1
|
Wang Z, Zhang T, Xu X. The h4 coil surface region of human papillomavirus type 58 L1 virus-like particle serves as a potential location for presenting the RG1 epitope peptide. Hum Vaccin Immunother 2025; 21:2477966. [PMID: 40170153 PMCID: PMC11970789 DOI: 10.1080/21645515.2025.2477966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/03/2025] [Accepted: 03/07/2025] [Indexed: 04/03/2025] Open
Abstract
The licensed prophylactic human papillomavirus (HPV) vaccines, based on L1 virus-like particles (VLPs), effectively prevent infection and HPV-associated cancers caused by the vaccine types but offer limited protection against non-vaccine types. L2 N-terminal peptides, such as the RG1 epitope peptide, contain conserved cross-neutralizing epitopes, and their immunogenicity could be enhanced via display on the surface of L1VLPs. To our knowledge, there have been no reports on the construction and immunogenicity research of chimeric L1-L2 proteins based on HPV58 L1VLP, the third most prevalent high-risk type in Asia. Here, we inserted the RG1 epitope peptides at two sites of the highly expressed HPV58 L1 - the h4 coil region or the DE loop (with linkers) - to construct seven chimeras. These chimeras were expressed in insect cells, self-assembled into chimeric VLPs (cVLPs), and their immunogenicity was assessed in a mouse model. Notably, three cVLPs with h4 coil insertions elicited comparable levels of L1-specific antibody response in mice to the L1VLP control and induced cross-neutralizing antibody responses against fourteen pseudoviruses. Conversely, four cVLPs with DE loop insertions induced significantly lower L1-specific antibody titers compared with the L1VLP control (p < .001). This might be attributed to the disruption or obstruction of neutralizing epitope(s) targeted by HPV58-specific conformation-dependent monoclonal antibodies, caused by the sequence insertions. Our findings suggest that the h4 coil region of HPV58 L1VLP might be a potential location for RG1 epitope display, guiding the presentation of heterologous epitopes to develop chimeric HPV58 L1VLP-based vaccines.
Collapse
Affiliation(s)
- Zhirong Wang
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Ting Zhang
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xuemei Xu
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Ren M, Abdullah SW, Pei C, Guo H, Sun S. Use of virus-like particles and nanoparticle-based vaccines for combating picornavirus infections. Vet Res 2024; 55:128. [PMID: 39350170 PMCID: PMC11443892 DOI: 10.1186/s13567-024-01383-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/15/2024] [Indexed: 10/04/2024] Open
Abstract
Picornaviridae are non-enveloped ssRNA viruses that cause diseases such as poliomyelitis, hand-foot-and-mouth disease (HFMD), hepatitis A, encephalitis, myocarditis, and foot-and-mouth disease (FMD). Virus-like particles (VLPs) vaccines mainly comprise particles formed through the self-assembly of viral capsid proteins (for enveloped viruses, envelope proteins are also an option). They do not contain the viral genome. On the other hand, the nanoparticles vaccine (NPs) is mainly composed of self-assembling biological proteins or nanomaterials, with viral antigens displayed on the surface. The presentation of viral antigens on these particles in a repetitive array can elicit a strong immune response in animals. VLPs and NPs can be powerful platforms for multivalent antigen presentation. This review summarises the development of virus-like particle vaccines (VLPs) and nanoparticle vaccines (NPs) against picornaviruses. By detailing the progress made in the fight against various picornaviruses such as poliovirus (PV), foot-and-mouth disease virus (FMDV), enterovirus (EV), Senecavirus A (SVA), and encephalomyocarditis virus (EMCV), we in turn highlight the significant strides made in vaccine technology. These advancements include diverse construction methods, expression systems, elicited immune responses, and the use of various adjuvants. We see promising prospects for the continued development and optimisation of VLPs and NPs vaccines. Future research should focus on enhancing these vaccines' immunogenicity, stability, and delivery methods. Moreover, expanding our understanding of the interplay between these vaccines and the immune system will be crucial. We hope these insights will inspire and guide fellow researchers in the ongoing quest to combat picornavirus infections more effectively.
Collapse
Affiliation(s)
- Mei Ren
- State Key Laboratory for Animal Disease Control and Prevention, CollegeofVeterinaryMedicine, Lanzhou UniversityLanzhou Veterinary Research InstituteChinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gembloux Agro-Biotech, University of Liege, Gembloux, Belgium
| | - Sahibzada Waheed Abdullah
- Livestock and dairy development department peshawar, Government of Khyber Pakhtunkhwa, Peshawar, Pakistan
| | - Chenchen Pei
- State Key Laboratory for Animal Disease Control and Prevention, CollegeofVeterinaryMedicine, Lanzhou UniversityLanzhou Veterinary Research InstituteChinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Huichen Guo
- State Key Laboratory for Animal Disease Control and Prevention, CollegeofVeterinaryMedicine, Lanzhou UniversityLanzhou Veterinary Research InstituteChinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Shiqi Sun
- State Key Laboratory for Animal Disease Control and Prevention, CollegeofVeterinaryMedicine, Lanzhou UniversityLanzhou Veterinary Research InstituteChinese Academy of Agricultural Sciences, Lanzhou, 730000, China.
| |
Collapse
|
3
|
Song SJ, Diao HP, Guo YF, Hwang I. Advances in Subcellular Accumulation Design for Recombinant Protein Production in Tobacco. BIODESIGN RESEARCH 2024; 6:0047. [PMID: 39206181 PMCID: PMC11350518 DOI: 10.34133/bdr.0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Plants and their use as bioreactors for the generation of recombinant proteins have become one of the hottest topics in the field of Plant Biotechnology and Plant Synthetic Biology. Plant bioreactors offer superior engineering potential compared to other types, particularly in the realm of subcellular accumulation strategies for increasing production yield and quality. This review explores established and emerging strategies for subcellular accumulation of recombinant proteins in tobacco bioreactors, highlighting recent advancements in the field. Additionally, the review provides reference to the crucial initial step of selecting an optimal subcellular localization for the target protein, a design that substantially impacts production outcomes.
Collapse
Affiliation(s)
- Shi-Jian Song
- Tobacco Research Institute,
Chinese Academy of Agricultural Sciences, Qingdao, China
- Beijing Life Science Academy (BLSA), Beijing, China
| | - Hai-Ping Diao
- Tobacco Research Institute,
Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yong-Feng Guo
- Tobacco Research Institute,
Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Inhwan Hwang
- Department of Life Science,
Pohang University of Science and Technology, Pohang, Republic of Korea
- BioApplications Inc., Pohang, Republic of Korea
| |
Collapse
|
4
|
Muthamilselvan T, Khan MRI, Hwang I. Assembly of Human Papillomavirus 16 L1 Protein in Nicotiana benthamiana Chloroplasts into Highly Immunogenic Virus-Like Particles. JOURNAL OF PLANT BIOLOGY = SINGMUL HAKHOE CHI 2023; 66:1-10. [PMID: 37360984 PMCID: PMC10078042 DOI: 10.1007/s12374-023-09393-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/05/2023] [Accepted: 03/17/2023] [Indexed: 06/28/2023]
Abstract
Infection with human papillomavirus (HPV) can cause cervical cancers in women, and vaccination against the virus is one of most effective ways to prevent these cancers. Two vaccines made of virus-like particles (VLPs) of HPV L1 proteins are currently commercially available. However, these HPV vaccines are highly expensive, and thus not affordable for women living in developing countries. Therefore, great demand exists to produce a cost-effective vaccine. Here, we investigate the production of self-assembled HPV16 VLPs in plants. We generated a chimeric protein composed of N-terminal 79 amino acid residues of RbcS as a long-transit peptide to target chloroplasts, the SUMO domain, and HPV16 L1 proteins. The chimeric gene was expressed in plants with chloroplast-targeted bdSENP1, a protein that specifically recognizes the SUMO domain and cleaves its cleavage site. This co-expression of bdSENP1 led to the release of HPV16 L1 from the chimeric proteins without any extra amino acid residues. HPV16 L1 purified by heparin chromatography formed VLPs that mimicked native virions. Moreover, the plant-produced HPV16 L1 VLPs elicited strong immune responses in mice without adjuvants. Thus, we demonstrated the cost-effective production of HPV16 VLPs in plants. Supplementary Information The online version contains supplementary material available at 10.1007/s12374-023-09393-6.
