1
|
Robert G, Enet A, Saavedra L, Lascano R. Redox regulation of autophagy in Arabidopsis: The different ROS effects. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109800. [PMID: 40158481 DOI: 10.1016/j.plaphy.2025.109800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/05/2025] [Accepted: 03/17/2025] [Indexed: 04/02/2025]
Abstract
Autophagy plays a key role in the responses to different stress condition in plants. Reactive oxygen species (ROS) are common modulators of stress responses, having both toxic and signaling functions. In this context, the relationship between ROS and autophagy regulation remains unclear, and in some aspects, contradictory. In this study, we employed pharmacological and genetic approaches to investigate the effects of different ROS on the cytoplastic redox state and autophagic flux in Arabidopsis thaliana. Our results demonstrated that oxidative treatments with H2O2 and MV, which drastically increased the oxidized state of the cytoplasm, reduced the autophagic flux. Conversely, singlet oxygen, which did not have significant effects on the cytoplasmic redox state, increased the autophagic flux. Additionally, our findings indicated that after H2O2 and high light treatments and during the recovery period, the cytoplasm returned to its reduced state, while autophagy was markedly induced. In summary, our study unveils the differential effects of ROS on the autophagic flux, establishing a correlation with the redox state of the cytoplasm. Moreover, it emphasizes the dynamic nature of autophagy in response to oxidative stress and the subsequent recovery period.
Collapse
Affiliation(s)
- Germán Robert
- Plant Stress Biology Group, Unidad de Doble Dependencia INTA-CONICET (UDEA), Av. 11 de Septiembre, Córdoba 4755-X5020ICA, Argentina; Cátedra de Fisiología Vegetal, Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Av. Velez Sarsfield 299, Córdoba, Argentina; Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Fisiología y Recursos Genéticos Vegetales (IFRGV), Av. 11 de Septiembre, Córdoba 4755-X5020ICA, Argentina.
| | - Alejandro Enet
- Plant Stress Biology Group, Unidad de Doble Dependencia INTA-CONICET (UDEA), Av. 11 de Septiembre, Córdoba 4755-X5020ICA, Argentina.
| | - Laura Saavedra
- Plant Stress Biology Group, Unidad de Doble Dependencia INTA-CONICET (UDEA), Av. 11 de Septiembre, Córdoba 4755-X5020ICA, Argentina.
| | - Ramiro Lascano
- Plant Stress Biology Group, Unidad de Doble Dependencia INTA-CONICET (UDEA), Av. 11 de Septiembre, Córdoba 4755-X5020ICA, Argentina; Cátedra de Fisiología Vegetal, Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Av. Velez Sarsfield 299, Córdoba, Argentina.
| |
Collapse
|
2
|
Lee KP, Kim C. Photosynthetic ROS and retrograde signaling pathways. THE NEW PHYTOLOGIST 2024; 244:1183-1198. [PMID: 39286853 DOI: 10.1111/nph.20134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/30/2024] [Indexed: 09/19/2024]
Abstract
Sessile plants harness mitochondria and chloroplasts to sense and adapt to diverse environmental stimuli. These complex processes involve the generation of pivotal signaling molecules, including reactive oxygen species (ROS), phytohormones, volatiles, and diverse metabolites. Furthermore, the specific modulation of chloroplast proteins, through activation or deactivation, significantly enhances the plant's capacity to engage with its dynamic surroundings. While existing reviews have extensively covered the role of plastidial retrograde modules in developmental and light signaling, our focus lies in investigating how chloroplasts leverage photosynthetic ROS to navigate environmental fluctuations and counteract oxidative stress, thereby sustaining primary metabolism. Unraveling the nuanced interplay between photosynthetic ROS and plant stress responses holds promise for uncovering new insights that could reinforce stress resistance and optimize net photosynthesis rates. This exploration aspires to pave the way for innovative strategies to enhance plant resilience and agricultural productivity amidst changing environmental conditions.
Collapse
Affiliation(s)
- Keun Pyo Lee
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Chanhong Kim
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
- University of the Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
3
|
Xu M, Sun X, Wu X, Qi Y, Li H, Nie J, Yang Z, Tian Z. Chloroplast protein StFC-II was manipulated by a Phytophthora effector to enhance host susceptibility. HORTICULTURE RESEARCH 2024; 11:uhae149. [PMID: 38994450 PMCID: PMC11237190 DOI: 10.1093/hr/uhae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/21/2024] [Indexed: 07/13/2024]
Abstract
Oomycete secretes a range of RxLR effectors into host cells to manipulate plant immunity by targeting proteins from several organelles. In this study, we report that chloroplast protein StFC-II is hijacked by a pathogen effector to enhance susceptibility. Phytophthora infestans RxLR effector Pi22922 is activated during the early stages of P. infestans colonization. Stable overexpression of Pi22922 in plants suppresses flg22-triggered reactive oxygen species (ROS) burst and enhances leaf colonization by P. infestans. A potato ferrochelatase 2 (FC-II, a nuclear-encoded chloroplast-targeted protein), a key enzyme for heme biosynthesis in chloroplast, was identified as a target of Pi22922 in the cytoplasm. The pathogenicity of Pi22922 in plants is partially dependent on FC-II. Overexpression of StFC-II decreases resistance of potato and Nicotiana benthamiana against P. infestans, and silencing of NbFC-II in N. benthamiana reduces P. infestans colonization. Overexpression of StFC-II increases heme content and reduces chlorophyll content and photosynthetic efficiency in potato leaves. Moreover, ROS accumulation both in chloroplast and cytoplasm is attenuated and defense-related genes are down-regulated in StFC-II overexpression transgenic potato and N. benthamiana leaves. Pi22922 inhibits E3 ubiquitin ligase StCHIP-mediated StFC-II degradation in the cytoplasm and promotes its accumulation in chloroplasts. In summary, this study characterizes a new mechanism that an oomycete RxLR effector suppresses host defenses by promoting StFC-II accumulation in chloroplasts, thereby compromising the host immunity and promoting susceptibility.
Collapse
Affiliation(s)
- Meng Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan 430070, China
| | - Xinyuan Sun
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan 430070, China
- Hubei Hongshan Laboratory (HZAU), Wuhan 430070, China
| | - Xinya Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan 430070, China
- Hubei Hongshan Laboratory (HZAU), Wuhan 430070, China
| | - Yetong Qi
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan 430070, China
- Hubei Hongshan Laboratory (HZAU), Wuhan 430070, China
| | - Hongjun Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan 430070, China
- Hubei Hongshan Laboratory (HZAU), Wuhan 430070, China
| | - Jiahui Nie
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan 430070, China
- Hubei Hongshan Laboratory (HZAU), Wuhan 430070, China
| | - Zhu Yang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan 430070, China
- Hubei Hongshan Laboratory (HZAU), Wuhan 430070, China
| | - Zhendong Tian
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan 430070, China
- Hubei Hongshan Laboratory (HZAU), Wuhan 430070, China
| |
Collapse
|
4
|
Lemke MD, Woodson JD. A genetic screen for dominant chloroplast reactive oxygen species signaling mutants reveals life stage-specific singlet oxygen signaling networks. FRONTIERS IN PLANT SCIENCE 2024; 14:1331346. [PMID: 38273946 PMCID: PMC10809407 DOI: 10.3389/fpls.2023.1331346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024]
Abstract
Introduction Plants employ intricate molecular mechanisms to respond to abiotic stresses, which often lead to the accumulation of reactive oxygen species (ROS) within organelles such as chloroplasts. Such ROS can produce stress signals that regulate cellular response mechanisms. One ROS, singlet oxygen (1O2), is predominantly produced in the chloroplast during photosynthesis and can trigger chloroplast degradation, programmed cell death (PCD), and retrograde (organelle-to-nucleus) signaling. However, little is known about the molecular mechanisms involved in these signaling pathways or how many different signaling 1O2 pathways may exist. Methods The Arabidopsis thaliana plastid ferrochelatase two (fc2) mutant conditionally accumulates chloroplast 1O2, making fc2 a valuable genetic system for studying chloroplast 1O2-initiated signaling. Here, we have used activation tagging in a new forward genetic screen to identify eight dominant fc2 activation-tagged (fas) mutations that suppress chloroplast 1O2-initiated PCD. Results While 1O2-triggered PCD is blocked in all fc2 fas mutants in the adult stage, such cellular degradation in the seedling stage is blocked in only two mutants. This differential blocking of PCD suggests that life-stage-specific 1O2-response pathways exist. In addition to PCD, fas mutations generally reduce 1O2-induced retrograde signals. Furthermore, fas mutants have enhanced tolerance to excess light, a natural mechanism to produce chloroplast 1O2. However, general abiotic stress tolerance was only observed in one fc2 fas mutant (fc2 fas2). Together, this suggests that plants can employ general stress tolerance mechanisms to overcome 1O2 production but that this screen was mostly specific to 1O2 signaling. We also observed that salicylic acid (SA) and jasmonate (JA) stress hormone response marker genes were induced in 1O2-stressed fc2 and generally reduced by fas mutations, suggesting that SA and JA signaling is correlated with active 1O2 signaling and PCD. Discussion Together, this work highlights the complexity of 1O2 signaling by demonstrating that multiple pathways may exist and introduces a suite of new 1O2 signaling mutants to investigate the mechanisms controlling chloroplast-initiated degradation, PCD, and retrograde signaling.
Collapse
Affiliation(s)
| | - Jesse D. Woodson
- The School of Plant Sciences, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
5
|
Fan T, Roling L, Hedtke B, Grimm B. FC2 stabilizes POR and suppresses ALA formation in the tetrapyrrole biosynthesis pathway. THE NEW PHYTOLOGIST 2023; 239:624-638. [PMID: 37161708 DOI: 10.1111/nph.18952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/08/2023] [Indexed: 05/11/2023]
Abstract
During photoperiodic growth, the light-dependent nature of chlorophyll synthesis in angiosperms necessitates robust control of the production of 5-aminolevulinic acid (ALA), the rate-limiting step in the initial stage of tetrapyrrole biosynthesis (TBS). We are interested in dissecting the post-translational control of this process, which suppresses ALA synthesis for chlorophyll synthesis in dark-grown plants. Using biochemical approaches for analysis of Arabidopsis wild-type (WT) and mutant lines as well as complementation lines, we show that the heme-synthesizing ferrochelatase 2 (FC2) interacts with protochlorophyllide oxidoreductase and the regulator FLU which both promote the feedback-controlled suppression of ALA synthesis by inactivation of glutamyl-tRNA reductase, thus preventing excessive accumulation of potentially deleterious tetrapyrrole intermediates. Thereby, FC2 stabilizes POR by physical interaction. When the interaction between FC2 and POR is perturbed, suppression of ALA synthesis is attenuated and photoreactive protochlorophyllide accumulates. FC2 is anchored in the thylakoid membrane via its membrane-spanning CAB (chlorophyll-a-binding) domain. FC2 is one of the two isoforms of ferrochelatase catalyzing the last step of heme synthesis. Although FC2 belongs to the heme-synthesizing branch of TBS, its interaction with POR potentiates the effects of the GluTR-inactivation complex on the chlorophyll-synthesizing branch and ensures reciprocal control of chlorophyll and heme synthesis.
Collapse
Affiliation(s)
- Tingting Fan
- Humboldt-Universität zu Berlin, Institute of Biology/Plant Physiology, Philippstraße 13, Building 12,, D-10115, Berlin, Germany
- College of Forestry, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Lena Roling
- Humboldt-Universität zu Berlin, Institute of Biology/Plant Physiology, Philippstraße 13, Building 12,, D-10115, Berlin, Germany
| | - Boris Hedtke
- Humboldt-Universität zu Berlin, Institute of Biology/Plant Physiology, Philippstraße 13, Building 12,, D-10115, Berlin, Germany
| | - Bernhard Grimm
- Humboldt-Universität zu Berlin, Institute of Biology/Plant Physiology, Philippstraße 13, Building 12,, D-10115, Berlin, Germany
| |
Collapse
|
6
|
da Fonseca-Pereira P, Monteiro-Batista RDC, Araújo WL, Nunes-Nesi A. Harnessing enzyme cofactors and plant metabolism: an essential partnership. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1014-1036. [PMID: 36861364 DOI: 10.1111/tpj.16167] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/18/2023] [Accepted: 02/25/2023] [Indexed: 05/31/2023]
Abstract
Cofactors are fundamental to the catalytic activity of enzymes. Additionally, because plants are a critical source of several cofactors (i.e., including their vitamin precursors) within the context of human nutrition, there have been several studies aiming to understand the metabolism of coenzymes and vitamins in plants in detail. For example, compelling evidence has been brought forth regarding the role of cofactors in plants; specifically, it is becoming increasingly clear that an adequate supply of cofactors in plants directly affects their development, metabolism, and stress responses. Here, we review the state-of-the-art knowledge on the significance of coenzymes and their precursors with regard to general plant physiology and discuss the emerging functions attributed to them. Furthermore, we discuss how our understanding of the complex relationship between cofactors and plant metabolism can be used for crop improvement.
