moreover, B. licheniformis strains are known producers of various bioactive substances with antimicrobial and antibiofilm effects. In searching for new potentially beneficial bacteria for oral health, the inhibitory effect of B. licheniformis strains isolated from canine dental biofilm against pathogenic oral bacteria was evaluated. The antimicrobial effect of neutralized cell-free supernatants (nCFS) was assessed in vitro on polystyrene microtiter plates. Furthermore, molecular and morphological analyses were executed to evaluate the production of bioactive substances. To determine the nature of antimicrobial substance present in nCFS of B. licheniformis A-1-5B-AP, nCFS was exposed to the activity of various enzymes. The nCFS of B. licheniformis A-1-5B-AP significantly (p < 0.0001) reduced the growth of Porphyromonas gulae 3/H, Prevotella intermedia 1/P and Streptococcus mutans ATCC 35668. On the other hand, B. licheniformis A-2-11B-AP only significantly (p < 0.0001) inhibited the growth of P. intermedia 1/P and S. mutans ATCC 35668. However, enzyme-treated nCFS of B. licheniformis A-1-5B-AP did not lose its antimicrobial effect and significantly (p < 0.0001) inhibited the growth of Micrococcus luteus DSM 1790. Further studies are needed for the identification of antimicrobial substances.
Collapse
Affiliation(s)
- Natália Šurín Hudáková
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia
| | - Jana Kačírová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia
| | - Miriam Sondorová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia
| | - Svetlana Šelianová
- Clinic of Stomatology and Maxillofacial Surgery, Faculty of Medicine, University of Pavol Jozef Safarik in Kosice, 040 01 Kosice, Slovakia
| | - Rastislav Mucha
- Institute of Neurobiology, Biomedical Research Center of the Slovak Academy of Sciences, Soltesovej 4, 040 01 Kosice, Slovakia
| | - Marián Maďar
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia
- Correspondence: ; Tel.: +421-9-4971-5632
| |
Collapse
|
22
|
Zou J, Du Q, Ge L, Wang J, Wang X, Li Y, Song G, Zhao W, Chen X, Jiang B, Mei Y, Huang Y, Deng S, Zhang H, Li Y, Zhou X. Expert consensus on early childhood caries management. Int J Oral Sci 2022; 14:35. [PMID: 35835750 PMCID: PMC9283525 DOI: 10.1038/s41368-022-00186-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 02/05/2023] Open
Abstract
Early childhood caries (ECC) is a significant chronic disease of childhood and a rising public health burden worldwide. ECC may cause a higher risk of new caries lesions in both primary and permanent dentition, affecting lifelong oral health. The occurrence of ECC has been closely related to the core microbiome change in the oral cavity, which may be influenced by diet habits, oral health management, fluoride use, and dental manipulations. So, it is essential to improve parental oral health and awareness of health care, to establish a dental home at the early stage of childhood, and make an individualized caries management plan. Dental interventions according to the minimally invasive concept should be carried out to treat dental caries. This expert consensus mainly discusses the etiology of ECC, caries-risk assessment of children, prevention and treatment plan of ECC, aiming to achieve lifelong oral health.
Collapse
Affiliation(s)
- Jing Zou
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qin Du
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Lihong Ge
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Jun Wang
- Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Department of Pediatric Dentistry, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Xiaojing Wang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shanxi Key Laboratory of Military Stomatology, Department of Pediatric Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Guangtai Song
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wei Zhao
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑Sen University, Guangzhou, China
| | - Xu Chen
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Beizhan Jiang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Yufeng Mei
- Department of Pediatric Dentistry, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China
| | - Yang Huang
- Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, China
| | - Shuli Deng
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Hongmei Zhang
- Department of Pediatric Dentistry, The Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
| | - Yanhong Li
- Department of Pediatric and Preventive Dentistry, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
23
|
Shahmoradi S, Shariati A, Amini SM, Zargar N, Yadegari Z, Darban-Sarokhalil D. The application of selenium nanoparticles for enhancing the efficacy of photodynamic inactivation of planktonic communities and the biofilm of Streptococcus mutans. BMC Res Notes 2022; 15:84. [PMID: 35209935 PMCID: PMC8876442 DOI: 10.1186/s13104-022-05973-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/14/2022] [Indexed: 12/02/2022] Open
Abstract
Objective Streptococcus mutans is one of the principal causative agents of dental caries (tooth decay) found in the oral cavity. Therefore, this study investigates whether selenium nanoparticles (SeNPs) enhance the efficacy of photodynamic therapy (PDT) against both planktonic communities and the one-day-old biofilm of S. mutans. In this study, the planktonic and 24-h biofilm of S. mutans have been prepared in 96-cell microplates. These forms were treated by methylene blue (MB) and SeNPs and then were exposed to light-emitting diode (LED) lighting. Finally, the results have been reported as CFU/ml. Results The outcomes demonstrated that MB-induced PDT and SeNPs significantly reduced the number of planktonic bacteria (P-value < 0.001). The comparison between the treated and untreated groups showed that combining therapy with SeNPs and PDT remarkably decreased colony-forming units of one-day-old S. mutans biofilm (P-value < 0.05). The findings revealed that PDT modified by SeNPs had a high potential to destroy S. mutans biofilm. This combination therapy showed promising results to overcome oral infection in dental science.
Collapse
Affiliation(s)
- Samane Shahmoradi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Hemmat Highway, Next to Milad Tower, Tehran, Iran
| | - Aref Shariati
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
| | - Seyed Mohammad Amini
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nazanin Zargar
- School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Yadegari
- Department of Dental Biomaterials, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Darban-Sarokhalil
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Hemmat Highway, Next to Milad Tower, Tehran, Iran. .,Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Quorum-Sensing Inhibition by Gram-Positive Bacteria. Microorganisms 2022; 10:microorganisms10020350. [PMID: 35208805 PMCID: PMC8875677 DOI: 10.3390/microorganisms10020350] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 12/01/2022] Open
Abstract
The modern paradigm assumes that interspecies communication of microorganisms occurs through precise regulatory mechanisms. In particular, antagonism between bacteria or bacteria and fungi can be achieved by direct destruction of the targeted cells through the regulated production of antimicrobial metabolites or by controlling their adaptive mechanisms, such as the formation of biofilms. The quorum-quenching phenomenon provides such a countermeasure strategy. This review discusses quorum-sensing suppression by Gram-positive microorganisms, the underlying mechanisms of this process, and its molecular intermediates. The main focus will be on Gram-positive bacteria that have practical applications, such as starter cultures for food fermentation, probiotics, and other microorganisms of biotechnological importance. The possible evolutionary role of quorum-quenching mechanisms during the development of interspecies interactions of bacteria is also considered. In addition, the review provides possible practical applications for these mechanisms, such as the control of pathogens, improving the efficiency of probiotics, and plant protection.
Collapse
|