Collapse
Affiliation(s)
| | - Md Rezaul Islam Khan
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673 Korea
| | - Inhwan Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673 Korea
| |
Collapse
|
5
|
Harnessing the Potential of Plant Expression System towards the Production of Vaccines for the Prevention of Human Papillomavirus and Cervical Cancer. Vaccines (Basel) 2022; 10:vaccines10122064. [PMID: 36560473 PMCID: PMC9782824 DOI: 10.3390/vaccines10122064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Cervical cancer is the most common gynecological malignant tumor worldwide, and it remains a major health problem among women, especially in developing countries. Despite the significant research efforts employed for tumor prevention, cervical cancer ranks as the leading cause of cancer death. Human papillomavirus (HPV) is the most important risk factor for cervical cancer. Cervical cancer is a preventable disease, for which early detection could increase survival rates. Immunotherapies represent a promising approach in the treatment of cancer, and several potential candidates are in clinical trials, while some are available in the market. However, equal access to available HPV vaccines is limited due to their high cost, which remains a global challenge for cervical cancer prevention. The implementation of screening programs, disease control systems, and medical advancement in developed countries reduce the serious complications associated with the disease somewhat; however, the incidence and prevalence of cervical cancer in low-income and middle-income countries continues to gradually increase, making it the leading cause of mortality, largely due to the unaffordable and inaccessible anti-cancer therapeutic options. In recent years, plants have been considered as a cost-effective production system for the development of vaccines, therapeutics, and other biopharmaceuticals. Several proof-of-concept studies showed the possibility of producing recombinant biopharmaceuticals for cancer immunotherapy in a plant platform. This review summarizes the current knowledge and therapeutic options for the prevention of cervical cancer and discusses the potential of the plant expression platform to produce affordable HPV vaccines.
Collapse
|
6
|
Rahimian N, Miraei HR, Amiri A, Ebrahimi MS, Nahand JS, Tarrahimofrad H, Hamblin MR, Khan H, Mirzaei H. Plant-based vaccines and cancer therapy: Where are we now and where are we going? Pharmacol Res 2021; 169:105655. [PMID: 34004270 DOI: 10.1016/j.phrs.2021.105655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 10/21/2022]
Abstract
Therapeutic vaccines are an effective approach in cancer therapy for treating the disease at later stages. The Food and Drug Administration (FDA) recently approved the first therapeutic cancer vaccine, and further studies are ongoing in clinical trials. These are expected to result in the future development of vaccines with relatively improved efficacy. Several vaccination approaches are being studied in pre-clinical and clinical trials, including the generation of anti-cancer vaccines by plant expression systems.This approach has advantages, such as high safety and low costs, especially for the synthesis of recombinant proteins. Nevertheless, the development of anti-cancer vaccines in plants is faced with some technical obstacles.Herein, we summarize some vaccines that have been used in cancer therapy, with an emphasis on plant-based vaccines.
Collapse
Affiliation(s)
- Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Hamid Reza Miraei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Atefeh Amiri
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashahd, Iran
| | | | - Javid Sadri Nahand
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Tarrahimofrad
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 20282028, South Africa
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
7
|
Namvar A, Bolhassani A, Javadi G, Noormohammadi Z. Combination of human papillomaviruses L1 and L2 multiepitope constructs protects mice against tumor cells. Fundam Clin Pharmacol 2021; 35:1055-1068. [PMID: 33930201 DOI: 10.1111/fcp.12690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 01/22/2023]
Abstract
Different types of cancer including cervical (>90%), anal (~88%), vaginal (~40%), and penile (~40%) cancers are associated with human papillomaviruse (HPV) infections. Three prophylactic vaccines (Cervarix, Gardasil, and Gardasil-9) were approved to provide immuno-protection against certain types of HPVs. Currently, next-generation HPV vaccines such as L1/L2-based vaccines are being developed to provide broad-type HPV protection. In this study, we introduced a comprehensive framework for design of L1/L2 polyepitope-based HPV vaccine candidate. This framework started with protein sequence retrieval and followed by conservancy analysis between high-risk HPVs, MHC-I and MHC-II epitope mapping, and B-cell and T-cell epitope mapping. Subsequently, we performed Tap transport and proteasomal cleavage, population coverage, antigenicity, allergenicity and cross-reactivity. After that, peptide-MHCI/II flexible docking and comprehensive conservancy analysis against all HPV types were carried out. The next steps were prediction of interferon-gamma and interleukin-10 inducing epitopes, epitope selection and construct design, tertiary structure prediction, refinement and validation, discontinuous B-cell epitope prediction, vaccine-TLR4 molecular docking, and codon optimization. Our data showed that two designed vaccine constructs harboring 8 L1 peptides or 7 L2 peptides, individually were highly conserved between all well-known HPV types. In addition, the combination of in silico/in vivo approaches indicated the potential ability of L1 and L2 polyepitope constructs for development of next generation prophylactic/therapeutic HPV vaccine.
Collapse
Affiliation(s)
- Ali Namvar
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Gholamreza Javadi
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zahra Noormohammadi
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
8
|
Huber B, Wang JW, Roden RBS, Kirnbauer R. RG1-VLP and Other L2-Based, Broad-Spectrum HPV Vaccine Candidates. J Clin Med 2021; 10:1044. [PMID: 33802456 PMCID: PMC7959455 DOI: 10.3390/jcm10051044] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/19/2022] Open
Abstract
Licensed human papillomavirus (HPV) vaccines contain virus-like particles (VLPs) self-assembled from L1 major-capsid proteins that are remarkably effective prophylactic immunogens. However, the induced type-restricted immune response limits coverage to the included vaccine types, and costly multiplex formulations, restrictive storage and distribution conditions drive the need for next generation HPV vaccines. Vaccine candidates based upon the minor structural protein L2 are particularly promising because conserved N-terminal epitopes induce broadly cross-type neutralizing and protective antibodies. Several strategies to increase the immunological potency of such epitopes are being investigated, including concatemeric multimers, fusion to toll-like receptors ligands or T cell epitopes, as well as immunodominant presentation by different nanoparticle or VLP structures. Several promising L2-based vaccine candidates have reached or will soon enter first-in-man clinical studies. RG1-VLP present the HPV16L2 amino-acid 17-36 conserved neutralization epitope "RG1" repetitively and closely spaced on an immunodominant surface loop of HPV16 L1-VLP and small animal immunizations provide cross-protection against challenge with all medically-significant high-risk and several low-risk HPV types. With a successful current good manufacturing practice (cGMP) campaign and this promising breadth of activity, even encompassing cross-neutralization of several cutaneous HPV types, RG1-VLP are ready for a first-in-human clinical study. This review aims to provide a general overview of these candidates with a special focus on the RG1-VLP vaccine and its road to the clinic.
Collapse
Affiliation(s)
- Bettina Huber
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Joshua Weiyuan Wang
- Department of Pathology, The Johns Hopkins University, Baltimore, MD 21218, USA; (J.W.W.); (R.B.S.R.)