Collapse
Affiliation(s)
- Paula da Fonseca-Pereira
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Rita de Cássia Monteiro-Batista
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Wagner L Araújo
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Adriano Nunes-Nesi
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
7
|
Hedtke B, Strätker SM, Pulido ACC, Grimm B. Two isoforms of Arabidopsis protoporphyrinogen oxidase localize in different plastidal membranes. PLANT PHYSIOLOGY 2023; 192:871-885. [PMID: 36806676 PMCID: PMC10231370 DOI: 10.1093/plphys/kiad107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/22/2022] [Accepted: 01/24/2023] [Indexed: 06/01/2023]
Abstract
All land plants encode 2 isoforms of protoporphyrinogen oxidase (PPO). While PPO1 is predominantly expressed in green tissues and its loss is seedling-lethal in Arabidopsis (Arabidopsis thaliana), the effects of PPO2 deficiency have not been investigated in detail. We identified 2 ppo2 T-DNA insertion mutants from publicly available collections, one of which (ppo2-2) is a knock-out mutant. While the loss of PPO2 did not result in any obvious phenotype, substantial changes in PPO activity were measured in etiolated and root tissues. However, ppo1 ppo2 double mutants were embryo-lethal. To shed light on possible functional differences between the 2 isoforms, PPO2 was overexpressed in the ppo1 background. Although the ppo1 phenotype was partially complemented, even strong overexpression of PPO2 was unable to fully compensate for the loss of PPO1. Analysis of subcellular localization revealed that PPO2 is found exclusively in chloroplast envelopes, while PPO1 accumulates in thylakoid membranes. Mitochondrial localization of PPO2 in Arabidopsis was ruled out. Since Arabidopsis PPO2 does not encode a cleavable transit peptide, integration of the protein into the chloroplast envelope must make use of a noncanonical import route. However, when a chloroplast transit peptide was fused to the N-terminus of PPO2, the enzyme was detected predominantly in thylakoid membranes and was able to fully complement ppo1. Thus, the 2 PPO isoforms in Arabidopsis are functionally equivalent but spatially separated. Their distinctive localizations within plastids thus enable the synthesis of discrete subpools of the PPO product protoporphyrin IX, which may serve different cellular needs.
Collapse
Affiliation(s)
- Boris Hedtke
- Humboldt-Universität zu Berlin, Institute of Biology/Plant Physiology, Philippstraße 13 (Building 12), Berlin 10115, Germany
| | - Sarah Melissa Strätker
- Humboldt-Universität zu Berlin, Institute of Biology/Plant Physiology, Philippstraße 13 (Building 12), Berlin 10115, Germany
| | - Andrea C Chiappe Pulido
- Humboldt-Universität zu Berlin, Institute of Biology/Plant Physiology, Philippstraße 13 (Building 12), Berlin 10115, Germany
| | - Bernhard Grimm
- Humboldt-Universität zu Berlin, Institute of Biology/Plant Physiology, Philippstraße 13 (Building 12), Berlin 10115, Germany
| |
Collapse
|
8
|
Su X, Yue X, Kong M, Xie Z, Yan J, Ma W, Wang Y, Zhao J, Zhang X, Liu M. Leaf Color Classification and Expression Analysis of Photosynthesis-Related Genes in Inbred Lines of Chinese Cabbage Displaying Minor Variations in Dark-Green Leaves. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112124. [PMID: 37299103 DOI: 10.3390/plants12112124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/20/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023]
Abstract
The leaves of the Chinese cabbage which is most widely consumed come in a wide variety of colors. Leaves that are dark green can promote photosynthesis, effectively improving crop yield, and therefore hold important application and cultivation value. In this study, we selected nine inbred lines of Chinese cabbage displaying slight differences in leaf color, and graded the leaf color using the reflectance spectra. We clarified the differences in gene sequences and the protein structure of ferrochelatase 2 (BrFC2) among the nine inbred lines, and used qRT-PCR to analyze the expression differences of photosynthesis-related genes in inbred lines with minor variations in dark-green leaves. We found expression differences among the inbred lines of Chinese cabbage in photosynthesis-related genes involved in the porphyrin and chlorophyll metabolism, as well as in photosynthesis and photosynthesis-antenna protein pathway. Chlorophyll b content was significantly positively correlated with the expression of PsbQ, LHCA1_1 and LHCB6_1, while chlorophyll a content was significantly negatively correlated with the expression PsbQ, LHCA1_1 and LHCA1_2. Our results provide an empirical basis for the precise identification of candidate genes and a better understanding of the molecular mechanisms responsible for the production of dark-green leaves in Chinese cabbage.
Collapse
Affiliation(s)
- Xiangjie Su
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Xiaonan Yue
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Mingyu Kong
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Ziwei Xie
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Jinghui Yan
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Wei Ma
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Yanhua Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Jianjun Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Xiaomeng Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Mengyang Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
9
|
Richter AS, Nägele T, Grimm B, Kaufmann K, Schroda M, Leister D, Kleine T. Retrograde signaling in plants: A critical review focusing on the GUN pathway and beyond. PLANT COMMUNICATIONS 2023; 4:100511. [PMID: 36575799 PMCID: PMC9860301 DOI: 10.1016/j.xplc.2022.100511] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/05/2022] [Accepted: 12/22/2022] [Indexed: 06/01/2023]
Abstract
Plastids communicate their developmental and physiological status to the nucleus via retrograde signaling, allowing nuclear gene expression to be adjusted appropriately. Signaling during plastid biogenesis and responses of mature chloroplasts to environmental changes are designated "biogenic" and "operational" controls, respectively. A prominent example of the investigation of biogenic signaling is the screen for gun (genomes uncoupled) mutants. Although the first five gun mutants were identified 30 years ago, the functions of GUN proteins in retrograde signaling remain controversial, and that of GUN1 is hotly disputed. Here, we provide background information and critically discuss recently proposed concepts that address GUN-related signaling and some novel gun mutants. Moreover, considering heme as a candidate in retrograde signaling, we revisit the spatial organization of heme biosynthesis and export from plastids. Although this review focuses on GUN pathways, we also highlight recent progress in the identification and elucidation of chloroplast-derived signals that regulate the acclimation response in green algae and plants. Here, stress-induced accumulation of unfolded/misassembled chloroplast proteins evokes a chloroplast-specific unfolded protein response, which leads to changes in the expression levels of nucleus-encoded chaperones and proteases to restore plastid protein homeostasis. We also address the importance of chloroplast-derived signals for activation of flavonoid biosynthesis leading to production of anthocyanins during stress acclimation through sucrose non-fermenting 1-related protein kinase 1. Finally, a framework for identification and quantification of intercompartmental signaling cascades at the proteomic and metabolomic levels is provided, and we discuss future directions of dissection of organelle-nucleus communication.
Collapse
Affiliation(s)
- Andreas S Richter
- Physiology of Plant Metabolism, Institute for Biosciences, University of Rostock, Albert-Einstein-Str. 3, 18059 Rostock, Germany
| | - Thomas Nägele
- Plant Evolutionary Cell Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Bernhard Grimm
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Kerstin Kaufmann
- Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Michael Schroda
- Molecular Biotechnology and Systems Biology, TU Kaiserslautern, Kaiserslautern, Germany
| | - Dario Leister
- Plant Molecular Biology (Botany), Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Tatjana Kleine
- Plant Molecular Biology (Botany), Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
10
|
Kim TL, Lim H, Chung H, Veerappan K, Oh C. Elevated CO 2 Alters the Physiological and Transcriptome Responses of Pinus densiflora to Long-Term CO 2 Exposure. PLANTS (BASEL, SWITZERLAND) 2022; 11:3530. [PMID: 36559641 PMCID: PMC9781706 DOI: 10.3390/plants11243530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/05/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Physiological response and transcriptome changes were observed to investigate the effects on the growth, metabolism and genetic changes of Pinus densiflora grown for a long time in an environment with an elevated atmospheric CO2 concentration. Pine trees were grown at ambient (400 ppm) and elevated (560 ppm and 720 ppm) CO2 concentrations for 10 years in open-top chambers. The content of nonstructural carbohydrates was significantly increased in elevated CO2. It was notable that the contents of chlorophylls significantly decreased at an elevated CO2. The activities of antioxidants were significantly increased at an elevated CO2 concentration of 720 ppm. We analyzed the differences in the transcriptomes of Pinus densiflora at ambient and elevated CO2 concentrations and elucidated the functions of the differentially expressed genes (DEGs). RNA-Seq analysis identified 2415 and 4462 DEGs between an ambient and elevated CO2 concentrations of 560 ppm and 720 ppm, respectively. Genes related to glycolysis/gluconeogenesis and starch/sucrose metabolism were unchanged or decreased at an elevated CO2 concentration of 560 ppm and tended to increase at an elevated CO2 concentration of 720 ppm. It was confirmed that the expression levels of genes related to photosynthesis and antioxidants were increased at an elevated CO2 concentration of 720 ppm.
Collapse
Affiliation(s)
- Tae-Lim Kim
- Department of Forest Bioresources, National Institute of Forest Science, Suwon 16631, Republic of Korea
| | - Hyemin Lim
- Department of Forest Bioresources, National Institute of Forest Science, Suwon 16631, Republic of Korea
| | - Hoyong Chung
- 3BIGS CO. Ltd., Hwaseong 18469, Republic of Korea
| | | | - Changyoung Oh
- Department of Forest Bioresources, National Institute of Forest Science, Suwon 16631, Republic of Korea
| |
Collapse
|
11
|
Liu M, Ma W, Su X, Zhang X, Lu Y, Zhang S, Yan J, Feng D, Ma L, Taylor A, Ge Y, Cheng Q, Xu K, Wang Y, Li N, Gu A, Zhang J, Luo S, Xuan S, Chen X, Scrutton NS, Li C, Zhao J, Shen S. Mutation in a chlorophyll-binding motif of Brassica ferrochelatase enhances both heme and chlorophyll biosynthesis. Cell Rep 2022; 41:111758. [PMID: 36476857 DOI: 10.1016/j.celrep.2022.111758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 09/06/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022] Open
Abstract
The heme branch of tetrapyrrole biosynthesis contributes to the regulation of chlorophyll levels. However, the mechanism underlying the balance between chlorophyll and heme synthesis remains elusive. Here, we identify a dark green leaf mutant, dg, from an ethyl methanesulfonate (EMS)-induced mutant library of Chinese cabbage. The dg phenotype is caused by an amino acid substitution in the conserved chlorophyll a/b-binding motif (CAB) of ferrochelatase 2 (BrFC2). This mutation increases the formation of BrFC2 homodimer to promote heme production. Moreover, wild-type BrFC2 and dBrFC2 interact with protochlorophyllide (Pchlide) oxidoreductase B1 and B2 (BrPORB1 and BrPORB2), and dBrFC2 exhibits higher binding ability to substrate Pchlide, thereby promoting BrPORBs-catalyzed production of chlorophyllide (Chlide), which can be directly converted into chlorophyll. Our results show that dBrFC2 is a gain-of-function mutation contributing to balancing heme and chlorophyll synthesis via a regulatory mechanism in which dBrFC2 promotes BrPORB enzymatic reaction to enhance chlorophyll synthesis.
Collapse
Affiliation(s)
- Mengyang Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Wei Ma
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Xiangjie Su
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Xiaomeng Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Yin Lu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Shaowei Zhang
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester, UK
| | - Jinghui Yan
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Daling Feng
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Lisong Ma
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Aoife Taylor
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester, UK
| | - Yunjia Ge
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Qi Cheng
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Kedong Xu
- Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China
| | - Yanhua Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Na Li
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Aixia Gu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Ju Zhang
- Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China
| | - Shuangxia Luo
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Shuxin Xuan
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Xueping Chen
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester, UK
| | - Chengwei Li
- Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Jianjun Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China.
| | - Shuxing Shen
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China.
| |
Collapse
|
12
|
Koh E, Brandis A, Fluhr R. Plastid and cytoplasmic origins of 1O 2-mediated transcriptomic responses. FRONTIERS IN PLANT SCIENCE 2022; 13:982610. [PMID: 36420020 PMCID: PMC9676463 DOI: 10.3389/fpls.2022.982610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
The reactive oxygen species singlet oxygen, 1O2, has an extremely short half-life, yet is intimately involved with stress signalling in the cell. We previously showed that the effects of 1O2 on the transcriptome are highly correlated with 80S ribosomal arrest due to oxidation of guanosine residues in mRNA. Here, we show that dysregulation of chlorophyll biosynthesis in the flu mutant or through feeding by δ-aminolevulinic acid can lead to accumulation of photoactive chlorophyll intermediates in the cytoplasm, which generates 1O2 upon exposure to light and causes the oxidation of RNA, eliciting 1O2-responsive genes. In contrast, transcriptomes derived from DCMU treatment, or the Ch1 mutant under moderate light conditions display commonalties with each other but do not induce 1O2 gene signatures. Comparing 1O2 related transcriptomes to an index transcriptome induced by cycloheximide inhibition enables distinction between 1O2 of cytosolic or of plastid origin. These comparisons provide biological insight to cases of mutants or environmental conditions that produce 1O2.
Collapse
Affiliation(s)
- Eugene Koh
- Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Alexander Brandis
- Life Sciences Core Facility, Weizmann Institute of Science, Rehovot, Israel
| | - Robert Fluhr
- Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
13
|
Hand KA, Shabek N. The Role of E3 Ubiquitin Ligases in Chloroplast Function. Int J Mol Sci 2022; 23:9613. [PMID: 36077009 PMCID: PMC9455731 DOI: 10.3390/ijms23179613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 12/14/2022] Open
Abstract
Chloroplasts are ancient organelles responsible for photosynthesis and various biosynthetic functions essential to most life on Earth. Many of these functions require tightly controlled regulatory processes to maintain homeostasis at the protein level. One such regulatory mechanism is the ubiquitin-proteasome system whose fundamental role is increasingly emerging in chloroplasts. In particular, the role of E3 ubiquitin ligases as determinants in the ubiquitination and degradation of specific intra-chloroplast proteins. Here, we highlight recent advances in understanding the roles of plant E3 ubiquitin ligases SP1, COP1, PUB4, CHIP, and TT3.1 as well as the ubiquitin-dependent segregase CDC48 in chloroplast function.
