1
|
He Z, Li F, Liu M, Liao J, Guo C. Porcine Reproductive and Respiratory Syndrome Virus: Challenges and Advances in Vaccine Development. Vaccines (Basel) 2025; 13:260. [PMID: 40266104 PMCID: PMC11945896 DOI: 10.3390/vaccines13030260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 04/24/2025] Open
Abstract
Persistent infection of porcine reproductive and respiratory syndrome virus (PRRSV) significantly hampers both the quantity and quality of pork production in China. Although PRRSV is widely prevalent worldwide, the absence of effective vaccines has made it one of the major pathogens threatening the sustainable development of the global swine industry. Vaccination remains one of the most effective measures for controlling pathogen infections. However, the continuous genetic recombination and mutation of PRRSV demand more comprehensive strategies to address emerging threats, while ensuring the efficacy and safety of vaccines. This review provides an overview of the latest advances in PRRSV vaccine research, highlighting the importance of understanding the unique strengths and limitations of various vaccines in developing effective therapeutic approaches and vaccination strategies. Moreover, the development of adjuvants and antiviral drugs as adjuncts to combat PRRSV infection offers significant potential for enhancing disease control efforts. With the advancement of technologies such as proteolysis-targeting chimera (PROTAC) and mRNA, new avenues for controlling PRRSV and other pathogens are emerging, offering considerable hope. Ultimately, the goal of these vaccine developments is to alleviate the impact of PRRSV on animal health and the profitability of the swine industry.
Collapse
Affiliation(s)
| | | | | | | | - Chunhe Guo
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.H.); (F.L.); (M.L.); (J.L.)
| |
Collapse
|
2
|
Vo DK, Trinh KTL. Molecular Farming for Immunization: Current Advances and Future Prospects in Plant-Produced Vaccines. Vaccines (Basel) 2025; 13:191. [PMID: 40006737 PMCID: PMC11860421 DOI: 10.3390/vaccines13020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/07/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Using plants as bioreactors, molecular farming has emerged as a versatile and sustainable platform for producing recombinant vaccines, therapeutic proteins, industrial enzymes, and nutraceuticals. This innovative approach leverages the unique advantages of plants, including scalability, cost-effectiveness, and reduced risk of contamination with human pathogens. Recent advancements in gene editing, transient expression systems, and nanoparticle-based delivery technologies have significantly enhanced the efficiency and versatility of plant-based systems. Particularly in vaccine development, molecular farming has demonstrated its potential with notable successes such as Medicago's Covifenz for COVID-19, illustrating the capacity of plant-based platforms to address global health emergencies rapidly. Furthermore, edible vaccines have opened new avenues in the delivery of vaccines, mainly in settings with low resources where the cold chain used for conventional logistics is a challenge. However, optimization of protein yield and stability, the complexity of purification processes, and regulatory hurdles are some of the challenges that still remain. This review discusses the current status of vaccine development using plant-based expression systems, operational mechanisms for plant expression platforms, major applications in the prevention of infectious diseases, and new developments, such as nanoparticle-mediated delivery and cancer vaccines. The discussion will also touch on ethical considerations, the regulatory framework, and future trends with respect to the transformative capacity of plant-derived vaccines in ensuring greater global accessibility and cost-effectiveness of the vaccination. This field holds great promise for the infectious disease area and, indeed, for applications in personalized medicine and biopharmaceuticals in the near future.
Collapse
Affiliation(s)
- Dang-Khoa Vo
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Kieu The Loan Trinh
- Bionano Applications Research Center, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| |
Collapse
|
3
|
Wang H, Feng W. Current Status of Porcine Reproductive and Respiratory Syndrome Vaccines. Vaccines (Basel) 2024; 12:1387. [PMID: 39772049 PMCID: PMC11679953 DOI: 10.3390/vaccines12121387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/01/2024] [Accepted: 12/06/2024] [Indexed: 01/05/2025] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS), characterized by reproductive failures in breeding pigs and respiratory diseases in growing pigs, is a widespread and challenging disease. The agent, PRRSV, is a single-strand RNA virus that is undergoing continuous mutation and evolution, resulting in the global spread of multiple strains with different genetic characteristics and variable antigens. There are currently no effective measures to eradicate PRRS, and vaccination is crucial for controlling the disease. At present, various types of vaccine are available or being studied, including inactivated vaccines, modified live virus (MLV) vaccines, vector vaccines, subunit vaccines, DNA vaccines, RNA vaccines, etc. MLV vaccines have been widely used to control PRRSV infection for more than 30 years since they were first introduced in North America in 1994, and have shown a certain efficacy. However, there are safety and efficacy issues such as virulence reversion, recombination with field strains, and a lack of protection against heterologous strains, while other types of vaccine have their own advantages and disadvantages, making the eradication of PRRS a challenge. This article reviews the latest progress of these vaccines in the prevention and control of PRRS and provides scientific inspiration for developing new strategies for the next generation of PRRS vaccines.