- PathoVax LLC, Baltimore, MD 21205, USA
| | - Richard B. S. Roden
- Department of Pathology, The Johns Hopkins University, Baltimore, MD 21218, USA; (J.W.W.); (R.B.S.R.)
- Department of Gynecology and Obstetrics, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Oncology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Reinhard Kirnbauer
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
9
|
Naupu PN, van Zyl AR, Rybicki EP, Hitzeroth II. Immunogenicity of Plant-Produced Human Papillomavirus (HPV) Virus-Like Particles (VLPs). Vaccines (Basel) 2020; 8:vaccines8040740. [PMID: 33291259 PMCID: PMC7762164 DOI: 10.3390/vaccines8040740] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/16/2020] [Accepted: 11/29/2020] [Indexed: 12/14/2022] Open
Abstract
Cervical cancer is ranked fourth among the top cancers in women and is the second most common cancer in low- and middle-income regions, with ~570,000 new cases reported in 2018, which attributed to 84% of worldwide cervical cancer cases. Three commercially available prophylactic Human papillomavirus (HPV) vaccines are effective at preventing HPV infections. However, these vaccines are expensive due to their complex production systems, therefore limiting their use in developing countries. Recently, the use of plants to produce vaccines has emerged as a cost-effective alternative to conventionally used expression systems. Here, L1 proteins of eight high-risk (HPV 16, 18, 31, 33, 35, 45, 52, and 58) and two low risk (HPV 6 and 34) HPV types were successfully expressed in Nicotiana benthamiana, and transmission electron microscopy (TEM) analysis showed the presence of VLPs and/or capsomeres. Immunogenicity studies were conducted in mice utilizing HPV 35, 52, and 58 and showed that type-specific L1-specific antibodies were produced which were able to successfully neutralize homologous HPV pseudovirions in pseudovirion-based neutralization assays (PBNAs). This work demonstrated the potential for using plant-based transient expression systems to produce affordable and immunogenic HPV vaccines, particularly for developing countries.
Collapse
Affiliation(s)
- Paulina N. Naupu
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa; (P.N.N.); (E.P.R.); (I.I.H.)
| | - Albertha R. van Zyl
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa; (P.N.N.); (E.P.R.); (I.I.H.)
- Correspondence: ; Tel.: +27-21-650-5232
| | - Edward P. Rybicki
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa; (P.N.N.); (E.P.R.); (I.I.H.)
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Inga I. Hitzeroth
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa; (P.N.N.); (E.P.R.); (I.I.H.)
| |
Collapse
|
10
|
Khalid F, Siddique A, Siddiqui JA, Panhwar G, Singh S, Anwar A, Hashmi AA. Correlation Between Body Mass Index and Blood Pressure Levels Among Hypertensive Patients: A Gender-Based Comparison. Cureus 2020; 12:e10974. [PMID: 33101788 PMCID: PMC7575319 DOI: 10.7759/cureus.10974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Objective Blood pressure (BP) has been found to rise among populations due to the high body mass index (BMI). Overweight and persons who have high BP are prone to develop heart diseases. The objective of this study was to evaluate the correlation between BMI and BP among hypertensive patients in both males and females aged 18 years and above. Methodology A cross-sectional study was carried out among patients with a self-reported history of hypertension and anti-hypertensive medication. After taking ethical approval, a total of 337 patients aged 18 or above were selected by using convenience sampling. The duration of the study was six months. A detailed history was taken from each patient about hypertension associated symptoms with the help of a self-designed questionnaire. The BMI of the patients was assessed. Statistical Package for Social Sciences (SPSS) Version 20.0 (IBM Corp., Armonk, NY, USA) was used to analyze the collected data. Spearman correlation was used, and p-value <0.05 was considered significant. Results In a total of 337 patients, the mean age of the patients was 45.87±13.38 years. In which 176 (52.2%) were males and 161 (47.8%) were females. Their mean BMI level was 26.83±5.83 kg/m2, and the mean systolic blood pressure level was 141.78±13.00 mm Hg whereas the diastolic blood pressure was 85.21±10.03 mm Hg. The results also showed that among males the BMI had a significant negative correlation with both systolic blood pressure level (ρ = -0.212, p = 0.011) and diastolic blood pressure level (ρ = -0.208, p = 0.013), while in females the correlation was insignificant. Conclusion Our study results concluded that the BMI of the patients had a significant weak negative correlation with both systolic blood pressure level and diastolic blood pressure level in males; however, no significant correlation was found in females.
Collapse
Affiliation(s)
- Faran Khalid
- Internal Medicine, Dow University Hospital, Dow University of Health Sciences, Karachi, PAK
| | | | - Jamil Ahmed Siddiqui
- Biochemistry, Fazaia Ruth Pfau Medical College, Karachi, PAK.,Biochemistry, Al-Tibri Medical College, Karachi, PAK
| | - Ghazala Panhwar
- Biochemistry, Al-Tibri Medical College and Hospital, Karachi, PAK
| | - Simran Singh
- Internal Medicine, Jinnah Sindh Medical University, Karachi, PAK
| | - Adnan Anwar
- Physiology, Al-Tibri Medical College, Karachi, PAK.,Stereotactic Radiosurgery/Radiation Oncology, Al-Tibri Medical College, Karachi, PAK
| | - Atif A Hashmi
- Pathology, Liaquat National Hospital and Medical College, Karachi, PAK
| |
Collapse
|
11
|
Saylor K, Waldman A, Gillam F, Zhang C. Multi-epitope insert modulates solubility-based and chromatographic purification of human papilloma virus 16 L1-based vaccine without inhibiting virus-like particle assembly. J Chromatogr A 2020; 1631:461567. [PMID: 32980800 DOI: 10.1016/j.chroma.2020.461567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 11/18/2022]
Abstract
The separation of heterogeneous protein mixtures has always been characterized by a trade-off between purity and yield. One way this issue has been addressed in the past is by recombinantly modifying protein to improve separations. Such modifications are mostly employed in the form of tags used specifically for affinity chromatography, though it is also possible to make changes to a protein that will have a sizeable impact on its hydrophobicity and charge/charge distribution. As such, it should also be possible to use protein tags to modulate phase separations and protein-resin binding kinetics when performing ion exchange chromatography. Here, we employed a three-step purification scheme on E. coli expressed, His-tagged, human papilloma virus 16 L1-based recombinant proteins (rHPV 16 L1) that consisted of an inclusion body (IB) wash step, a diethylaminoethyl (DEAE) anion exchange chromatography (AEX) step, and an immobilized metal affinity chromatography (IMAC) polishing step. Purification of the wild type rHPV 16 L1 protein (WT) was characterized by substantial losses during the IB wash but relatively high yield over the DEAE column. In contrast, purification of modified rHPV 16 L1, a chimeric version of the WT protein that had the last 34 amino acids replaced with an MHC class II multi-epitope insert derived from tetanus toxin and diphtheria toxin (WTΔC34-2TEp), was characterized by little to no losses in the IB wash but had a relatively low yield over the DEAE column. Since the fate of these proteins was to be used in vaccine formulations, it is important to note that the modifications made to the WTΔC34-2TEp protein had little to no effect on its ability to assemble into virus-like particles (VLPs). These results demonstrate that modifications of the WT protein via the recombinant insertion of immunofunctional polypeptides can modulate both phase-based separation and charge-based chromatographic processes. Additionally, incorporation of the specific, multi-epitope tag used in this study may prove to be beneficial in recombinant HPV vaccine development due to its potential to improve phase separation yield and vaccine immunogenicity without inhibiting VLP formation.
