1
|
Nayak N, Mehrotra S, Karamchandani AN, Santelia D, Mehrotra R. Recent advances in designing synthetic plant regulatory modules. FRONTIERS IN PLANT SCIENCE 2025; 16:1567659. [PMID: 40241826 PMCID: PMC11999978 DOI: 10.3389/fpls.2025.1567659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 03/17/2025] [Indexed: 04/18/2025]
Abstract
Introducing novel functions in plants through synthetic multigene circuits requires strict transcriptional regulation. Currently, the use of natural regulatory modules in synthetic circuits is hindered by our limited knowledge of complex plant regulatory mechanisms, the paucity of characterized promoters, and the possibility of crosstalk with endogenous circuits. Synthetic regulatory modules can overcome these limitations. This article introduces an integrative de novo approach for designing plant synthetic promoters by utilizing the available online tools and databases. The recent achievements in designing and validating synthetic plant promoters, enhancers, transcription factors, and the challenges of establishing synthetic circuits in plants are also discussed.
Collapse
Affiliation(s)
- Namitha Nayak
- Department of Biological Sciences, Birla Institute of Technology and Sciences Pilani, Goa, India
| | - Sandhya Mehrotra
- Department of Biological Sciences, Birla Institute of Technology and Sciences Pilani, Goa, India
| | | | - Diana Santelia
- Institute of Integrative Biology, ETH Zürich Universitätstrasse, Zürich, Switzerland
| | - Rajesh Mehrotra
- Department of Biological Sciences, Birla Institute of Technology and Sciences Pilani, Goa, India
| |
Collapse
|
2
|
Sherpa T, Dey N. Development of robust constitutive synthetic promoter using genetic resources of plant pararetroviruses. FRONTIERS IN PLANT SCIENCE 2025; 15:1515921. [PMID: 39911660 PMCID: PMC11794816 DOI: 10.3389/fpls.2024.1515921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/18/2024] [Indexed: 02/07/2025]
Abstract
With the advancement of plant synthetic biology, complex genetic engineering circuits are being developed, which require more diverse genetic regulatory elements (promoters) to operate. Constitutive promoters are widely used for such gene engineering projects, but the list of strong, constitutive plant promoters with strength surpassing the widely used promoter, the CaMV35S, is limited. In this work, we attempted to increase the constitutive promoter library by developing efficient synthetic promoters suitable for high-level gene expression. To do that, we selected three strong pararetroviral-based promoters from Mirabilis mosaic virus (MMV), Figwort mosaic virus (FMV), and Horseradish latent virus (HRLV) and rationally designed and combined their promoter elements. We then tested the newly developed promoters in Nicotiana benthamiana and found a highly active tri-hybrid promoter, MuasFuasH17 (MFH17). We further used these promoter elements in generating random mutant promoters by DNA shuffling techniques in an attempt to change/improve the MFH17 promoter. We further evaluated the activity of the MFH17 promoter in Oryza sativa seedlings and studied the effect of as-1 elements present in it. Finally, we tested the efficacy and tissue specificity of the MFH17 promoter in planta by developing transgenic Nicotiana tabacum and Arabidopsis thaliana plants and found it highly constitutive and efficient in driving the gene throughout the plant tissues. Overall, we conclude that this tripartite synthetic promoter MFH17 is a strong, highly constitutive, and dual-species (dicot and monocot) expressing promoter, which can be a valuable addition to the constitutive plant promoter library for plant synthetic biology.
Collapse
Affiliation(s)
- Tsheten Sherpa
- Division of Plant Biotechnology, Institute of Life Sciences, Bhubaneswar, India
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Nrisingha Dey
- Division of Plant Biotechnology, Institute of Life Sciences, Bhubaneswar, India
| |
Collapse
|
3
|
Wang Z, Yuan H, Yan J, Liu J. Identification, characterization, and design of plant genome sequences using deep learning. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17190. [PMID: 39666835 DOI: 10.1111/tpj.17190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/11/2024] [Accepted: 11/23/2024] [Indexed: 12/14/2024]
Abstract
Due to its excellent performance in processing large amounts of data and capturing complex non-linear relationships, deep learning has been widely applied in many fields of plant biology. Here we first review the application of deep learning in analyzing genome sequences to predict gene expression, chromatin interactions, and epigenetic features (open chromatin, transcription factor binding sites, and methylation sites) in plants. Then, current motif mining and functional component design and synthesis based on generative adversarial networks, large models, and attention mechanisms are elaborated in detail. The progress of protein structure and function prediction, genomic prediction, and large model applications based on deep learning is also discussed. Finally, this work provides prospects for the future development of deep learning in plants with regard to multiple omics data, algorithm optimization, large language models, sequence design, and intelligent breeding.
Collapse
Affiliation(s)
- Zhenye Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, China
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hao Yuan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, China
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Jianxiao Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, China
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
4
|
Xu X, Mo Q, Cai Z, Jiang Q, Zhou D, Yi J. Promoters, Key Cis-Regulatory Elements, and Their Potential Applications in Regulation of Cadmium (Cd) in Rice. Int J Mol Sci 2024; 25:13237. [PMID: 39769000 PMCID: PMC11675829 DOI: 10.3390/ijms252413237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/03/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025] Open
Abstract
Rice (Oryza sativa), a globally significant staple crop, is crucial for ensuring human food security due to its high yield and quality. However, the intensification of industrial activities has resulted in escalating cadmium (Cd) pollution in agricultural soils, posing a substantial threat to rice production. To address this challenge, this review comprehensively analyzes rice promoters, with a particular focus on identifying and characterizing key cis-regulatory elements (CREs) within them. By elucidating the roles of these CREs in regulating Cd stress response and accumulation in rice, we aim to establish a scientific foundation for developing rice varieties with reduced Cd accumulation and enhanced tolerance. Furthermore, based on the current understanding of plant promoters and their associated CREs, our study identifies several critical research directions. These include the exploration of tissue-specific and inducible promoters, as well as the discovery of novel CREs specifically involved in the mechanisms of Cd uptake, transport, and detoxification in rice. Our findings not only contribute to the existing knowledge base on genetic engineering strategies for mitigating Cd contamination in rice but pave the way for future research aimed at enhancing rice's resilience to Cd pollution, ultimately contributing to the safeguarding of global food security.
