1
|
De Silva MRP, Weeraman JWJK, Piyatissa S, Fernando PC. Prediction of new candidate proteins and analysis of sub-modules and protein hubs associated with seed development in rice (Oryza sativa) using an ensemble network-based systems biology approach. BMC PLANT BIOLOGY 2025; 25:604. [PMID: 40340735 PMCID: PMC12060574 DOI: 10.1186/s12870-025-06595-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 04/21/2025] [Indexed: 05/10/2025]
Abstract
BACKGROUND Rice is a critical global food source, but it faces challenges due to nutritional deficiencies and the pressures of a growing population. Understanding the molecular mechanisms and protein functions in rice seed development is essential to improve yield and grain quality. However, there is still a significant knowledge gap regarding the key proteins and their interactions that govern rice seed development. Protein-protein interaction (PPI) analysis is a powerful tool for studying developmental processes like seed development, though its potential in rice research is yet to be fully realized. With the aim of unraveling the protein interaction landscape associated with rice seed development, this systems biology study conducted a PPI network-based analysis. Using a list of known seed development proteins from the Gene Ontology (GO) knowledgebase and literature, novel candidate proteins for seed development were predicted using an ensemble of network-based algorithms, including Majority Voting, Hishigaki Algorithm, Functional Flow, and Random Walk with Restart, which were selected based on their popularity and usability. The predictions were validated using enrichment analysis and cross-checked with independent transcriptomic analysis results. The rice seed development sub-network was further analyzed for community and hub detection. RESULTS The study predicted 196 new proteins linked to rice seed development and identified 14 sub-modules within the network, each representing different developmental pathways, such as endosperm development and seed growth regulation. Of these, 17 proteins were identified as intra-modular hubs and 6 as inter-modular hubs. Notably, the protein SDH1 emerged as a dual hub, acting as both an intra-modular and inter-modular hub, highlighting its importance in seed development PPI network stability. CONCLUSIONS These findings, including the identified hub proteins and sub-modules, provide a better understanding of the PPI interaction landscape governing seed development in rice. This information is useful for achieving a systems biology understanding of seed development. This study implements an ensemble of algorithms for the analysis and showcases how systems biology techniques can be applied in developmental biology.
Collapse
Affiliation(s)
- M R P De Silva
- Department of Plant Sciences, University of Colombo, Colombo 03, Sri Lanka
| | - J W J K Weeraman
- Department of Plant Sciences, University of Colombo, Colombo 03, Sri Lanka
| | - S Piyatissa
- Department of Plant Sciences, University of Colombo, Colombo 03, Sri Lanka
| | - P C Fernando
- Department of Plant Sciences, University of Colombo, Colombo 03, Sri Lanka.
| |
Collapse
|
2
|
Chen Y, Hui S, Li H, Jiao G, Cao R, Zhou L, Wang J, Mawia AM, Yang L, Wu Y, Zhang Y, Sheng Z, Shao G, Zhao F, Wang L, Lyu Y, Tang S, Hu S, Hu P. A MYB61-SWB9-KOs module regulates grain chalkiness via gibberellin biosynthesis in rice endosperm. PLANT BIOTECHNOLOGY JOURNAL 2025. [PMID: 40299840 DOI: 10.1111/pbi.70103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/01/2025] [Accepted: 04/09/2025] [Indexed: 05/01/2025]
Abstract
Grain chalkiness leads to the deterioration of grain appearance quality, which affects grain processing quality and the market value of rice. Gibberellin plays a crucial role in seed germination and plant growth, but its mechanism on endosperm starch synthesis and rice grain chalkiness formation remains largely elusive. Here, we identified a grain white belly (chalkiness in the belly area of grain) gene, SWB9, which encodes a kinesin-4 protein with a conserved ATPase domain and a coiled-coil domain. The mutation of SWB9 affects the starch structure, resulting in a grain white belly. SWB9 regulates endogenous gibberellin synthesis and accumulation in endosperm by directly binding to the promoter of ent-kaurene oxidase genes (KO1, KO2 and KOL5) encoding gibberellin-biosynthetic enzymes, and negatively regulates their expression. The loss of SWB9 function resulted in higher gibberellin content in the endosperm of swb9 than that of the wild type. Besides, a MYB transcription factor, MYB61 binds to the promoter of SWB9 and activates its expression. The grain of myb61 showed the same white belly phenotype as swb9, while overexpression of SWB9 in myb61 inhibited the grain white belly phenotype. Furthermore, the exogenous GA3 treatment showed increased grain chalkiness, and high gibberellin treatment can induce the reduced expression of MYB61, and then weaken the inhibitory effect of SWB9 on the expression of KO1, KO2 and KOL5, so as to break the homeostasis of endogenous gibberellin in the endosperm. Meanwhile, MYB61 directly binds to the promoter of amylopectin synthesis-related genes, SSIIa, BEIIb, ISA1 and PUL, at the GAMYB element and activates their expression, further affecting the distribution of amylopectin chain length. Our findings uncover a new insight into the gibberellin dose-dependent feedback regulation loop in rice endosperm that determines grain chalkiness formation.
Collapse
Affiliation(s)
- Yujuan Chen
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Suozhen Hui
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Huijuan Li
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Guiai Jiao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Ruijie Cao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Liang Zhou
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Jingxin Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Amos Musyoki Mawia
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Lingwei Yang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Yu Wu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Yuanyaun Zhang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Zhonghua Sheng
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Gaoneng Shao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Fengli Zhao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Ling Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Yusong Lyu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Shikai Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Peisong Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| |
Collapse
|
3
|
Sang L, Xu E, Liu Y, Hu T, Yang M, Niu J, Lu C, Zhou Y, Sun Y, Zhai Z, Abdulmajid D, Zhang P, Wang Q, La H, Zou Y. Transcriptomic analysis offers deep insights into the Increased Grain Length 1 (IGL1) regulation of grain length. BMC PLANT BIOLOGY 2025; 25:264. [PMID: 40011803 PMCID: PMC11866874 DOI: 10.1186/s12870-025-06279-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/19/2025] [Indexed: 02/28/2025]
Abstract
BACKGROUND Although great progress has been made in recent years in identifying novel genes or natural alleles for rice yield improvement, the molecular mechanisms of how these genes/natural alleles regulate yield-associated traits, such as grain length and 1000-grain weight, remain largely unclear. An in-depth understanding of the roles of these genes/natural alleles in controlling yield traits become a necessity to ultimately increase rice yield via novel molecular techniques, such as gene editing. RESULTS In this study, the roles of IGL1, which was previously identified through a map-based cloning approach, in the regulation of grain length were investigated by overexpressing and knocking out it in the Nipponbare genetic background. Overexpression and knockout of IGL1 (the resulting transgenic lines were hereafter designated IGL1-OE and IGL1-CR lines, respectively) led to elongation and shortening of grains, respectively. To further elucidate the molecular mechanisms behind the IGL1 action, young panicles from IGL1-OE and IGL1-CR lines were subjected to mRNA sequencing. The results showed that both overexpression and knockout of IGL1 all resulted in a large number of upregulated and downregulated differentially expression genes (DEGs) relative to wild-type NPB control lines. A total of 984 DEGs overlapped between upregulated DEGs from IGL1-OE and downregulated DEGs from IGL1-CR; 1146 DEGs were common to downregulated DEGs from IGL1-OE and upregulated DEGs from IGL1-CR. GO term and KEGG pathway analysis revealed that IGL1-upregulated DEGs were associated with extracellular region, protein ubiquitination, cell-wall modification, BR signaling, cell cycle, etc.; by comparison, the IGL1-downregulated DEGs were connected with extracellular region, response to wounding, flavonoid biosynthesis, jasmonic-acid signaling, glucose/sucrose metabolism, etc. Some phytohormone-associated genes (like OsYUCCA4, OsPIN10b, OsBAK1, and OsDLT), TF genes (like OsMADS1 and OsGASR9), grain length-regulating genes (like An-1, GS9, OsIQD14, and TGW2) showed significant upregulation or downregulation in IGL1-OE or IGL1-CR. CONCLUSION Our result clearly demonstrated that IGL1 is an important regulator of grain length, and has profound impacts on genome-wide gene expression, suggesting that it may work together with certain TFs. Overexpression or knockout of IGL1 appears to cause complex expression changes of genes associated with phytohormones, TFs, grain length-regulating factors, which ultimately brings about the grain elongation.
Collapse
Affiliation(s)
- Liran Sang
- College of Life Sciences, Nanjing Agricultural University, Nanjing , Jiangsu, 210095, China
| | - Ending Xu
- Anhui Province Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230041, China
| | - Yan Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing , Jiangsu, 210095, China
| | - Tiange Hu
- College of Life Sciences, Nanjing Agricultural University, Nanjing , Jiangsu, 210095, China
| | - Mengqi Yang
- College of Life Sciences, Nanjing Agricultural University, Nanjing , Jiangsu, 210095, China
| | - Jiayu Niu
- College of Life Sciences, Nanjing Agricultural University, Nanjing , Jiangsu, 210095, China
| | - Chong Lu
- College of Life Sciences, Nanjing Agricultural University, Nanjing , Jiangsu, 210095, China
| | - Yi Zhou
- College of Life Sciences, Nanjing Agricultural University, Nanjing , Jiangsu, 210095, China
| | - Yifei Sun
- College of Life Sciences, Nanjing Agricultural University, Nanjing , Jiangsu, 210095, China
| | - Zhaoyu Zhai
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dina Abdulmajid
- Rice Research and Training Centre, Field Crops Research Institute, A.R.C, Sakha, Kafrelsheikh, 33717, Egypt
| | - Peijiang Zhang
- Anhui Province Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230041, China
| | - Qianqian Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing , Jiangsu, 210095, China.
- Department of Breeding, Shandong Peanut Research Institute, Qingdao, 266000, China.
| | - Honggui La
- College of Life Sciences, Nanjing Agricultural University, Nanjing , Jiangsu, 210095, China.
| | - Yu Zou
- Anhui Province Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230041, China.
| |
Collapse
|
4
|
Zhang T, Wang Z, Liu Q, Zhao D. Genetic Improvement of rice Grain size Using the CRISPR/Cas9 System. RICE (NEW YORK, N.Y.) 2025; 18:3. [PMID: 39865189 PMCID: PMC11769925 DOI: 10.1186/s12284-025-00758-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/18/2025] [Indexed: 01/28/2025]
Abstract
Rice grain size influences both grain yield and quality, making it a significant target for rice genetic improvement. In recent years, numerous genes related to grain size with differential effects have been cloned. The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene editing system is a convenient tool for modifying genes. The use of the CRISPR/Cas9 tool for the genetic improvement of grain size-related genes is worth exploring. This paper summarizes the known grain size-related genes and the use of CRISPR/Cas9 for grain size modification and discusses the potential applications of CRISPR/Cas9 for improving rice grain size.