Collapse
Affiliation(s)
| | - Nitzan Shabek
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA
| |
Collapse
|
14
|
Woodson JD. Control of chloroplast degradation and cell death in response to stress. Trends Biochem Sci 2022; 47:851-864. [DOI: 10.1016/j.tibs.2022.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/25/2022] [Accepted: 03/14/2022] [Indexed: 12/16/2022]
|
15
|
Fölsche V, Großmann C, Richter AS. Impact of Porphyrin Binding to GENOMES UNCOUPLED 4 on Tetrapyrrole Biosynthesis in planta. FRONTIERS IN PLANT SCIENCE 2022; 13:850504. [PMID: 35371166 PMCID: PMC8967248 DOI: 10.3389/fpls.2022.850504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Plant tetrapyrrole biosynthesis (TPS) provides the indispensable chlorophyll (Chl) and heme molecules in photosynthetic organisms. Post-translational mechanisms control the enzymes to ensure a balanced flow of intermediates in the pathway and synthesis of appropriate amounts of both endproducts. One of the critical regulators of TPS is GENOMES UNCOUPLED 4 (GUN4). GUN4 interacts with magnesium chelatase (MgCh), and its binding of the catalytic substrate and product of the MgCh reaction stimulates the insertion of Mg2+ into protoporphyrin IX. Despite numerous in vitro studies, knowledge about the in vivo function of the GUN4:porphyrin interaction for the whole TPS pathway, particularly in plants, is still limited. To address this, we focused on two highly conserved amino acids crucial for porphyrin-binding to GUN4 and analyzed GUN4-F191A, R211A, and R211E substitution mutants in vitro and in vivo. Our analysis confirmed the importance of these amino acids for porphyrin-binding and the stimulation of plant MgCh by GUN4 in vitro. Expression of porphyrin-binding deficient F191A, R211A, and R211E in the Arabidopsis gun4-2 knockout mutant background revealed that, unlike in cyanobacteria and green algae, GUN4:porphyrin interactions did not affect the stability of GUN4 or other Arabidopsis TPS pathway enzymes in vivo. In addition, although they shared diminished porphyrin-binding and MgCh activation in vitro, expression of the different GUN4 mutants in gun4-2 had divergent effects on the TPS and the accumulation of Chl and Chl-binding proteins. For instance, expression of R211E, but not R211A, induced a substantial decrease of ALA synthesis rate, lower TPS intermediate and Chl level, and strongly impaired accumulation of photosynthetic complexes compared to wild-type plants. Furthermore, the presence of R211E led to significant growth retardation and paler leaves compared to GUN4 knockdown mutants, indicating that the exchange of R211 to glutamate compromised TPS and Chl accumulation more substantially than the almost complete lack of GUN4. Extensive in vivo analysis of GUN4 point mutants suggested that F191 and R211 might also play a role beyond porphyrin-binding.
Collapse
Affiliation(s)
- Vincent Fölsche
- Physiology of Plant Cell Organelles, Humboldt-Universität Berlin, Berlin, Germany
- Department of Plant Physiology, Humboldt-Universität Berlin, Berlin, Germany
| | - Christopher Großmann
- Physiology of Plant Cell Organelles, Humboldt-Universität Berlin, Berlin, Germany
| | - Andreas S. Richter
- Physiology of Plant Cell Organelles, Humboldt-Universität Berlin, Berlin, Germany
- Department of Plant Physiology, Humboldt-Universität Berlin, Berlin, Germany
- Physiology of Plant Metabolism, University of Rostock, Rostock, Germany
| |
Collapse
|
16
|
Fisher KE, Krishnamoorthy P, Joens MS, Chory J, Fitzpatrick JAJ, Woodson JD. Singlet Oxygen Leads to Structural Changes to Chloroplasts during their Degradation in the Arabidopsis thaliana plastid ferrochelatase two Mutant. PLANT & CELL PHYSIOLOGY 2022; 63:248-264. [PMID: 34850209 DOI: 10.1093/pcp/pcab167] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/01/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
During stress, chloroplasts produce large amounts of reactive oxygen species (ROS). Chloroplasts also contain many nutrients, including 80% of a leaf's nitrogen supply. Therefore, to protect cells from photo-oxidative damage and to redistribute nutrients to sink tissues, chloroplasts are prime targets for degradation. Multiple chloroplast degradation pathways are induced by photo-oxidative stress or nutrient starvation, but the mechanisms by which damaged or senescing chloroplasts are identified, transported to the central vacuole and degraded are poorly defined. Here, we investigated the structures involved with degrading chloroplasts induced by the ROS singlet oxygen (1O2) in the Arabidopsis thaliana plastid ferrochelatase two (fc2) mutant. Under mild 1O2 stress, most fc2 chloroplasts appeared normal, but had reduced starch content. A subset of chloroplasts was degrading, and some protruded into the central vacuole via 'blebbing' structures. A 3D electron microscopy analysis demonstrated that up to 35% of degrading chloroplasts contained such structures. While the location of a chloroplast within a cell did not affect the likelihood of its degradation, chloroplasts in spongy mesophyll cells were degraded at a higher rate than those in palisade mesophyll cells. To determine if degrading chloroplasts have unique structural characteristics, allowing them to be distinguished from healthy chloroplasts, we analyzed fc2 seedlings grown under different levels of photo-oxidative stress. A correlation was observed among chloroplast swelling, 1O2 signaling and the state of degradation. Finally, plastoglobule (PG) enzymes involved in chloroplast disassembly were upregulated while PGs increased their association with the thylakoid grana, implicating an interaction between 1O2-induced chloroplast degradation and senescence pathways.
Collapse
Affiliation(s)
- Karen E Fisher
- The School of Plant Sciences, University of Arizona, 1140 E South Campus Dr., Tucson, AZ 85721, USA
| | - Praveen Krishnamoorthy
- Washington University Center for Cellular Imaging, Washington University School of Medicine, 660 W. Euclid Avenue, St. Louis, MO 63110, USA
| | | | - Joanne Chory
- Plant Biology Laboratory and the Howard Hughes Medical Institute, The Salk Institute, 10010 N Torrey Pines Rd., La Jolla, CA 92037, USA
| | - James A J Fitzpatrick
- Washington University Center for Cellular Imaging, Washington University School of Medicine, 660 W. Euclid Avenue, St. Louis, MO 63110, USA
- Departments of Cell Biology & Physiology and Neuroscience, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130, USA
| | - Jesse D Woodson
- The School of Plant Sciences, University of Arizona, 1140 E South Campus Dr., Tucson, AZ 85721, USA
- Washington University Center for Cellular Imaging, Washington University School of Medicine, 660 W. Euclid Avenue, St. Louis, MO 63110, USA
| |
Collapse
|
17
|
Yan S, Chong P, Zhao M, Liu H. Physiological response and proteomics analysis of Reaumuria soongorica under salt stress. Sci Rep 2022; 12:2539. [PMID: 35169191 PMCID: PMC8847573 DOI: 10.1038/s41598-022-06502-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/25/2022] [Indexed: 01/31/2023] Open
Abstract
Soil salinity can severely restrict plant growth. Yet Reaumuria soongorica can tolerate salinity well. However, large-scale proteomic studies of this plant’s response to salinity have yet to reported. Here, R. soongorica seedlings (4 months old) were used in an experiment where NaCl solutions simulated levels of soil salinity stress. The fresh weight, root/shoot ratio, leaf relative conductivity, proline content, and total leaf area of R. soongorica under CK (0 mM NaCl), low (200 mM NaCl), and high (500 mM NaCl) salt stress were determined. The results showed that the proline content of leaves was positively correlated with salt concentration. With greater salinity, the plant fresh weight, root/shoot ratio, and total leaf area increased initially but then decreased, and vice-versa for the relative electrical conductivity of leaves. Using iTRAQ proteomic sequencing, 47 177 136 differentially expressed proteins (DEPs) were identified in low-salt versus CK, high-salt versus control, and high-salt versus low-salt comparisons, respectively. A total of 72 DEPs were further screened from the comparison groupings, of which 34 DEPs increased and 38 DEPs decreased in abundance. These DEPs are mainly involved in translation, ribosomal structure, and biogenesis. Finally, 21 key DEPs (SCORE value ≥ 60 points) were identified as potential targets for salt tolerance of R. soongolica. By comparing the protein structure of treated versus CK leaves under salt stress, we revealed the key candidate genes underpinning R. soongolica’s salt tolerance ability. This works provides fresh insight into its physiological adaptation strategy and molecular regulatory network, and a molecular basis for enhancing its breeding, under salt stress conditions.
Collapse
Affiliation(s)
- Shipeng Yan
- College of Forestry, Gansu Agricultural University, Lanzhou, 730070, China
| | - Peifang Chong
- College of Forestry, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Ming Zhao
- Gansu Province Academy of Qilian Water Resource Conservation Forests Research Institute, Zhangye, 734000, China
| | - Hongmei Liu
- Gansu Province Academy of Qilian Water Resource Conservation Forests Research Institute, Zhangye, 734000, China
| |
Collapse
|
18
|
Li M, Kim C. Chloroplast ROS and stress signaling. PLANT COMMUNICATIONS 2022; 3:100264. [PMID: 35059631 PMCID: PMC8760138 DOI: 10.1016/j.xplc.2021.100264] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/25/2021] [Accepted: 11/05/2021] [Indexed: 05/23/2023]
Abstract
Chloroplasts overproduce reactive oxygen species (ROS) under unfavorable environmental conditions, and these ROS are implicated in both signaling and oxidative damage. There is mounting evidence for their roles in translating environmental fluctuations into distinct physiological responses, but their targets, signaling cascades, and mutualism and antagonism with other stress signaling cascades and within ROS signaling remain poorly understood. Great efforts made in recent years have shed new light on chloroplast ROS-directed plant stress responses, from ROS perception to plant responses, in conditional mutants of Arabidopsis thaliana or under various stress conditions. Some articles have also reported the mechanisms underlying the complexity of ROS signaling pathways, with an emphasis on spatiotemporal regulation. ROS and oxidative modification of affected target proteins appear to induce retrograde signaling pathways to maintain chloroplast protein quality control and signaling at a whole-cell level using stress hormones. This review focuses on these seemingly interconnected chloroplast-to-nucleus retrograde signaling pathways initiated by ROS and ROS-modified target molecules. We also discuss future directions in chloroplast stress research to pave the way for discovering new signaling molecules and identifying intersectional signaling components that interact in multiple chloroplast signaling pathways.
Collapse
|
19
|
Wang H, Liu Z, Luo S, Li J, Zhang J, Li L, Xie J. 5-Aminolevulinic acid and hydrogen sulphide alleviate chilling stress in pepper (Capsicum annuum L.) seedlings by enhancing chlorophyll synthesis pathway. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:567-576. [PMID: 34455225 DOI: 10.1016/j.plaphy.2021.08.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/15/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
5- Aminolevulinic acid (ALA) as a precursor in chlorophyll (Chl) synthesis and hydrogen sulphide (H2S) as a gas signalling molecules can alleviate various abiotic stresses by enhancing photosynthesis. However, little is known about their mechanisms ameliorating photosynthesis under chilling stress, or interactions of ALA and H2S in Chl synthesis. In this study, we explored the effects of exogenous ALA and H2S on chilling stress-induced photosynthesis damage in pepper (Capsicum annuum L.) seedlings. Chilling inhibited the photosynthetic capacity of pepper seedlings, ALA or H2S treatment alone could alleviate this inhibition, and ALA + H2S treatment was even more effective for improving photosynthetic capacity. Additionally, levels of Chl synthesis pathway substances including endogenous ALA, protoporphyrin IX (Proto IX), Mg-protoporphyrin (Mg-Proto IX), protochlorophyllide (Pchl) and Chl (Chl a and Chl b) were significantly decreased, and chilling down-regulated upstream genes HEMA1, HEMB, FAR1, FHY3, CHLH, HEME1, HEMF and PORA. ALA + H2S treatment significantly increased levels of Chl and upstream substances, and up-regulated expression of HEMA1, HEMB and FAR1. In conclusion, exogenous ALA and H2S enhanced chlorophyll synthesis pathway, and thus improved the photosynthesis of pepper seedlings under chilling stress.