Collapse
Affiliation(s)
| | | | | | | | | | - Jicai Yi
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (X.X.); (Q.M.); (Z.C.); (Q.J.); (D.Z.)
| |
Collapse
|
5
|
Kumari K, Sherpa T, Dey N. Analysis of plant pararetrovirus promoter sequence(s) for developing a useful synthetic promoter with enhanced activity in rice, pearl millet, and tobacco plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1426479. [PMID: 39166238 PMCID: PMC11333926 DOI: 10.3389/fpls.2024.1426479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/04/2024] [Indexed: 08/22/2024]
Abstract
Promoters are one of the most important components for many gene-based research as they can fine-tune precise gene expression. Many unique plant promoters have been characterized, but strong promoters with dual expression in both monocot and dicot systems are still lacking. In this study, we attempted to make such a promoter by combining specific domains from monocot-infecting pararetroviral-based promoters sugarcane bacilliform virus (SCBV) and banana streak virus (BSV) to a strong dicot-infecting pararetroviral-based promoter mirabilis mosaic virus (MMV). The generated chimeric promoters, MS, SM, MB, and BM, were tested in monocot and dicot systems and further validated in transgenic tobacco plants. We found that the developed chimeric promoters were species-specific (monocot or dicot), which depended on their respective core promoter (CP) region. Furthermore, with this knowledge, deletion-hybrid promoters were developed and evaluated, which led to the development of a unique dual-expressing promoter, MSD3, with high gene expression efficiency (GUS and GFP reporter genes) in rice, pearl millet, and tobacco plants. We conclude that the MSD3 promoter can be an important genetic tool and will be valuable in plant biology research and application.
Collapse
Affiliation(s)
- Khushbu Kumari
- Division of Plant Biotechnology, Institute of Life Sciences, Bhubaneswar, Odisha, India
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, Haryana, India
| | - Tsheten Sherpa
- Division of Plant Biotechnology, Institute of Life Sciences, Bhubaneswar, Odisha, India
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, Haryana, India
| | - Nrisingha Dey
- Division of Plant Biotechnology, Institute of Life Sciences, Bhubaneswar, Odisha, India
| |
Collapse
|
6
|
Wang XT, Tang XN, Zhang YW, Guo YQ, Yao Y, Li RM, Wang YJ, Liu J, Guo JC. Promoter of Cassava MeAHL31 Responds to Diverse Abiotic Stresses and Hormone Signals in Transgenic Arabidopsis. Int J Mol Sci 2024; 25:7714. [PMID: 39062957 PMCID: PMC11276720 DOI: 10.3390/ijms25147714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
The AT-hook motif nuclear-localized (AHL) family is pivotal for the abiotic stress response in plants. However, the function of the cassava AHL genes has not been elucidated. Promoters, as important regulatory elements of gene expression, play a crucial role in stress resistance. In this study, the promoter of the cassava MeAHL31 gene was cloned. The MeAHL31 protein was localized to the cytoplasm and the nucleus. qRT-PCR analysis revealed that the MeAHL31 gene was expressed in almost all tissues tested, and the expression in tuber roots was 321.3 times higher than that in petioles. Promoter analysis showed that the MeAHL31 promoter contains drought, methyl jasmonate (MeJA), abscisic acid (ABA), and gibberellin (GA) cis-acting elements. Expression analysis indicated that the MeAHL31 gene is dramatically affected by treatments with salt, drought, MeJA, ABA, and GA3. Histochemical staining in the proMeAHL31-GUS transgenic Arabidopsis corroborated that the GUS staining was found in most tissues and organs, excluding seeds. Beta-glucuronidase (GUS) activity assays showed that the activities in the proMeAHL31-GUS transgenic Arabidopsis were enhanced by different concentrations of NaCl, mannitol (for simulating drought), and MeJA treatments. The integrated findings suggest that the MeAHL31 promoter responds to the abiotic stresses of salt and drought, and its activity is regulated by the MeJA hormone signal.
Collapse
Affiliation(s)
- Xiao-Tong Wang
- National Key Laboratory for Tropical Crop Breeding, School of Life and Health Sciences, Hainan University, Haikou 570228, China; (X.-T.W.); (X.-N.T.); (Y.-W.Z.); (Y.-Q.G.)
| | - Xiang-Ning Tang
- National Key Laboratory for Tropical Crop Breeding, School of Life and Health Sciences, Hainan University, Haikou 570228, China; (X.-T.W.); (X.-N.T.); (Y.-W.Z.); (Y.-Q.G.)
| | - Ya-Wen Zhang
- National Key Laboratory for Tropical Crop Breeding, School of Life and Health Sciences, Hainan University, Haikou 570228, China; (X.-T.W.); (X.-N.T.); (Y.-W.Z.); (Y.-Q.G.)
| | - Yu-Qiang Guo
- National Key Laboratory for Tropical Crop Breeding, School of Life and Health Sciences, Hainan University, Haikou 570228, China; (X.-T.W.); (X.-N.T.); (Y.-W.Z.); (Y.-Q.G.)
| | - Yuan Yao
- National Key Laboratory for Tropical Crop Breeding, Sanya Research Institute, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Y.Y.); (R.-M.L.); (Y.-J.W.)
| | - Rui-Mei Li
- National Key Laboratory for Tropical Crop Breeding, Sanya Research Institute, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Y.Y.); (R.-M.L.); (Y.-J.W.)
| | - Ya-Jie Wang
- National Key Laboratory for Tropical Crop Breeding, Sanya Research Institute, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Y.Y.); (R.-M.L.); (Y.-J.W.)
| | - Jiao Liu
- National Key Laboratory for Tropical Crop Breeding, Sanya Research Institute, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Y.Y.); (R.-M.L.); (Y.-J.W.)
| | - Jian-Chun Guo
- National Key Laboratory for Tropical Crop Breeding, Sanya Research Institute, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Y.Y.); (R.-M.L.); (Y.-J.W.)
| |
Collapse
|
7
|
Pfotenhauer AC, Lenaghan SC. Phytosensors: harnessing plants to understand the world around us. Curr Opin Biotechnol 2024; 87:103134. [PMID: 38705091 DOI: 10.1016/j.copbio.2024.103134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 05/07/2024]
Abstract
Although plants are sessile, their ubiquitous distribution, ability to harness energy from the sun, and ability to sense above and belowground signals make them ideal candidates for biosensor development. Synthetic biology has allowed scientists to reimagine biosensors as engineered devices that are focused on accomplishing novel tasks. As such, a new wave of plant-based sensors, phytosensors, are being engineered as multi-component sense-and-report devices that can alert human operators to a variety of hazards. While phytosensors are intrinsically tied to agriculture, a new generation of phytosensors has been envisioned to function in the built environment and even in austere environments, such as space. In this review, we will explore the current state of the art with regard to phytosensor engineering.