Collapse
Affiliation(s)
- Tao Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Zhongshan Biological Breeding Laboratory, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Zhengwei Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Zhongshan Biological Breeding Laboratory, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Qiaoquan Liu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Zhongshan Biological Breeding Laboratory, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Dongsheng Zhao
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Zhongshan Biological Breeding Laboratory, College of Agriculture, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
5
|
Yu C, Yang Q, Li W, Jiang Y, Gan G, Cai L, Li X, Li Z, Li W, Zou M, Yang Y, Wang Y. Development of a 50K SNP array for whole-genome analysis and its application in the genetic localization of eggplant ( Solanum melongena L.) fruit shape. FRONTIERS IN PLANT SCIENCE 2024; 15:1492242. [PMID: 39659423 PMCID: PMC11629150 DOI: 10.3389/fpls.2024.1492242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024]
Abstract
Introduction Current eggplant variety breeding is still mainly based on conventional methods, and there remains a lack of effective molecular breeding systems for complex traits controlled by multiple genes, such as yield and quality. To accelerate the research progress of eggplant genetics and molecular breeding, it is necessary to implement a genome-based breeding strategy. Methods Therefore, in this study, a SNP array containing 50K liquid-phase probes was designed on the basis of the resequencing data of 577 eggplants. Results The developed 50K liquid-phase probes were used to perform targeted capture sequencing on 12 eggplant lines, and the efficiency of probe capture exceeded 99.25%. Principal component, phylogenetic, and population structure analyses divided the 577 eggplants into 7 subgroups, and statistical analysis was performed on the fruit shape and color of the materials in the different subgroups. Further analysis of the geographical distribution of 428 Chinese eggplant materials revealed that the geographical regions of different subgroups were similar. The 50K SNP liquid-phase array was used to perform bulked- segregant analysis combined with whole-genome resequencing (BSA-seq) of fruit shape in the F2 population, which consisted of 1435 lines constructed with E421 as the maternal parent and 145 as the paternal parent. The BSA-seq data were located in the 78444173-84449348 interval on chromosome 3, with a size of 6 Mb, which was narrowed to 712.6 kb through fine mapping. Further sequence alignment and expression analysis revealed SmIQD14 as a candidate gene controlling eggplant fruit shape. The 50K SNP liquid-phase array can be widely used in future eggplant molecular breeding research.
Collapse
Affiliation(s)
- Chuying Yu
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Qihong Yang
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Weiliu Li
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yaqin Jiang
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Guiyun Gan
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Liangyu Cai
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Xinchun Li
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Zhiqiang Li
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Wenjia Li
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Min Zou
- Vegetable and Flower Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Yang Yang
- Vegetable and Flower Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Yikui Wang
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
6
|
Yang B, Sun Y, Minne M, Ge Y, Yue Q, Goossens V, Mor E, Callebaut B, Bevernaege K, Winne JM, Audenaert D, De Rybel B. SPL13 controls a root apical meristem phase change by triggering oriented cell divisions. Science 2024; 386:eado4298. [PMID: 39541454 PMCID: PMC7616863 DOI: 10.1126/science.ado4298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/01/2024] [Accepted: 09/16/2024] [Indexed: 11/16/2024]
Abstract
Oriented cell divisions are crucial for determining the overall morphology and size of plants, but what controls the onset and duration of this process remains largely unknown. Here, we identified a small molecule that activates root apical meristem (RAM) expression of SQUAMOSA PROMOTER BINDING PROTEIN-LIKE13 (SPL13) a known player in the shoot's juvenile-to-adult transition. This expression leads to oriented cell divisions in the RAM through SHORT ROOT (SHR) and cell cycle regulators. We further show that the RAM has distinct juvenile and adult phases typed by morphological and molecular characteristics and that SPL factors are crucially required for this transition in Arabidopsis and rice (Oryza sativa). In summary, we provide molecular insights into the age-dependent morphological changes occurring in the RAM during phase change.
Collapse
Affiliation(s)
- Baojun Yang
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanbiao Sun
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Max Minne
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Yanhua Ge
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qianru Yue
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Vera Goossens
- VIB Screening Core, Ghent, Belgium
- Ghent University Centre for Bioassay Development and Screening (C-BIOS), Ghent, Belgium
| | - Eliana Mor
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Brenda Callebaut
- Ghent University, Department of Organic and Macromolecular Chemistry, Ghent, Belgium
| | - Kevin Bevernaege
- Ghent University, Department of Organic and Macromolecular Chemistry, Ghent, Belgium
| | - Johan M. Winne
- Ghent University, Department of Organic and Macromolecular Chemistry, Ghent, Belgium
| | - Dominique Audenaert
- VIB Screening Core, Ghent, Belgium
- Ghent University Centre for Bioassay Development and Screening (C-BIOS), Ghent, Belgium
| | - Bert De Rybel
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
7
|
Qi G, Si Z, Xuan L, Han Z, Hu Y, Fang L, Dai F, Zhang T. Unravelling the genetic basis and regulation networks related to fibre quality improvement using chromosome segment substitution lines in cotton. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3135-3150. [PMID: 39046162 PMCID: PMC11500987 DOI: 10.1111/pbi.14436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/02/2024] [Accepted: 07/06/2024] [Indexed: 07/25/2024]
Abstract
The elucidation of genetic architecture and molecular regulatory networks underlying complex traits remains a significant challenge in life science, largely due to the substantial background effects that arise from epistasis and gene-environment interactions. The chromosome segment substitution line (CSSL) is an ideal material for genetic and molecular dissection of complex traits due to its near-isogenic properties; yet a comprehensive analysis, from the basic identification of substitution segments to advanced regulatory network, is still insufficient. Here, we developed two cotton CSSL populations on the Gossypium hirsutum background, representing wide adaptation and high lint yield, with introgression from G. barbadense, representing superior fibre quality. We sequenced 99 CSSLs that demonstrated significant differences from G. hirsutum in fibre, and characterized 836 dynamic fibre transcriptomes in three crucial developmental stages. We developed a workflow for precise resolution of chromosomal substitution segments; the genome sequencing revealed substitutions collectively representing 87.25% of the G. barbadense genome. Together, the genomic and transcriptomic survey identified 18 novel fibre-quality-related quantitative trait loci with high genetic contributions and the comprehensive landscape of fibre development regulation. Furthermore, analysis determined unique cis-expression patterns in CSSLs to be the driving force for fibre quality alteration; building upon this, the co-expression regulatory network revealed biological relationships among the noted pathways and accurately described the molecular interactions of GhHOX3, GhRDL1 and GhEXPA1 during fibre elongation, along with reliable predictions for their interactions with GhTBA8A5. Our study will enhance more strategic employment of CSSL in crop molecular biology and breeding programmes.
Collapse
Affiliation(s)
- Guoan Qi
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology CitySanyaHainanChina
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhouZhejiangChina
| | - Zhanfeng Si
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhouZhejiangChina
| | - Lisha Xuan
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhouZhejiangChina
| | - Zegang Han
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhouZhejiangChina
| | - Yan Hu
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology CitySanyaHainanChina
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhouZhejiangChina
| | - Lei Fang
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology CitySanyaHainanChina
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhouZhejiangChina
| | - Fan Dai
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhouZhejiangChina
| | - Tianzhen Zhang
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology CitySanyaHainanChina
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhouZhejiangChina
| |
Collapse
|
8
|
Xin W, Chen N, Wang J, Liu Y, Sun Y, Han B, Wang X, Liu Z, Liu H, Zheng H, Yang L, Zou D, Wang J. Candidate gene analysis of rice grain shape based on genome-wide association study. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:241. [PMID: 39342533 DOI: 10.1007/s00122-024-04724-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/21/2024] [Indexed: 10/01/2024]
Abstract
KEY MESSAGE Thirteen QTLs associated with rice grain shape were localized by genome-wide association study. LOC_Os01g74020, the putative candidate gene in the co-localized QTL-qGSE1.2 interval, was identified and validated. Grain shape (GS) is a key trait that affects yield and quality of rice. Identifying and analyzing GS-related genes and elucidating the physiological, biochemical and molecular mechanisms are important for rice breeding. In this study, genome-wide association studies (GWAS) were conducted based on 1, 795, 076 single-nucleotide polymorphisms (SNPs) and three GS-related traits, grain length (GL), grain width (GW) and thousand-grain weight (TGW), in a natural population which comprised 374 rice varieties. A total of 13 quantitative trait locus (QTLs) related to GL, GW and TGW were identified, respectively, of which two QTLs (qGSE1.2 and qGSE5.3) were associated with both GL and TGW. A known key GS regulatory gene, GW5, was present in the interval of qGSE5.3. Based on the qRT-PCR results, LOC_Os01g74020 (OsGSE1.2) was identified as a GS candidate gene. Functional analysis of OsGSE1.2 showed that glume cell width and GW were significantly reduced, and that glume cell length, GL, TGW and single-plant yield were significantly increased in OsGSE1.2 knockout lines than those of wild type. OsGSE1.2 affects rice grain length by suppressing the elongation of glume cell and is a novel GS regulatory gene. These findings laid the foundation for molecular breeding to improve rice GS and increase rice yield and profitability.
Collapse
Affiliation(s)
- Wei Xin
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Northeast Agricultural University, Ministry of Education, Harbin, 150030, China
| | - Ning Chen
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Northeast Agricultural University, Ministry of Education, Harbin, 150030, China
| | - Jiaqi Wang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Northeast Agricultural University, Ministry of Education, Harbin, 150030, China
| | - Yilei Liu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Northeast Agricultural University, Ministry of Education, Harbin, 150030, China
| | - Yifeng Sun
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Northeast Agricultural University, Ministry of Education, Harbin, 150030, China
| | - Baojia Han
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Northeast Agricultural University, Ministry of Education, Harbin, 150030, China
| | - Xinghua Wang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Northeast Agricultural University, Ministry of Education, Harbin, 150030, China
| | - Zijie Liu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Northeast Agricultural University, Ministry of Education, Harbin, 150030, China
| | - Hualong Liu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Northeast Agricultural University, Ministry of Education, Harbin, 150030, China
| | - Hongliang Zheng
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Northeast Agricultural University, Ministry of Education, Harbin, 150030, China
| | - Luomiao Yang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Northeast Agricultural University, Ministry of Education, Harbin, 150030, China
| | - Detang Zou
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Northeast Agricultural University, Ministry of Education, Harbin, 150030, China
| | - Jingguo Wang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Northeast Agricultural University, Ministry of Education, Harbin, 150030, China.
| |
Collapse
|
9
|
Xu C, Zhu X, Xu A, Song J, Liang S. Construction and validation of co-expression vector for rice alpha tubulin and microtubule associated protein respectively fused with fluorescent proteins. PeerJ 2024; 12:e18118. [PMID: 39346063 PMCID: PMC11439384 DOI: 10.7717/peerj.18118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024] Open
Abstract
Microtubule (MT) consists of α-tubulin and β-tubulin. The dynamic instability regulated by various microtubule associated proteins (MAPs) is essential for MT functions. To analyze the interaction between tubulin/MT and MAP in vivo, we usually need tubulin and MAP co-expressed. Here, we constructed a dual-transgene vector expressing rice (Oryza sativa) α-tubulin and MAP simultaneously. To construct this vector, plant expression vector pCambia1301 was used as the plasmid backbone and Gibson assembly cloning technology was used. We first fused and cloned the GFP fragment, α-tubulin open reading frame (ORF), and NOS terminator into the vector pCambia1301 to construct the p35S::GFP-α-tubulin vector that expressed GFP-α-tubulin fusion protein. Subsequently, we fused and cloned the CaMV 35S promoter, mCherry fragment, and NOS terminator into the p35S::GFP-α-tubulin vector to generate the universal dual-transgene expression vector (p35S::GFP-α-tubulin-p35S::mCherry vector). With the p35S::GFP-α-tubulin-p35S::mCherry vector, MAP ORF can be cloned into the site of 5' or 3' terminus of mCherry to co-express GFP-α-tubulin and MAP-mCherry/mCherry-MAP. To validate the availability and universality of the dual-transgene expression vector, a series of putative rice MAP genes including GL7, OsKCBP, OsCLASP, and OsMOR1 were cloned into the vector respectively, transformed into Agrobacterium tumefaciens strain, and expressed in Nicotiana benthamiana leaves. The results indicated that all of the MAPs were co-expressed with α-tubulin and localized to MTs, validating the availability and universality of the vector and that GL7, OsKCBP, OsCLASP, and OsMOR1 might be MAPs. The application of the co-expression vector constructed by us would facilitate studies on the interaction between tubulin/MT and MAP in tobacco transient expression systems or transgenic rice.