Collapse
Affiliation(s)
- Huiping Wang
- College of Horticulture, Gansu Agriculture University, Lanzhou, 730070, People's Republic of China
| | - Zeci Liu
- College of Horticulture, Gansu Agriculture University, Lanzhou, 730070, People's Republic of China
| | - Shilei Luo
- College of Horticulture, Gansu Agriculture University, Lanzhou, 730070, People's Republic of China
| | - Jing Li
- College of Horticulture, Gansu Agriculture University, Lanzhou, 730070, People's Republic of China
| | - Jing Zhang
- College of Horticulture, Gansu Agriculture University, Lanzhou, 730070, People's Republic of China
| | - Lushan Li
- College of Horticulture, Gansu Agriculture University, Lanzhou, 730070, People's Republic of China
| | - Jianming Xie
- College of Horticulture, Gansu Agriculture University, Lanzhou, 730070, People's Republic of China.
| |
Collapse
|
20
|
Alamdari K, Fisher KE, Tano DW, Rai S, Palos K, Nelson ADL, Woodson JD. Chloroplast quality control pathways are dependent on plastid DNA synthesis and nucleotides provided by cytidine triphosphate synthase two. THE NEW PHYTOLOGIST 2021; 231:1431-1448. [PMID: 33993494 DOI: 10.1111/nph.17467] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
Reactive oxygen species (ROS) produced in chloroplasts cause oxidative damage, but also signal to initiate chloroplast quality control pathways, cell death, and gene expression. The Arabidopsis thaliana plastid ferrochelatase two (fc2) mutant produces the ROS singlet oxygen in chloroplasts that activates such signaling pathways, but the mechanisms are largely unknown. Here we characterize one fc2 suppressor mutation and map it to CYTIDINE TRIPHOSPHATE SYNTHASE TWO (CTPS2), which encodes one of five enzymes in Arabidopsis necessary for de novo cytoplasmic CTP (and dCTP) synthesis. The ctps2 mutation reduces chloroplast transcripts and DNA content without similarly affecting mitochondria. Chloroplast nucleic acid content and singlet oxygen signaling are restored by exogenous feeding of the dCTP precursor deoxycytidine, suggesting ctps2 blocks signaling by limiting nucleotides for chloroplast genome maintenance. An investigation of CTPS orthologs in Brassicaceae showed CTPS2 is a member of an ancient lineage distinct from CTPS3. Complementation studies confirmed this analysis; CTPS3 was unable to compensate for CTPS2 function in providing nucleotides for chloroplast DNA and signaling. Our studies link cytoplasmic nucleotide metabolism with chloroplast quality control pathways. Such a connection is achieved by a conserved clade of CTPS enzymes that provide nucleotides for chloroplast function, thereby allowing stress signaling to occur.
Collapse
Affiliation(s)
- Kamran Alamdari
- The School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Karen E Fisher
- The School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - David W Tano
- The School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Snigdha Rai
- The School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Kyle Palos
- The School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | | | - Jesse D Woodson
- The School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
21
|
Lemke MD, Fisher KE, Kozlowska MA, Tano DW, Woodson JD. The core autophagy machinery is not required for chloroplast singlet oxygen-mediated cell death in the Arabidopsis thaliana plastid ferrochelatase two mutant. BMC PLANT BIOLOGY 2021; 21:342. [PMID: 34281507 PMCID: PMC8290626 DOI: 10.1186/s12870-021-03119-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Chloroplasts respond to stress and changes in the environment by producing reactive oxygen species (ROS) that have specific signaling abilities. The ROS singlet oxygen (1O2) is unique in that it can signal to initiate cellular degradation including the selective degradation of damaged chloroplasts. This chloroplast quality control pathway can be monitored in the Arabidopsis thaliana mutant plastid ferrochelatase two (fc2) that conditionally accumulates chloroplast 1O2 under diurnal light cycling conditions leading to rapid chloroplast degradation and eventual cell death. The cellular machinery involved in such degradation, however, remains unknown. Recently, it was demonstrated that whole damaged chloroplasts can be transported to the central vacuole via a process requiring autophagosomes and core components of the autophagy machinery. The relationship between this process, referred to as chlorophagy, and the degradation of 1O2-stressed chloroplasts and cells has remained unexplored. RESULTS To further understand 1O2-induced cellular degradation and determine what role autophagy may play, the expression of autophagy-related genes was monitored in 1O2-stressed fc2 seedlings and found to be induced. Although autophagosomes were present in fc2 cells, they did not associate with chloroplasts during 1O2 stress. Mutations affecting the core autophagy machinery (atg5, atg7, and atg10) were unable to suppress 1O2-induced cell death or chloroplast protrusion into the central vacuole, suggesting autophagosome formation is dispensable for such 1O2-mediated cellular degradation. However, both atg5 and atg7 led to specific defects in chloroplast ultrastructure and photosynthetic efficiencies, suggesting core autophagy machinery is involved in protecting chloroplasts from photo-oxidative damage. Finally, genes predicted to be involved in microautophagy were shown to be induced in stressed fc2 seedlings, indicating a possible role for an alternate form of autophagy in the dismantling of 1O2-damaged chloroplasts. CONCLUSIONS Our results support the hypothesis that 1O2-dependent cell death is independent from autophagosome formation, canonical autophagy, and chlorophagy. Furthermore, autophagosome-independent microautophagy may be involved in degrading 1O2-damaged chloroplasts. At the same time, canonical autophagy may still play a role in protecting chloroplasts from 1O2-induced photo-oxidative stress. Together, this suggests chloroplast function and degradation is a complex process utilizing multiple autophagy and degradation machineries, possibly depending on the type of stress or damage incurred.
Collapse
Affiliation(s)
- Matthew D. Lemke
- The School of Plant Sciences, University of Arizona, Tucson, AZ 85721-0036 USA
| | - Karen E. Fisher
- The School of Plant Sciences, University of Arizona, Tucson, AZ 85721-0036 USA
| | - Marta A. Kozlowska
- The School of Plant Sciences, University of Arizona, Tucson, AZ 85721-0036 USA
| | - David W. Tano
- The School of Plant Sciences, University of Arizona, Tucson, AZ 85721-0036 USA
| | - Jesse D. Woodson
- The School of Plant Sciences, University of Arizona, Tucson, AZ 85721-0036 USA
| |
Collapse
|
22
|
Kleine T, Nägele T, Neuhaus HE, Schmitz-Linneweber C, Fernie AR, Geigenberger P, Grimm B, Kaufmann K, Klipp E, Meurer J, Möhlmann T, Mühlhaus T, Naranjo B, Nickelsen J, Richter A, Ruwe H, Schroda M, Schwenkert S, Trentmann O, Willmund F, Zoschke R, Leister D. Acclimation in plants - the Green Hub consortium. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:23-40. [PMID: 33368770 DOI: 10.1111/tpj.15144] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 05/04/2023]
Abstract
Acclimation is the capacity to adapt to environmental changes within the lifetime of an individual. This ability allows plants to cope with the continuous variation in ambient conditions to which they are exposed as sessile organisms. Because environmental changes and extremes are becoming even more pronounced due to the current period of climate change, enhancing the efficacy of plant acclimation is a promising strategy for mitigating the consequences of global warming on crop yields. At the cellular level, the chloroplast plays a central role in many acclimation responses, acting both as a sensor of environmental change and as a target of cellular acclimation responses. In this Perspective article, we outline the activities of the Green Hub consortium funded by the German Science Foundation. The main aim of this research collaboration is to understand and strategically modify the cellular networks that mediate plant acclimation to adverse environments, employing Arabidopsis, tobacco (Nicotiana tabacum) and Chlamydomonas as model organisms. These efforts will contribute to 'smart breeding' methods designed to create crop plants with improved acclimation properties. To this end, the model oilseed crop Camelina sativa is being used to test modulators of acclimation for their potential to enhance crop yield under adverse environmental conditions. Here we highlight the current state of research on the role of gene expression, metabolism and signalling in acclimation, with a focus on chloroplast-related processes. In addition, further approaches to uncovering acclimation mechanisms derived from systems and computational biology, as well as adaptive laboratory evolution with photosynthetic microbes, are highlighted.
Collapse
Affiliation(s)
- Tatjana Kleine
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| | - Thomas Nägele
- Plant Evolutionary Cell Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Munich, 82152, Germany
| | - H Ekkehard Neuhaus
- Plant Physiology, Department of Biology, Technische Universität Kaiserslautern, Kaiserslautern, 67663, Germany
| | | | - Alisdair R Fernie
- Central Metabolism, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, 14476, Germany
| | - Peter Geigenberger
- Plant Metabolism, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Munich, 82152, Germany
| | - Bernhard Grimm
- Plant Physiology, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, 10115, Germany
| | - Kerstin Kaufmann
- Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, 10115, Germany
| | - Edda Klipp
- Theoretical Biophysics, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, 10115, Germany
| | - Jörg Meurer
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| | - Torsten Möhlmann
- Plant Physiology, Department of Biology, Technische Universität Kaiserslautern, Kaiserslautern, 67663, Germany
| | - Timo Mühlhaus
- Computational Systems Biology, Department of Biology, Technische Universität Kaiserslautern, Kaiserslautern, 67663, Germany
| | - Belen Naranjo
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| | - Jörg Nickelsen
- Molecular Plant Science, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Munich, 82152, Germany
| | - Andreas Richter
- Physiology of Plant Organelles, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, 10115, Germany
| | - Hannes Ruwe
- Molecular Genetics, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, 10115, Germany
| | - Michael Schroda
- Molecular Biotechnology & Systems Biology, Department of Biology, Technische Universität Kaiserslautern, Kaiserslautern, 67663, Germany
| | - Serena Schwenkert
- Plant Biochemistry and Physiology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Munich, 82152, Germany
| | - Oliver Trentmann
- Plant Physiology, Department of Biology, Technische Universität Kaiserslautern, Kaiserslautern, 67663, Germany
| | - Felix Willmund
- Molecular Genetics of Eukaryotes, Department of Biology, Technische Universität Kaiserslautern, Kaiserslautern, 67663, Germany
| | - Reimo Zoschke
- Translational Regulation in Plants, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, 14476, Germany
| | - Dario Leister
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| |
Collapse
|
23
|
Alamdari K, Fisher KE, Sinson AB, Chory J, Woodson JD. Roles for the chloroplast-localized pentatricopeptide repeat protein 30 and the 'mitochondrial' transcription termination factor 9 in chloroplast quality control. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:735-751. [PMID: 32779277 DOI: 10.1111/tpj.14963] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 07/20/2020] [Indexed: 05/11/2023]
Abstract
Chloroplasts constantly experience photo-oxidative stress while performing photosynthesis. This is particularly true under abiotic stresses that lead to the accumulation of reactive oxygen species (ROS) which oxidize DNA, proteins and lipids. Reactive oxygen species can also act as signals to induce acclimation through chloroplast degradation, cell death and nuclear gene expression. To better understand the mechanisms behind ROS signaling from chloroplasts, we have used the Arabidopsis thaliana mutant plastid ferrochelatase two (fc2) that conditionally accumulates the ROS singlet oxygen (1 O2 ) leading to chloroplast degradation and eventually cell death. Here we have mapped mutations that suppress chloroplast degradation in the fc2 mutant and demonstrate that they affect two independent loci (PPR30 and mTERF9) encoding chloroplast proteins predicted to be involved in post-transcriptional gene expression. These mutants exhibited broadly reduced chloroplast gene expression, impaired chloroplast development and reduced chloroplast stress signaling. Levels of 1 O2 , however, could be uncoupled from chloroplast degradation, suggesting that PPR30 and mTERF9 are involved in ROS signaling pathways. In the wild-type background, ppr30 and mTERF9 mutants were also observed to be less susceptible to cell death induced by excess light stress. While broad inhibition of plastid transcription with rifampicin was also able to suppress cell death in fc2 mutants, specific reductions in plastid gene expression using other mutations was not always sufficient. Together these results suggest that plastid gene expression, or the expression of specific plastid genes by PPR30 and mTERF0, is a necessary prerequisite for chloroplasts to activate the 1 O2 signaling pathways to induce chloroplast quality control pathways and/or cell death.
Collapse
Affiliation(s)
- Kamran Alamdari
- The School of Plant Sciences, University of Arizona, 1140 E. South Campus Drive, 303 Forbes Building, Tucson, AZ, 85721, USA
| | - Karen E Fisher
- The School of Plant Sciences, University of Arizona, 1140 E. South Campus Drive, 303 Forbes Building, Tucson, AZ, 85721, USA
| | - Andrew B Sinson
- The Division of Biological Sciences, The University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
- Plant Biology Laboratory, The Salk Institute, 10010 N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Joanne Chory
- Plant Biology Laboratory, The Salk Institute, 10010 N Torrey Pines Rd, La Jolla, CA, 92037, USA
- Howard Hughes Medical Institute, The Salk Institute, 10010 N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Jesse D Woodson
- The School of Plant Sciences, University of Arizona, 1140 E. South Campus Drive, 303 Forbes Building, Tucson, AZ, 85721, USA
| |
Collapse
|
24
|
Zhang C, Zhang B, Mu B, Zheng X, Zhao F, Lan W, Fu A, Luan S. A Thylakoid Membrane Protein Functions Synergistically with GUN5 in Chlorophyll Biosynthesis. PLANT COMMUNICATIONS 2020; 1:100094. [PMID: 33367259 PMCID: PMC7747962 DOI: 10.1016/j.xplc.2020.100094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/24/2020] [Accepted: 07/02/2020] [Indexed: 05/21/2023]
Abstract
Chlorophyll (Chl) is essential for photosynthetic reactions and chloroplast development. While the enzymatic pathway for Chl biosynthesis is well established, the regulatory mechanism underlying the homeostasis of Chl levels remains largely unknown. In this study, we identified CBD1 (Chlorophyll Biosynthetic Defect1), which functions in the regulation of chlorophyll biosynthesis. The CBD1 gene was expressed specifically in green tissues and its protein product was embedded in the thylakoid membrane. Furthermore, CBD1 was precisely co-expressed and functionally correlated with GUN5 (Genome Uncoupled 5). Analysis of chlorophyll metabolic intermediates indicated that cbd1 and cbd1gun5 mutants over-accumulated magnesium protoporphyrin IX (Mg-Proto IX). In addition, the cbd1 mutant thylakoid contained less Mg than the wild type not only as a result of lower Chl content, but also implicating CBD1 in Mg transport. This was supported by the finding that CBD1 complemented a Mg2+ uptake-deficient Salmonella strain under low Mg conditions. Taken together, these results indicate that CBD1 functions synergistically with CHLH/GUN5 in Mg-Proto IX processing, and may serve as a Mg-transport protein to maintain Mg homeostasis in the chloroplast.