Collapse
Affiliation(s)
| | - Scott C Lenaghan
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN, USA; Department of Food Science, University of Tennessee, Knoxville, USA.
| |
Collapse
|
8
|
Yang Y, Chaffin TA, Shao Y, Balasubramanian VK, Markillie M, Mitchell H, Rubio‐Wilhelmi MM, Ahkami AH, Blumwald E, Neal Stewart C. Novel synthetic inducible promoters controlling gene expression during water-deficit stress with green tissue specificity in transgenic poplar. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1596-1609. [PMID: 38232002 PMCID: PMC11123411 DOI: 10.1111/pbi.14289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/16/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024]
Abstract
Synthetic promoters may be designed using short cis-regulatory elements (CREs) and core promoter sequences for specific purposes. We identified novel conserved DNA motifs from the promoter sequences of leaf palisade and vascular cell type-specific expressed genes in water-deficit stressed poplar (Populus tremula × Populus alba), collected through low-input RNA-seq analysis using laser capture microdissection. Hexamerized sequences of four conserved 20-base motifs were inserted into each synthetic promoter construct. Two of these synthetic promoters (Syn2 and Syn3) induced GFP in transformed poplar mesophyll protoplasts incubated in 0.5 M mannitol solution. To identify effect of length and sequence from a valuable 20 base motif, 5' and 3' regions from a basic sequence (GTTAACTTCAGGGCCTGTGG) of Syn3 were hexamerized to generate two shorter synthetic promoters, Syn3-10b-1 (5': GTTAACTTCA) and Syn3-10b-2 (3': GGGCCTGTGG). These promoters' activities were compared with Syn3 in plants. Syn3 and Syn3-10b-1 were specifically induced in transient agroinfiltrated Nicotiana benthamiana leaves in water cessation for 3 days. In stable transgenic poplar, Syn3 presented as a constitutive promoter but had the highest activity in leaves. Syn3-10b-1 had stronger induction in green tissues under water-deficit stress conditions than mock control. Therefore, a synthetic promoter containing the 5' sequence of Syn3 endowed both tissue-specificity and water-deficit inducibility in transgenic poplar, whereas the 3' sequence did not. Consequently, we have added two new synthetic promoters to the poplar engineering toolkit: Syn3-10b-1, a green tissue-specific and water-deficit stress-induced promoter, and Syn3, a green tissue-preferential constitutive promoter.
Collapse
Affiliation(s)
- Yongil Yang
- Center for Agricultural Synthetic BiologyUniversity of Tennessee Institute of AgricultureKnoxvilleTennesseeUSA
| | - Timothy A. Chaffin
- Center for Agricultural Synthetic BiologyUniversity of Tennessee Institute of AgricultureKnoxvilleTennesseeUSA
| | - Yuanhua Shao
- Center for Agricultural Synthetic BiologyUniversity of Tennessee Institute of AgricultureKnoxvilleTennesseeUSA
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTennesseeUSA
| | | | - Meng Markillie
- Environmental Molecular Sciences Laboratory, Pacific Northwest National LaboratoryRichlandWAUSA
| | - Hugh Mitchell
- Environmental Molecular Sciences Laboratory, Pacific Northwest National LaboratoryRichlandWAUSA
| | | | - Amir H. Ahkami
- Environmental Molecular Sciences Laboratory, Pacific Northwest National LaboratoryRichlandWAUSA
| | - Eduardo Blumwald
- Department of Plant SciencesUniversity of CaliforniaDavisCaliforniaUSA
| | - C. Neal Stewart
- Center for Agricultural Synthetic BiologyUniversity of Tennessee Institute of AgricultureKnoxvilleTennesseeUSA
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTennesseeUSA
| |
Collapse
|
9
|
Yang Y, Tagaloguin P, Chaffin TA, Shao Y, Mazarei M, Millwood RJ, Stewart CN. Drought stress-inducible synthetic promoters designed for poplar are functional in rice. PLANT CELL REPORTS 2024; 43:69. [PMID: 38345745 DOI: 10.1007/s00299-024-03141-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/31/2023] [Indexed: 02/15/2024]
Abstract
KEY MESSAGE Water deficit-inducible synthetic promoters, SD9-2 and SD18-1, designed for use in the dicot poplar, are functional in the monocot crop, rice.
Collapse
Affiliation(s)
- Yongil Yang
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, USA
| | - Paolo Tagaloguin
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
- Science Department, Mindanao State University-General Santos, Fatima, 9500, General Santos City, Philippines
| | - Timothy A Chaffin
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, USA
| | - Yuanhua Shao
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, USA
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Mitra Mazarei
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, USA
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | | | - C Neal Stewart
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, USA.
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
10
|
Bibik JD, Hamberger B. Plant Engineering to Enable Platforms for Sustainable Bioproduction of Terpenoids. Methods Mol Biol 2024; 2760:3-20. [PMID: 38468079 DOI: 10.1007/978-1-0716-3658-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Terpenoids represent the most diverse class of natural products, with a broad spectrum of industrial relevance including applications in green solvents, flavors and fragrances, nutraceuticals, colorants, and therapeutics. They are typically challenging to extract from their natural sources, where they occur in small amounts and mixtures of related but unwanted byproducts. Formal chemical synthesis, where established, is reliant on petrochemistry. Hence, there is great interest in developing sustainable solutions to assemble biosynthetic pathways in engineered host organisms. Metabolic engineering for chemical production has largely focused on microbial hosts, yet plants offer a sustainable production platform. In addition to containing the precursor pathways that generate the terpenoid building blocks as well as the cell structures and compartments required, or tractable localization for the enzymes involved, plants may provide a low input system to produce these chemicals using carbon dioxide and sunlight only. There have been significant recent advancements in the discovery of pathways to terpenoids of interest as well as strategies to boost yields in host plants. While part of the phytochemical field is focusing on the discovery of biosynthetic pathways, this review will focus on advancements using the pathway toolbox and toward engineering plants for the production of terpenoids. We will highlight strategies currently used to produce target products, optimization of known pathways to improve yields, compartmentalization of pathways within cells, and genetic tools developed to facilitate complex engineering of biosynthetic pathways. These advancements in Synthetic Biology are bringing engineered plant systems closer to commercially relevant hosts for the bioproduction of terpenoids.
Collapse
Affiliation(s)
- Jacob D Bibik
- Department of Biochemistry, Michigan State University, East Lansing, MI, USA
- MelaTech, LLC, Baltimore, MD, USA
| | - Björn Hamberger
- Department of Biochemistry, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
11
|
Xiao C, Liu X, Huang M. Synthetic Promoter Design and Functional Evaluation in Saccharomyces cerevisiae. Methods Mol Biol 2024; 2844:97-108. [PMID: 39068334 DOI: 10.1007/978-1-0716-4063-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Saccharomyces cerevisiae has become a key microbial cell factory for producing biofuels, recombinant proteins, and natural products. The development of efficient cell factories relies on the precise control and fine-tuning of gene expression, underscoring the pivotal role of promoters in pathway engineering. However, natural promoters often have limited transcriptional capacity and thus fall short of the metabolic engineering requirements. This chapter provides protocols and guidelines for constructing and evaluating synthetic promoters in S. cerevisiae. Moreover, these protocols are applicable for creating and testing various synthetic promoters in other host systems.