Collapse
Affiliation(s)
- Chenshan Xu
- College of Life Science, Dezhou University, Dezhou, Shandong, China
| | - Xiaoli Zhu
- College of Life Science, Dezhou University, Dezhou, Shandong, China
| | - Aihong Xu
- College of Ecology, Resources and Environment, Dezhou University, Dezhou, Shandong, China
| | - Jian Song
- College of Life Science, Dezhou University, Dezhou, Shandong, China
| | - Shuxia Liang
- College of Life Science, Dezhou University, Dezhou, Shandong, China
| |
Collapse
|
10
|
Zhang Y, Wang S, Zhang C, Qi M, Liu L, Yang L, Lian N. Genome-Wide Characterization of IQD Family Proteins in Apple and Functional Analysis of the Microtubule-Regulating Abilities of MdIQD17 and MdIQD28 under Cold Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:2532. [PMID: 39274016 PMCID: PMC11397337 DOI: 10.3390/plants13172532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/01/2024] [Accepted: 09/05/2024] [Indexed: 09/16/2024]
Abstract
Microtubules undergo dynamic remodeling in response to diverse abiotic stress in plants. The plant-specific IQ67 DOMAIN (IQD) family proteins serve as microtubule-associated proteins, playing multifaceted roles in plant development and response to abiotic stress. However, the biological function of IQD genes in apple remains unclear. In this study, we conducted a comprehensive analysis of the Malus domestica genome, identifying 42 IQD genes distributed across 17 chromosomes and categorized them into four subgroups. Promoter analysis revealed the presence of stress-responsive elements. Subsequent expression analysis highlighted the significant upregulation of MdIQD17 and MdIQD28 in response to cold treatments, prompting their selection for further functional investigation. Subcellular localization studies confirmed the association of MdIQD17 and MdIQD28 with microtubules. Crucially, confocal microscopy and quantification revealed diminished microtubule depolymerization in cells transiently overexpressing MdIQD17 and MdIQD28 compared to wild-type cells during cold conditions. In conclusion, this study provides a comprehensive analysis of IQD genes in apple, elucidating their molecular mechanism in response to cold stress.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Shengjie Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Chaochao Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Meng Qi
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Luoqi Liu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Lipeng Yang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Na Lian
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
11
|
Vega A, Brainard SH, Goldman IL. Linkage mapping of root shape traits in two carrot populations. G3 (BETHESDA, MD.) 2024; 14:jkae041. [PMID: 38412554 PMCID: PMC10989876 DOI: 10.1093/g3journal/jkae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/07/2024] [Accepted: 02/10/2024] [Indexed: 02/29/2024]
Abstract
This study investigated the genetic basis of carrot root shape traits using composite interval mapping in two biparental populations (n = 119 and n = 128). The roots of carrot F2:3 progenies were grown over 2 years and analyzed using a digital imaging pipeline to extract root phenotypes that compose market class. Broad-sense heritability on an entry-mean basis ranged from 0.46 to 0.80 for root traits. Reproducible quantitative trait loci (QTL) were identified on chromosomes 2 and 6 on both populations. Colocalization of QTLs for phenotypically correlated root traits was also observed and coincided with previously identified QTLs in published association and linkage mapping studies. Individual QTLs explained between 14 and 27% of total phenotypic variance across traits, while four QTLs for length-to-width ratio collectively accounted for up to 73% of variation. Predicted genes associated with the OFP-TRM (OVATE Family Proteins-TONNEAU1 Recruiting Motif) and IQD (IQ67 domain) pathway were identified within QTL support intervals. This observation raises the possibility of extending the current regulon model of fruit shape to include carrot storage roots. Nevertheless, the precise molecular mechanisms through which this pathway operates in roots characterized by secondary growth originating from cambium layers remain unknown.
Collapse
Affiliation(s)
- Andrey Vega
- Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Scott H Brainard
- Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Irwin L Goldman
- Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
12
|
Bao Z, Guo Y, Deng Y, Zang J, Zhang J, Deng Y, Ouyang B, Qu X, Bürstenbinder K, Wang P. Microtubule-associated protein SlMAP70 interacts with IQ67-domain protein SlIQD21a to regulate fruit shape in tomato. THE PLANT CELL 2023; 35:4266-4283. [PMID: 37668409 PMCID: PMC10689142 DOI: 10.1093/plcell/koad231] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/01/2023] [Accepted: 08/06/2023] [Indexed: 09/06/2023]
Abstract
Tomato (Solanum lycopersicum) fruit shape is related to microtubule organization and the activity of microtubule-associated proteins (MAPs). However, insights into the mechanism of fruit shape formation from a cell biology perspective remain limited. Analysis of the tissue expression profiles of different microtubule regulators revealed that functionally distinct classes of MAPs, including members of the plant-specific MICROTUBULE-ASSOCIATED PROTEIN 70 (MAP70) and IQ67 DOMAIN (IQD, also named SUN in tomato) families, are differentially expressed during fruit development. SlMAP70-1-3 and SlIQD21a are highly expressed during fruit initiation, which relates to the dramatic microtubule pattern rearrangements throughout this developmental stage of tomato fruits. Transgenic tomato lines overexpressing SlMAP70-1 or SlIQD21a produced elongated fruits with reduced cell circularity and microtubule anisotropy, while their loss-of-function mutants showed the opposite phenotype, harboring flatter fruits. Fruits were further elongated in plants coexpressing both SlMAP70-1 and SlIQD21a. We demonstrated that SlMAP70s and SlIQD21a physically interact and that the elongated fruit phenotype is likely due to microtubule stabilization induced by the SlMAP70-SlIQD21a interaction. Together, our results identify SlMAP70 proteins and SlIQD21a as important regulators of fruit elongation and demonstrate that manipulating microtubule function during early fruit development provides an effective approach to alter fruit shape.
Collapse
Affiliation(s)
- Zhiru Bao
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Ye Guo
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yaling Deng
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jingze Zang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Junhong Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingtian Deng
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Bo Ouyang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaolu Qu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Katharina Bürstenbinder
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle (Saale) 06120, Germany
| | - Pengwei Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
13
|
Gasparis S, Miłoszewski MM. Genetic Basis of Grain Size and Weight in Rice, Wheat, and Barley. Int J Mol Sci 2023; 24:16921. [PMID: 38069243 PMCID: PMC10706642 DOI: 10.3390/ijms242316921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Grain size is a key component of grain yield in cereals. It is a complex quantitative trait controlled by multiple genes. Grain size is determined via several factors in different plant development stages, beginning with early tillering, spikelet formation, and assimilates accumulation during the pre-anthesis phase, up to grain filling and maturation. Understanding the genetic and molecular mechanisms that control grain size is a prerequisite for improving grain yield potential. The last decade has brought significant progress in genomic studies of grain size control. Several genes underlying grain size and weight were identified and characterized in rice, which is a model plant for cereal crops. A molecular function analysis revealed most genes are involved in different cell signaling pathways, including phytohormone signaling, transcriptional regulation, ubiquitin-proteasome pathway, and other physiological processes. Compared to rice, the genetic background of grain size in other important cereal crops, such as wheat and barley, remains largely unexplored. However, the high level of conservation of genomic structure and sequences between closely related cereal crops should facilitate the identification of functional orthologs in other species. This review provides a comprehensive overview of the genetic and molecular bases of grain size and weight in wheat, barley, and rice, focusing on the latest discoveries in the field. We also present possibly the most updated list of experimentally validated genes that have a strong effect on grain size and discuss their molecular function.
Collapse
Affiliation(s)
- Sebastian Gasparis
- Plant Breeding and Acclimatization Institute—National Research Institute in Radzików, 05-870 Błonie, Poland;
| | | |
Collapse
|
14
|
Gonzalez JP, Frandsen KEH, Kesten C. The role of intrinsic disorder in binding of plant microtubule-associated proteins to the cytoskeleton. Cytoskeleton (Hoboken) 2023; 80:404-436. [PMID: 37578201 DOI: 10.1002/cm.21773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/15/2023]
Abstract
Microtubules (MTs) represent one of the main components of the eukaryotic cytoskeleton and support numerous critical cellular functions. MTs are in principle tube-like structures that can grow and shrink in a highly dynamic manner; a process largely controlled by microtubule-associated proteins (MAPs). Plant MAPs are a phylogenetically diverse group of proteins that nonetheless share many common biophysical characteristics and often contain large stretches of intrinsic protein disorder. These intrinsically disordered regions are determinants of many MAP-MT interactions, in which structural flexibility enables low-affinity protein-protein interactions that enable a fine-tuned regulation of MT cytoskeleton dynamics. Notably, intrinsic disorder is one of the major obstacles in functional and structural studies of MAPs and represents the principal present-day challenge to decipher how MAPs interact with MTs. Here, we review plant MAPs from an intrinsic protein disorder perspective, by providing a complete and up-to-date summary of all currently known members, and address the current and future challenges in functional and structural characterization of MAPs.
Collapse
Affiliation(s)
- Jordy Perez Gonzalez
- Department for Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Kristian E H Frandsen
- Department for Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Christopher Kesten
- Department for Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
15
|
Goldman IL, Wang Y, Alfaro AV, Brainard S, Oravec MW, McGregor CE, van der Knaap E. Form and contour: breeding and genetics of organ shape from wild relatives to modern vegetable crops. FRONTIERS IN PLANT SCIENCE 2023; 14:1257707. [PMID: 37841632 PMCID: PMC10568141 DOI: 10.3389/fpls.2023.1257707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/28/2023] [Indexed: 10/17/2023]
Abstract
Shape is a primary determinant of consumer preference for many horticultural crops and it is also associated with many aspects of marketing, harvest mechanics, and postharvest handling. Perceptions of quality and preference often map to specific shapes of fruits, tubers, leaves, flowers, roots, and other plant organs. As a result, humans have greatly expanded the palette of shapes available for horticultural crops, in many cases creating a series of market classes where particular shapes predominate. Crop wild relatives possess organs shaped by natural selection, while domesticated species possess organs shaped by human desires. Selection for visually-pleasing shapes in vegetable crops resulted from a number of opportunistic factors, including modification of supernumerary cambia, allelic variation at loci that control fundamental processes such as cell division, cell elongation, transposon-mediated variation, and partitioning of photosynthate. Genes that control cell division patterning may be universal shape regulators in horticultural crops, influencing the form of fruits, tubers, and grains in disparate species. Crop wild relatives are often considered less relevant for modern breeding efforts when it comes to characteristics such as shape, however this view may be unnecessarily limiting. Useful allelic variation in wild species may not have been examined or exploited with respect to shape modifications, and newly emergent information on key genes and proteins may provide additional opportunities to regulate the form and contour of vegetable crops.