Collapse
Affiliation(s)
- Honglei Wang
- Department of Clinical Laboratory, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Wenhai Feng
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, China Agricultural University, Beijing 100193, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
4
|
Kamboj A, Dumka S, Saxena MK, Singh Y, Kaur BP, da Silva SJR, Kumar S. A Comprehensive Review of Our Understanding and Challenges of Viral Vaccines against Swine Pathogens. Viruses 2024; 16:833. [PMID: 38932126 PMCID: PMC11209531 DOI: 10.3390/v16060833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/18/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Pig farming has become a strategically significant and economically important industry across the globe. It is also a potentially vulnerable sector due to challenges posed by transboundary diseases in which viral infections are at the forefront. Among the porcine viral diseases, African swine fever, classical swine fever, foot and mouth disease, porcine reproductive and respiratory syndrome, pseudorabies, swine influenza, and transmissible gastroenteritis are some of the diseases that cause substantial economic losses in the pig industry. It is a well-established fact that vaccination is undoubtedly the most effective strategy to control viral infections in animals. From the period of Jenner and Pasteur to the recent new-generation technology era, the development of vaccines has contributed significantly to reducing the burden of viral infections on animals and humans. Inactivated and modified live viral vaccines provide partial protection against key pathogens. However, there is a need to improve these vaccines to address emerging infections more comprehensively and ensure their safety. The recent reports on new-generation vaccines against swine viruses like DNA, viral-vector-based replicon, chimeric, peptide, plant-made, virus-like particle, and nanoparticle-based vaccines are very encouraging. The current review gathers comprehensive information on the available vaccines and the future perspectives on porcine viral vaccines.
Collapse
Affiliation(s)
- Aman Kamboj
- College of Veterinary and Animal Sciences, G. B. Pant University of Agriculture and Technology, Pantnagar 263145, Uttarakhand, India; (A.K.); (M.K.S.); (Y.S.)
| | - Shaurya Dumka
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati 781039, Assam, India; (S.D.); (B.P.K.)
| | - Mumtesh Kumar Saxena
- College of Veterinary and Animal Sciences, G. B. Pant University of Agriculture and Technology, Pantnagar 263145, Uttarakhand, India; (A.K.); (M.K.S.); (Y.S.)
| | - Yashpal Singh
- College of Veterinary and Animal Sciences, G. B. Pant University of Agriculture and Technology, Pantnagar 263145, Uttarakhand, India; (A.K.); (M.K.S.); (Y.S.)
| | - Bani Preet Kaur
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati 781039, Assam, India; (S.D.); (B.P.K.)
| | | | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati 781039, Assam, India; (S.D.); (B.P.K.)