Collapse
Affiliation(s)
- Chi Zhang
- The Key Laboratory of Western Resources Biology and Biological Technology, College of Life Sciences, Northwest University, Xi'an 710069, China
- Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Bin Zhang
- The Key Laboratory of Western Resources Biology and Biological Technology, College of Life Sciences, Northwest University, Xi'an 710069, China
- Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Baicong Mu
- Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
- Temasek Life Sciences Laboratory, Singapore 117604, Republic of Singapore
| | - Xiaojiang Zheng
- The Key Laboratory of Western Resources Biology and Biological Technology, College of Life Sciences, Northwest University, Xi'an 710069, China
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Fugeng Zhao
- Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Wenzhi Lan
- Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
- Corresponding author
| | - Aigen Fu
- The Key Laboratory of Western Resources Biology and Biological Technology, College of Life Sciences, Northwest University, Xi'an 710069, China
- Corresponding author
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Corresponding author
| |
Collapse
|
25
|
Response of Downy Oak (Quercus pubescens Willd.) to Climate Change: Transcriptome Assembly, Differential Gene Analysis and Targeted Metabolomics. PLANTS 2020; 9:plants9091149. [PMID: 32899727 PMCID: PMC7570186 DOI: 10.3390/plants9091149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/20/2020] [Accepted: 09/01/2020] [Indexed: 01/15/2023]
Abstract
Global change scenarios in the Mediterranean basin predict a precipitation reduction within the coming hundred years. Therefore, increased drought will affect forests both in terms of adaptive ecology and ecosystemic services. However, how vegetation might adapt to drought is poorly understood. In this report, four years of climate change was simulated by excluding 35% of precipitation above a downy oak forest. RNASeq data allowed us to assemble a genome-guided transcriptome. This led to the identification of differentially expressed features, which was supported by the characterization of target metabolites using a metabolomics approach. We provided 2.5 Tb of RNASeq data and the assembly of the first genome guided transcriptome of Quercus pubescens. Up to 5724 differentially expressed transcripts were obtained; 42 involved in plant response to drought. Transcript set enrichment analysis showed that drought induces an increase in oxidative pressure that is mitigated by the upregulation of ubiquitin-like protein protease, ferrochelatase, oxaloacetate decarboxylase and oxo-acid-lyase activities. Furthermore, the downregulation of auxin biosynthesis and transport, carbohydrate storage metabolism were observed as well as the concomitant accumulation of metabolites, such as oxalic acid, malate and isocitrate. Our data suggest that early metabolic changes in the resistance of Q. pubescens to drought involve a tricarboxylic acid (TCA) cycle shunt through the glyoxylate pathway, galactose metabolism by reducing carbohydrate storage and increased proteolytic activity.
Collapse
|
26
|
Singlet Oxygen and Protochlorophyllide Detection in Arabidopsis thaliana. Methods Mol Biol 2020. [PMID: 32857346 DOI: 10.1007/978-1-0716-0896-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Since the recognition of the reactive oxygen species singlet oxygen (1O2) as a versatile signal that induces various stress responses, the mechanisms underlying 1O2-induced signaling transduction pathways have become the subject of much current research. This in turn highlights the need for reliable detection methods for 1O2. Here we describe a protocol for the detection of 1O2 using a commercially available fluorescent probe (Singlet Oxygen Sensor Green) and provide a simple method for direct visualization and quantification of the 1O2-evolving photosensitizer protochlorophyllide in the Arabidopsis fluorescent mutant.
Collapse
|
27
|
Sylvestre-Gonon E, Schwartz M, Girardet JM, Hecker A, Rouhier N. Is there a role for tau glutathione transferases in tetrapyrrole metabolism and retrograde signalling in plants? Philos Trans R Soc Lond B Biol Sci 2020; 375:20190404. [PMID: 32362257 DOI: 10.1098/rstb.2019.0404] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In plants, tetrapyrrole biosynthesis occurs in chloroplasts, the reactions being catalysed by stromal and membrane-bound enzymes. The tetrapyrrole moiety is a backbone for chlorophylls and cofactors such as sirohaems, haems and phytochromobilins. Owing to this diversity, the potential cytotoxicity of some precursors and the associated synthesis costs, a tight control exists to adjust the demand and the fluxes for each molecule. After synthesis, haems and phytochromobilins are incorporated into proteins found in other subcellular compartments. However, there is only very limited information about the chaperones and membrane transporters involved in the trafficking of these molecules. After summarizing evidence indicating that glutathione transferases (GST) may be part of the transport and/or degradation processes of porphyrin derivatives, we provide experimental data indicating that tau glutathione transferases (GSTU) bind protoporphyrin IX and haem moieties and use structural modelling to identify possible residues responsible for their binding in the active site hydrophobic pocket. Finally, we discuss the possible roles associated with the binding, catalytic transformation (i.e. glutathione conjugation) and/or transport of tetrapyrroles by GSTUs, considering their subcellular localization and capacity to interact with ABC transporters. This article is part of the theme issue 'Retrograde signalling from endosymbiotic organelles'.
Collapse
Affiliation(s)
| | | | | | - Arnaud Hecker
- Université de Lorraine, INRAE, IAM, 54000 Nancy, France
| | | |
Collapse
|
28
|
Page MT, Garcia-Becerra T, Smith AG, Terry MJ. Overexpression of chloroplast-targeted ferrochelatase 1 results in a genomes uncoupled chloroplast-to-nucleus retrograde signalling phenotype. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190401. [PMID: 32362255 DOI: 10.1098/rstb.2019.0401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chloroplast development requires communication between the progenitor plastids and the nucleus, where most of the genes encoding chloroplast proteins reside. Retrograde signals from the chloroplast to the nucleus control the expression of many of these genes, but the signalling pathway is poorly understood. Tetrapyrroles have been strongly implicated as mediators of this signal with the current hypothesis being that haem produced by the activity of ferrochelatase 1 (FC1) is required to promote nuclear gene expression. We have tested this hypothesis by overexpressing FC1 and specifically targeting it to either chloroplasts or mitochondria, two possible locations for this enzyme. Our results show that targeting of FC1 to chloroplasts results in increased expression of the nuclear-encoded chloroplast genes GUN4, CA1, HEMA1, LHCB2.1, CHLH after treatment with Norflurazon (NF) and that this increase correlates to FC1 gene expression and haem production measured by feedback inhibition of protochlorophyllide synthesis. Targeting FC1 to mitochondria did not enhance the expression of nuclear-encoded chloroplast genes after NF treatment. The overexpression of FC1 also increased nuclear gene expression in the absence of NF treatment, demonstrating that this pathway is operational in the absence of a stress treatment. Our results therefore support the hypothesis that haem synthesis is a promotive chloroplast-to-nucleus retrograde signal. However, not all FC1 overexpression lines enhanced nuclear gene expression, suggesting there is still a lot we do not understand about the role of FC1 in this signalling pathway. This article is part of the theme issue 'Retrograde signalling from endosymbiotic organelles'.
Collapse
Affiliation(s)
- Mike T Page
- School of Biological Sciences, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK
| | - Tania Garcia-Becerra
- School of Biological Sciences, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK
| | - Alison G Smith
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Matthew J Terry
- School of Biological Sciences, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK
| |
Collapse
|
29
|
The Arabidopsis SAFEGUARD1 suppresses singlet oxygen-induced stress responses by protecting grana margins. Proc Natl Acad Sci U S A 2020; 117:6918-6927. [PMID: 32161131 DOI: 10.1073/pnas.1918640117] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Singlet oxygen (1O2), the major reactive oxygen species (ROS) produced in chloroplasts, has been demonstrated recently to be a highly versatile signal that induces various stress responses. In the fluorescent (flu) mutant, its release causes seedling lethality and inhibits mature plant growth. However, these drastic phenotypes are suppressed when EXECUTER1 (EX1) is absent in the flu ex1 double mutant. We identified SAFEGUARD1 (SAFE1) in a screen of ethyl methanesulfonate (EMS) mutagenized flu ex1 plants for suppressor mutants with a flu-like phenotype. In flu ex1 safe1, all 1O2-induced responses, including transcriptional rewiring of nuclear gene expression, return to levels, such as, or even higher than, those in flu Without SAFE1, grana margins (GMs) of chloroplast thylakoids (Thys) are specifically damaged upon 1O2 generation and associate with plastoglobules (PGs). SAFE1 is localized in the chloroplast stroma, and release of 1O2 induces SAFE1 degradation via chloroplast-originated vesicles. Our paper demonstrates that flu-produced 1O2 triggers an EX1-independent signaling pathway and proves that SAFE1 suppresses this signaling pathway by protecting GMs.
Collapse
|
30
|
Wang C, Zhang L, Li Y, Ali Buttar Z, Wang N, Xie Y, Wang C. Single Nucleotide Mutagenesis of the TaCHLI Gene Suppressed Chlorophyll and Fatty Acid Biosynthesis in Common Wheat Seedlings. FRONTIERS IN PLANT SCIENCE 2020; 11:97. [PMID: 32153608 PMCID: PMC7046076 DOI: 10.3389/fpls.2020.00097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/22/2020] [Indexed: 05/08/2023]
Abstract
Wheat (Triticum aestivum L.) is one of the most important crops in the world. Chlorophyll plays a vital role in plant development and crop improvement and further determines the crop productivity to a certain extent. The biosynthesis of chlorophyll remains a complex metabolic process, and fundamental biochemical discoveries have resulted from studies of plant mutants with altered leaf color. In this study, we identified a chlorophyll-deficiency mutant, referred to as chli, from the wheat cultivar Shaannong33 that exhibited an obvious pale-green leaf phenotype at the seedling stage, with significantly decreased accumulation of chlorophyll and its precursors, protoporphyrin IX and Mg-protoporphyrin IX. Interestingly, a higher protoporphyrin IX to Mg-protoporphyrin IX ratio was observed in chli. Lipid biosynthesis in chli leaves and seeds was also affected, with the mutant displaying significantly reduced total lipid content relative to Shaanong33. Genetic analysis indicated that the pale-green leaf phenotype was controlled by a single pair of recessive nuclear genes. Furthermore, sequence alignment revealed a single-nucleotide mutation (G664A) in the gene TraesCS7A01G480700.1, which encodes subunit I of the Mg-chelatase in plants. This single-nucleotide mutation resulted in an amino acid substitution (D221N) in the highly conserved domain of subunit I. As a result, mutant protein Tachli-7A lost the ability to interact with the normal protein TaCHLI-7A, as assessed by yeast two-hybrid assay. Meanwhile, Tachli-7A could not recover the chlorophyll deficiency phenotype of the Arabidopsis thaliana SALK_050029 mutant. Furthermore, we found that in Shaannong33, the protoporphyrin IX to Mg-protoporphyrin IX ratio was growth state-dependent and insensitive to environmental change. Overall, the mutation in Tachli-7A impaired the function of Mg-chelatase and blocked the conversion of protoporphyrin IX to Mg- protoporphyrin IX. Based on our results, the chli mutant represents a potentially useful resource for better understanding chlorophyll and lipid biosynthetic pathways in common wheat.
Collapse
Affiliation(s)
- Chaojie Wang
- College of Agronomy, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Lili Zhang
- College of Agronomy, Northwest A&F University, Yangling, China
| | - Yingzhuang Li
- College of Agronomy, Northwest A&F University, Yangling, China
| | | | - Na Wang
- College of Agronomy, Northwest A&F University, Yangling, China
| | - Yanzhou Xie
- College of Agronomy, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Chengshe Wang
- College of Agronomy, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| |
Collapse
|
31
|
Lee K, Lehmann M, Paul MV, Wang L, Luckner M, Wanner G, Geigenberger P, Leister D, Kleine T. Lack of FIBRILLIN6 in Arabidopsis thaliana affects light acclimation and sulfate metabolism. THE NEW PHYTOLOGIST 2020; 225:1715-1731. [PMID: 31596965 DOI: 10.1111/nph.16246] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 10/02/2019] [Indexed: 06/10/2023]
Abstract
Arabidopsis thaliana contains 13 fibrillins (FBNs), which are all localized to chloroplasts. FBN1 and FBN2 are involved in photoprotection of photosystem II, and FBN4 and FBN5 are thought to be involved in plastoquinone transport and biosynthesis, respectively. The functions of the other FBNs remain largely unknown. To gain insight into the function of FBN6, we performed coexpression and Western analyses, conducted fluorescence and transmission electron microscopy, stained reactive oxygen species (ROS), measured photosynthetic parameters and glutathione levels, and applied transcriptomics and metabolomics. Using coexpression analyses, FBN6 was identified as a photosynthesis-associated gene. FBN6 is localized to thylakoid and envelope membranes, and its knockout results in stunted plants. The delayed-growth phenotype cannot be attributed to altered basic photosynthesis parameters or a reduced CO2 assimilation rate. Under moderate light stress, primary leaves of fbn6 plants begin to bleach and contain enlarged plastoglobules. RNA sequencing and metabolomics analyses point to an alteration in sulfate reduction in fbn6. Indeed, glutathione content is higher in fbn6, which in turn confers cadmium tolerance of fbn6 seedlings. We conclude that loss of FBN6 leads to perturbation of ROS homeostasis. FBN6 enables plants to cope with moderate light stress and affects cadmium tolerance.