Collapse
Affiliation(s)
- Chufan Xiao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Xiufang Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Mingtao Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.
| |
Collapse
|
12
|
Bull T, Khakhar A. Design principles for synthetic control systems to engineer plants. PLANT CELL REPORTS 2023; 42:1875-1889. [PMID: 37789180 DOI: 10.1007/s00299-023-03072-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 09/10/2023] [Indexed: 10/05/2023]
Abstract
KEY MESSAGE Synthetic control systems have led to significant advancement in the study and engineering of unicellular organisms, but it has been challenging to apply these tools to multicellular organisms like plants. The ability to predictably engineer plants will enable the development of novel traits capable of alleviating global problems, such as climate change and food insecurity. Engineering predictable multicellular phenotypes will require the development of synthetic control systems that can precisely regulate how the information encoded in genomes is translated into phenotypes. Many efficient control systems have been developed for unicellular organisms. However, it remains challenging to use such tools to study or engineer multicellular organisms. Plants are a good chassis within which to develop strategies to overcome these challenges, thanks to their capacity to withstand large-scale reprogramming without lethality. Additionally, engineered plants have great potential for solving major societal problems. Here we briefly review the progress of control system development in unicellular organisms, and how that information can be leveraged to characterize control systems in plants. Further, we discuss strategies for developing control systems designed to regulate the expression of transgenes or endogenous loci and generate dosage-dependent or discrete traits. Finally, we discuss the utility that mathematical models of biological processes have for control system deployment.
Collapse
Affiliation(s)
- Tawni Bull
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Arjun Khakhar
- Department of Biology, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
13
|
Ahkami AH. Systems biology of root development in Populus: Review and perspectives. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111818. [PMID: 37567482 DOI: 10.1016/j.plantsci.2023.111818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/28/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023]
Abstract
The root system of plants consists of primary, lateral, and adventitious roots (ARs) (aka shoot-born roots). ARs arise from stem- or leaf-derived cells during post-embryonic development. Adventitious root development (ARD) through stem cuttings is the first requirement for successful establishment and growth of planted trees; however, the details of the molecular mechanisms underlying ARD are poorly understood. This knowledge is important to both basic plant biology and because of its necessary role in the successful propagation of superior cultivars of commercial woody bioenergy crops, like poplar. In this review article, the molecular mechanisms that control both endogenous (auxin) and environmentally (nutrients and microbes) regulated ARD and how these systems interact to control the rooting efficiency of poplar trees are described. Then, potential future studies in employing integrated systems biology approaches at cellular resolutions are proposed to more precisely identify the molecular mechanisms that cause AR. Using genetic transformation and genome editing approaches, this information can be used for improving ARD in economically important plants for which clonal propagation is a requirement.
Collapse
Affiliation(s)
- Amir H Ahkami
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA, USA.
| |
Collapse
|
14
|
Lv Y, Xie M, Zhou S, Wen B, Sui S, Li M, Ma J. CpCAF1 from Chimonanthus praecox Promotes Flowering and Low-Temperature Tolerance When Expressed in Arabidopsis thaliana. Int J Mol Sci 2023; 24:12945. [PMID: 37629126 PMCID: PMC10455127 DOI: 10.3390/ijms241612945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/12/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
CCR4-associated factor I (CAF1) is a deadenylase that plays a critical role in the initial step of mRNA degradation in most eukaryotic cells, and in plant growth and development. Knowledge of CAF1 proteins in woody plants remains limited. Wintersweet (Chimonanthus praecox) is a highly ornamental woody plant. In this study, CpCAF1 was isolated from wintersweet. CpCAF1 belongs to the DEDDh (Asp-Glu-Asp-Asp-His) subfamily of the DEDD (Asp-Glu-Asp-Asp) nuclease family. The amino acid sequence showed highest similarity to the homologous gene of Arabidopsis thaliana. In transgenic Arabidopsis overexpressing CpCAF1, the timing of bolting, formation of the first rosette, and other growth stages were earlier than those of the wild-type plants. Root, lateral branch, rosette leaf, and silique growth were positively correlated with CpCAF1 expression. FLOWERING LOCUS T (FT) and SUPPRESSOROF OVEREXPRESSION OF CO 1 (SOC1) gene expression was higher while EARLY FLOWERING3 (ELF3) and FLOWERING LOCUS C (FLC) gene expression of transgenic Arabidopsis was lower than the wild type grown for 4 weeks. Plant growth and flowering occurrences were earlier in transgenic Arabidopsis overexpressing CpCAF1 than in the wild-type plants. The abundance of the CpCAF1 transcript grew steadily, and significantly exceeded the initial level under 4 °C in wintersweet after initially decreasing. After low-temperature exposure, transgenic Arabidopsis had higher proline content and stronger superoxide dismutase activity than the wild type, and the malondialdehyde level in transgenic Arabidopsis was decreased significantly by 12 h and then increased in low temperature, whereas it was directly increased in the wild type. A higher potassium ion flux in the root was detected in transgenic plants than in the wild type with potassium deficiency. The CpCAF1 promoter was a constitutive promoter that contained multiple cis-acting regulatory elements. The DRE, LTR, and MYB elements, which play important roles in response to low temperature, were identified in the CpCAF1 promoter. These findings indicate that CpCAF1 is involved in flowering and low-temperature tolerance in wintersweet, and provide a basis for future genetic and breeding research on wintersweet.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jing Ma
- Chongqing Engineering Research Centre for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; (Y.L.); (M.X.); (S.Z.); (B.W.); (S.S.); (M.L.)
| |
Collapse
|
15
|
Brooks EG, Elorriaga E, Liu Y, Duduit JR, Yuan G, Tsai CJ, Tuskan GA, Ranney TG, Yang X, Liu W. Plant Promoters and Terminators for High-Precision Bioengineering. BIODESIGN RESEARCH 2023; 5:0013. [PMID: 37849460 PMCID: PMC10328392 DOI: 10.34133/bdr.0013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/12/2023] [Indexed: 10/19/2023] Open
Abstract
High-precision bioengineering and synthetic biology require fine-tuning gene expression at both transcriptional and posttranscriptional levels. Gene transcription is tightly regulated by promoters and terminators. Promoters determine the timing, tissues and cells, and levels of the expression of genes. Terminators mediate transcription termination of genes and affect mRNA levels posttranscriptionally, e.g., the 3'-end processing, stability, translation efficiency, and nuclear to cytoplasmic export of mRNAs. The promoter and terminator combination affects gene expression. In the present article, we review the function and features of plant core promoters, proximal and distal promoters, and terminators, and their effects on and benchmarking strategies for regulating gene expression.