| |
Collapse
|
5
|
Gerszberg A, Hnatuszko-Konka K. Compendium on Food Crop Plants as a Platform for Pharmaceutical Protein Production. Int J Mol Sci 2022; 23:3236. [PMID: 35328657 PMCID: PMC8951019 DOI: 10.3390/ijms23063236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/14/2022] Open
Abstract
Tremendous advances in crop biotechnology related to the availability of molecular tools and methods developed for transformation and regeneration of specific plant species have been observed. As a consequence, the interest in plant molecular farming aimed at producing the desired therapeutic proteins has significantly increased. Since the middle of the 1980s, recombinant pharmaceuticals have transformed the treatment of many serious diseases and nowadays are used in all branches of medicine. The available systems of the synthesis include wild-type or modified mammalian cells, plants or plant cell cultures, insects, yeast, fungi, or bacteria. Undeniable benefits such as well-characterised breeding conditions, safety, and relatively low costs of production make plants an attractive yet competitive platform for biopharmaceutical production. Some of the vegetable plants that have edible tubers, fruits, leaves, or seeds may be desirable as inexpensive bioreactors because these organs can provide edible vaccines and thus omit the purification step of the final product. Some crucial facts in the development of plant-made pharmaceuticals are presented here in brief. Although crop systems do not require more strictly dedicated optimization of methodologies at any stages of the of biopharmaceutical production process, here we recall the complete framework of such a project, along with theoretical background. Thus, a brief review of the advantages and disadvantages of different systems, the principles for the selection of cis elements for the expression cassettes, and available methods of plant transformation, through to the protein recovery and purification stage, are all presented here. We also outline the achievements in the production of biopharmaceuticals in economically important crop plants and provide examples of their clinical trials and commercialization.
Collapse
Affiliation(s)
- Aneta Gerszberg
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Katarzyna Hnatuszko-Konka
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| |
Collapse
|
6
|
Future perspectives on swine viral vaccines: where are we headed? Porcine Health Manag 2021; 7:1. [PMID: 33397477 PMCID: PMC7780603 DOI: 10.1186/s40813-020-00179-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 11/27/2020] [Indexed: 12/18/2022] Open
Abstract
Deliberate infection of humans with smallpox, also known as variolation, was a common practice in Asia and dates back to the fifteenth century. The world's first human vaccination was administered in 1796 by Edward Jenner, a British physician. One of the first pig vaccines, which targeted the bacterium Erysipelothrix rhusiopathiae, was introduced in 1883 in France by Louis Pasteur. Since then vaccination has become an essential part of pig production, and viral vaccines in particular are essential tools for pig producers and veterinarians to manage pig herd health. Traditionally, viral vaccines for pigs are either based on attenuated-live virus strains or inactivated viral antigens. With the advent of genomic sequencing and molecular engineering, novel vaccine strategies and tools, including subunit and nucleic acid vaccines, became available and are being increasingly used in pigs. This review aims to summarize recent trends and technologies available for the production and use of vaccines targeting pig viruses.
Collapse
|
7
|
Elizondo-Quiroga D, Zapata-Cuellar L, Uribe-Flores JA, Gaona-Bernal J, Camacho-Villegas TA, Manuel-Cabrera CA, Trujillo-Ortega ME, Ramírez-Hernández G, Herradora-Lozano MA, Mercado-García MDC, Gutiérrez Ortega A. An Escherichia coli-Expressed Porcine Reproductive and Respiratory Syndrome Virus Chimeric Protein Induces a Specific Immunoglobulin G Response in Immunized Piglets. Viral Immunol 2019; 32:370-382. [PMID: 31644382 DOI: 10.1089/vim.2019.0047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) still poses a threat to the swine industry worldwide. Currently, commercial vaccines against PRRSV, which consist of modified live or inactivated virus, reduce symptoms and viremia in immunized pigs, but efficacy against heterologous strains is variable. This has led to the development of subunit vaccines that contain viral antigens that show the highest variability. In this work, a chimeric protein comprising short amino acid sequences from glycoprotein 3 (GP3), glycoprotein 4 (GP4), glycoprotein 5 (GP5), and M (matrix protein) proteins of PRRSV was designed and expressed in Escherichia coli. This protein, designated as PRRSVchim, was purified by immobilized metal affinity chromatography and evaluated. PRRSVchim was identified by immunoglobulin G (IgG) presence in serum samples from PRRSV-positive pigs. Also, the protein probed to be antigenic in immunized mice and piglets and provided some degree of protection against challenge with a PRRSV field isolate. These results show the potential of PRRSVchim protein for both PRRSV diagnostic and immunoprophylaxis.