Collapse
Affiliation(s)
- Irwin L. Goldman
- Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Yanbing Wang
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, United States
| | - Andrey Vega Alfaro
- Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Scott Brainard
- Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Madeline W. Oravec
- Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Cecilia Elizabeth McGregor
- Department of Horticulture, University of Georgia, Athens, GA, United States
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, United States
| | - Esther van der Knaap
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, United States
- Department of Horticulture, University of Georgia, Athens, GA, United States
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, United States
| |
Collapse
|
16
|
Ting NC, Chan PL, Buntjer J, Ordway JM, Wischmeyer C, Ooi LCL, Low ETL, Marjuni M, Sambanthamurthi R, Singh R. High-resolution genetic linkage map and height-related QTLs in an oil palm ( Elaeis guineensis) family planted across multiple sites. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1301-1318. [PMID: 38024957 PMCID: PMC10678900 DOI: 10.1007/s12298-023-01360-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 09/09/2023] [Accepted: 09/14/2023] [Indexed: 12/01/2023]
Abstract
A refined SNP array containing 92,459 probes was developed and applied for chromosome scanning, construction of a high-density genetic linkage map and QTL analysis in a selfed Nigerian oil palm family (T128). Genotyping of the T128 mapping family generated 76,447 good quality SNPs for detailed scanning of aberration and homozygosity in the individual pseudo-chromosomes. Of them, 25,364 polymorphic SNPs were used for linkage analysis resulting in an 84.4% mapping rate. A total of 21,413 SNPs were mapped into 16 linkage groups (LGs), covering a total map length of 1364.5 cM. This genetic map is 16X denser than the previous version used to establish pseudo-chromosomes of the oil palm reference genome published in 2013. The QTLs associated with height, height increment and rachis length were identified in LGs TT05, 06, 08, 15 and 16. The present QTLs as well as those published previously were tagged to the reference genome to determine their chromosomal locations. Almost all the QTLs identified in this study were either close to or co-located with those reported in other populations. Determining the QTL position on chromosomes was also helpful in mining for the underlying candidate genes. In total, 55 putative genes and transcription factors involved in the biosynthesis, conjugation and signalling of the major phytohormones, especially for gibberellins and cell wall morphogenesis were found to be present in the identified genomic QTL regions, and their potential roles in plant dwarfism are discussed. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01360-2.
Collapse
Affiliation(s)
- Ngoot-Chin Ting
- Malaysian Palm Oil Board (MPOB), Advanced Biotechnology and Breeding Centre, 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Malaysia
| | - Pek-Lan Chan
- Malaysian Palm Oil Board (MPOB), Advanced Biotechnology and Breeding Centre, 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Malaysia
| | | | | | | | - Leslie Cheng-Li Ooi
- Malaysian Palm Oil Board (MPOB), Advanced Biotechnology and Breeding Centre, 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Malaysia
| | - Eng Ti Leslie Low
- Malaysian Palm Oil Board (MPOB), Advanced Biotechnology and Breeding Centre, 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Malaysia
| | - Marhalil Marjuni
- Malaysian Palm Oil Board (MPOB), Advanced Biotechnology and Breeding Centre, 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Malaysia
| | - Ravigadevi Sambanthamurthi
- Malaysian Palm Oil Board (MPOB), Advanced Biotechnology and Breeding Centre, 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Malaysia
| | - Rajinder Singh
- Malaysian Palm Oil Board (MPOB), Advanced Biotechnology and Breeding Centre, 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Malaysia
| |
Collapse
|
17
|
Liang M, Ji T, Wang X, Wang X, Li S, Gao L, Ma S, Tian Y. Comprehensive analyses of microtubule-associated protein MAP65 family genes in Cucurbitaceae and CsaMAP65s expression profiles in cucumber. J Appl Genet 2023; 64:393-408. [PMID: 37219731 DOI: 10.1007/s13353-023-00761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023]
Abstract
MAP65 is a microtubule-binding protein family in plants and plays crucial roles in regulating cell growth and development, intercellular communication, and plant responses to various environmental stresses. However, MAP65s in Cucurbitaceae are still less understood. In this study, a total of 40 MAP65s were identified from six Cucurbitaceae species (Cucumis sativus L., Citrullus lanatus, Cucumis melo L., Cucurbita moschata, Lagenaria siceraria, and Benincasa hispida) and classified into five groups by phylogenetic analysis according to gene structures and conserved domains. A conserved domain (MAP65_ASE1) was found in all MAP65 proteins. In cucumber, we isolated six CsaMAP65s with different expression patterns in tissues including root, stem, leaf, female flower, male flower, and fruit. Subcellular localizations of CsaMAP65s verified that all CsaMAP65s were localized in microtubule and microfilament. Analyses of the promoter regions of CsaMAP65s have screened different cis-acting regulatory elements involved in growth and development and responses to hormone and stresses. In addition, CsaMAP65-5 in leaves was significantly upregulated by salt stress, and this promotion effect was higher in cucumber cultivars with salt tolerant than that without salt tolerant. CsaMAP65-1 in leaves was significantly upregulated by cold stress, and this promotion was higher in cold-tolerant cultivar than intolerant cultivar. With the genome-wide characterization and phylogenetic analysis of Cucurbitaceae MAP65s, and the expression profile of CsaMAP65s in cucumber, this study laid a foundation for further study on MAP65 functions in developmental processes and responses to abiotic stress in Cucurbitaceae species.
Collapse
Affiliation(s)
- Meiting Liang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Tingting Ji
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xueyun Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xingyi Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Shihui Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Lihong Gao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Si Ma
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China.
| | - Yongqiang Tian
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
18
|
Li Q, Luo S, Zhang L, Feng Q, Song L, Sapkota M, Xuan S, Wang Y, Zhao J, van der Knaap E, Chen X, Shen S. Molecular and genetic regulations of fleshy fruit shape and lessons from Arabidopsis and rice. HORTICULTURE RESEARCH 2023; 10:uhad108. [PMID: 37577396 PMCID: PMC10419822 DOI: 10.1093/hr/uhad108] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/12/2023] [Indexed: 08/15/2023]
Abstract
Fleshy fruit shape is an important external quality trait influencing the usage of fruits and consumer preference. Thus, modification of fruit shape has become one of the major objectives for crop improvement. However, the underlying mechanisms of fruit shape regulation are poorly understood. In this review we summarize recent progress in the genetic basis of fleshy fruit shape regulation using tomato, cucumber, and peach as examples. Comparative analyses suggest that the OFP-TRM (OVATE Family Protein - TONNEAU1 Recruiting Motif) and IQD (IQ67 domain) pathways are probably conserved in regulating fruit shape by primarily modulating cell division patterns across fleshy fruit species. Interestingly, cucumber homologs of FRUITFULL (FUL1), CRABS CLAW (CRC) and 1-aminocyclopropane-1-carboxylate synthase 2 (ACS2) were found to regulate fruit elongation. We also outline the recent progress in fruit shape regulation mediated by OFP-TRM and IQD pathways in Arabidopsis and rice, and propose that the OFP-TRM pathway and IQD pathway coordinate regulate fruit shape through integration of phytohormones, including brassinosteroids, gibberellic acids, and auxin, and microtubule organization. In addition, functional redundancy and divergence of the members of each of the OFP, TRM, and IQD families are also shown. This review provides a general overview of current knowledge in fruit shape regulation and discusses the possible mechanisms that need to be addressed in future studies.
Collapse
Affiliation(s)
- Qiang Li
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Shuangxia Luo
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Liying Zhang
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Qian Feng
- Center for Applied Genetic Technologies, Institute for Plant Breeding, Genetics and Genomics, Department of Horticulture, University of Georgia, Athens, GA, USA
| | - Lijun Song
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Manoj Sapkota
- Center for Applied Genetic Technologies, Institute for Plant Breeding, Genetics and Genomics, Department of Horticulture, University of Georgia, Athens, GA, USA
| | - Shuxin Xuan
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Yanhua Wang
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Jianjun Zhao
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Esther van der Knaap
- Center for Applied Genetic Technologies, Institute for Plant Breeding, Genetics and Genomics, Department of Horticulture, University of Georgia, Athens, GA, USA
| | - Xueping Chen
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Shuxing Shen
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| |
Collapse
|
19
|
Li X, Wang L, Cui Y, Liu C, Liu Y, Lu L, Luo M. The cotton protein GhIQD21 interacts with GhCaM7 and modulates organ morphogenesis in Arabidopsis by influencing microtubule stability. PLANT CELL REPORTS 2023; 42:1025-1038. [PMID: 37010557 DOI: 10.1007/s00299-023-03010-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 03/20/2023] [Indexed: 05/12/2023]
Abstract
KEY MESSAGE GhIQD21, a cotton IQ67-domain protein, interacts with GhCaM7 and alters organ shape in Arabidopsis by modulating microtubule stability. Calcium ion (Ca2+) and the calcium sensor calmodulin play crucial roles in the growth and development of plants. GhCaM7, a calmodulin in upland cotton (Gossypium hirsutum L.), is highly expressed in cotton fiber cells during the rapid elongation period and plays an important role in fiber cell development. In this study, we screened for GhCaM7-interacting proteins and identified GhIQD21, which contains a typical IQ67-domain. GhIQD21 was preferentially expressed at the fiber rapid elongation stage, and the protein localized to microtubules (MTs). Ectopic expression of GhIQD21 in Arabidopsis resulted in shorter leaves, petals, siliques, and plant height, thicker inflorescences, and more trichomes when compared with wild type (WT). Further investigation indicated that the morphogenesis of leaf epidermal cells and silique cells was altered. There was less consistency in the orientation of cortical microtubules in cotyledon and hypocotyl epidermal cells. Furthermore, compared with WT, transgenic seedling hypocotyls were more sensitive to oryzalin, a MT depolymerization drug. These results indicated that GhIQD21 is a GhCaM7-interacting protein located in MTs and that it plays a role in plant growth and potentially cotton fiber development. This study provides a foundation for further studies of the function and regulatory mechanism of GhIQD21 in fiber cell development.
Collapse
Affiliation(s)
- Xing Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Li Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yupeng Cui
- Anyang Institute of Technology, Anyang, 455000, China
| | - Chen Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yujie Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Lili Lu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, Hainan, China.
| | - Ming Luo
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
- Key Laboratory of Biotechnology and Crop Quality Improvement of Ministry of Agriculture, Biotechnology Research Center, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
20
|
Hsiao AS, Huang JY. Microtubule Regulation in Plants: From Morphological Development to Stress Adaptation. Biomolecules 2023; 13:biom13040627. [PMID: 37189374 DOI: 10.3390/biom13040627] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/09/2023] [Accepted: 03/25/2023] [Indexed: 04/03/2023] Open
Abstract
Microtubules (MTs) are essential elements of the eukaryotic cytoskeleton and are critical for various cell functions. During cell division, plant MTs form highly ordered structures, and cortical MTs guide the cell wall cellulose patterns and thus control cell size and shape. Both are important for morphological development and for adjusting plant growth and plasticity under environmental challenges for stress adaptation. Various MT regulators control the dynamics and organization of MTs in diverse cellular processes and response to developmental and environmental cues. This article summarizes the recent progress in plant MT studies from morphological development to stress responses, discusses the latest techniques applied, and encourages more research into plant MT regulation.