Collapse
Affiliation(s)
- Kyle Saylor
- Biological Systems Engineering, Virginia Tech, Blacksburg, VA, United States.
| | - Alison Waldman
- Biological Systems Engineering, Virginia Tech, Blacksburg, VA, United States; Chemical and Biomolecular Engineering, NC State, Raleigh, NC, United States.
| | - Frank Gillam
- Biological Systems Engineering, Virginia Tech, Blacksburg, VA, United States; Locus Biosciences, Morrisville, NC, United States.
| | - Chenming Zhang
- Biological Systems Engineering, Virginia Tech, Blacksburg, VA, United States.
| |
Collapse
|
12
|
In silico/In vivo analysis of high-risk papillomavirus L1 and L2 conserved sequences for development of cross-subtype prophylactic vaccine. Sci Rep 2019; 9:15225. [PMID: 31645650 PMCID: PMC6811573 DOI: 10.1038/s41598-019-51679-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 10/07/2019] [Indexed: 12/13/2022] Open
Abstract
Human papillomavirus (HPV) is the most common sexually transmitted infection in the world and the main cause of cervical cancer. Nowadays, the virus-like particles (VLPs) based on L1 proteins have been considered as the best candidate for vaccine development against HPV infections. Two commercial HPV (Gardasil and Cervarix) are available. These HPV VLP vaccines induce genotype-limited protection. The major impediments such as economic barriers especially gaps in financing obstructed the optimal delivery of vaccines in developing countries. Thus, many efforts are underway to develop the next generation of vaccines against other types of high-risk HPV. In this study, we developed DNA constructs (based on L1 and L2 genes) that were potentially immunogenic and highly conserved among the high-risk HPV types. The framework of analysis include (1) B-cell epitope mapping, (2) T-cell epitope mapping (i.e., CD4+ and CD8+ T cells), (3) allergenicity assessment, (4) tap transport and proteasomal cleavage, (5) population coverage, (6) global and template-based docking, and (7) data collection, analysis, and design of the L1 and L2 DNA constructs. Our data indicated the 8-epitope candidates for helper T-cell and CTL in L1 and L2 sequences. For the L1 and L2 constructs, combination of these peptides in a single universal vaccine could involve all world population by the rate of 95.55% and 96.33%, respectively. In vitro studies showed high expression rates of multiepitope L1 (~57.86%) and L2 (~68.42%) DNA constructs in HEK-293T cells. Moreover, in vivo studies indicated that the combination of L1 and L2 DNA constructs without any adjuvant or delivery system induced effective immune responses, and protected mice against C3 tumor cells (the percentage of tumor-free mice: ~66.67%). Thus, the designed L1 and L2 DNA constructs would represent promising applications for HPV vaccine development.
Collapse
|
13
|
Meng JW, Song JH. Association between interleukin-2, interleukin-10, secretory immunoglobulin A and immunoglobulin G expression in vaginal fluid and human papilloma virus outcome in patients with cervical lesions. Oncol Lett 2019; 18:5543-5548. [PMID: 31612062 DOI: 10.3892/ol.2019.10897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 11/21/2017] [Indexed: 11/06/2022] Open
Abstract
The present study was designed to investigate the association between a change in vaginal local immunity and human papilloma virus (HPV) infection outcome in patients with cervical lesions, through the study of the expression of vaginal local immune factors, interleukin (IL)-2, IL-10, secretory immunoglobulin A (sIgA) and IgG, in patients with different grades of cervical lesions and different degrees of cervical lesions caused by HPV infection prior to and following treatment. The experimental group comprised 136 patients with low-grade squamous intraepithelial lesions, 236 patients with high-grade squamous intraepithelial lesions and 133 patients with cervical squamous cell carcinoma, while the control group comprised 100 time- and location-matched healthy women. The concentrations of sIgA, IgG, IL-2 and IL-10 in the vaginal lavage fluid, were detected using ELISA prior to treatment and at 3, 6 and 12 months after treatment. Prior to treatment, differences in HPV infection rate and changes in vaginal immune factors between patients with all grades of lesions and controls were statistically significant (P<0.05). Furthermore, IL-2 and IL-10 expression levels and the IL-2/IL-10 ratio in patients with different grades of lesions, with or without seroconversion, were significantly different to those in controls (P<0.05). However, the differences between changes in IgG and sIgA expression between patients with HPV seroconversion and patients with persistent HPV infection were not statistically significant (P>0.05). The results of the present study suggest that the restoration of humoral immune function promotes HPV seroconversion, and that IL-2 and IL-10 levels and their ratio may reflect the severity of cervical lesions and treatment effects to a certain extent.
Collapse
Affiliation(s)
- Jing-Wei Meng
- Department of Graduate School, Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| | - Jing-Hui Song
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| |
Collapse
|
14
|
Zhuang J, Holay M, Park JH, Fang RH, Zhang J, Zhang L. Nanoparticle Delivery of Immunostimulatory Agents for Cancer Immunotherapy. Theranostics 2019; 9:7826-7848. [PMID: 31695803 PMCID: PMC6831474 DOI: 10.7150/thno.37216] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 06/26/2019] [Indexed: 02/07/2023] Open
Abstract
Immunostimulatory agents, including adjuvants, cytokines, and monoclonal antibodies, hold great potential for the treatment of cancer. However, their direct administration often results in suboptimal pharmacokinetics, vulnerability to biodegradation, and compromised targeting. More recently, encapsulation into biocompatible nanoparticulate carriers has become an emerging strategy for improving the delivery of these immunotherapeutic agents. Such approaches can address many of the challenges facing current treatment modalities by endowing additional protection and significantly elevating the bioavailability of the encapsulated payloads. To further improve the delivery efficiency and subsequent immune responses associated with current nanoscale approaches, biomimetic modifications and materials have been employed to create delivery platforms with enhanced functionalities. By leveraging nature-inspired design principles, these biomimetic nanodelivery vehicles have the potential to alter the current clinical landscape of cancer immunotherapy.
Collapse
Affiliation(s)
- Jia Zhuang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Maya Holay
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Joon Ho Park
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Ronnie H. Fang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Jie Zhang
- Cello Therapeutics, Inc., San Diego, CA 92121, USA
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
15
|
Rybicki EP. Plant molecular farming of virus‐like nanoparticles as vaccines and reagents. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1587. [DOI: 10.1002/wnan.1587] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/23/2019] [Accepted: 07/31/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Edward P. Rybicki
- Biopharming Research Unit, Department of Molecular & Cell Biology University of Cape Town Cape Town South Africa
| |
Collapse
|
16
|
Muthamilselvan T, Kim JS, Cheong G, Hwang I. Production of recombinant proteins through sequestration in chloroplasts: a strategy based on nuclear transformation and post-translational protein import. PLANT CELL REPORTS 2019; 38:825-833. [PMID: 31139894 DOI: 10.1007/s00299-019-02431-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/06/2019] [Accepted: 05/21/2019] [Indexed: 05/17/2023]
Abstract
Recently, plants have emerged as a lucrative alternative system for the production of recombinant proteins, as recombinant proteins produced in plants are safer and cheaper than those produced in bacteria and animal cell-based production systems. To obtain high yields in plants, recombinant proteins are produced in chloroplasts using different strategies. The first strategy is based on chloroplast transformation, followed by gene expression and translation in chloroplasts. This has proven to be a powerful approach for the production of proteins at high levels. The second approach is based on nuclear transformation, followed by post-translational import of proteins from the cytosol into chloroplasts. In the nuclear transformation approach, foreign genes are stably integrated into the nuclear genome or transiently expressed in the nucleus by non-integrating T-DNA. Although this approach also has great potential for protein production at high levels, it has not been thoroughly investigated. In this review, we focus on nuclear transformation-based protein expression and its subsequent sequestration in chloroplasts, and summarize the different strategies used for high-level production of recombinant proteins. We also discuss future directions for further improvements in protein production in chloroplasts through nuclear transformation-based gene expression.