Collapse
Affiliation(s)
- Darwin Elizondo-Quiroga
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| | - Lorena Zapata-Cuellar
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| | - José Alberto Uribe-Flores
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| | - Jorge Gaona-Bernal
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | - Tanya Amanda Camacho-Villegas
- CONACYT-Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| | | | - María Elena Trujillo-Ortega
- Departamento de Medicina y Zootecnia de Cerdos, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Gerardo Ramírez-Hernández
- Departamento de Medicina y Zootecnia de Cerdos, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Marco Antonio Herradora-Lozano
- Departamento de Medicina y Zootecnia de Cerdos, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - María Del Cármen Mercado-García
- Departamento de Medicina y Zootecnia de Cerdos, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Abel Gutiérrez Ortega
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| |
Collapse
|
8
|
An CH, Nazki S, Park SC, Jeong YJ, Lee JH, Park SJ, Khatun A, Kim WI, Park YI, Jeong JC, Kim CY. Plant synthetic GP4 and GP5 proteins from porcine reproductive and respiratory syndrome virus elicit immune responses in pigs. PLANTA 2018; 247:973-985. [PMID: 29313103 DOI: 10.1007/s00425-017-2836-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/13/2017] [Indexed: 06/07/2023]
Abstract
MAIN CONCLUSION We demonstrated successful overexpression of porcine reproductive and respiratory syndrome virus (PRRSV)-derived GP4D and GP5D antigenic proteins in Arabidopsis. Pigs immunized with transgenic plants expressing GP4D and GP5D proteins generated both humoral and cellular immune responses to PRRSV. Porcine reproductive and respiratory syndrome virus (PRRSV) causes PRRS, the most economically significant disease affecting the swine industry worldwide. However, current commercial PRRSV vaccines (killed virus or modified live vaccines) show poor efficacy and safety due to concerns such as reversion of virus to wild type and lack of cross protection. To overcome these problems, plants are considered a promising alternative to conventional platforms and as a vehicle for large-scale production of recombinant proteins. Here, we demonstrate successful production of recombinant protein vaccine by expressing codon-optimized and transmembrane-deleted recombinant glycoproteins (GP4D and GP5D) from PRRSV in planta. We generated transgenic Arabidopsis plants expressing GP4D and GP5D proteins as candidate antigens. To examine immunogenicity, pigs were fed transgenic Arabidopsis leaves expressing the GP4D and GP5D antigens (three times at 2-week intervals) and then challenged with PRRSV at 6-week post-initial treatment. Immunized pigs showed significantly lower lung lesion scores and reduced viremia and viral loads in the lung than pigs fed Arabidopsis leaves expressing mYFP (control). Immunized pigs also had higher titers of PRRSV-specific antibodies and significantly higher levels of pro-inflammatory cytokines (TNF-α and IL-12). Furthermore, the numbers of IFN-γ+-producing cells were higher, and those of regulatory T cells were lower, in GP4D and GP5D immunized pigs than in control pigs. Thus, plant-derived GP4D and GP5D proteins provide an alternative platform for producing an effective subunit vaccine against PRRSV.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/immunology
- Antigens, Viral/immunology
- Arabidopsis/genetics
- Arabidopsis/metabolism
- Blotting, Western
- Enzyme-Linked Immunosorbent Assay
- Flow Cytometry
- Immunity, Cellular
- Immunity, Humoral
- Leukocytes, Mononuclear/immunology
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Porcine respiratory and reproductive syndrome virus/immunology
- Reverse Transcriptase Polymerase Chain Reaction
- Swine/immunology
- Swine/virology
- Vaccines, Synthetic/biosynthesis
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Chul Han An
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-gil, Jeongeup, Jeonbuk, 56212, Republic of Korea
- Department of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Salik Nazki
- College of Veterinary Medicine and College of Environmental and Biosource Science, Chonbuk National University, Iksan, Jeonbuk, 54596, Republic of Korea
| | - Sung-Chul Park
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-gil, Jeongeup, Jeonbuk, 56212, Republic of Korea
| | - Yu Jeong Jeong
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-gil, Jeongeup, Jeonbuk, 56212, Republic of Korea
| | - Ju Huck Lee
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-gil, Jeongeup, Jeonbuk, 56212, Republic of Korea
| | - Su-Jin Park
- Natural Product Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-gil, Jeongeup, Jeonbuk, 56212, Republic of Korea
| | - Amina Khatun
- College of Veterinary Medicine and College of Environmental and Biosource Science, Chonbuk National University, Iksan, Jeonbuk, 54596, Republic of Korea
| | - Won-Il Kim
- College of Veterinary Medicine and College of Environmental and Biosource Science, Chonbuk National University, Iksan, Jeonbuk, 54596, Republic of Korea
| | - Youn-Il Park
- Department of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jae Cheol Jeong
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-gil, Jeongeup, Jeonbuk, 56212, Republic of Korea.