Collapse
Affiliation(s)
- Emily G. Brooks
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
| | - Estefania Elorriaga
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
| | - Yang Liu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - James R. Duduit
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
| | - Guoliang Yuan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Chung-Jui Tsai
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Warnell School of Forestry and Natural Resource, University of Georgia, Athens, GA 30602, USA
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Thomas G. Ranney
- Mountain Crop Improvement Lab, Department of Horticultural Science, Mountain Horticultural Crops Research and Extension Center, North Carolina State University, Mills River, NC 28759, USA
| | - Xiaohan Yang
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Warnell School of Forestry and Natural Resource, University of Georgia, Athens, GA 30602, USA
| | - Wusheng Liu
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
| |
Collapse
|
16
|
Koukara J, Papadopoulou KK. Advances in plant synthetic biology approaches to control expression of gene circuits. Biochem Biophys Res Commun 2023; 654:55-61. [PMID: 36889035 DOI: 10.1016/j.bbrc.2023.02.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023]
Abstract
The applications of synthetic biology range from creating simple circuits to monitor an organism's state to complex circuits capable of reconstructing aspects of life. The latter has the potential to be used in plant synthetic biology to address current societal issues by reforming agriculture and enhancing production of molecules of increased demand. For this reason, development of efficient tools to precisely control gene expression of circuits must be prioritized. In this review, we report the latest efforts towards characterization, standardization and assembly of genetic parts into higher-order constructs, as well as available types of inducible systems to modulate their transcription in plant systems. Subsequently, we discuss recent developments in the orthogonal control of gene expression, Boolean logic gates and synthetic genetic toggle-like switches. Finally, we conclude that by combining different means of controlling gene expression, we can create complex circuits capable of reshaping plant life.
Collapse
Affiliation(s)
- Jenny Koukara
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Kalliope K Papadopoulou
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece.
| |
Collapse
|
17
|
Yasmeen E, Wang J, Riaz M, Zhang L, Zuo K. Designing artificial synthetic promoters for accurate, smart, and versatile gene expression in plants. PLANT COMMUNICATIONS 2023:100558. [PMID: 36760129 PMCID: PMC10363483 DOI: 10.1016/j.xplc.2023.100558] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
With the development of high-throughput biology techniques and artificial intelligence, it has become increasingly feasible to design and construct artificial biological parts, modules, circuits, and even whole systems. To overcome the limitations of native promoters in controlling gene expression, artificial promoter design aims to synthesize short, inducible, and conditionally controlled promoters to coordinate the expression of multiple genes in diverse plant metabolic and signaling pathways. Synthetic promoters are versatile and can drive gene expression accurately with smart responses; they show potential for enhancing desirable traits in crops, thereby improving crop yield, nutritional quality, and food security. This review first illustrates the importance of synthetic promoters, then introduces promoter architecture and thoroughly summarizes advances in synthetic promoter construction. Restrictions to the development of synthetic promoters and future applications of such promoters in synthetic plant biology and crop improvement are also discussed.
Collapse
Affiliation(s)
- Erum Yasmeen
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jin Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Muhammad Riaz
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lida Zhang
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kaijing Zuo
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
18
|
Othman SMIS, Mustaffa AF, Che-Othman MH, Samad AFA, Goh HH, Zainal Z, Ismail I. Overview of Repressive miRNA Regulation by Short Tandem Target Mimic (STTM): Applications and Impact on Plant Biology. PLANTS (BASEL, SWITZERLAND) 2023; 12:669. [PMID: 36771753 PMCID: PMC9918958 DOI: 10.3390/plants12030669] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The application of miRNA mimic technology for silencing mature miRNA began in 2007. This technique originated from the discovery of the INDUCED BY PHOSPHATE STARVATION 1 (IPS1) gene, which was found to be a competitive mimic that prevents the cleavage of the targeted mRNA by miRNA inhibition at the post-transcriptional level. To date, various studies have been conducted to understand the molecular mimic mechanism and to improve the efficiency of this technology. As a result, several mimic tools have been developed: target mimicry (TM), short tandem target mimic (STTM), and molecular sponges (SPs). STTM is the most-developed tool due to its stability and effectiveness in decoying miRNA. This review discusses the application of STTM technology on the loss-of-function studies of miRNA and members from diverse plant species. A modified STTM approach for studying the function of miRNA with spatial-temporal expression under the control of specific promoters is further explored. STTM technology will enhance our understanding of the miRNA activity in plant-tissue-specific development and stress responses for applications in improving plant traits via miRNA regulation.
Collapse
Affiliation(s)
- Syed Muhammad Iqbal Syed Othman
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Arif Faisal Mustaffa
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - M. Hafiz Che-Othman
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Abdul Fatah A. Samad
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johor Bahru 81310, Johor, Malaysia
| | - Hoe-Han Goh
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Zamri Zainal
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Ismanizan Ismail
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| |
Collapse
|
19
|
Yang Y, Chaffin TA, Ahkami AH, Blumwald E, Stewart CN. Plant synthetic biology innovations for biofuels and bioproducts. Trends Biotechnol 2022; 40:1454-1468. [PMID: 36241578 DOI: 10.1016/j.tibtech.2022.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/26/2022] [Accepted: 09/15/2022] [Indexed: 01/21/2023]
Abstract
Plant-based biosynthesis of fuels, chemicals, and materials promotes environmental sustainability, which includes decreases in greenhouse gas emissions, water pollution, and loss of biodiversity. Advances in plant synthetic biology (synbio) should improve precision and efficacy of genetic engineering for sustainability. Applicable synbio innovations include genome editing, gene circuit design, synthetic promoter development, gene stacking technologies, and the design of environmental sensors. Moreover, recent advancements in developing spatially resolved and single-cell omics contribute to the discovery and characterization of cell-type-specific mechanisms and spatiotemporal gene regulations in distinct plant tissues for the expression of cell- and tissue-specific genes, resulting in improved bioproduction. This review highlights recent plant synbio progress and new single-cell molecular profiling towards sustainable biofuel and biomaterial production.
Collapse
Affiliation(s)
- Yongil Yang
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, USA; Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Timothy Alexander Chaffin
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, USA; Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Amir H Ahkami
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA, USA
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Charles Neal Stewart
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, USA; Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| |
Collapse
|
20
|
Sharma R, Lenaghan SC. Duckweed: a potential phytosensor for heavy metals. PLANT CELL REPORTS 2022; 41:2231-2243. [PMID: 35980444 DOI: 10.1007/s00299-022-02913-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Globally, heavy metal (HM) contamination is one of the primary causes of environmental pollution leading to decreased quality of life for those affected. In particular, HM contamination in groundwater poses a serious risk to human health and the potential for destabilization of aquatic ecosystems. At present, strategies to remove HM contamination from wastewater are inefficient, costly, laborious, and often the removal poses as much risk to the environment as the initial contamination. Phytoremediation, plant-based removal of contaminants from soil or water, has long been viewed as an economical and sustainable solution to remove toxic metals from the environment. However, to date, phytoremediation has demonstrated limited successes despite a large volume of literature supporting its potential. A key aspect for achieving robust and meaningful phytoremediation is the selection of a plant species that is well suited to the task. For the removal of pollutants from wastewater, hydrophytes, like duckweed, exhibit significant potential due to their rapid growth on nutrient-rich water, ease of collection, and ability to survive in various ecosystems. As a model for ecotoxicity studies, duckweed is an ideal candidate, as it is easy to cultivate under controlled and even sterile conditions, and the rapid growth enables multi-generational studies. Similarly, recent advances in the genetic engineering and genome-editing of duckweed will enable the transition from fundamental ecotoxicity studies to engineered solutions for phytoremediation of HMs. This review will provide insight into the suitability of duckweeds for phytoremediation of HMs and strategies for engineering next-generation duckweed to provide real-world environmental solutions.