Collapse
|
21
|
Goldy C, Barrera V, Taylor I, Buchensky C, Vena R, Benfey PN, De Veylder L, Rodriguez RE. SCARECROW-LIKE28 modulates organ growth in Arabidopsis by controlling mitotic cell cycle exit, endoreplication, and cell expansion dynamics. THE NEW PHYTOLOGIST 2023; 237:1652-1666. [PMID: 36451535 DOI: 10.1111/nph.18650] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
The processes that contribute to plant organ morphogenesis are spatial-temporally organized. Within the meristem, mitosis produces new cells that subsequently engage in cell expansion and differentiation programs. The latter is frequently accompanied by endoreplication, being an alternative cell cycle that replicates the DNA without nuclear division, causing a stepwise increase in somatic ploidy. Here, we show that the Arabidopsis SCL28 transcription factor promotes organ growth by modulating cell expansion dynamics in both root and leaf cells. Gene expression studies indicated that SCL28 regulates members of the SIAMESE/SIAMESE-RELATED (SIM/SMR) family, encoding cyclin-dependent kinase inhibitors with a role in promoting mitotic cell cycle (MCC) exit and endoreplication, both in response to developmental and environmental cues. Consistent with this role, mutants in SCL28 displayed reduced endoreplication, both in roots and leaves. We also found evidence indicating that SCL28 co-expresses with and regulates genes related to the biogenesis, assembly, and remodeling of the cytoskeleton and cell wall. Our results suggest that SCL28 controls, not only cell proliferation as reported previously but also cell expansion and differentiation by promoting MCC exit and endoreplication and by modulating aspects of the biogenesis, assembly, and remodeling of the cytoskeleton and cell wall.
Collapse
Affiliation(s)
- Camila Goldy
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET and Universidad Nacional de Rosario, Rosario, 2000, Argentina
| | - Virginia Barrera
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET and Universidad Nacional de Rosario, Rosario, 2000, Argentina
| | - Isaiah Taylor
- Department of Biology, Howard Hughes Medical Institute, Duke University, Durham, NC, 27708, USA
| | - Celeste Buchensky
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET and Universidad Nacional de Rosario, Rosario, 2000, Argentina
| | - Rodrigo Vena
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET and Universidad Nacional de Rosario, Rosario, 2000, Argentina
| | - Philip N Benfey
- Department of Biology, Howard Hughes Medical Institute, Duke University, Durham, NC, 27708, USA
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent, 9052, Belgium
| | - Ramiro E Rodriguez
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET and Universidad Nacional de Rosario, Rosario, 2000, Argentina
- Centro de Estudios Interdisciplinarios, Universidad Nacional de Rosario, Rosario, 2000, Argentina
| |
Collapse
|
22
|
Molecular bases of rice grain size and quality for optimized productivity. Sci Bull (Beijing) 2023; 68:314-350. [PMID: 36710151 DOI: 10.1016/j.scib.2023.01.026] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/30/2022] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
The accomplishment of further optimization of crop productivity in grain yield and quality is a great challenge. Grain size is one of the crucial determinants of rice yield and quality; all of these traits are typical quantitative traits controlled by multiple genes. Research advances have revealed several molecular and developmental pathways that govern these traits of agronomical importance. This review provides a comprehensive summary of these pathways, including those mediated by G-protein, the ubiquitin-proteasome system, mitogen-activated protein kinase, phytohormone, transcriptional regulators, and storage product biosynthesis and accumulation. We also generalize the excellent precedents for rice variety improvement of grain size and quality, which utilize newly developed gene editing and conventional gene pyramiding capabilities. In addition, we discuss the rational and accurate breeding strategies, with the aim of better applying molecular design to breed high-yield and superior-quality varieties.
Collapse
|
23
|
Qin D, Liu G, Liu R, Wang C, Xu F, Xu Q, Ling Y, Dong G, Peng Y, Ge S, Guo G, Dong J, Li C. Positional cloning identified HvTUBULIN8 as the candidate gene for round lateral spikelet (RLS) in barley (Hordeum vulgare L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:7. [PMID: 36656367 PMCID: PMC9852219 DOI: 10.1007/s00122-023-04272-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
Map-based cloning, subcellular localization, virus-induced-gene-silencing and transcriptomic analysis reveal HvTUB8 as a candidate gene with pleiotropic effects on barley spike and leaf development via ethylene and chlorophyll metabolism. Barley lateral spikelet morphology and grain shape play key roles in grain physical quality and yield. Several genes and QTLs for these traits have been cloned or fine mapped previously. Here, we report the phenotypic and genotypic analysis of a barley mutant with round lateral spikelet (rls) from cv. Edamai 934. rls had round lateral spikelet, short but round grain, shortened awn, thick glume and dark green leaves. Histocytologic and ultrastructural analysis revealed that the difference of grain shape of rls was caused by change of cell arrangement in glume, and the dark leaf color resulted from enlarged chloroplast. HvTUBULIN8 (HvTUB8) was identified as the candidate gene for rls by combination of RNA-Seq, map-based-cloning, virus-induced-gene-silencing (VIGS) and protein subcellular location. A single G-A substitution at the third exon of HvTUB8 resulted in change of Cysteine 354 to tyrosine. Furthermore, the mutant isoform Hvtub8 could be detected in both nucleus and cytoplasm, whereas the wild-type protein was only in cytoplasm and granular organelles of wheat protoplasts. Being consistent with the rare phenotype, the "A" allele of HvTUB8 was only detected in rls, but not in a worldwide barley germplasm panel with 400 accessions. VIGS confirmed that HvTUB8 was essential to maintain spike integrity. RNA-Seq results suggested that HvTUB8 may control spike morphogenesis via ethylene homeostasis and signaling, and control leaf color through chlorophyll metabolism. Collectively, our results support HvTUB8 as a candidate gene for barley spike and leaf morphology and provide insight of a novel mechanism of it in barley development.
Collapse
Affiliation(s)
- Dandan Qin
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
- Key Laboratory for Crop Molecular, Breeding of Ministry of Agriculture and Rural Affairs, Wuhan, 430064, Hubei, China
| | - Gang Liu
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
- Key Laboratory for Crop Molecular, Breeding of Ministry of Agriculture and Rural Affairs, Wuhan, 430064, Hubei, China
| | - Rui Liu
- Wuhan Polytechnic University, Wuhan, 430023, Hubei, China
| | - Chunchao Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Fuchao Xu
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
- Key Laboratory for Crop Molecular, Breeding of Ministry of Agriculture and Rural Affairs, Wuhan, 430064, Hubei, China
| | - Qing Xu
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
- Key Laboratory for Crop Molecular, Breeding of Ministry of Agriculture and Rural Affairs, Wuhan, 430064, Hubei, China
| | - Yu Ling
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, China
| | - Guoqing Dong
- Wuhan Polytechnic University, Wuhan, 430023, Hubei, China
| | - Yanchun Peng
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
- Key Laboratory for Crop Molecular, Breeding of Ministry of Agriculture and Rural Affairs, Wuhan, 430064, Hubei, China
| | - Shuangtao Ge
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
- Key Laboratory for Crop Molecular, Breeding of Ministry of Agriculture and Rural Affairs, Wuhan, 430064, Hubei, China
| | - Ganggang Guo
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jing Dong
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
- Key Laboratory for Crop Molecular, Breeding of Ministry of Agriculture and Rural Affairs, Wuhan, 430064, Hubei, China
| | - Chengdao Li
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Western Australia, WA, 6150, Australia.
| |
Collapse
|
24
|
Ma M, Liu S, Wang Z, Shao R, Ye J, Yan W, Lv H, Hasi A, Che G. Genome-Wide Identification of the SUN Gene Family in Melon ( Cucumis melo) and Functional Characterization of Two CmSUN Genes in Regulating Fruit Shape Variation. Int J Mol Sci 2022; 23:16047. [PMID: 36555689 PMCID: PMC9785357 DOI: 10.3390/ijms232416047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
Melon (Cucumis melo) is an important economic crop cultivated worldwide. A unique SUN gene family plays a crucial role in regulating plant growth and fruit development, but many SUN family genes and their function have not been well-characterized in melon. In the present study, we performed genome-wide identification and bioinformatics analysis and identified 24 CmSUN family genes that contain integrated and conserved IQ67 domain in the melon genome. Transcriptome data analysis and qRT-PCR results showed that most CmSUNs are specifically enriched in melon reproductive organs, such as young flowers and ovaries. Through genetic transformation in melons, we found that overexpression of CmSUN23-24 and CmSUN25-26-27c led to an increased fruit shape index, suggesting that they act as essential regulators in melon fruit shape variation. Subcellular localization revealed that the CmSUN23-24 protein is located in the cytoplasmic membrane. A direct interaction between CmSUN23-24 and a Calmodulin protein CmCaM5 was found by yeast two-hybrid assay, which indicated their participation in the calcium signal transduction pathway in regulating plant growth. These findings revealed the molecular characteristics, expression profile, and functional pattern of the CmSUN genes, and may provide the theoretical basis for the genetic improvement of melon fruit breeding.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Agula Hasi
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Gen Che
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| |
Collapse
|
25
|
Zheng Q, Takei-Hoshi R, Okumura H, Ito M, Kawaguchi K, Otagaki S, Matsumoto S, Luo Z, Zhang Q, Shiratake K. Genome editing of SlMYB3R3, a cell cycle transcription factor gene of tomato, induces elongated fruit shape. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7312-7325. [PMID: 36070755 PMCID: PMC9730800 DOI: 10.1093/jxb/erac352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Fruit shape is an important trait that attracts consumers, and the regulation of genes related to cell division is crucial for shaping multicellular organs. In Arabidopsis, MYB3R transcription factors, which harbor three imperfect repeats in the N-terminus, control organ growth by regulating cell division. However, the function of MYB3Rs in tomato remains unknown. Here, we characterized tomato SlMYB3R3, which was preferentially expressed in flowers and placed in a subclade with two Arabidopsis cell cycle suppressors (MYB3R3/5). slmyb3r3 knockout mutants were generated using the CRISPR/Cas9 system. Morphological observation of the slmyb3r3 mutants showed that fruits that were elongated and occasionally peanut-like in shape were formed, which was caused by significantly increased cell numbers in the longitudinal direction. Transcriptome and yeast one-hybrid assay results suggested that SlMYB3R3 acted as a suppressor of cell-cycle-related genes by binding to the mitosis-specific activator (MSA) motifs in their promoters. Taken together, knock out of the suppressor SlMYB3R3 leads to elongated fruit, which results from the altered cell division pattern at the ovary stage, by regulating cell-cycle-related genes in an MSA-dependent manner. Our results suggest that SlMYB3R3 and its orthologs have the potential to change fruit shape as part of the molecular breeding of fruit crops.