| | - Cha Young Kim
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-gil, Jeongeup, Jeonbuk, 56212, Republic of Korea.
| |
Collapse
|
9
|
Shahid N, Daniell H. Plant-based oral vaccines against zoonotic and non-zoonotic diseases. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:2079-2099. [PMID: 27442628 PMCID: PMC5095797 DOI: 10.1111/pbi.12604] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 05/10/2023]
Abstract
The shared diseases between animals and humans are known as zoonotic diseases and spread infectious diseases among humans. Zoonotic diseases are not only a major burden to livestock industry but also threaten humans accounting for >60% cases of human illness. About 75% of emerging infectious diseases in humans have been reported to originate from zoonotic pathogens. Because antibiotics are frequently used to protect livestock from bacterial diseases, the development of antibiotic-resistant strains of epidemic and zoonotic pathogens is now a major concern. Live attenuated and killed vaccines are the only option to control these infectious diseases and this approach has been used since 1890. However, major problems with this approach include high cost and injectable vaccines is impractical for >20 billion poultry animals or fish in aquaculture. Plants offer an attractive and affordable platform for vaccines against animal diseases because of their low cost, and they are free of attenuated pathogens and cold chain requirement. Therefore, several plant-based vaccines against human and animals diseases have been developed recently that undergo clinical and regulatory approval. Plant-based vaccines serve as ideal booster vaccines that could eliminate multiple boosters of attenuated bacteria or viruses, but requirement of injectable priming with adjuvant is a current limitation. So, new approaches like oral vaccines are needed to overcome this challenge. In this review, we discuss the progress made in plant-based vaccines against zoonotic or other animal diseases and future challenges in advancing this field.
Collapse
Affiliation(s)
- Naila Shahid
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Henry Daniell
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Global Transcriptomic Analysis of Targeted Silencing of Two Paralogous ACC Oxidase Genes in Banana. Int J Mol Sci 2016; 17:ijms17101632. [PMID: 27681726 PMCID: PMC5085665 DOI: 10.3390/ijms17101632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 08/22/2016] [Accepted: 09/13/2016] [Indexed: 11/26/2022] Open
Abstract
Among 18 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase homologous genes existing in
the banana genome there are two genes, Mh-ACO1 and
Mh-ACO2, that participate in banana fruit ripening. To better
understand the physiological functions of Mh-ACO1 and
Mh-ACO2, two hairpin-type siRNA expression vectors targeting both the
Mh-ACO1 and Mh-ACO2 were constructed and incorporated
into the banana genome by Agrobacterium-mediated transformation. The
generation of Mh-ACO1 and Mh-ACO2 RNAi transgenic banana
plants was confirmed by Southern blot analysis. To gain insights into the functional
diversity and complexity between Mh-ACO1 and Mh-ACO2,
transcriptome sequencing of banana fruits using the Illumina next-generation sequencer was
performed. A total of 32,093,976 reads, assembled into 88,031 unigenes for 123,617
transcripts were obtained. Significantly enriched Gene Oncology (GO) terms and the number
of differentially expressed genes (DEGs) with GO annotation were ‘catalytic
activity’ (1327, 56.4%), ‘heme binding’ (65, 2.76%),
‘tetrapyrrole binding’ (66, 2.81%), and ‘oxidoreductase
activity’ (287, 12.21%). Real-time RT-PCR was further performed with mRNAs from
both peel and pulp of banana fruits in Mh-ACO1 and
Mh-ACO2 RNAi transgenic plants. The results showed that expression
levels of genes related to ethylene signaling in ripening banana fruits were strongly
influenced by the expression of genes associated with ethylene biosynthesis.