Collapse
Affiliation(s)
- Thangarasu Muthamilselvan
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, South Korea
| | - Jung Sun Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, South Korea
| | - Gangwon Cheong
- Department of Life Science, Gyeongsang National University, Jinju, South Korea
| | - Inhwan Hwang
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, South Korea.
| |
Collapse
|
17
|
Chabeda A, van Zyl AR, Rybicki EP, Hitzeroth II. Substitution of Human Papillomavirus Type 16 L2 Neutralizing Epitopes Into L1 Surface Loops: The Effect on Virus-Like Particle Assembly and Immunogenicity. FRONTIERS IN PLANT SCIENCE 2019; 10:779. [PMID: 31281327 PMCID: PMC6597877 DOI: 10.3389/fpls.2019.00779] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/28/2019] [Indexed: 05/19/2023]
Abstract
Cervical cancer caused by infection with human papillomaviruses (HPVs) is the fourth most common cancer in women globally, with the burden mainly in developing countries due to limited healthcare resources. Current vaccines based on virus-like particles (VLPs) assembled from recombinant expression of the immunodominant L1 protein are highly effective in the prevention of cervical infection; however, these vaccines are expensive and type-specific. Therefore, there is a need for more broadly protective and affordable vaccines. The HPV-16 L2 peptide sequences 108-120, 65-81, 56-81, and 17-36 are highly conserved across several HPV types and have been shown to elicit cross-neutralizing antibodies. To increase L2 immunogenicity, L1:L2 chimeric VLPs (cVLP) vaccine candidates were developed. The four L2 peptides mentioned above were substituted into the DE loop of HPV-16 L1 at position 131 (SAC) or in the C-terminal region at position 431 (SAE) to generate HPV-16-derived L1:L2 chimeras. All eight chimeras were transiently expressed in Nicotiana benthamiana via Agrobacterium tumefaciens-mediated DNA transfer. SAC chimeras predominantly assembled into higher order structures (T = 1 and T = 7 VLPs), whereas SAE chimeras assembled into capsomeres or formed aggregates. Four SAC and one SAE chimeras were used in vaccination studies in mice, and their ability to generate cross-neutralizing antibodies was analyzed in HPV pseudovirion-based neutralization assays. Of the seven heterologous HPVs tested, cross-neutralization with antisera specific to chimeras was observed for HPV-11 (SAE 65-18), HPV-18 (SAC 108-120, SAC 65-81, SAC 56-81, SAE 65-81), and HPV-58 (SAC 108-120). Interestingly, only anti-SAE 65-81 antiserum showed neutralization of homologous HPV-16, suggesting that the position of the L2 epitope display is critical for maintaining L1-specific neutralizing epitopes.
Collapse
Affiliation(s)
- Aleyo Chabeda
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Albertha R. van Zyl
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Edward P. Rybicki
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Inga I. Hitzeroth
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
18
|
Dadar M, Chakraborty S, Dhama K, Prasad M, Khandia R, Hassan S, Munjal A, Tiwari R, Karthik K, Kumar D, Iqbal HMN, Chaicumpa W. Advances in Designing and Developing Vaccines, Drugs and Therapeutic Approaches to Counter Human Papilloma Virus. Front Immunol 2018; 9:2478. [PMID: 30483247 PMCID: PMC6240620 DOI: 10.3389/fimmu.2018.02478] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 10/08/2018] [Indexed: 02/05/2023] Open
Abstract
Human papillomavirus (HPV) is a viral infection with skin-to-skin based transmission mode. HPV annually caused over 500,000 cancer cases including cervical, anogenital and oropharyngeal cancer among others. HPV vaccination has become a public-health concern, worldwide, to prevent the cases of HPV infections including precancerous lesions, cervical cancers, and genital warts especially in adolescent female and male population by launching national programs with international alliances. Currently, available prophylactic and therapeutic vaccines are expensive to be used in developing countries for vaccination programs. The recent progress in immunotherapy, biotechnology, recombinant DNA technology and molecular biology along with alternative and complementary medicinal systems have paved novel ways and valuable opportunities to design and develop effective prophylactic and therapeutic vaccines, drugs and treatment approach to counter HPV effectively. Exploration and more researches on such advances could result in the gradual reduction in the incidences of HPV cases across the world. The present review presents a current global scenario and futuristic prospects of the advanced prophylactic and therapeutic approaches against HPV along with recent patents coverage of the progress and advances in drugs, vaccines and therapeutic regimens to effectively combat HPV infections and its cancerous conditions.
Collapse
Affiliation(s)
- Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, West Tripura, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Minakshi Prasad
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar, India
| | - Rekha Khandia
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Sameer Hassan
- Department of Biomedical Informatics, National Institute for Research in Tuberculosis, Indian Council of Medical Research, Chennai, India
| | - Ashok Munjal
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, U P Pt. Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan, Mathura, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Deepak Kumar
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| | - Wanpen Chaicumpa
- Department of Parasitology, Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Faculty of Medicine SIriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
19
|
Wang A, Li N, Zhou J, Chen Y, Jiang M, Qi Y, Liu H, Liu Y, Liu D, Zhao J, Wang Y, Zhang G. Mapping the B cell epitopes within the major capsid protein L1 of human papillomavirus type 16. Int J Biol Macromol 2018; 118:1354-1361. [DOI: 10.1016/j.ijbiomac.2018.06.094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 04/13/2018] [Accepted: 06/20/2018] [Indexed: 10/28/2022]
|
20
|
Hitzeroth II, Chabeda A, Whitehead MP, Graf M, Rybicki EP. Optimizing a Human Papillomavirus Type 16 L1-Based Chimaeric Gene for Expression in Plants. Front Bioeng Biotechnol 2018; 6:101. [PMID: 30062095 PMCID: PMC6054922 DOI: 10.3389/fbioe.2018.00101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/26/2018] [Indexed: 12/28/2022] Open
Abstract
Human papillomaviruses (HPVs) are the causative agents of cervical cancer, the fourth most prevalent cancer in women worldwide. The major capsid protein L1 self-assembles into virus-like particles (VLPs), even in the absence of the minor L2 protein: such VLPs have successfully been used as prophylactic vaccines. There remains a need, however, to develop cheaper vaccines that protect against a wider range of HPV types. The use of all or parts of the L2 minor capsid protein can potentially address this issue, as it has sequence regions conserved across several HPV types, which can elicit a wider spectrum of cross-neutralizing antibodies. Production of HPV VLPs in plants is a viable option to reduce costs; the use of a L1/L2 chimera which has previously elicited a cross-protective immune response is an option to broaden cross-protection. The objective of this study was to investigate the effect of codon optimization and of increasing the G+C content of synthetic L1/L2 genes on protein expression in plants. Additionally, we replaced varying portions of the 5' region of the L1 gene with the wild type (wt) viral sequence to determine the effect of several negative regulatory elements on expression. We showed that GC-rich genes resulted in a 10-fold increase of mRNA levels and 3-fold higher accumulation of proteins. However, the highest increase of expression was achieved with a high GC-content human codon-optimized gene, which resulted in a 100-fold increase in mRNA levels and 8- to 9-fold increase in protein levels. Changing the 5' end of the L1 gene back to its wt sequence decreased mRNA and protein expression. Our results suggest that the negative elements in the 5' end of L1 are inadvertently destroyed by changing the codon usage, which enhances protein expression.