Collapse
Affiliation(s)
- Reena Sharma
- Department of Food Science, University of Tennessee, 102 Food Safety and Processing Building 2600 River Dr., Knoxville, TN, 37996, USA
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, B012 McCord Hall, 2640 Morgan Circle Drive, Knoxville, TN, 37996, USA
| | - Scott C Lenaghan
- Department of Food Science, University of Tennessee, 102 Food Safety and Processing Building 2600 River Dr., Knoxville, TN, 37996, USA.
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, B012 McCord Hall, 2640 Morgan Circle Drive, Knoxville, TN, 37996, USA.
| |
Collapse
|
21
|
Liu Y, Yuan G, Hassan MM, Abraham PE, Mitchell JC, Jacobson D, Tuskan GA, Khakhar A, Medford J, Zhao C, Liu CJ, Eckert CA, Doktycz MJ, Tschaplinski TJ, Yang X. Biological and Molecular Components for Genetically Engineering Biosensors in Plants. BIODESIGN RESEARCH 2022; 2022:9863496. [PMID: 37850147 PMCID: PMC10521658 DOI: 10.34133/2022/9863496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/08/2022] [Indexed: 10/19/2023] Open
Abstract
Plants adapt to their changing environments by sensing and responding to physical, biological, and chemical stimuli. Due to their sessile lifestyles, plants experience a vast array of external stimuli and selectively perceive and respond to specific signals. By repurposing the logic circuitry and biological and molecular components used by plants in nature, genetically encoded plant-based biosensors (GEPBs) have been developed by directing signal recognition mechanisms into carefully assembled outcomes that are easily detected. GEPBs allow for in vivo monitoring of biological processes in plants to facilitate basic studies of plant growth and development. GEPBs are also useful for environmental monitoring, plant abiotic and biotic stress management, and accelerating design-build-test-learn cycles of plant bioengineering. With the advent of synthetic biology, biological and molecular components derived from alternate natural organisms (e.g., microbes) and/or de novo parts have been used to build GEPBs. In this review, we summarize the framework for engineering different types of GEPBs. We then highlight representative validated biological components for building plant-based biosensors, along with various applications of plant-based biosensors in basic and applied plant science research. Finally, we discuss challenges and strategies for the identification and design of biological components for plant-based biosensors.
Collapse
Affiliation(s)
- Yang Liu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Guoliang Yuan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Md Mahmudul Hassan
- Department of Genetics and Plant Breeding, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh
| | - Paul E. Abraham
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Julie C. Mitchell
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Daniel Jacobson
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Arjun Khakhar
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - June Medford
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Cheng Zhao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Chang-Jun Liu
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Carrie A. Eckert
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Mitchel J. Doktycz
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Timothy J. Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| |
Collapse
|
22
|
Promoter of Vegetable Soybean GmTIP1;6 Responds to Diverse Abiotic Stresses and Hormone Signals in Transgenic Arabidopsis. Int J Mol Sci 2022; 23:ijms232012684. [PMID: 36293538 PMCID: PMC9604487 DOI: 10.3390/ijms232012684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/30/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022] Open
Abstract
Tonoplast intrinsic proteins (TIPs), a sub-family of aquaporins (AQPs), are known to play important roles in plant abiotic stress responses. However, evidence for the promoters of TIPs involvement in abiotic stress processes remains scarce. In this study, the promoter of the vegetable soybean GmTIP1;6 gene, which had the highest similarity to TIP1-type AQPs from other plants, was cloned. Expression pattern analyses indicated that the GmTIP1;6 gene was dramatically induced by drought, salt, abscisic acid (ABA), and methyl jasmonate (MeJA) stimuli. Promoter analyses revealed that the GmTIP1;6 promoter contained drought, ABA, and MeJA cis-acting elements. Histochemical staining of the GmTIP1;6 promoter in transgenic Arabidopsis corroborated that it was strongly expressed in the vascular bundles of leaves, stems, and roots. Beta-glucuronidase (GUS) activity assays showed that the activities of the GmTIP1;6 promoter were enhanced by different concentrations of polyethylene glycol 6000 (PEG 6000), NaCl, ABA, and MEJA treatments. Integrating these results revealed that the GmTIP1;6 promoter could be applied for improving the tolerance to abiotic stresses of the transgenic plants by promoting the expression of vegetable soybean AQPs.
Collapse
|
23
|
Yang Y, Shao Y, Chaffin TA, Lee JH, Poindexter MR, Ahkami AH, Blumwald E, Stewart CN. Performance of abiotic stress-inducible synthetic promoters in genetically engineered hybrid poplar ( Populus tremula × Populus alba). FRONTIERS IN PLANT SCIENCE 2022; 13:1011939. [PMID: 36330242 PMCID: PMC9623294 DOI: 10.3389/fpls.2022.1011939] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/28/2022] [Indexed: 05/27/2023]
Abstract
Abiotic stresses can cause significant damage to plants. For sustainable bioenergy crop production, it is critical to generate resistant crops to such stress. Engineering promoters to control the precise expression of stress resistance genes is a very effective way to address the problem. Here we developed stably transformed Populus tremula × Populus alba hybrid poplar (INRA 717-1B4) containing one-of-six synthetic drought stress-inducible promoters (SDs; SD9-1, SD9-2, SD9-3, SD13-1, SD18-1, and SD18-3) identified previously by transient transformation assays. We screened green fluorescent protein (GFP) induction in poplar under osmotic stress conditions. Of six transgenic lines containing synthetic promoter, three lines (SD18-1, 9-2, and 9-3) had significant GFP expression in both salt and osmotic stress treatments. Each synthetic promoter employed heptamerized repeats of specific and short cis-regulatory elements (7 repeats of 7-8 bases). To verify whether the repeats of longer sequences can improve osmotic stress responsiveness, a transgenic poplar containing the synthetic promoter of the heptamerized entire SD9 motif (20 bases, containing all partial SD9 motifs) was generated and measured for GFP induction under osmotic stress. The heptamerized entire SD9 motif did not result in higher GFP expression than the shorter promoters consisting of heptamerized SD9-1, 9-2, and 9-3 (partial SD9) motifs. This result indicates that shorter synthetic promoters (~50 bp) can be used for versatile control of gene expression in transgenic poplar. These synthetic promoters will be useful tools to engineer stress-resilient bioenergy tree crops in the future.