Collapse
Affiliation(s)
- Qingyou Zheng
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan 430070, China
| | - Rie Takei-Hoshi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Hitomi Okumura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Masaki Ito
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kanazawa 920-1192, Japan
| | - Kohei Kawaguchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Shungo Otagaki
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Shogo Matsumoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Zhengrong Luo
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qinglin Zhang
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan 430070, China
| | | |
Collapse
|
26
|
Liu H, Cao Y, Zhang W, Liu Z, Li Y, Chen Y, Zhang H, Yu F, Liu X. The wheat TaIQD3D-6 gene encodes a microtubule-associated protein and regulates cell morphogenesis in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 324:111420. [PMID: 35985415 DOI: 10.1016/j.plantsci.2022.111420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/07/2022] [Accepted: 08/12/2022] [Indexed: 05/26/2023]
Abstract
A plethora of microtubule-associated proteins (MAPs) modulate the dynamics of microtubules (MTs) to ensure the proper elaboration of developmental programs in plants. Among the plant-specific MAPs are the IQ67 domain (IQD) family proteins. Despite the great progress in elucidating IQD protein functions, the majority of IQD proteins, especially IQDs in crop species, remain to be functionally explored. In this study, we identified 78 putative IQD family genes in the genome of hexaploid wheat (Triticum aestivum). Phylogenetic analysis of wheat and Arabidopsis IQDs supports the previous notion that the expansion of the IQD family coincides with plant terrestrialization. Further characterization of one TaIQD, TaIQD3D-6, revealed that TaIQD3D-6 directly binds to MTs and free tubulins in vitro and is associated with cortical MTs in interphase cells in vivo. Overexpressing TaIQD3D-6 in Arabidopsis leads to a spectrum of phenotypes that are indicative of perturbed MT homeostasis, including spiral growth, hypersensitivity to MT-destabilizing drugs, defects in cell morphogenesis, and altered organization of cMT arrays. Finally, we determined that TaIQD3D-6-GFP localizes to the expanding cell plate during cytokinesis and the overexpression of TaIQD3D-6 interferes with asymmetric cell division in the stomatal lineage in Arabidopsis. In summary, our findings establish that TaIQD3D-6 is a MAP that regulates plant cell and organ morphogenesis and provide new insights into the functions of crop IQD proteins.
Collapse
Affiliation(s)
- Haofeng Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yongxin Cao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Wenjing Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Zhu Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yan Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yu Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Hongchang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Fei Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China; Institute of Future Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Xiayan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| |
Collapse
|
27
|
Zhang Y, Han E, Peng Y, Wang Y, Wang Y, Geng Z, Xu Y, Geng H, Qian Y, Ma S. Rice co-expression network analysis identifies gene modules associated with agronomic traits. PLANT PHYSIOLOGY 2022; 190:1526-1542. [PMID: 35866684 PMCID: PMC9516743 DOI: 10.1093/plphys/kiac339] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Identifying trait-associated genes is critical for rice (Oryza sativa) improvement, which usually relies on map-based cloning, quantitative trait locus analysis, or genome-wide association studies. Here we show that trait-associated genes tend to form modules within rice gene co-expression networks, a feature that can be exploited to discover additional trait-associated genes using reverse genetics. We constructed a rice gene co-expression network based on the graphical Gaussian model using 8,456 RNA-seq transcriptomes, which assembled into 1,286 gene co-expression modules functioning in diverse pathways. A number of the modules were enriched with genes associated with agronomic traits, such as grain size, grain number, tiller number, grain quality, leaf angle, stem strength, and anthocyanin content, and these modules are considered to be trait-associated gene modules. These trait-associated gene modules can be used to dissect the genetic basis of rice agronomic traits and to facilitate the identification of trait genes. As an example, we identified a candidate gene, OCTOPUS-LIKE 1 (OsOPL1), a homolog of the Arabidopsis (Arabidopsis thaliana) OCTOPUS gene, from a grain size module and verified it as a regulator of grain size via functional studies. Thus, our network represents a valuable resource for studying trait-associated genes in rice.
Collapse
Affiliation(s)
- Yu Zhang
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
| | - Ershang Han
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
| | - Yuming Peng
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
| | - Yuzhou Wang
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yifan Wang
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
| | - Zhenxing Geng
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
| | - Yupu Xu
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
| | - Haiying Geng
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
| | | | | |
Collapse
|
28
|
Dou J, Duan S, Umer MJ, Xie K, Wang Y, Kang Q, Yang S, Yang L, Liu D, Liu L, Zhao F. Genome-wide analysis of IQD proteins and ectopic expression of watermelon ClIQD24 in tomato suggests its important role in regulating fruit shape. Front Genet 2022; 13:993218. [PMID: 36186419 PMCID: PMC9515400 DOI: 10.3389/fgene.2022.993218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/19/2022] [Indexed: 11/23/2022] Open
Abstract
The plant-specific IQ67 domain (IQD) is the largest class of calmodulin targets found in plants, and plays an important role in many biological processes, especially fruit development processes. However, the functional role of IQD proteins in the development of watermelon (Citrullus lanatus) shape remains unknown, as the IQD protein family in watermelon has not been systematically characterized. Herein, we elucidated the gene structures, chromosomal locations, evolutionary divergence, and functions of 35 IQD genes in the watermelon genome. The transcript profiles and quantitative real-time PCR analysis at different stages of fruit development showed that the ClIQD24 gene was highly expressed on 0 days after pollination. Furthermore, we found that the ectopic overexpression of ClIQD24 promoted tomato fruit elongation, thereby revealing the significance of ClIQD24 in the progression of watermelon shape. Our study will serve as a reference for further investigations on the molecular mechanisms underlying watermelon fruit shape formation.
Collapse
Affiliation(s)
- Junling Dou
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Shixiang Duan
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Muhammad Jawad Umer
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Kuixi Xie
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Yinping Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Qishuai Kang
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Sen Yang
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Luming Yang
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Dongming Liu
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Dongming Liu, ; Lifeng Liu, ; Fengli Zhao,
| | - Lifeng Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- *Correspondence: Dongming Liu, ; Lifeng Liu, ; Fengli Zhao,
| | - Fengli Zhao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Dongming Liu, ; Lifeng Liu, ; Fengli Zhao,
| |
Collapse
|
29
|
Glanc M. Plant cell division from the perspective of polarity. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5361-5371. [PMID: 35604840 DOI: 10.1093/jxb/erac227] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
The orientation of cell division is a major determinant of plant morphogenesis. In spite of considerable efforts over the past decades, the precise mechanism of division plane selection remains elusive. The majority of studies on the topic have addressed division orientation from either a predominantly developmental or a cell biological perspective. Thus, mechanistic insights into the links between developmental and cellular factors affecting division orientation are particularly lacking. Here, I review recent progress in the understanding of cell division orientation in the embryo and primary root meristem of Arabidopsis from both developmental and cell biological standpoints. I offer a view of multilevel polarity as a central aspect of cell division: on the one hand, the division plane is a readout of tissue- and organism-wide polarities; on the other hand, the cortical division zone can be seen as a transient polar subcellular plasma membrane domain. Finally, I argue that a polarity-focused conceptual framework and the integration of developmental and cell biological approaches hold great promise to unravel the mechanistic basis of plant cell division orientation in the near future.
Collapse
Affiliation(s)
- Matouš Glanc
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
30
|
Zheng H, Dong Y, Nong H, Huang L, Liu J, Yu X, Zhang Y, Yang L, Hong B, Wang W, Tao J. VvSUN may act in the auxin pathway to regulate fruit shape in grape. HORTICULTURE RESEARCH 2022; 9:uhac200. [PMID: 36382226 PMCID: PMC9647697 DOI: 10.1093/hr/uhac200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Fruit shape is an essential agronomic feature in many crops. We identified and functionally characterized an auxin pathway-related gene, VvSUN. VvSUN, which belongs to the SUN/IQ67-DOMAIN (IQD) family, localizes to the plasma membrane and chloroplast and may be involved in controlling fruit shape through auxin. It is highly expressed in the ovary, and the expression level 1 week before the anthesis stage is positively correlated with the fruit shape index. Functional analyses illustrated that VvSUN gene overexpression in tomato and tobacco plants changed fruit/pod shape. The VvSUN promoter directly bound to VvARF6 in yeast and activated ß-glucuronidase (GUS) activity by indole-3-acetic acid (IAA) treatments in grapevine leaves, indicating that VvSUN functions are in coordination with auxin. Further analysis of 35S::VvSUN transgenic tomato ovaries showed that the fruit shape changes caused by VvSUN were predominantly caused by variations in cell number in longitudinal directions by regulating endogenous auxin levels via polar transport and/or auxin signal transduction process variations. Moreover, enrichment of the 35S::VvSUN transgenic tomato differentially expressed genes was found in a variety of biological processes, including primary metabolic process, transmembrane transport, calcium ion binding, cytoskeletal protein binding, tubulin binding, and microtubule-based movement. Using weighted gene co-expression network analysis (WGCNA), we confirmed that this plant hormone signal transduction may play a crucial role in controlling fruit shape. As a consequence, it is possible that VvSUN acts as a hub gene, altering cellular auxin levels and the plant hormone signal transduction pathway, which plays a role in cell division patterns, leading to anisotropic growth of the ovary and, ultimately, an elongated fruit shape.
Collapse
Affiliation(s)
- Huan Zheng
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Dong
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Huilan Nong
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Liyuan Huang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Yu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yaguan Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Lina Yang
- Charles River Laboratories International, Inc., Michigan, 49071, USA
| | - Ben Hong
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wu Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | | |
Collapse
|
31
|
Xin Y, Tan C, Wang C, Wu Y, Huang S, Gao Y, Wang L, Wang N, Liu Z, Feng H. BrAN contributes to leafy head formation by regulating leaf width in Chinese cabbage ( Brassica rapa L. ssp. pekinensis). HORTICULTURE RESEARCH 2022; 9:uhac167. [PMID: 36204207 PMCID: PMC9531340 DOI: 10.1093/hr/uhac167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/18/2022] [Indexed: 06/16/2023]
Abstract
Leafy head is an important agronomic trait that determines the yield and quality of Chinese cabbage. The molecular mechanism underlying heading in Chinese cabbage has been the focus of research, and wide leaves are a prerequisite for leafy head formation. In our study, two allelic leafy heading-deficient mutants (lhd1 and lhd2) with narrow leaf phenotypes were screened in an ethyl methanesulfonate mutagenized population from a heading Chinese cabbage double haploid line 'FT'. Genetic analysis revealed that the mutant trait was controlled by a recessive nuclear gene, which was found to be BraA10g000480.3C by MutMap and Kompetitive allele-specific PCR analyses. As BraA10g000480.3C was the ortholog of ANGUSTIFOLIA in Arabidopsis, which has been found to regulate leaf width by controlling cortical microtubule arrangement and pavement cell shape, we named it BrAN. BrAN in mutant lhd1 carried an SNP (G to A) on intron 2 that co-segregated with the mutant phenotype, and disrupted the exon-intron splice junction generating intron retention and a putative truncated protein. BrAN in mutant lhd2 carried an SNP (G to A) on exon 4 leading to a premature stop codon. The ectopic overexpression of BrAN restored normal leaf phenotype due to abnormal cortical microtubule arrangement and pavement cell shape in the Arabidopsis an-t1 mutant. However, transformation of Bran did not rescue the an-t1 phenotype. These results indicate that BrAN contributes to leafy head formation of Chinese cabbage.