Collapse
Affiliation(s)
- Inga I Hitzeroth
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, South Africa
| | - Aleyo Chabeda
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, South Africa
| | - Mark P Whitehead
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, South Africa
| | - Marcus Graf
- Thermo Fisher Scientific GENEART GmbH, Regensburg, Germany
| | - Edward P Rybicki
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, South Africa.,Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
| |
Collapse
|
21
|
Okay S, Sezgin M. Transgenic plants for the production of immunogenic proteins. AIMS BIOENGINEERING 2018. [DOI: 10.3934/bioeng.2018.3.151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
22
|
Ong HK, Tan WS, Ho KL. Virus like particles as a platform for cancer vaccine development. PeerJ 2017; 5:e4053. [PMID: 29158984 PMCID: PMC5694210 DOI: 10.7717/peerj.4053] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/27/2017] [Indexed: 12/17/2022] Open
Abstract
Cancers have killed millions of people in human history and are still posing a serious health problem worldwide. Therefore, there is an urgent need for developing preventive and therapeutic cancer vaccines. Among various cancer vaccine development platforms, virus-like particles (VLPs) offer several advantages. VLPs are multimeric nanostructures with morphology resembling that of native viruses and are mainly composed of surface structural proteins of viruses but are devoid of viral genetic materials rendering them neither infective nor replicative. In addition, they can be engineered to display multiple, highly ordered heterologous epitopes or peptides in order to optimize the antigenicity and immunogenicity of the displayed entities. Like native viruses, specific epitopes displayed on VLPs can be taken up, processed, and presented by antigen-presenting cells to elicit potent specific humoral and cell-mediated immune responses. Several studies also indicated that VLPs could overcome the immunosuppressive state of the tumor microenvironment and break self-tolerance to elicit strong cytotoxic lymphocyte activity, which is crucial for both virus clearance and destruction of cancerous cells. Collectively, these unique characteristics of VLPs make them optimal cancer vaccine candidates. This review discusses current progress in the development of VLP-based cancer vaccines and some potential drawbacks of VLPs in cancer vaccine development. Extracellular vesicles with close resembling to viral particles are also discussed and compared with VLPs as a platform in cancer vaccine developments.
Collapse
Affiliation(s)
- Hui Kian Ong
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Wen Siang Tan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Kok Lian Ho
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
23
|
Reconceptualizing cancer immunotherapy based on plant production systems. Future Sci OA 2017; 3:FSO217. [PMID: 28884013 PMCID: PMC5583679 DOI: 10.4155/fsoa-2017-0018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/06/2017] [Indexed: 01/25/2023] Open
Abstract
Plants can be used as inexpensive and facile production platforms for vaccines and other biopharmaceuticals. More recently, plant-based biologics have expanded to include cancer immunotherapy agents. The following review describes the current state of the art for plant-derived strategies to prevent or reduce cancers. The review discusses avenues taken to prevent infection by oncogenic viruses, solid tumors and lymphomas. Strategies including cancer vaccines, monoclonal antibodies and virus nanoparticles are described, and examples are provided. The review ends with a discussion of the implications of plant-based cancer immunotherapy for developing countries. Cancer immunotherapy has made great strides over recent years. This review describes the use of plants as production systems to produce biopharmaceuticals such as vaccines and antibodies to treat a wide variety of cancers. The use of nanoparticle technology based on plant viruses as a novel strategy to target and combat cancers is also included. The review concludes with a discussion of plant production platforms and their relevance for the generation of cheap and effective cancer immunotherapies for developing countries.
Collapse
|
24
|
Steele JFC, Peyret H, Saunders K, Castells‐Graells R, Marsian J, Meshcheriakova Y, Lomonossoff GP. Synthetic plant virology for nanobiotechnology and nanomedicine. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 9:e1447. [PMID: 28078770 PMCID: PMC5484280 DOI: 10.1002/wnan.1447] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/12/2016] [Accepted: 11/23/2016] [Indexed: 12/12/2022]
Abstract
Nanotechnology is a rapidly expanding field seeking to utilize nano-scale structures for a wide range of applications. Biologically derived nanostructures, such as viruses and virus-like particles (VLPs), provide excellent platforms for functionalization due to their physical and chemical properties. Plant viruses, and VLPs derived from them, have been used extensively in biotechnology. They have been characterized in detail over several decades and have desirable properties including high yields, robustness, and ease of purification. Through modifications to viral surfaces, either interior or exterior, plant-virus-derived nanoparticles have been shown to support a range of functions of potential interest to medicine and nano-technology. In this review we highlight recent and influential achievements in the use of plant virus particles as vehicles for diverse functions: from delivery of anticancer compounds, to targeted bioimaging, vaccine production to nanowire formation. WIREs Nanomed Nanobiotechnol 2017, 9:e1447. doi: 10.1002/wnan.1447 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
| | - Hadrien Peyret
- Department of Biology ChemistryJohn Innes CentreNorwichUK
| | - Keith Saunders
- Department of Biology ChemistryJohn Innes CentreNorwichUK
| | | | | | | | | |
Collapse
|
25
|
Lee JH, Ko K. Production of Recombinant Anti-Cancer Vaccines in Plants. Biomol Ther (Seoul) 2017; 25:345-353. [PMID: 28554196 PMCID: PMC5499611 DOI: 10.4062/biomolther.2016.126] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 12/13/2016] [Accepted: 02/06/2017] [Indexed: 12/24/2022] Open
Abstract
Plant expression systems have been developed to produce anti-cancer vaccines. Plants have several advantages as bioreactors for the production of subunit vaccines: they are considered safe, and may be used to produce recombinant proteins at low production cost. However, several technical issues hinder large-scale production of anti-cancer vaccines in plants. The present review covers design strategies to enhance the immunogenicity and therapeutic potency of anti-cancer vaccines, methods to increase vaccine-expressing plant biomass, and challenges facing the production of anti-cancer vaccines in plants. Specifically, the issues such as low expression levels and plant-specific glycosylation are described, along with their potential solutions.
Collapse
Affiliation(s)
- Jeong Hwan Lee
- Department of Medicine, Therapeutic Protein Engineering Lab, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Kisung Ko
- Department of Medicine, Therapeutic Protein Engineering Lab, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
26
|
Cardona-Ospina JA, Sepúlveda-Arias JC, Mancilla L, Gutierrez-López LG. Plant expression systems, a budding way to confront chikungunya and Zika in developing countries? F1000Res 2016; 5:2121. [PMID: 27781090 PMCID: PMC5054818 DOI: 10.12688/f1000research.9502.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/30/2016] [Indexed: 12/25/2022] Open
Abstract
Plant expression systems could be used as biofactories of heterologous proteins that have the potential to be used with biopharmaceutical aims and vaccine design. This technology is scalable, safe and cost-effective and it has been previously proposed as an option for vaccine and protein pharmaceutical development in developing countries. Here we present a proposal of how plant expression systems could be used to address Zika and chikungunya outbreaks through development of vaccines and rapid diagnostic kits.