Collapse
|
11
|
Merlin M, Pezzotti M, Avesani L. Edible plants for oral delivery of biopharmaceuticals. Br J Clin Pharmacol 2016; 83:71-81. [PMID: 27037892 DOI: 10.1111/bcp.12949] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 03/08/2016] [Accepted: 03/25/2016] [Indexed: 12/22/2022] Open
Abstract
Molecular farming is the use of plants for the production of high value recombinant proteins. Over the last 25 years, molecular farming has achieved the inexpensive, scalable and safe production of pharmaceutical proteins using a range of strategies. One of the most promising approaches is the use of edible plant organs expressing biopharmaceuticals for direct oral delivery. This approach has proven to be efficacious in several clinical vaccination and tolerance induction trials as well as multiple preclinical studies for disease prevention. The production of oral biopharmaceuticals in edible plant tissues could revolutionize the pharmaceutical industry by reducing the cost of production systems based on fermentation, and also eliminating expensive downstream purification, cold storage and transportation costs. This review considers the unique features that make plants ideal as platforms for the oral delivery of protein-based therapeutics and describes recent developments in the production of plant derived biopharmaceuticals for oral administration.
Collapse
Affiliation(s)
- Matilde Merlin
- Department of Biotechnology, University of Verona, Strada Le Grazie, 15, 37 134, Verona, Italy
| | - Mario Pezzotti
- Department of Biotechnology, University of Verona, Strada Le Grazie, 15, 37 134, Verona, Italy
| | - Linda Avesani
- Department of Biotechnology, University of Verona, Strada Le Grazie, 15, 37 134, Verona, Italy
| |
Collapse
|
12
|
The case for plant-made veterinary immunotherapeutics. Biotechnol Adv 2016; 34:597-604. [PMID: 26875776 DOI: 10.1016/j.biotechadv.2016.02.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/14/2016] [Accepted: 02/11/2016] [Indexed: 12/11/2022]
Abstract
The excessive use of antibiotics in food animal production has contributed to resistance in pathogenic bacteria, thereby triggering regulations and consumer demands to limit their use. Alternatives for disease control are therefore required that are cost-effective and compatible with intensive production. While vaccines are widely used and effective, they are available against a minority of animal diseases, and development of novel vaccines and other immunotherapeutics is therefore needed. Production of such proteins recombinantly in plants can provide products that are effective and safe, can be orally administered with minimal processing, and are easily scalable with a relatively low capital investment. The present report thus advocates the use of plants for producing vaccines and antibodies to protect farm animals from diseases that have thus far been managed with antibiotics; and highlights recent advances in product efficacy, competitiveness, and regulatory approval.
Collapse
|
13
|
Uribe-Campero L, Monroy-García A, Durán-Meza AL, Villagrana-Escareño MV, Ruíz-García J, Hernández J, Núñez-Palenius HG, Gómez-Lim MA. Plant-based porcine reproductive and respiratory syndrome virus VLPs induce an immune response in mice. Res Vet Sci 2015; 102:59-66. [PMID: 26412521 DOI: 10.1016/j.rvsc.2015.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 07/10/2015] [Accepted: 07/19/2015] [Indexed: 01/14/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) significantly affects the swine industry worldwide. An efficient, protective vaccine is still lacking. Here, we report for the first time the generation and purification of PRRSV virus like particles (VLPs) by expressing GP5, M and N genes in Nicotiana silvestris plants. The particles were clearly visible by transmission electron microscopy (TEM) with a size of 60-70 nm. Hydrodynamic diameter of the particles was obtained and it was confirmed that the VLPs had the appropriate size for PRRS virions and that the VLPs were highly pure. By measuring the Z potential we described the electrophoretic mobility behavior of VLPs and the best conditions for stability of the VLPs were determined. The particles were immunogenic in mice. A western blot of purified particles allowed detection of three coexpressed genes. These VLPs may serve as a platform to develop efficient PRRSV vaccines.