Collapse
Affiliation(s)
| | | | - Che Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Yanji Wu
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Shengnan Huang
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Yue Gao
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Lu Wang
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Nan Wang
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhiyong Liu
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | | |
Collapse
|
32
|
Liu Z, Østerlund I, Ruhnow F, Cao Y, Huang G, Cai W, Zhang J, Liang W, Nikoloski Z, Persson S, Zhang D. Fluorescent cytoskeletal markers reveal associations between the actin and microtubule cytoskeleton in rice cells. Development 2022; 149:275467. [DOI: 10.1242/dev.200415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/09/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Rice (Oryza sativa) is one of our main food crops, feeding ∼3.5 billion people worldwide. An increasing number of studies note the importance of the cytoskeleton, including actin filaments and microtubules, in rice development and environmental responses. Yet, reliable in vivo cytoskeleton markers are lacking in rice, which limits our knowledge of cytoskeletal functions in living cells. Therefore, we generated bright fluorescent marker lines of the actin and microtubule cytoskeletons in rice, suitable for live-cell imaging in a wide variety of rice tissues. Using these lines, we show that actin bundles and microtubules engage and co-function during pollen grain development, how the cytoskeletal components are coordinated during root cell development, and that the actin cytoskeleton is robust and facilitates microtubule responses during salt stress. Hence, we conclude that our cytoskeletal marker lines, highlighted by our findings of cytoskeletal associations and dynamics, will substantially further future investigations in rice biology.
Collapse
Affiliation(s)
- Zengyu Liu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University 1 , Minhang 200240, Shanghai , China
| | - Isabella Østerlund
- University of Copenhagen 2 Department of Plant and Environmental Sciences (PLEN) , , 1870 Frederiksberg , Denmark
- Max Planck Institute of Molecular Plant Physiology 3 Systems Biology and Mathematical Modelling , , Am Mühlenberg 1, 14476 Potsdam-Golm , Germany
| | - Felix Ruhnow
- University of Copenhagen 2 Department of Plant and Environmental Sciences (PLEN) , , 1870 Frederiksberg , Denmark
| | - Yiran Cao
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University 1 , Minhang 200240, Shanghai , China
| | - Guoqiang Huang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University 1 , Minhang 200240, Shanghai , China
| | - Wenguo Cai
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University 1 , Minhang 200240, Shanghai , China
| | - Jiao Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University 1 , Minhang 200240, Shanghai , China
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University 1 , Minhang 200240, Shanghai , China
| | - Zoran Nikoloski
- Max Planck Institute of Molecular Plant Physiology 3 Systems Biology and Mathematical Modelling , , Am Mühlenberg 1, 14476 Potsdam-Golm , Germany
| | - Staffan Persson
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University 1 , Minhang 200240, Shanghai , China
- University of Copenhagen 2 Department of Plant and Environmental Sciences (PLEN) , , 1870 Frederiksberg , Denmark
- Copenhagen Plant Science Center (CPSC) 4 , , 1870 Frederiksberg , Denmark
- University of Copenhagen 4 , , 1870 Frederiksberg , Denmark
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University 1 , Minhang 200240, Shanghai , China
- School of Agriculture, Food, and Wine 5 , , Waite Campus, Urrbrae, SA 5064 , Australia
- University of Adelaide 5 , , Waite Campus, Urrbrae, SA 5064 , Australia
| |
Collapse
|
33
|
Ke Q, Sun H, Tang M, Luo R, Zeng Y, Wang M, Li Y, Li Z, Cui L. Genome-wide identification, expression analysis and evolutionary relationships of the IQ67-domain gene family in common wheat (Triticum aestivum L.) and its progenitors. BMC Genomics 2022; 23:264. [PMID: 35382737 PMCID: PMC8981769 DOI: 10.1186/s12864-022-08520-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The plant-specific IQ67-domain (IQD) gene family plays an important role in plant development and stress responses. However, little is known about the IQD family in common wheat (Triticum aestivum L), an agriculturally important crop that provides more than 20% of the calories and protein consumed in the modern human diet. RESULTS We identified 125 IQDs in the wheat genome and divided them into four subgroups by phylogenetic analysis. The IQDs belonging to the same subgroup had similar exon-intron structure and conserved motif composition. Polyploidization contributed significantly to the expansion of IQD genes in wheat. Characterization of the expression profile of these genes revealed that a few T. aestivum (Ta)IQDs showed high tissue-specificity. The stress-induced expression pattern also revealed a potential role of TaIQDs in environmental adaptation, as TaIQD-2A-2, TaIQD-3A-9 and TaIQD-1A-7 were significantly induced by cold, drought and heat stresses, and could be candidates for future functional characterization. In addition, IQD genes in the A, B and D subgenomes displayed an asymmetric evolutionary pattern, as evidenced by their different gain or loss of member genes, expression levels and nucleotide diversity. CONCLUSIONS This study elucidated the potential biological functions and evolutionary relationships of the IQD gene family in wheat and revealed the divergent fates of IQD genes during polyploidization.
Collapse
Affiliation(s)
- Qinglin Ke
- College of Bioscience and Engineering, Jiangxi Agricultural University, Jiangxi, 330045, China
| | - Huifan Sun
- College of Bioscience and Engineering, Jiangxi Agricultural University, Jiangxi, 330045, China
| | - Minqiang Tang
- College of Forestry, Hainan University, Hainan, 570228, China
| | - Ruihan Luo
- College of Bioscience and Engineering, Jiangxi Agricultural University, Jiangxi, 330045, China
| | - Yan Zeng
- College of Bioscience and Engineering, Jiangxi Agricultural University, Jiangxi, 330045, China
| | - Mengxing Wang
- College of Agronomy, Jiangxi Agricultural University, Jiangxi, 330045, China
| | - Yihan Li
- College of Bioscience and Engineering, Jiangxi Agricultural University, Jiangxi, 330045, China
| | - Zhimin Li
- College of Bioscience and Engineering, Jiangxi Agricultural University, Jiangxi, 330045, China
| | - Licao Cui
- College of Bioscience and Engineering, Jiangxi Agricultural University, Jiangxi, 330045, China. .,Key Laboratory for Crop Gene Resources and Germplasm Enhancement, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, MOA, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
34
|
Zhou YF, Zhang YC, Sun YM, Yu Y, Lei MQ, Yang YW, Lian JP, Feng YZ, Zhang Z, Yang L, He RR, Huang JH, Cheng Y, Liu YW, Chen YQ. The parent-of-origin lncRNA MISSEN regulates rice endosperm development. Nat Commun 2021; 12:6525. [PMID: 34764271 PMCID: PMC8585977 DOI: 10.1038/s41467-021-26795-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 10/22/2021] [Indexed: 11/09/2022] Open
Abstract
The cereal endosperm is a major factor determining seed size and shape. However, the molecular mechanisms of endosperm development are not fully understood. Long noncoding RNAs (lncRNAs) function in various biological processes. Here we show a lncRNA, MISSEN, that plays an essential role in early endosperm development in rice (Oryza sativa). MISSEN is a parent-of-origin lncRNA expressed in endosperm, and negatively regulates endosperm development, leading to a prominent dent and bulge in the seed. Mechanistically, MISSEN functions through hijacking a helicase family protein (HeFP) to regulate tubulin function during endosperm nucleus division and endosperm cellularization, resulting in abnormal cytoskeletal polymerization. Finally, we revealed that the expression of MISSEN is inhibited by histone H3 lysine 27 trimethylation (H3K27me3) modification after pollination. Therefore, MISSEN is the first lncRNA identified as a regulator in endosperm development, highlighting the potential applications in rice breeding.
Collapse
Affiliation(s)
- Yan-Fei Zhou
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Yu-Chan Zhang
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Yu-Meng Sun
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Yang Yu
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Meng-Qi Lei
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Yu-Wei Yang
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Jian-Ping Lian
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Yan-Zhao Feng
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Zhi Zhang
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Lu Yang
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Rui-Rui He
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Jia-Hui Huang
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Yu Cheng
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Yu-Wei Liu
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Yue-Qin Chen
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, 510275, Guangzhou, China. .,MOE Key Laboratory of Gene Function and Regulation, Sun Yat-sen University, 510275, Guangzhou, China.
| |
Collapse
|
35
|
Yoon J, Cho L, Kim S, Tun W, Peng X, Pasriga R, Moon S, Hong W, Ji H, Jung K, Jeon J, An G. CTP synthase is essential for early endosperm development by regulating nuclei spacing. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2177-2191. [PMID: 34058048 PMCID: PMC8541778 DOI: 10.1111/pbi.13644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/04/2021] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
Cereal grain endosperms are an important source of human nutrition. Nuclear division in early endosperm development plays a major role in determining seed size; however, this development is not well understood. We identified the rice mutant endospermless 2 (enl2), which shows defects in the early stages of endosperm development. These phenotypes arise from mutations in OsCTPS1 that encodes a cytidine triphosphate synthase (CTPS). Both wild-type and mutant endosperms were normal at 8 h after pollination (HAP). In contrast, at 24 HAP, enl2 endosperm had approximately 10-16 clumped nuclei while wild-type nuclei had increased in number and migrated to the endosperm periphery. Staining of microtubules in endosperm at 24 HAP revealed that wild-type nuclei were evenly distributed by microtubules while the enl2-2 nuclei were tightly packed due to their reduction in microtubule association. In addition, OsCTPS1 interacts with tubulins; thus, these observations suggest that OsCTPS1 may be involved in microtubule formation. OsCTPS1 transiently formed macromolecular structures in the endosperm during early developmental stages, further supporting the idea that OsCTPS1 may function as a structural component during endosperm development. Finally, overexpression of OsCTPS1 increased seed weight by promoting endosperm nuclear division, suggesting that this trait could be used to increase grain yield.