Collapse
Affiliation(s)
- Yongil Yang
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, United States
- Department of Plant Sciences, University of Tennessee Institute of Agriculture, Knoxville, TN, United States
| | - Yuanhua Shao
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, United States
- Department of Plant Sciences, University of Tennessee Institute of Agriculture, Knoxville, TN, United States
| | - Timothy A. Chaffin
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, United States
- Department of Plant Sciences, University of Tennessee Institute of Agriculture, Knoxville, TN, United States
| | - Jun Hyung Lee
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, United States
- Department of Plant Sciences, University of Tennessee Institute of Agriculture, Knoxville, TN, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Magen R. Poindexter
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, United States
- Department of Plant Sciences, University of Tennessee Institute of Agriculture, Knoxville, TN, United States
| | - Amir H. Ahkami
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA, United States
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - C. Neal Stewart
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, United States
- Department of Plant Sciences, University of Tennessee Institute of Agriculture, Knoxville, TN, United States
| |
Collapse
|
24
|
Huang Z, Xu Q, Fang X, Wu Z. Expression Activity of Artificial Promoters for Disease Resistance in Transgenic Eucalyptus urophylla. Genes (Basel) 2022; 13:genes13101813. [PMID: 36292698 PMCID: PMC9602378 DOI: 10.3390/genes13101813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 11/22/2022] Open
Abstract
The transcriptional properties of artificial promoters are closely related to the type and arrangement position of cis-elements. GWSF (374-bp) was an effective SPIP with four cis-element dimers. There were four pathogen-inducible cis-elements in the GWSF promoter (GST1-boxes, W-boxes, S-boxes, and F-boxes) and a minimal cauliflower mosaic virus 35S promoter. V-element dimers were inserted into the upstream (VGWSF), midstream (GWVSF), and downstream (GWSFV) regions of the original GWSF promoter sequence to examine their affect on the position. The expression activity of promoters was analyzed and estimated using the histochemical staining of leaf discs of eucalyptus with transient expression, an image digitization method to extract the color features, and the induction treatment by a plant pathogenic microorganism/inducer and qPCR assays. The histochemical staining results of the adventitious buds indicated that the promoters had been successfully integrated into the E. urophylla genome and that they drove the expression of the gus gene. There was a noticeable difference in the intensity of color between the adventitious buds on the same callus block, as well as the intensity of color within the same adventitious bud. According to the established two-factor model of blue value, there was a greater difference between the levels of the genotype factor than the promoter factor in eucalyptus leaf discs. Further, the basal and inducible transcriptional levels of the three improved promoters were investigated by qPCR. With the basal transcriptional level of the GWSF promoter normalized to one, the relative basal levels of VGWSF, GWVSF, and GWSFV were 1.40, 1.45, and 4.15, respectively. The qPCR results were consistent with the staining results of GUS histochemical staining. The three improved promoters all had the properties of being induced by salicylic acid, Ralstonia solanacearum, and Phytophthora capsici. The three improved promoters demonstrated a significantly higher TMV induction activity: their induction activity from high to low was GWSFV > GWVSF > VGWSF. The findings will be beneficial to the construction and optimization of artificial promoters for transgenic plants.
Collapse
Affiliation(s)
- Zhenchi Huang
- School of Life Science and Technology, Lingnan Normal University, Zhanjiang 524048, China
| | - Qingchun Xu
- School of Life Science and Technology, Lingnan Normal University, Zhanjiang 524048, China
| | - Xiaolan Fang
- School of Life Science and Technology, Lingnan Normal University, Zhanjiang 524048, China
| | - Zhihua Wu
- Research Institute of Fast-Growing Trees, Chinese Academy of Forestry, Zhanjiang 524022, China
- Correspondence: ; Tel./Fax: +86-0759-3382-262 or +86-0759-3380-674
| |
Collapse
|
25
|
Duduit JR, Kosentka PZ, Miller MA, Blanco-Ulate B, Lenucci MS, Panthee DR, Perkins-Veazie P, Liu W. Coordinated transcriptional regulation of the carotenoid biosynthesis contributes to fruit lycopene content in high-lycopene tomato genotypes. HORTICULTURE RESEARCH 2022; 9:uhac084. [PMID: 35669706 PMCID: PMC9160729 DOI: 10.1093/hr/uhac084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/25/2022] [Indexed: 06/15/2023]
Abstract
Lycopene content in tomato fruit is largely under genetic control and varies greatly among genotypes. Continued improvement of lycopene content in elite varieties with conventional breeding has become challenging, in part because little is known about the underlying molecular mechanisms in high-lycopene tomatoes (HLYs). We collected 42 HLYs with different genetic backgrounds worldwide. High-performance liquid chromatography (HPLC) analysis revealed lycopene contents differed among the positive control wild tomato Solanum pimpinellifolium, HLYs, the normal lycopene cultivar "Moneymaker", and the non-lycopene cultivar NC 1Y at the pink and red ripe stages. Real-time RT-PCR analysis of expression of the 25 carotenoid biosynthesis pathway genes of each genotype showed a significantly higher expression in nine upstream genes (GGPPS1, GGPPS2, GGPPS3, TPT1, SSU II, PSY2, ZDS, CrtISO and CrtISO-L1 but not the well-studied PSY1, PDS and Z-ISO) at the breaker and/or red ripe stages in HLYs compared to Moneymaker, indicating a higher metabolic flux flow into carotenoid biosynthesis pathway in HLYs. Further conversion of lycopene to carotenes may be prevented via the two downstream genes (β-LCY2 and ε-LCY), which had low-abundance transcripts at either or both stages. Additionally, the significantly higher expression of four downstream genes (BCH1, ZEP, VDE, and CYP97C11) at either or both ripeness stages leads to significantly lower fruit lycopene content in HLYs than in the wild tomato. This is the first systematic investigation of the role of the complete pathway genes in regulating fruit lycopene biosynthesis across many HLYs, and enables tomato breeding and gene editing for increased fruit lycopene content.