Collapse
Affiliation(s)
- Kwanuk Lee
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-University München, 82152, Martinsried, Germany
| | - Martin Lehmann
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-University München, 82152, Martinsried, Germany
| | - Melanie V Paul
- Plant Metabolism, Department Biology I, Ludwig-Maximilians-University München, 82152, Martinsried, Germany
| | - Liangsheng Wang
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-University München, 82152, Martinsried, Germany
| | - Manja Luckner
- Ultrastrukturforschung, Department Biology I, Ludwig-Maximilians-University München, 81252, Planegg-Martinsried, Germany
| | - Gerhard Wanner
- Ultrastrukturforschung, Department Biology I, Ludwig-Maximilians-University München, 81252, Planegg-Martinsried, Germany
| | - Peter Geigenberger
- Plant Metabolism, Department Biology I, Ludwig-Maximilians-University München, 82152, Martinsried, Germany
| | - Dario Leister
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-University München, 82152, Martinsried, Germany
| | - Tatjana Kleine
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-University München, 82152, Martinsried, Germany
| |
Collapse
|
32
|
Richter AS, Banse C, Grimm B. The GluTR-binding protein is the heme-binding factor for feedback control of glutamyl-tRNA reductase. eLife 2019; 8:46300. [PMID: 31194674 PMCID: PMC6597238 DOI: 10.7554/elife.46300] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/12/2019] [Indexed: 12/21/2022] Open
Abstract
Synthesis of 5-aminolevulinic acid (ALA) is the rate-limiting step in tetrapyrrole biosynthesis in land plants. In photosynthetic eukaryotes and many bacteria, glutamyl-tRNA reductase (GluTR) is the most tightly controlled enzyme upstream of ALA. Higher plants possess two GluTR isoforms: GluTR1 is predominantly expressed in green tissue, and GluTR2 is constitutively expressed in all organs. Although proposed long time ago, the molecular mechanism of heme-dependent inhibition of GluTR in planta has remained elusive. Here, we report that accumulation of heme, induced by feeding with ALA, stimulates Clp-protease-dependent degradation of Arabidopsis GluTR1. We demonstrate that binding of heme to the GluTR-binding protein (GBP) inhibits interaction of GBP with the N-terminal regulatory domain of GluTR1, thus making it accessible to the Clp protease. The results presented uncover a functional link between heme content and the post-translational control of GluTR stability, which helps to ensure adequate availability of chlorophyll and heme.
Collapse
Affiliation(s)
- Andreas S Richter
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Claudia Banse
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Bernhard Grimm
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
33
|
Pazderník M, Mareš J, Pilný J, Sobotka R. The antenna-like domain of the cyanobacterial ferrochelatase can bind chlorophyll and carotenoids in an energy-dissipative configuration. J Biol Chem 2019; 294:11131-11143. [PMID: 31167780 DOI: 10.1074/jbc.ra119.008434] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/29/2019] [Indexed: 01/19/2023] Open
Abstract
Ferrochelatase (FeCh) is an essential enzyme catalyzing the synthesis of heme. Interestingly, in cyanobacteria, algae, and plants, FeCh possesses a conserved transmembrane chlorophyll a/b binding (CAB) domain that resembles the first and the third helix of light-harvesting complexes, including a chlorophyll-binding motif. Whether the FeCh CAB domain also binds chlorophyll is unknown. Here, using biochemical and radiolabeled precursor experiments, we found that partially inhibited activity of FeCh in the cyanobacterium Synechocystis PCC 6803 leads to overproduction of chlorophyll molecules that accumulate in the thylakoid membrane and, together with carotenoids, bind to FeCh. We observed that pigments bound to purified FeCh are organized in an energy-dissipative conformation and further show that FeCh can exist in vivo as a monomer or a dimer depending on its own activity. However, pigmented FeCh was purified exclusively as a dimer. Separately expressed and purified FeCH CAB domain contained a pigment composition similar to that of full-length FeCh and retained its quenching properties. Phylogenetic analysis suggested that the CAB domain was acquired by a fusion between FeCh and a single-helix, high light-inducible protein early in the evolution of cyanobacteria. Following this fusion, the FeCh CAB domain with a functional chlorophyll-binding motif was retained in all currently known cyanobacterial genomes except for a single lineage of endosymbiotic cyanobacteria. Our findings indicate that FeCh from Synechocystis exists mostly as a pigment-free monomer in cells but can dimerize, in which case its CAB domain creates a functional pigment-binding segment organized in an energy-dissipating configuration.
Collapse
Affiliation(s)
- Marek Pazderník
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Třeboň, 379 81, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice 370 05, Czech Republic
| | - Jan Mareš
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Třeboň, 379 81, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice 370 05, Czech Republic.,Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice 370 05, Czech Republic
| | - Jan Pilný
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Třeboň, 379 81, Czech Republic
| | - Roman Sobotka
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Třeboň, 379 81, Czech Republic .,Faculty of Science, University of South Bohemia, České Budějovice 370 05, Czech Republic
| |
Collapse
|
34
|
Yang S, Zhao L, Yan J, Zhang J, Guo F, Geng Y, Wang Q, Yang F, Wan S, Li X. Peanut genes encoding tetrapyrrole biosynthetic enzymes, AhHEMA1 and AhFC1, alleviating the salt stress in transgenic tobacco. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 137:14-24. [PMID: 30710795 DOI: 10.1016/j.plaphy.2019.01.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/11/2019] [Accepted: 01/26/2019] [Indexed: 06/09/2023]
Abstract
Glutamyl-tRNA reductase1 (HEMA1) and ferrochelatase1 (FC1) are both expressed in response to salt stress in the biosynthetic pathway of tetrapyrroles. Peanut (Arachis hypogaea L.) HEMA1 and FC1 were isolated by RT-PCR. The amino acid sequence encoded by the two genes showed high similarity with that in other plant species. The AhFC1 fusion protein was verified to function in chloroplast using Arabidopsis mesophyll protoplast. Sense and wild-type (WT) tobaccos were used to further study the physiological effects of AhHEMA1 and AhFC1. Compared with WT, the Heme contents and germination rate were higher in AhFC1 overexpressing plants under salt stress. Meanwhile, overexpressing AhHEMA1 also led to higher ALA and chlorophyll contents and multiple physiological changes under salt stress, such as higher activities of superoxide dismutase (SOD) and ascorbate peroxidase (APX), lower contents of reactive oxygen species (ROS) and slighter membrane damage. In addition, the activities of CAT, POD and APX in the AhFC1 overexpressing plants were significantly higher than that in WT lines under salt stress, but the activity of SOD between the WT plants and the transgenic plants did not exhibit significant differences. These results suggested that, peanut can enhance resistance to salt stress by improving the biosynthesis of tetrapyrrole biosynthetic.
Collapse
Affiliation(s)
- Sha Yang
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Ji'nan, 250100, PR China
| | - Luying Zhao
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Ji'nan, 250100, PR China; College of Life Sciences, Shandong University, Ji'nan, 250100, PR China
| | - Jianmei Yan
- College of Life Sciences, Shandong University, Ji'nan, 250100, PR China
| | - Jialei Zhang
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Ji'nan, 250100, PR China
| | - Feng Guo
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Ji'nan, 250100, PR China
| | - Yun Geng
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Ji'nan, 250100, PR China
| | - Quan Wang
- College of Life Sciences, Shandong Normal University, Ji'nan, 250014, PR China
| | - Fangyuan Yang
- College of Life Sciences, Shandong University, Ji'nan, 250100, PR China
| | - Shubo Wan
- Shandong Academy of Agricultural Sciences/Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Ji'nan, 250100, PR China.
| | - Xinguo Li
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Ji'nan, 250100, PR China; Scientific Observation and Experiment Station of Crop Cultivation in East China, Ministry of Agriculture and Rural Affairs, Dongying, 257000, PR China.
| |
Collapse
|
35
|
Fan T, Roling L, Meiers A, Brings L, Ortega-Rodés P, Hedtke B, Grimm B. Complementation studies of the Arabidopsis fc1 mutant substantiate essential functions of ferrochelatase 1 during embryogenesis and salt stress. PLANT, CELL & ENVIRONMENT 2019; 42:618-632. [PMID: 30242849 DOI: 10.1111/pce.13448] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/15/2018] [Accepted: 09/18/2018] [Indexed: 06/08/2023]
Abstract
Ferrochelatase (FC) is the final enzyme for haem formation in the tetrapyrrole biosynthesis pathway and encoded by two genes in higher plants. FC2 exists predominantly in green tissue, whereas FC1 is constitutively expressed. We intended to substantiate the specific roles of FC1. The embryo-lethal fc1-2 mutant was used to express the two genomic FC-encoding sequences under the FC1 and FC2 promoter and explore the complementation of the FC1 deficiency. Apart from the successful complementation with FC1, expression of FC2 under control of the FC1 promoter (pFC1::FC2) compensates for missing FC1 but not by FC2 promoter expression. The complementing lines pFC1FC2(fc1/fc1) succeeded under standard growth condition but failed under salt stress. The pFC1FC2(fc1/fc1) line exhibited symptoms of leaf senescence, including accelerated loss of haem and chlorophyll and elevated gene expression for chlorophyll catabolism. In contrast, ectopic FC1 expression (p35S::FC1) resulted in increased chlorophyll accumulation. The limited ability of FC2 to complement fc1 is explained by a faster turnover of FC2 mRNA during stress. It is suggested that FC1-produced haem is essential for embryogenesis and stress response. The pFC1::FC2 expression readily complements the fc1-2 embryo lethality, whereas higher FC1 transcript content contributes essentially to stress tolerance.
Collapse
Affiliation(s)
- Tingting Fan
- Institute of Biology/Plant Physiology, Humboldt University Berlin, Berlin, Germany
| | - Lena Roling
- Institute of Biology/Plant Physiology, Humboldt University Berlin, Berlin, Germany
| | - Anna Meiers
- Institute of Biology/Plant Physiology, Humboldt University Berlin, Berlin, Germany
| | - Lea Brings
- Institute of Biology/Plant Physiology, Humboldt University Berlin, Berlin, Germany
| | | | - Boris Hedtke
- Institute of Biology/Plant Physiology, Humboldt University Berlin, Berlin, Germany
| | - Bernhard Grimm
- Institute of Biology/Plant Physiology, Humboldt University Berlin, Berlin, Germany
| |
Collapse
|
36
|
Wang L, Apel K. Dose-dependent effects of 1O2 in chloroplasts are determined by its timing and localization of production. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:29-40. [PMID: 30272237 PMCID: PMC6939833 DOI: 10.1093/jxb/ery343] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 09/25/2018] [Indexed: 05/23/2023]
Abstract
In plants, highly reactive singlet oxygen (1O2) is known to inhibit photosynthesis and to damage the cell as a cytotoxin. However, more recent studies have also proposed 1O2 as a signal. In plants under stress, not only 1O2 but also other reactive oxygen species (ROS) are generated simultaneously, thus making it difficult to link a particular response to the release of 1O2 and establish a signaling role for this ROS. This obstacle has been overcome by the identification of conditional mutants of Arabidopsis thaliana that selectively generate 1O2 and trigger various 1O2-mediated responses. In chloroplasts of these mutants, chlorophyll or its biosynthetic intermediates may act as a photosensitizer and generate 1O2. These 1O2-mediated responses are not only dependent on the dosage of 1O2 but also are determined by the timing and suborganellar localization of its production. This spatial- and temporal-dependent variability of 1O2-mediated responses emphasizes the importance of 1O2 as a highly versatile and short-lived signal that acts throughout the life cycle of a plant.
Collapse
Affiliation(s)
- Liangsheng Wang
- Boyce Thompson Institute, Ithaca, NY, USA
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Klaus Apel
- Boyce Thompson Institute, Ithaca, NY, USA
- Institute of Molecular Plant Biology, Swiss Federal Institute of Technology (ETH), Zürich, Switzerland
| |
Collapse
|
37
|
Ties that bind: the integration of plastid signalling pathways in plant cell metabolism. Essays Biochem 2018; 62:95-107. [PMID: 29563221 DOI: 10.1042/ebc20170011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/17/2018] [Accepted: 01/22/2018] [Indexed: 12/11/2022]
Abstract
Plastids are critical organelles in plant cells that perform diverse functions and are central to many metabolic pathways. Beyond their major roles in primary metabolism, of which their role in photosynthesis is perhaps best known, plastids contribute to the biosynthesis of phytohormones and other secondary metabolites, store critical biomolecules, and sense a range of environmental stresses. Accordingly, plastid-derived signals coordinate a host of physiological and developmental processes, often by emitting signalling molecules that regulate the expression of nuclear genes. Several excellent recent reviews have provided broad perspectives on plastid signalling pathways. In this review, we will highlight recent advances in our understanding of chloroplast signalling pathways. Our discussion focuses on new discoveries illuminating how chloroplasts determine life and death decisions in cells and on studies elucidating tetrapyrrole biosynthesis signal transduction networks. We will also examine the role of a plastid RNA helicase, ISE2, in chloroplast signalling, and scrutinize intriguing results investigating the potential role of stromules in conducting signals from the chloroplast to other cellular locations.