Collapse
Affiliation(s)
- Laura Uribe-Campero
- Departamento de Ingeniería Genética, CINVESTAV-IPN, Km 9.6 Carretera Irapuato-León, C.P. 36821 Irapuato, Guanajuato, México.
| | - Alberto Monroy-García
- Unidad de Investigación Médica en Enfermedades Oncológicas, IMSS, CMN SXXI, México, D.F., México; Laboratorio de Inmunobiología, Lab, 3PB, Unidad de Investigación en Diferenciación Celular y Cáncer, Facultad de Estudios Superiores Zaragoza, UMIEZ, Campus II, UNAM, Batalla 5 de mayo s/n, Col. E. Oriente, Esquina Fuerte Loreto, Iztapalapa, CP 09230 México, D.F., México.
| | - Ana L Durán-Meza
- Laboratorio de Física Biológica, Instituto de Física, Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, San Luis Potosí, SLP 78000, México.
| | - María V Villagrana-Escareño
- Laboratorio de Física Biológica, Instituto de Física, Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, San Luis Potosí, SLP 78000, México.
| | - Jaime Ruíz-García
- Laboratorio de Física Biológica, Instituto de Física, Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, San Luis Potosí, SLP 78000, México.
| | - Jesús Hernández
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo A.C., Carretera a La Victoria km 0.6, Hermosillo, Sonora C.P. 83304, México.
| | - Héctor G Núñez-Palenius
- División de Ciencias de la Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, Exhacienda El Copal s/n, A.P. 311, Irapuato, Gto. C.P. 36500, México.
| | - Miguel A Gómez-Lim
- Departamento de Ingeniería Genética, CINVESTAV-IPN, Km 9.6 Carretera Irapuato-León, C.P. 36821 Irapuato, Guanajuato, México.
| |
Collapse
|
14
|
Renukaradhya GJ, Meng XJ, Calvert JG, Roof M, Lager KM. Inactivated and subunit vaccines against porcine reproductive and respiratory syndrome: Current status and future direction. Vaccine 2015; 33:3065-72. [PMID: 25980425 DOI: 10.1016/j.vaccine.2015.04.102] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/18/2015] [Accepted: 04/30/2015] [Indexed: 02/07/2023]
Abstract
Within a few years of its emergence in the late 1980s, the PRRS virus had spread globally to become the foremost infectious disease concern for the pork industry. Since 1994, modified live-attenuated vaccines against porcine reproductive and respiratory syndrome virus (PRRSV-MLV) have been widely used, but have failed to provide complete protection against emerging and heterologous field strains of the virus. Moreover, like many other MLVs, PRRSV-MLVs have safety concerns including vertical and horizontal transmission of the vaccine virus and several documented incidences of reversion to virulence. Thus, the development of efficacious inactivated vaccines is warranted for the control and eradication of PRRS. Since the early 1990s, researchers have been attempting to develop inactivated PRRSV vaccines, but most of the candidates have failed to elicit protective immunity even against homologous virus challenge. Recent research findings relating to both inactivated and subunit candidate PRRSV vaccines have shown promise, but they need to be pursued further to improve their heterologous efficacy and cost-effectiveness before considering commercialization. In this comprehensive review, we provide information on attempts to develop PRRSV inactivated and subunit vaccines. These includes various virus inactivation strategies, adjuvants, nanoparticle-based vaccine delivery systems, DNA vaccines, and recombinant subunit vaccines produced using baculovirus, plant, and replication-deficient viruses as vector vaccines. Finally, future directions for the development of innovative non-infectious PRRSV vaccines are suggested. Undoubtedly there remains a need for novel PRRSV vaccine strategies targeted to deliver cross-protective, non-infectious vaccines for the control and eradication of PRRS.
Collapse
Affiliation(s)
- Gourapura J Renukaradhya
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, United States.
| | - Xiang-Jin Meng
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | | | - Michael Roof
- Boehringer Ingelheim Vetmedica, Inc., Ames, IA, United States
| | - Kelly M Lager
- Virology Swine Research Unit, National Animal Disease Center, U.S. Department of Agriculture, Ames, IA, United States.
| |
Collapse
|
15
|
Sack M, Hofbauer A, Fischer R, Stoger E. The increasing value of plant-made proteins. Curr Opin Biotechnol 2015; 32:163-170. [PMID: 25578557 DOI: 10.1016/j.copbio.2014.12.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/07/2014] [Accepted: 12/10/2014] [Indexed: 12/31/2022]
Abstract
The production of high-value proteins in plants is maturing, as shown by the recent approval of innovative products and the latest studies that showcase plant-based production systems using technologies and approaches that are well established in other fields. These include host cell engineering, medium optimization, scalable unit operations for downstream processing (DSP), bioprocess optimization and detailed cost analysis. Product-specific benefits of plant-based systems have also been exploited, including bioencapsulation and the mucosal delivery of minimally processed topical and oral products with a lower entry barrier than pharmaceuticals for injection. Success stories spearheaded by the FDA approval of Elelyso developed by Protalix have revitalized the field and further interest has been fueled by the production of experimental Ebola treatments in plants.