Collapse
Affiliation(s)
- Jaime A Cardona-Ospina
- Infection and Immunity Research Group, Faculty of Health Sciences, Universidad Tecnológica de Pereira, Pereira, Colombia; Public Health and Infection Research Group, Faculty of Health Sciences, Universidad Tecnológica de Pereira, Pereira, Pereira, Colombia
| | - Juan C Sepúlveda-Arias
- Infection and Immunity Research Group, Faculty of Health Sciences, Universidad Tecnológica de Pereira, Pereira, Colombia
| | - L Mancilla
- Infection and Immunity Research Group, Faculty of Health Sciences, Universidad Tecnológica de Pereira, Pereira, Colombia
| | - Luis G Gutierrez-López
- Biodiversity and Biotechnology Research Group, Faculty of Enviromental Sciences, Universidad Tecnológica de Pereira, Pereira, Colombia
| |
Collapse
|
27
|
Rybicki E. From plant virology to vaccinology: The road less travelled. Hum Vaccin Immunother 2016; 11:2517-21. [PMID: 26553154 DOI: 10.1080/21645515.2015.1092751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Affiliation(s)
- Edward Rybicki
- a Biopharming Research Unit; Department of Molecular & Cell Biology and Institute of Infectious Disease and Molecular Medicine; University of Cape Town ; Cape Town , South Africa
| |
Collapse
|
28
|
Jiang RT, Schellenbacher C, Chackerian B, Roden RBS. Progress and prospects for L2-based human papillomavirus vaccines. Expert Rev Vaccines 2016; 15:853-62. [PMID: 26901354 DOI: 10.1586/14760584.2016.1157479] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human papillomavirus (HPV) is a worldwide public health problem, particularly in resource-limited countries. Fifteen high-risk genital HPV types are sexually transmitted and cause 5% of all cancers worldwide, primarily cervical, anogenital and oropharyngeal carcinomas. Skin HPV types are generally associated with benign disease, but a subset is linked to non-melanoma skin cancer. Licensed HPV vaccines based on virus-like particles (VLPs) derived from L1 major capsid antigen of key high risk HPVs are effective at preventing these infections but do not cover cutaneous types and are not therapeutic. Vaccines targeting L2 minor capsid antigen, some using capsid display, adjuvant and fusions with early HPV antigens or Toll-like receptor agonists, are in development to fill these gaps. Progress and challenges with L2-based vaccines are summarized.
Collapse
Affiliation(s)
- Rosie T Jiang
- a Department of Pathology , The Johns Hopkins University , Baltimore , MD , USA
| | - Christina Schellenbacher
- b Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology , Medical University Vienna (MUW) , Vienna , Austria
| | - Bryce Chackerian
- c Department of Molecular Genetics and Microbiology , University of New Mexico School of Medicine , Albuquerque , NM , USA
| | - Richard B S Roden
- a Department of Pathology , The Johns Hopkins University , Baltimore , MD , USA.,d Department of Oncology , The Johns Hopkins University , Baltimore , MD , USA.,e Department of Gynecology & Obstetrics , The Johns Hopkins University , Baltimore , MD , USA
| |
Collapse
|
29
|
Bettonville V, Nicol JTJ, Thelen N, Thiry M, Fillet M, Jacobs N, Servais AC. Study of intact virus-like particles of human papillomavirus by capillary electrophoresis. Electrophoresis 2016; 37:579-86. [DOI: 10.1002/elps.201500431] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 11/13/2015] [Accepted: 11/27/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Virginie Bettonville
- Laboratory for the Analysis of Medicines (LAM), Department of Pharmaceutical Sciences, CIRM; University of Liège; Liège Belgium
| | - Jérôme T. J. Nicol
- Cellular and Molecular Immunology; GIGA-Research University of Liège; Liège Belgium
| | - Nicolas Thelen
- Cellular and Tissular Biology, GIGA-Neurosciences; University of Liège; Liège Belgium
| | - Marc Thiry
- Cellular and Tissular Biology, GIGA-Neurosciences; University of Liège; Liège Belgium
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines (LAM), Department of Pharmaceutical Sciences, CIRM; University of Liège; Liège Belgium
| | - Nathalie Jacobs
- Cellular and Molecular Immunology; GIGA-Research University of Liège; Liège Belgium
| | - Anne-Catherine Servais
- Laboratory for the Analysis of Medicines (LAM), Department of Pharmaceutical Sciences, CIRM; University of Liège; Liège Belgium
| |
Collapse
|
30
|
The application of virus-like particles as vaccines and biological vehicles. Appl Microbiol Biotechnol 2015; 99:10415-32. [PMID: 26454868 PMCID: PMC7080154 DOI: 10.1007/s00253-015-7000-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 09/01/2015] [Accepted: 09/04/2015] [Indexed: 01/04/2023]
Abstract
Virus-like particles (VLPs) can be spontaneously self-assembled by viral structural proteins under appropriate conditions in vitro while excluding the genetic material and potential replication probability. In addition, VLPs possess several features including can be rapidly produced in large quantities through existing expression systems, highly resembling native viruses in terms of conformation and appearance, and displaying repeated cluster of epitopes. Their capsids can be modified via genetic insertion or chemical conjugation which facilitating the multivalent display of a homologous or heterogeneous epitope antigen. Therefore, VLPs are considered as a safe and effective candidate of prophylactic and therapeutic vaccines. VLPs, with a diameter of approximately 20 to 150 nm, also have the characteristics of nanometer materials, such as large surface area, surface-accessible amino acids with reactive moieties (e.g., lysine and glutamic acid residues), inerratic spatial structure, and good biocompatibility. Therefore, assembled VLPs have great potential as a delivery system for specifically carrying a variety of materials. This review summarized recent researches on VLP development as vaccines and biological vehicles, which demonstrated the advantages and potential of VLPs in disease control and prevention and diagnosis. Then, the prospect of VLP biology application in the future is discussed as well.
Collapse
|
31
|
Rosales-Mendoza S, Govea-Alonso DO. The potential of plants for the production and delivery of human papillomavirus vaccines. Expert Rev Vaccines 2015; 14:1031-41. [PMID: 25882610 DOI: 10.1586/14760584.2015.1037744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The available vaccines against human papillomavirus have some limitations such as low coverage due to their high cost, reduced immune coverage and the lack of therapeutic effects. Recombinant vaccines produced in plants (genetically engineered using stable or transient expression systems) offer the possibility to obtain low cost, efficacious and easy to administer vaccines. The status on the development of plant-based vaccines against human papillomavirus is analyzed and placed in perspective in this review. Some candidates have been characterized at a preclinical level with interesting outcomes. However, there is a need to perform the immunological characterization of several vaccine prototypes, especially through the oral administration route, as well as develop new candidates based on new chimeric designs intended to provide broader immunoprotection and therapeutic activity.
Collapse
Affiliation(s)
- Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP, 78210, México, USA
| | | |
Collapse
|
32
|
A chimeric 18L1-45RG1 virus-like particle vaccine cross-protects against oncogenic alpha-7 human papillomavirus types. PLoS One 2015; 10:e0120152. [PMID: 25790098 PMCID: PMC4366228 DOI: 10.1371/journal.pone.0120152] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 01/20/2015] [Indexed: 02/05/2023] Open
Abstract
Persistent infection with oncogenic human papillomaviruses (HPV) types causes all cervical and a subset of other anogenital and oropharyngeal carcinomas. Four high-risk (hr) mucosal types HPV16, 18, 45, or 59 cause almost all cervical adenocarcinomas (AC), a subset of cervical cancer (CxC). Although the incidence of cervical squamous cell carcinoma (SCC) has dramatically decreased following introduction of Papanicolaou (PAP) screening, the proportion of AC has relatively increased. Cervical SCC arise mainly from the ectocervix, whereas AC originate primarily from the endocervical canal, which is less accessible to obtain viable PAP smears. Licensed (bivalent and quadrivalent) HPV vaccines comprise virus-like particles (VLP) of the most important hr HPV16 and 18, self-assembled from the major capsid protein L1. Due to mainly type-restricted efficacy, both vaccines do not target 13 additional hr mucosal types causing 30% of CxC. The papillomavirus genus alpha species 7 (α7) includes a group of hr types of which HPV18, 45, 59 are proportionally overrepresented in cervical AC and only partially (HPV18) targeted by current vaccines. To target these types, we generated a chimeric vaccine antigen that consists of a cross-neutralizing epitope (homologue of HPV16 RG1) of the L2 minor capsid protein of HPV45 genetically inserted into a surface loop of HPV18 L1 VLP (18L1-45RG1). Vaccination of NZW rabbits with 18L1-45RG1 VLP plus alum-MPL adjuvant induced high-titer neutralizing antibodies against homologous HPV18, that cross-neutralized non-cognate hr α7 types HPV39, 45, 68, but not HPV59, and low risk HPV70 in vitro, and induced a robust L1-specific cellular immune response. Passive immunization protected mice against experimental vaginal challenge with pseudovirions of HPV18, 39, 45 and 68, but not HPV59 or the distantly related α9 type HPV16. 18L1-45RG1 VLP might be combined with our previously described 16L1-16RG1 VLP to develop a second generation bivalent vaccine with extended spectrum against hr HPV.