Collapse
|
38
|
Zhao WT, Feng SJ, Li H, Faust F, Kleine T, Li LN, Yang ZM. Salt stress-induced FERROCHELATASE 1 improves resistance to salt stress by limiting sodium accumulation in Arabidopsis thaliana. Sci Rep 2017; 7:14737. [PMID: 29116128 PMCID: PMC5676718 DOI: 10.1038/s41598-017-13593-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 05/09/2017] [Indexed: 12/15/2022] Open
Abstract
Ferrochelatase-1 as a terminal enzyme of heme biosynthesis regulates many essential metabolic and physiological processes. Whether FC1 is involved in plant response to salt stress has not been described. This study shows that Arabidopsis overexpressing AtFC1 displays resistance to high salinity, whereas a T-DNA insertion knock-down mutant fc1 was more sensitive to salt stress than wild-type plants. AtFC1 conferred plant salt resistance by reducing Na+ concentration, enhancing K+ accumulation and preventing lysis of the cell membrane. Such observations were associated with the upregulation of SOS1, which encodes a plasma membrane Na+/H+ antiporter. AtFC1 overexpression led to a reduced expression of several well known salt stress-responsive genes such as NHX1 and AVP1, suggesting that AtFC1-regulated low concentration of Na+ in plants might not be through the mechanism for Na+ sequestration. To investigate the mechanism leading to the role of AtFC1 in mediating salt stress response in plants, a transcriptome of fc1 mutant plants under salt stress was profiled. Our data show that mutation of AtFC1 led to 490 specific genes up-regulated and 380 specific genes down-regulated in fc1 mutants under salt stress. Some of the genes are involved in salt-induced oxidative stress response, monovalent cation-proton (Na+/H+) exchange, and Na+ detoxification.
Collapse
Affiliation(s)
- Wen Ting Zhao
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, China.,Institute of Plant Nutrition (IFZ), Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Sheng Jun Feng
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hua Li
- Department of Plant Science, College of Life Science, Henan Agricultural University, Henan, 450002, China
| | - Franziska Faust
- Institute of Plant Nutrition (IFZ), Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Tatjana Kleine
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-University Munich, 82152, Martinsried, Germany
| | - Long Na Li
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhi Min Yang
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
39
|
Song J, Feng SJ, Chen J, Zhao WT, Yang ZM. A cadmium stress-responsive gene AtFC1 confers plant tolerance to cadmium toxicity. BMC PLANT BIOLOGY 2017; 17:187. [PMID: 29084526 PMCID: PMC5663144 DOI: 10.1186/s12870-017-1141-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 10/25/2017] [Indexed: 05/05/2023]
Abstract
BACKGROUND Non-essential trance metal such as cadmium (Cd) is toxic to plants. Although some plants have developed elaborate strategies to deal with absorbed Cd through multiple pathways, the regulatory mechanisms behind the Cd tolerance are not fully understood. Ferrochelatase-1 (FC1, EC4.99.1.1) is the terminal enzyme of heme biosynthesis, catalyzing insertion of ferrous ion into protoporphyrin IX. Recent studies have shown that FC1 is involved in several physiological processes. However, its biological function associated with plant abiotic stress response is poorly understood. RESULTS In this study, we showed that AtFC1 was transcriptionally activated by Cd exposure. AtFC1 overexpression (35S::FC1) lines accumulated more Cd and non-protein thiol compounds than wild-type, and conferred plant tolerance to Cd stress, with improved primary root elongation, biomass and chlorophyll (Chl) content, and low degree of oxidation associated with reduced H2O2, O·2- and peroxides. In contrast, the AtFC1 loss of functional mutant fc1 showed sensitivity to Cd stress. Exogenous provision of heme, the product of AtFC1, partially rescued the Cd-induced toxic phenotype of fc1 mutants by improving the growth of seedlings, generation of glutathione (GSH) and phytochelatins (PCs), and GSH/PCs-synthesized gene expression (e.g. GSH1, GSH2, PCS1, and PCS2). To investigate the mechanism leading to the AtFC1 regulating Cd stress response in Arabidopsis, a transcriptome of fc1 mutant plants under Cd stress was profiled. Our data showed that disfunction of AtFC1 led to 913 genes specifically up-regulated and 522 genes down-regulated in fc1 mutants exposed to Cd. Some of the genes are involved in metal transporters, Cd-induced oxidative stress response, and detoxification. CONCLUSION These results indicate that AtFC1 would act as a positive regulator of plant tolerance to Cd stress. Our study will broaden our understanding of the role of FC1 in mediating plant response to Cd stress and provide a basis for further exploration of its downstream genes.
Collapse
Affiliation(s)
- Jun Song
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sheng Jun Feng
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian Chen
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Wen Ting Zhao
- Institute of Plant Nutrition (IFZ), Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Zhi Min Yang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
40
|
Connorton JM, Balk J, Rodríguez-Celma J. Iron homeostasis in plants - a brief overview. Metallomics 2017; 9:813-823. [PMID: 28686269 PMCID: PMC5708359 DOI: 10.1039/c7mt00136c] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 06/28/2017] [Indexed: 01/04/2023]
Abstract
Iron plays a crucial role in biochemistry and is an essential micronutrient for plants and humans alike. Although plentiful in the Earth's crust it is not usually found in a form readily accessible for plants to use. They must therefore sense and interact with their environment, and have evolved two different molecular strategies to take up iron in the root. Once inside, iron is complexed with chelators and distributed to sink tissues where it is used predominantly in the production of enzyme cofactors or components of electron transport chains. The processes of iron uptake, distribution and metabolism are overseen by tight regulatory mechanisms, at the transcriptional and post-transcriptional level, to avoid iron concentrations building to toxic excess. Iron is also loaded into seeds, where it is stored in vacuoles or in ferritin. This is important for human nutrition as seeds form the edible parts of many crop species. As such, increasing iron in seeds and other tissues is a major goal for biofortification efforts by both traditional breeding and biotechnological approaches.
Collapse
Affiliation(s)
- James M Connorton
- John Innes Centre and University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK.
| | - Janneke Balk
- John Innes Centre and University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK.
| | - Jorge Rodríguez-Celma
- John Innes Centre and University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK.
| |
Collapse
|
41
|
Hey D, Ortega-Rodes P, Fan T, Schnurrer F, Brings L, Hedtke B, Grimm B. Transgenic Tobacco Lines Expressing Sense or Antisense FERROCHELATASE 1 RNA Show Modified Ferrochelatase Activity in Roots and Provide Experimental Evidence for Dual Localization of Ferrochelatase 1. PLANT & CELL PHYSIOLOGY 2016; 57:2576-2585. [PMID: 27818378 DOI: 10.1093/pcp/pcw171] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 10/03/2016] [Indexed: 06/06/2023]
Abstract
In plants, two genes encode ferrochelatase (FC), which catalyzes iron chelation into protoporphyrin IX at the final step of heme biosynthesis. FERROCHELATASE1 (FC1) is continuously, but weakly expressed in roots and leaves, while FC2 is dominantly active in leaves. As a continuation of previous studies on the physiological consequences of FC2 inactivation in tobacco, we aimed to assign FC1 function in plant organs. While reduced FC2 expression leads to protoporphyrin IX accumulation in leaves, FC1 down-regulation and overproduction caused reduced and elevated FC activity in root tissue, respectively, but were not associated with changes in macroscopic phenotype, plant development or leaf pigmentation. In contrast to the lower heme content resulting from a deficiency of the dominant FC2 expression in leaves, a reduction of FC1 in roots and leaves does not significantly disturb heme accumulation. The FC1 overexpression was used for an additional approach to re-examine FC activity in mitochondria. Transgenic FC1 protein was immunologically shown to be present in mitochondria. Although matching only a small portion of total cellular FC activity, the mitochondrial FC activity in a FC1 overexpressor line increased 5-fold in comparison with wild-type mitochondria. Thus, it is suggested that FC1 contributes to mitochondrial heme synthesis.
Collapse
Affiliation(s)
- Daniel Hey
- Humboldt-University Berlin, Institute of Biology/Plant Physiology, Philippstr.13, Building 12, D-10115 Berlin, Germany
| | - Patricia Ortega-Rodes
- Humboldt-University Berlin, Institute of Biology/Plant Physiology, Philippstr.13, Building 12, D-10115 Berlin, Germany
| | - Tingting Fan
- Humboldt-University Berlin, Institute of Biology/Plant Physiology, Philippstr.13, Building 12, D-10115 Berlin, Germany
| | - Florian Schnurrer
- Humboldt-University Berlin, Institute of Biology/Plant Physiology, Philippstr.13, Building 12, D-10115 Berlin, Germany
| | - Lea Brings
- Humboldt-University Berlin, Institute of Biology/Plant Physiology, Philippstr.13, Building 12, D-10115 Berlin, Germany
| | - Boris Hedtke
- Humboldt-University Berlin, Institute of Biology/Plant Physiology, Philippstr.13, Building 12, D-10115 Berlin, Germany
| | - Bernhard Grimm
- Humboldt-University Berlin, Institute of Biology/Plant Physiology, Philippstr.13, Building 12, D-10115 Berlin, Germany
| |
Collapse
|
42
|
Abstract
Diverse proteolytic pathways regulate chloroplasts. Recent work has revealed significant new roles for chloroplast ubiquitination in stress adaptation, involving targeted protein removal through the ubiquitin-proteasome system, or selective, whole-chloroplast degradation.
Collapse
Affiliation(s)
- Qihua Ling
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Paul Jarvis
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK.
| |
Collapse
|
43
|
Woodson JD. Chloroplast quality control - balancing energy production and stress. THE NEW PHYTOLOGIST 2016; 212:36-41. [PMID: 27533783 DOI: 10.1111/nph.14134] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/13/2016] [Indexed: 05/07/2023]
Abstract
Contents 36 I. 36 II. 37 III. 37 IV. 38 V. 39 VI. 40 VII. 40 40 References 40 SUMMARY: All organisms require the ability to sense their surroundings and adapt. Such capabilities allow them to thrive in a wide range of habitats. This is especially true for plants, which are sessile and have to be genetically equipped to withstand every change in their environment. Plants and other eukaryotes use their energy-producing organelles (i.e. mitochondria and chloroplasts) as such sensors. In response to a changing cellular or external environment, these organelles can emit 'retrograde' signals that alter gene expression and/or cell physiology. This signaling is important in plants, fungi, and animals and impacts diverse cellular functions including photosynthesis, energy production/storage, stress responses, growth, cell death, ageing, and tumor progression. Originally, chloroplast retrograde signals in plants were known to lead to the reprogramming of nuclear transcription. New research, however, has pointed to additional posttranslational mechanisms that lead to chloroplast regulation and turnover in response to stress. Such mechanisms involve singlet oxygen, ubiquitination, the 26S proteasome, and cellular degradation machinery.
Collapse
Affiliation(s)
- Jesse D Woodson
- Plant Biology Laboratory, The Salk Institute, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
44
|
He X, Zheng W, Cao F, Wu F. Identification and comparative analysis of the microRNA transcriptome in roots of two contrasting tobacco genotypes in response to cadmium stress. Sci Rep 2016; 6:32805. [PMID: 27667199 PMCID: PMC5036098 DOI: 10.1038/srep32805] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 08/15/2016] [Indexed: 01/07/2023] Open
Abstract
Tobacco (Nicotiana tabacum L.) is more acclimated to cadmium (Cd) uptake and preferentially enriches Cd in leaves than other crops. MicroRNAs (miRNAs) play crucial roles in regulating expression of various stress response genes in plants. However, genome-wide expression of miRNAs and their target genes in response to Cd stress in tobacco are still unknown. Here, miRNA high-throughput sequencing technology was performed using two contrasting tobacco genotypes Guiyan 1 and Yunyan 2 of Cd-sensitive and tolerance. Comprehensive analysis of miRNA expression profiles in control and Cd treated plants identified 72 known (27 families) and 14 novel differentially expressed miRNAs in the two genotypes. Among them, 28 known (14 families) and 5 novel miRNAs were considered as Cd tolerance associated miRNAs, which mainly involved in cell growth, ion homeostasis, stress defense, antioxidant and hormone signaling. Finally, a hypothetical model of Cd tolerance mechanism in Yunyan 2 was presented. Our findings suggest that some miRNAs and their target genes and pathways may play critical roles in Cd tolerance.