Collapse
Affiliation(s)
- Markus Sack
- Institute for Molecular Biotechnology, RWTH Aachen, Germany
| | - Anna Hofbauer
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Rainer Fischer
- Institute for Molecular Biotechnology, RWTH Aachen, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany
| | - Eva Stoger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria.
| |
Collapse
|
16
|
Hernández M, Rosas G, Cervantes J, Fragoso G, Rosales-Mendoza S, Sciutto E. Transgenic plants: a 5-year update on oral antipathogen vaccine development. Expert Rev Vaccines 2014; 13:1523-36. [PMID: 25158836 DOI: 10.1586/14760584.2014.953064] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The progressive interest in transgenic plants as advantageous platforms for the production and oral delivery of vaccines has led to extensive research and improvements in this technology over recent years. In this paper, the authors examine the most significant advances in this area, including novel approaches for higher yields and better containment, and the continued evaluation of new vaccine prototypes against several infectious diseases. The use of plants to deliver vaccine candidates against viruses, bacteria, and eukaryotic parasites within the last 5 years is discussed, focusing on innovative expression strategies and the immunogenic potential of new vaccines. A brief section on the state of the art in mucosal immunity is also included.
Collapse
Affiliation(s)
- Marisela Hernández
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 México, DF, México
| | | | | | | | | | | |
Collapse
|
17
|
Piron R, De Koker S, De Paepe A, Goossens J, Grooten J, Nauwynck H, Depicker A. Boosting in planta production of antigens derived from the porcine reproductive and respiratory syndrome virus (PRRSV) and subsequent evaluation of their immunogenicity. PLoS One 2014; 9:e91386. [PMID: 24614617 PMCID: PMC3948849 DOI: 10.1371/journal.pone.0091386] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 02/10/2014] [Indexed: 12/22/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a disease of swine, caused by an arterivirus, the PRRS virus (PRRSV). This virus infects pigs worldwide and causes huge economic losses. Due to genetic drift, current vaccines are losing their power. Adaptable vaccines could provide a solution to this problem. This study aims at producing in planta a set of antigens derived from the PRRSV glycoproteins (GPs) to be included in a subunit vaccine. We selected the GP3, GP4 and GP5 and optimized these for production in an Arabidopsis seed platform by removing transmembrane domains (Tm) and/or adding stabilizing protein domains, such as the green fluorescent protein (GFP) and immunoglobulin (IgG) ‘Fragment crystallizable’ (Fc) chains. Accumulation of the GPs with and without Tm was low, reaching no more than 0.10% of total soluble protein (TSP) in homozygous seed. However, addition of stabilizing domains boosted accumulation up to a maximum of 2.74% of TSP when GFP was used, and albeit less effectively, also the Fc chains of the porcine IgG3 and murine IgG2a increased antigen accumulation, to 0.96% and 1.81% of TSP respectively, while the murine IgG3 Fc chain did not. Antigens with Tm were less susceptible to these manipulations to increase yield. All antigens were produced in the endoplasmic reticulum and accordingly, they carried high-mannose N-glycans. The immunogenicity of several of those antigens was assessed and we show that vaccination with purified antigens did elicit the production of antibodies with virus neutralizing activity in mice but not in pigs.
Collapse
Affiliation(s)
- Robin Piron
- Department of Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Stefaan De Koker
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Annelies De Paepe
- Department of Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Julie Goossens
- Department of Bioscience Engineering, VUB, Brussels, Belgium
| | - Johan Grooten
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Hans Nauwynck
- Department of Virology, Parasitology and Immunology, Ghent University, Ghent, Belgium
| | - Ann Depicker
- Department of Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- * E-mail:
| |
Collapse
|