Collapse
|
33
|
Panatto D, Amicizia D, Bragazzi NL, Rizzitelli E, Tramalloni D, Valle I, Gasparini R. Human Papillomavirus Vaccine. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015:231-322. [DOI: 10.1016/bs.apcsb.2015.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
34
|
Abstract
Plant-made or "biofarmed" viral vaccines are some of the earliest products of the technology of plant molecular farming, and remain some of the brightest prospects for the success of this field. Proofs of principle and of efficacy exist for many candidate viral veterinary vaccines; the use of plant-made viral antigens and of monoclonal antibodies for therapy of animal and even human viral disease is also well established. This review explores some of the more prominent recent advances in the biofarming of viral vaccines and therapies, including the recent use of ZMapp for Ebolavirus infection, and explores some possible future applications of the technology.
Collapse
Affiliation(s)
- Edward P Rybicki
- Biopharming Research Unit, Department of Molecular & Cell Biology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Private Bag X3, Rondebosch, 7701, Cape Town, South Africa.
| |
Collapse
|
35
|
Kim TG, Kim MY, Tien NQD, Huy NX, Yang MS. Dengue virus E glycoprotein production in transgenic rice callus. Mol Biotechnol 2014; 56:1069-78. [PMID: 25069989 DOI: 10.1007/s12033-014-9787-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dengue is a disease caused by dengue virus and represents the most important arthropod-borne viral disease in humans. Dengue virus enters host cells via binding of envelope glycoprotein (E) to a receptor. In this study, plant expression vectors containing native and synthetic glycoprotein E genes (sE) modified based on plant-optimized codon usage and fused with an ER retention signal were constructed under control of the rice amylase 3D promoter expression system. Plant expression vectors were introduced into rice callus (Oryza sativa L. cv. Dongin) via particle bombardment-mediated transformation. The integration and expression of target genes were confirmed in the transgenic callus by genomic DNA PCR and Northern blot analyses, respectively. The plant-codon optimized sE gene with an ER retention signal showed high protein production levels based on Western blot analysis of approximately 18.5 ug/g dried calli weight by immunoblot-based densitometric analysis. These results suggest that the plant-codon optimized sE gene with an ER retention signal was highly produced in the transgenic rice callus.
Collapse
Affiliation(s)
- Tae-Geum Kim
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Chonbuk National University, Dukjindong 664-14, Jeollabuk-do, 561-756, Republic of Korea
| | | | | | | | | |
Collapse
|
36
|
Hernández M, Rosas G, Cervantes J, Fragoso G, Rosales-Mendoza S, Sciutto E. Transgenic plants: a 5-year update on oral antipathogen vaccine development. Expert Rev Vaccines 2014; 13:1523-36. [PMID: 25158836 DOI: 10.1586/14760584.2014.953064] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The progressive interest in transgenic plants as advantageous platforms for the production and oral delivery of vaccines has led to extensive research and improvements in this technology over recent years. In this paper, the authors examine the most significant advances in this area, including novel approaches for higher yields and better containment, and the continued evaluation of new vaccine prototypes against several infectious diseases. The use of plants to deliver vaccine candidates against viruses, bacteria, and eukaryotic parasites within the last 5 years is discussed, focusing on innovative expression strategies and the immunogenic potential of new vaccines. A brief section on the state of the art in mucosal immunity is also included.
Collapse
Affiliation(s)
- Marisela Hernández
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 México, DF, México
| | | | | | | | | | | |
Collapse
|
37
|
Seitz H, Müller M. Current perspectives on HPV vaccination: a focus on targeting the L2 protein. Future Virol 2014. [DOI: 10.2217/fvl.14.44] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
ABSTRACT: Thirty years ago, human papillomavirus types 16 and 18 were isolated from cervical carcinomas, and it has been almost 10 years since the introduction of the first prophylactic virus-like particle (VLP) vaccine. The VLP vaccines have already impacted the reduction of pre-malignant lesions and genital warts, and it is expected that vaccination efforts will successfully lower the incidence of cervical cancer before the end of the decade. Here we summarize the historical developments leading to the prophylactic HPV vaccines and discuss current advances of next-generation vaccines that aim to overcome certain limitations of the VLP vaccines, including their intrinsic narrow range of protection, stability and production/distribution costs.
Collapse
Affiliation(s)
- Hanna Seitz
- National Institutes of Health, NCI/CCR/LCO, 37 Convent Drive, Bethesda, MD 20892, USA
| | - Martin Müller
- Deutsches Krebsforschungszentrum, F035, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| |
Collapse
|
38
|
Tyler M, Tumban E, Dziduszko A, Ozbun MA, Peabody DS, Chackerian B. Immunization with a consensus epitope from human papillomavirus L2 induces antibodies that are broadly neutralizing. Vaccine 2014; 32:4267-74. [PMID: 24962748 DOI: 10.1016/j.vaccine.2014.06.054] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/23/2014] [Accepted: 06/11/2014] [Indexed: 02/07/2023]
Abstract
Vaccines targeting conserved epitopes in the HPV minor capsid protein, L2, can elicit antibodies that can protect against a broad spectrum of HPV types that are associated with cervical cancer and other HPV malignancies. Thus, L2 vaccines have been explored as alternatives to the current HPV vaccines, which are largely type-specific. In this study we assessed the immunogenicity of peptides spanning the N-terminal domain of L2 linked to the surface of a highly immunogenic bacteriophage virus-like particle (VLP) platform. Although all of the HPV16 L2 peptide-displaying VLPs elicited high-titer anti-peptide antibody responses, only a subset of the immunogens elicited antibody responses that were strongly protective from HPV16 pseudovirus (PsV) infection in a mouse genital challenge model. One of these peptides, mapping to HPV16 L2 amino acids 65-85, strongly neutralized HPV16 PsV but showed little ability to cross-neutralize other high-risk HPV types. In an attempt to broaden the protection generated through vaccination with this peptide, we immunized mice with VLPs displaying a peptide that represented a consensus sequence from high-risk and other HPV types. Vaccinated mice produced antibodies with broad, high-titer neutralizing activity against all of the HPV types that we tested. Therefore, immunization with virus-like particles displaying a consensus HPV sequence is an effective method to broaden neutralizing antibody responses against a type-specific epitope.
Collapse
Affiliation(s)
- Mitchell Tyler
- Department of Molecular Genetics and Microbiology, University of New Mexico, MSC08-4660, Albuquerque, NM 87131, United States
| | - Ebenezer Tumban
- Department of Molecular Genetics and Microbiology, University of New Mexico, MSC08-4660, Albuquerque, NM 87131, United States
| | - Agnieszka Dziduszko
- Department of Molecular Genetics and Microbiology, University of New Mexico, MSC08-4660, Albuquerque, NM 87131, United States
| | - Michelle A Ozbun
- Department of Molecular Genetics and Microbiology, University of New Mexico, MSC08-4660, Albuquerque, NM 87131, United States
| | - David S Peabody
- Department of Molecular Genetics and Microbiology, University of New Mexico, MSC08-4660, Albuquerque, NM 87131, United States
| | - Bryce Chackerian
- Department of Molecular Genetics and Microbiology, University of New Mexico, MSC08-4660, Albuquerque, NM 87131, United States.
| |
Collapse
|