Collapse
Affiliation(s)
- Xiaoyan He
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, P.R. China
| | - Weite Zheng
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, P.R. China
| | - Fangbin Cao
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, P.R. China
| | - Feibo Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, P.R. China
| |
Collapse
|
45
|
Leister D, Kleine T. Definition of a core module for the nuclear retrograde response to altered organellar gene expression identifies GLK overexpressors as gun mutants. PHYSIOLOGIA PLANTARUM 2016; 157:297-309. [PMID: 26876646 DOI: 10.1111/ppl.12431] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 12/28/2015] [Accepted: 01/04/2016] [Indexed: 05/03/2023]
Abstract
Retrograde signaling can be triggered by changes in organellar gene expression (OGE) induced by inhibitors such as lincomycin (LIN) or mutations that perturb OGE. Thus, an insufficiency of the organelle-targeted prolyl-tRNA synthetase PRORS1 in Arabidopsis thaliana activates retrograde signaling and reduces the expression of nuclear genes for photosynthetic proteins. Recently, we showed that mTERF6, a member of the so-called mitochondrial transcription termination factor (mTERF) family, is involved in the formation of chloroplast (cp) isoleucine-tRNA. To obtain further insights into its functions, co-expression analysis of MTERF6, PRORS1 and two other genes for organellar aminoacyl-tRNA synthetases was conducted. The results suggest a prominent role of mTERF6 in aminoacylation activity, light signaling and seed storage. Analysis of changes in whole-genome transcriptomes in the mterf6-1 mutant showed that levels of nuclear transcripts for cp OGE proteins were particularly affected. Comparison of the mterf6-1 transcriptome with that of prors1-2 showed that reduced aminoacylation of proline (prors1-2) and isoleucine (mterf6-1) tRNAs alters retrograde signaling in similar ways. Database analyses indicate that comparable gene expression changes are provoked by treatment with LIN, norflurazon or high light. A core OGE response module was defined by identifying genes that were differentially expressed under at least four of six conditions relevant to OGE signaling. Based on this module, overexpressors of the Golden2-like transcription factors GLK1 and GLK2 were identified as genomes uncoupled mutants.
Collapse
Affiliation(s)
- Dario Leister
- Lehrstuhl für Molekularbiologie der Pflanzen (Botanik), Department Biologie I, Ludwig-Maximilians-Universität, Planegg-Martinsried, Munich, Germany
| | - Tatjana Kleine
- Lehrstuhl für Molekularbiologie der Pflanzen (Botanik), Department Biologie I, Ludwig-Maximilians-Universität, Planegg-Martinsried, Munich, Germany
| |
Collapse
|
46
|
Xie Y, Mao Y, Duan X, Zhou H, Lai D, Zhang Y, Shen W. Arabidopsis HY1-Modulated Stomatal Movement: An Integrative Hub Is Functionally Associated with ABI4 in Dehydration-Induced ABA Responsiveness. PLANT PHYSIOLOGY 2016; 170:1699-713. [PMID: 26704641 PMCID: PMC4775125 DOI: 10.1104/pp.15.01550] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/22/2015] [Indexed: 05/07/2023]
Abstract
Heme oxygenase (HO; EC 1.14.99.3) has recently been proposed as a novel component in mediating wide ranges of the plant adaptive signaling processes. However, the physiological significance and molecular basis underlying Arabidopsis (Arabidopsis thaliana) HO1 (HY1) functioning in drought tolerance remained unclear. Here, we report that mutation of HY1 promoted, but overexpression of this gene impaired, Arabidopsis drought tolerance. This was attributed to the abscisic acid (ABA)-hypersensitive or -hyposensitive phenotypes, with the regulation of stomatal closure in particular. However, comparative transcriptomic profile analysis showed that the induction of numerous ABA/stress-dependent genes in dehydrated wild-type plants was differentially impaired in the hy1 mutant. In agreement, ABA-induced ABSCISIC ACID-INSENSITIVE4 (ABI4) transcript accumulation was strengthened in the hy1 mutant. Genetic analysis further identified that the hy1-associated ABA hypersensitivity and drought tolerance were arrested in the abi4 background. Moreover, the promotion of ABA-triggered up-regulation of RbohD abundance and reactive oxygen species (ROS) levels in the hy1 mutant was almost fully blocked by the mutation of ABI4, suggesting that the HY1-ABI4 signaling in the wild type involved in stomatal closure was dependent on the RbohD-derived ROS production. However, hy1-promoted stomatal closure was not affected by a nitric oxide scavenger. Correspondingly, ABA-insensitive behaviors in rbohD stomata were not affected by either the mutation of HY1 or its ectopic expression in the rbohD background, both of which responded significantly to exogenous ROS. These data indicate that HY1 functioned negatively and acted upstream of ABI4 in drought signaling, which was casually dependent on the RbohD-derived ROS in the regulation of stomatal closure.
Collapse
Affiliation(s)
- Yanjie Xie
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Mao
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xingliang Duan
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Heng Zhou
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Diwen Lai
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yihua Zhang
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenbiao Shen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
47
|
Kobayashi K, Masuda T. Transcriptional Regulation of Tetrapyrrole Biosynthesis in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2016; 7:1811. [PMID: 27990150 PMCID: PMC5130987 DOI: 10.3389/fpls.2016.01811] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/16/2016] [Indexed: 05/17/2023]
Abstract
Biosynthesis of chlorophyll (Chl) involves many enzymatic reactions that share several first steps for biosynthesis of other tetrapyrroles such as heme, siroheme, and phycobilins. Chl allows photosynthetic organisms to capture light energy for photosynthesis but with simultaneous threat of photooxidative damage to cells. To prevent photodamage by Chl and its highly photoreactive intermediates, photosynthetic organisms have developed multiple levels of regulatory mechanisms to coordinate tetrapyrrole biosynthesis (TPB) with the formation of photosynthetic and photoprotective systems and to fine-tune the metabolic flow with the varying needs of Chl and other tetrapyrroles under various developmental and environmental conditions. Among a wide range of regulatory mechanisms of TPB, this review summarizes transcriptional regulation of TPB genes during plant development, with focusing on several transcription factors characterized in Arabidopsis thaliana. Key TPB genes are tightly coexpressed with other photosynthesis-associated nuclear genes and are induced by light, oscillate in a diurnal and circadian manner, are coordinated with developmental and nutritional status, and are strongly downregulated in response to arrested chloroplast biogenesis. LONG HYPOCOTYL 5 and PHYTOCHROME-INTERACTING FACTORs, which are positive and negative transcription factors with a wide range of light signaling, respectively, target many TPB genes for light and circadian regulation. GOLDEN2-LIKE transcription factors directly regulate key TPB genes to fine-tune the formation of the photosynthetic apparatus with chloroplast functionality. Some transcription factors such as FAR-RED ELONGATED HYPOCOTYL3, REVEILLE1, and scarecrow-like transcription factors may directly regulate some specific TPB genes, whereas other factors such as GATA transcription factors are likely to regulate TPB genes in an indirect manner. Comprehensive transcriptional analyses of TPB genes and detailed characterization of key transcriptional regulators help us obtain a whole picture of transcriptional control of TPB in response to environmental and endogenous cues.
Collapse
|
48
|
Espinas NA, Kobayashi K, Sato Y, Mochizuki N, Takahashi K, Tanaka R, Masuda T. Allocation of Heme Is Differentially Regulated by Ferrochelatase Isoforms in Arabidopsis Cells. FRONTIERS IN PLANT SCIENCE 2016; 7:1326. [PMID: 27630653 PMCID: PMC5005420 DOI: 10.3389/fpls.2016.01326] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/18/2016] [Indexed: 05/03/2023]
Abstract
Heme is involved in various biological processes as a cofactor of hemoproteins located in various organelles. In plant cells, heme is synthesized by two isoforms of plastid-localized ferrochelatase, FC1 and FC2. In this study, by characterizing Arabidopsis T-DNA insertional mutants, we showed that the allocation of heme is differentially regulated by ferrochelatase isoforms in plant cells. Analyses of weak (fc1-1) and null (fc1-2) mutants suggest that FC1-producing heme is required for initial growth of seedling development. In contrast, weak (fc2-1) and null (fc2-2) mutants of FC2 showed pale green leaves and retarded growth, indicating that FC2-producing heme is necessary for chloroplast development. During the initial growth stage, FC2 deficiency caused reduction of plastid cytochromes. In addition, although FC2 deficiency marginally affected the assembly of photosynthetic reaction center complexes, it caused relatively larger but insufficient light-harvesting antenna to reaction centers, resulting in lower efficiency of photosynthesis. In the later vegetative growth, however, fc2-2 recovered photosynthetic growth, showing that FC1-producing heme may complement the FC2 deficiency. On the other hand, reduced level of cytochromes in microsomal fraction was discovered in fc1-1, suggesting that FC1-producing heme is mainly allocated to extraplastidic organelles. Furthermore, the expression of FC1 is induced by the treatment of an elicitor flg22 while that of FC2 was reduced, and fc1-1 abolished the flg22-dependent induction of FC1 expression and peroxidase activity. Consequently, our results clarified that FC2 produces heme for the photosynthetic machinery in the chloroplast, while FC1 is the housekeeping enzyme providing heme cofactor to the entire cell. In addition, FC1 can partly complement FC2 deficiency and is also involved in defense against stressful conditions.
Collapse
Affiliation(s)
- Nino A. Espinas
- Graduate School of Science, The University of TokyoTokyo, Japan
| | - Koichi Kobayashi
- Graduate School of Arts and Sciences, The University of TokyoTokyo, Japan
| | - Yasushi Sato
- Graduate School of Science and Engineering, Ehime UniversityEhime, Japan
| | | | - Kaori Takahashi
- Institute of Low Temperature Science, Hokkaido UniversitySapporo, Japan
| | - Ryouichi Tanaka
- Institute of Low Temperature Science, Hokkaido UniversitySapporo, Japan
| | - Tatsuru Masuda
- Graduate School of Science, The University of TokyoTokyo, Japan
- Graduate School of Arts and Sciences, The University of TokyoTokyo, Japan
- *Correspondence: Tatsuru Masuda,
| |
Collapse
|
49
|
Woodson JD, Joens MS, Sinson AB, Gilkerson J, Salomé PA, Weigel D, Fitzpatrick JA, Chory J. Ubiquitin facilitates a quality-control pathway that removes damaged chloroplasts. Science 2015; 350:450-4. [PMID: 26494759 PMCID: PMC4863637 DOI: 10.1126/science.aac7444] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/18/2015] [Indexed: 12/17/2022]
Abstract
Energy production by chloroplasts and mitochondria causes constant oxidative damage. A functioning photosynthetic cell requires quality-control mechanisms to turn over and degrade chloroplasts damaged by reactive oxygen species (ROS). Here, we generated a conditionally lethal Arabidopsis mutant that accumulated excess protoporphyrin IX in the chloroplast and produced singlet oxygen. Damaged chloroplasts were subsequently ubiquitinated and selectively degraded. A genetic screen identified the plant U-box 4 (PUB4) E3 ubiquitin ligase as being necessary for this process. pub4-6 mutants had defects in stress adaptation and longevity. Thus, we have identified a signal that leads to the targeted removal of ROS-overproducing chloroplasts.
Collapse
Affiliation(s)
| | - Matthew S Joens
- Waitt Advanced Biophotonics Center, The Salk Institute, La Jolla, CA
| | - Andrew B Sinson
- Plant Biology Laboratory, The Salk Institute, La Jolla, CA. Division of Biological Sciences, University of California-San Diego, La Jolla, CA
| | - Jonathan Gilkerson
- Plant Biology Laboratory, The Salk Institute, La Jolla, CA. Howard Hughes Medical Institute, The Salk Institute, La Jolla, CA
| | - Patrice A Salomé
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | | - Joanne Chory
- Plant Biology Laboratory, The Salk Institute, La Jolla, CA. Howard Hughes Medical Institute, The Salk Institute, La Jolla, CA.
| |
Collapse
|
50
|
Nagahatenna DSK, Langridge P, Whitford R. Tetrapyrrole-based drought stress signalling. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:447-59. [PMID: 25756609 PMCID: PMC5054908 DOI: 10.1111/pbi.12356] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 01/05/2015] [Accepted: 01/31/2015] [Indexed: 05/07/2023]
Abstract
Tetrapyrroles such as chlorophyll and heme play a vital role in primary plant metabolic processes such as photosynthesis and respiration. Over the past decades, extensive genetic and molecular analyses have provided valuable insights into the complex regulatory network of the tetrapyrrole biosynthesis. However, tetrapyrroles are also implicated in abiotic stress tolerance, although the mechanisms are largely unknown. With recent reports demonstrating that modified tetrapyrrole biosynthesis in plants confers wilting avoidance, a component physiological trait to drought tolerance, it is now timely that this pathway be reviewed in the context of drought stress signalling. In this review, the significance of tetrapyrrole biosynthesis under drought stress is addressed, with particular emphasis on the inter-relationships with major stress signalling cascades driven by reactive oxygen species (ROS) and organellar retrograde signalling. We propose that unlike the chlorophyll branch, the heme branch of the pathway plays a key role in mediating intracellular drought stress signalling and stimulating ROS detoxification under drought stress. Determining how the tetrapyrrole biosynthetic pathway is involved in stress signalling provides an opportunity to identify gene targets for engineering drought-tolerant crops.
Collapse
Affiliation(s)
- Dilrukshi S. K. Nagahatenna
- Australian Centre for Plant Functional GenomicsSchool of Agriculture, Food and WineUniversity of AdelaideGlen OsmondSAAustralia
| | - Peter Langridge
- Australian Centre for Plant Functional GenomicsSchool of Agriculture, Food and WineUniversity of AdelaideGlen OsmondSAAustralia
| | - Ryan Whitford
- Australian Centre for Plant Functional GenomicsSchool of Agriculture, Food and WineUniversity of AdelaideGlen OsmondSAAustralia
| |
Collapse
|