Collapse
Affiliation(s)
- Jinmi Yoon
- Crop Biotech Institute and Graduate School of BiotechnologyKyung Hee UniversityYonginRepublic of Korea
- Department of Plant BioscienceCollege of Natural Resources and Life SciencePusan National UniversityMiryangRepublic of Korea
| | - Lae‐Hyeon Cho
- Crop Biotech Institute and Graduate School of BiotechnologyKyung Hee UniversityYonginRepublic of Korea
- Department of Plant BioscienceCollege of Natural Resources and Life SciencePusan National UniversityMiryangRepublic of Korea
| | - Sung‐Ryul Kim
- Gene Identification and Validation GroupGenetic Design and Validation UnitInternational Rice Research Institute (IRRI)Metro ManilaPhilippines
| | - Win Tun
- Crop Biotech Institute and Graduate School of BiotechnologyKyung Hee UniversityYonginRepublic of Korea
| | - Xin Peng
- Crop Biotech Institute and Graduate School of BiotechnologyKyung Hee UniversityYonginRepublic of Korea
- Institution of Genomics and BioinformaticsSouth China Agricultural UniversityGuangzhouChina
| | - Richa Pasriga
- Crop Biotech Institute and Graduate School of BiotechnologyKyung Hee UniversityYonginRepublic of Korea
| | - Sunok Moon
- Crop Biotech Institute and Graduate School of BiotechnologyKyung Hee UniversityYonginRepublic of Korea
| | - Woo‐Jong Hong
- Crop Biotech Institute and Graduate School of BiotechnologyKyung Hee UniversityYonginRepublic of Korea
| | - Hyeonso Ji
- National Institute of Agricultural Sciences, Rural Development AdministrationJeonjuRepublic of Korea
| | - Ki‐Hong Jung
- Crop Biotech Institute and Graduate School of BiotechnologyKyung Hee UniversityYonginRepublic of Korea
| | - Jong‐Seong Jeon
- Crop Biotech Institute and Graduate School of BiotechnologyKyung Hee UniversityYonginRepublic of Korea
| | - Gynheung An
- Crop Biotech Institute and Graduate School of BiotechnologyKyung Hee UniversityYonginRepublic of Korea
| |
Collapse
|
36
|
Zhang X, Huang Q, Wang P, Liu F, Luo M, Li X, Wang Z, Wan L, Yang G, Hong D. A 24,482-bp deletion is associated with increased seed weight in Brassica napus L. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2653-2669. [PMID: 34002254 DOI: 10.1007/s00122-021-03850-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
A major QTL for seed weight was fine-mapped in rapeseed, and a 24,482-bp deletion likely mediates the effect through multiple pathways. Exploration of the genes controlling seed weight is critical to the improvement of crop yield and elucidation of the mechanisms underlying seed formation in rapeseed (Brassica napus L.). We previously identified the quantitative trait locus (QTL) qSW.C9 for the thousand-seed weight (TSW) in a double haploid population constructed from F1 hybrids between the parental accessions HZ396 and Y106. Here, we confirmed the phenotypic effects associated with qSW.C9 in BC3F2 populations and fine-mapped the candidate causal locus to a 266-kb interval. Sequence and expression analyses revealed that a 24,482-bp deletion in HZ396 containing six predicted genes most likely underlies qSW.C9. Differential gene expression analysis and cytological observations suggested that qSW.C9 affects both cell proliferation and cell expansion through multiple signaling pathways. After genotyping of a rapeseed diversity panel to define the haplotype structure, it could be concluded that the selection of germplasm with two specific markers may be effective in improving the seed weight of rapeseed. This study provides a solid foundation for the identification of the causal gene of qSW.C9 and offers a promising target for the breeding of higher-yielding rapeseed.
Collapse
Affiliation(s)
- Xiaohui Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Qiyang Huang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Pengfei Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Feiyang Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Mudan Luo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xiang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zhuanrong Wang
- Institute of Crops, Wuhan Academy of Agricultural Sciences, Wuhan, 430065, Hubei, China
| | - Lili Wan
- Institute of Crops, Wuhan Academy of Agricultural Sciences, Wuhan, 430065, Hubei, China
| | - Guangsheng Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Dengfeng Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
37
|
Wang L, Liu Y, Liu C, Ge C, Xu F, Luo M. Ectopic expression of GhIQD14 (cotton IQ67 domain-containing protein 14) causes twisted organ and modulates secondary wall formation in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 163:276-284. [PMID: 33872832 DOI: 10.1016/j.plaphy.2021.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/02/2021] [Indexed: 05/26/2023]
Abstract
In plants, although KNOX genes are known to regulate secondary cell wall (SCW) formation, their protein-regulating mechanisms remain largely unknown. Here, we showed that GhKNL1, which regulates SCW formation and fiber development in cotton, could interact with an IQ67 domain containing protein (GhIQD14) in yeast. Confocal observation showed that GhIQD14 was localized to the microtubules. In Arabidopsis, ectopic expression of GhIQD14 caused hypocotyls to be sensitive to microtubule depolymerization agent, organ twisting of seedlings, trichomes, rosette leaves, and capsules, as well as severely irregular xylem vessels and thicker interfascicular fiber cell walls in the inflorescence stem. Furthermore, we found that GhIQD14 interacted with AtKNAT7 in vivo, and instantaneous co-expression of GhIQD14 and AtKNAT7 in tobacco showed that GhIQD14 weakened the distribution of AtKNAT7 in the nucleus, bringing it into the microtubules, thus affecting the SCW formation related genes expression. Our results suggested that GhIQD14 might be involved in the morphological development and SCW formation in cotton.
Collapse
Affiliation(s)
- Li Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yujie Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Chen Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Changwei Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Fan Xu
- Key Laboratory of Biotechnology and Crop Quality Improvement of Ministry of Agriculture, Biotechnology Research Center, Southwest University, Chongqing, China
| | - Ming Luo
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China; Key Laboratory of Biotechnology and Crop Quality Improvement of Ministry of Agriculture, Biotechnology Research Center, Southwest University, Chongqing, China.
| |
Collapse
|
38
|
Chang F, Lv W, Lv P, Xiao Y, Yan W, Chen S, Zheng L, Xie P, Wang L, Karikari B, Abou-Elwafa SF, Jiang H, Zhao T. Exploring genetic architecture for pod-related traits in soybean using image-based phenotyping. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:28. [PMID: 37309355 PMCID: PMC10236113 DOI: 10.1007/s11032-021-01223-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/18/2021] [Indexed: 06/14/2023]
Abstract
Mature pod color (PC) and pod size (PS) served as important characteristics are used in the soybean breeding programs. However, manual phenotyping of such complex traits is time-consuming, laborious, and expensive for breeders. Here, we collected pod images from two different populations, namely, a soybean association panel (SAP) consisting of 187 accessions and an inter-specific recombinant inbred line (RIL) population containing 284 RILs. An image-based phenotyping method was developed and used to extract the pod color- and size-related parameters from images. Genome-wide association study (GWAS) and linkage mapping were performed to decipher the genetic control of pod color- and size-related traits across 2 successive years. Both populations exhibited wide phenotypic variations and continuous distribution in pod color- and size-related traits, indicating quantitative polygenic inheritance of these traits. GWAS and linkage mapping approaches identified the two major quantitative trait loci (QTL) underlying the pod color parameters, i.e., qPC3 and qPC19, located to chromosomes 3 and 19, respectively, and 12 stable QTLs for pod size-related traits across nine chromosomes. Several genes residing within the genomic region of stable QTL were identified as potential candidates underlying these pod-related traits based on the gene annotation and expression profiling data. Our results provide the useful information for fine-mapping/map-based cloning of QTL and marker-assisted selection of elite varieties with desirable pod traits. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01223-2.
Collapse
Affiliation(s)
- Fangguo Chang
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Wenhuan Lv
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Peiyun Lv
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yuntao Xiao
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Wenliang Yan
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shu Chen
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
| | - Lingyi Zheng
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Ping Xie
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Ling Wang
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Benjamin Karikari
- Department of Crop Science, Faculty of Agriculture, Food and Consumer Sciences, University for Development Studies, P. O. Box TL, 1882 Tamale, Ghana
| | | | - Haiyan Jiang
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
| | - Tuanjie Zhao
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
39
|
Bao Z, Xu Z, Zang J, Bürstenbinder K, Wang P. The Morphological Diversity of Plant Organs: Manipulating the Organization of Microtubules May Do the Trick. Front Cell Dev Biol 2021; 9:649626. [PMID: 33842476 PMCID: PMC8033015 DOI: 10.3389/fcell.2021.649626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/08/2021] [Indexed: 12/02/2022] Open
Affiliation(s)
- Zhiru Bao
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China.,Interdisciplinary Sciences Research Institute, Huazhong Agricultural University, Wuhan, China.,National R&D Centre for Citrus Preservation, Huazhong Agricultural University, Wuhan, China
| | - Zhijing Xu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China.,Interdisciplinary Sciences Research Institute, Huazhong Agricultural University, Wuhan, China.,National R&D Centre for Citrus Preservation, Huazhong Agricultural University, Wuhan, China
| | - Jingze Zang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China.,Interdisciplinary Sciences Research Institute, Huazhong Agricultural University, Wuhan, China.,National R&D Centre for Citrus Preservation, Huazhong Agricultural University, Wuhan, China
| | - Katharina Bürstenbinder
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Pengwei Wang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China.,Interdisciplinary Sciences Research Institute, Huazhong Agricultural University, Wuhan, China.,National R&D Centre for Citrus Preservation, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
40
|
Guo C, Zhou J, Li D. New Insights Into Functions of IQ67-Domain Proteins. FRONTIERS IN PLANT SCIENCE 2021; 11:614851. [PMID: 33679817 PMCID: PMC7930834 DOI: 10.3389/fpls.2020.614851] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/21/2020] [Indexed: 05/31/2023]
Abstract
IQ67-domain (IQD) proteins, first identified in Arabidopsis and rice, are plant-specific calmodulin-binding proteins containing highly conserved motifs. They play a critical role in plant defenses, organ development and shape, and drought tolerance. Driven by comprehensive genome identification and analysis efforts, IQDs have now been characterized in several species and have been shown to act as microtubule-associated proteins, participating in microtubule-related signaling pathways. However, the precise molecular mechanisms underpinning their biological functions remain incompletely understood. Here we review current knowledge on how IQD family members are thought to regulate plant growth and development by affecting microtubule dynamics or participating in microtubule-related signaling pathways in different plant species and propose some new insights.
Collapse
Affiliation(s)
- Chunyue Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jun Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
41
|
Liu D, Xu L, Wang W, Jia S, Jin S, Gao J. OsRRM, an RNA-Binding Protein, Modulates Sugar Transport in Rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2020; 11:605276. [PMID: 33363560 PMCID: PMC7752781 DOI: 10.3389/fpls.2020.605276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/09/2020] [Indexed: 05/09/2023]
Abstract
Sugar allocation between vegetative and reproductive tissues is vital to plant development, and sugar transporters play fundamental roles in this process. Although several transcription factors have been identified that control their transcription levels, the way in which the expression of sugar transporter genes is controlled at the posttranscriptional level is unknown. In this study, we showed that OsRRM, an RNA-binding protein, modulates sugar allocation in tissues on the source-to-sink route. The OsRRM expression pattern partly resembles that of several sugar transporter and transcription factor genes that specifically affect sugar transporter gene expression. The messenger RNA levels of almost all of the sugar transporter genes are severely reduced in the osrrm mutant, and this alters sugar metabolism and sugar signaling, which further affects plant height, flowering time, seed size, and starch synthesis. We further showed that OsRRM binds directly to messenger RNAs encoded by sugar transporter genes and thus may stabilize their transcripts. Therefore, we have uncovered the physiological function of OsRRM, which sheds new light on sugar metabolism and sugar signaling.
Collapse
Affiliation(s)
- Derui Liu
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Crop Genomics and Molecular Breeding of Jiangsu Province, Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, College of Agriculture, Yangzhou University, Yangzhou, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Lina Xu
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Crop Genomics and Molecular Breeding of Jiangsu Province, Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, College of Agriculture, Yangzhou University, Yangzhou, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Wei Wang
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Crop Genomics and Molecular Breeding of Jiangsu Province, Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, College of Agriculture, Yangzhou University, Yangzhou, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Shuwen Jia
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Crop Genomics and Molecular Breeding of Jiangsu Province, Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, College of Agriculture, Yangzhou University, Yangzhou, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Sukui Jin
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Crop Genomics and Molecular Breeding of Jiangsu Province, Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, College of Agriculture, Yangzhou University, Yangzhou, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Jiping Gao
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Crop Genomics and Molecular Breeding of Jiangsu Province, Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, College of Agriculture, Yangzhou University, Yangzhou, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Jiping Gao,
| |
Collapse
|