Collapse
Affiliation(s)
| | | | - Morgan A Miller
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, 27607, USA
| | | | - Marcello S Lenucci
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento (DiSTeBA), Via Prov.le Lecce-Monteroni, Lecce, 73100 Italy
| | - Dilip R Panthee
- Department of Horticultural Science, North Carolina State University, Mountain Horticultural Crops Research and Extension Center, Mills River, NC 28759, USA
| | - Penelope Perkins-Veazie
- Department of Horticultural Science, Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC 28081, USA
| | | |
Collapse
|
26
|
Tian C, Zhang Y, Li J, Wang Y. Benchmarking Intrinsic Promoters and Terminators for Plant Synthetic Biology Research. BIODESIGN RESEARCH 2022; 2022:9834989. [PMID: 37850139 PMCID: PMC10521690 DOI: 10.34133/2022/9834989] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/11/2022] [Indexed: 10/19/2023] Open
Abstract
The emerging plant synthetic metabolic engineering has been exhibiting great promise to produce either value-added metabolites or therapeutic proteins. However, promoters for plant pathway engineering are generally selected empirically. The quantitative characterization of plant-based promoters is essential for optimal control of gene expression in plant chassis. Here, we used N. benthamiana leaves and BY2 suspension cells to quantitatively characterize a library of plant promoters by transient expression of firefly/Renilla luciferase. We validated the dual-luciferase reporter system by examining the correlation between reporter protein and mRNA levels. In addition, we investigated the effects of terminator-promoter combinations on gene expression and found that the combinations of promoters and terminators resulted in a 326-fold difference between the strongest and weakest performance, as reflected in reporter gene expression. As a proof of concept, we used the quantitatively characterized promoters to engineer the betalain pathway in N. benthamiana. Seven selected plant promoters with different expression strengths were used orthogonally to express CYP76AD1 and DODA, resulting in a final betalain production range of 6.0-362.4 μg/g fresh weight. Our systematic approach not only demonstrates the various intensities of multiple promoter sequences in N. benthamiana and BY2 cells but also adds to the toolbox of plant promoters for plant engineering.
Collapse
Affiliation(s)
- Chenfei Tian
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yixin Zhang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Jianhua Li
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yong Wang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
27
|
Cis Elements: Added Boost to the Directed Evolution of Plant Genes. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.1.68] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To increase the expression of a native/foreign plant/bacterial gene, the complete network of cis-elements must be excavated to increase its biosynthetic yield, especially under industrial stress conditions. For selecting the best set of cis-elements for a foreign gene and aiding the workflow of researchers, often untrained in bioinformatics methodologies, we developed a modular PERL script for their identification and localization. The script is functional on any operating system. It localizes the cis element network of a gene. It aids an easy customization, as per the required analysis, and provides robust strategy, unlike the usually used databases where several applied calculations often become a tricky task. The script allows an uncomplicated analysis of multiplicity of cis elements along with their relative distances, making it easier for designing the more beneficial network of genes for directed evolution experiments. Through a batched scrutiny of several functionally similar genes, it would aid an easy extraction of their evolutionarily favored network of cis elements. It would be extremely helpful to develop the crop plants that are better adapted to the stressful conditions.
Collapse
|
28
|
Lohani N, Singh MB, Bhalla PL. Biological Parts for Engineering Abiotic Stress Tolerance in Plants. BIODESIGN RESEARCH 2022; 2022:9819314. [PMID: 37850130 PMCID: PMC10521667 DOI: 10.34133/2022/9819314] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/17/2021] [Indexed: 10/19/2023] Open
Abstract
It is vital to ramp up crop production dramatically by 2050 due to the increasing global population and demand for food. However, with the climate change projections showing that droughts and heatwaves becoming common in much of the globe, there is a severe threat of a sharp decline in crop yields. Thus, developing crop varieties with inbuilt genetic tolerance to environmental stresses is urgently needed. Selective breeding based on genetic diversity is not keeping up with the growing demand for food and feed. However, the emergence of contemporary plant genetic engineering, genome-editing, and synthetic biology offer precise tools for developing crops that can sustain productivity under stress conditions. Here, we summarize the systems biology-level understanding of regulatory pathways involved in perception, signalling, and protective processes activated in response to unfavourable environmental conditions. The potential role of noncoding RNAs in the regulation of abiotic stress responses has also been highlighted. Further, examples of imparting abiotic stress tolerance by genetic engineering are discussed. Additionally, we provide perspectives on the rational design of abiotic stress tolerance through synthetic biology and list various bioparts that can be used to design synthetic gene circuits whose stress-protective functions can be switched on/off in response to environmental cues.
Collapse
Affiliation(s)
- Neeta Lohani
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Mohan B. Singh
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Prem L. Bhalla
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
29
|
Huang D, Kosentka PZ, Liu W. Synthetic biology approaches in regulation of targeted gene expression. CURRENT OPINION IN PLANT BIOLOGY 2021; 63:102036. [PMID: 33930839 DOI: 10.1016/j.pbi.2021.102036] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 05/15/2023]
Abstract
Synthetic biology approaches are highly sought-after to facilitate the regulation of targeted gene expression in plants for functional genomics research and crop trait improvement. To date, synthetic regulation of gene expression predominantly focuses at the transcription level via engineering of synthetic promoters and transcription factors, while pioneering examples have started to emerge for synthetic regulation of gene expression at the levels of mRNA stability, translation, and protein degradation. This review discusses recent advances in plant synthetic biology for the regulation of gene expression at multiple levels, and highlights their future directions.
Collapse
Affiliation(s)
- Debao Huang
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
| | - Pawel Z Kosentka
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
| | - Wusheng Liu
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA.
| |
Collapse
|
30
|
Wang P, Li L, Wei H, Sun W, Zhou P, Zhu S, Li D, Zhuge Q. Genome-Wide and Comprehensive Analysis of the Multiple Stress-Related CAF1 (CCR4-Associated Factor 1) Family and Its Expression in Poplar. PLANTS 2021; 10:plants10050981. [PMID: 34068989 PMCID: PMC8155972 DOI: 10.3390/plants10050981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 01/06/2023]
Abstract
Poplar is one of the most widely used tree in afforestation projects. However, it is susceptible to abiotic and biotic stress. CCR4-associated factor 1 (CAF1) is a major member of CCR4-NOT, and it is mainly involved in transcriptional regulation and mRNA degradation in eukaryotes. However, there are no studies on the molecular phylogeny and expression of the CAF1 gene in poplar. In this study, a total of 19 PtCAF1 genes were identified in the Populus trichocarpa genome. Phylogenetic analysis of the PtCAF1 gene family was performed with two closely related species (Arabidopsis thaliana and Oryza sativa) to investigate the evolution of the PtCAF1 gene. The tissue expression of the PtCAF1 gene showed that 19 PtCAF1 genes were present in different tissues of poplar. Additionally, the analysis of the expression of the PtCAF1 gene showed that the CAF1 family was up-regulated to various degrees under biotic and abiotic stresses and participated in the poplar stress response. The results of our study provide a deeper understanding of the structure and function of the PtCAF1 gene and may contribute to our understanding of the molecular basis of stress tolerance in poplar.
Collapse
|