1
|
Su X, Zhang X, Luo J, Wang Y, Feng B, Yang Y, Zhang B, Li Y, Zhang H, Yuan W, Li H. The IAA7-ARF7-ARF19 auxin signaling module plays diverse roles in Arabidopsis growth and development. PLANTA 2025; 262:12. [PMID: 40459652 DOI: 10.1007/s00425-025-04731-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2025] [Accepted: 05/22/2025] [Indexed: 06/19/2025]
Abstract
MAIN CONCLUSION The IAA7-ARF7-ARF19 regulatory module employs Phox and Bem1 (PB1) domain-mediated interactions to suppress ARF7/ARF19 transcriptional activation, thereby diversely regulating auxin-dependent growth and development. Auxin plays a key role in regulating diverse plant developmental processes through canonical signaling pathways mediated by Auxin Response Factors (ARFs) and Auxin/INDOLE-3-ACETIC ACID (Aux/IAA) proteins. However, the ARF partners and their functional contribution to IAA7-mediated plant growth and auxin response remain poorly understood. Here we show that IAA7 and ARF7 or ARF19 are co-expressed across Arabidopsis development. IAA7 can interact physically with ARF7 and ARF19, and this interaction suppresses the transcriptional activation activity of both ARFs in auxin signaling. Genetic and phenotypic analyses reveal that ARF7 and ARF19 are major contributors to IAA7-mediated growth and development, including auxin sensitivity and gravitropism of root, root hair formation and elongation, and lateral root formation. In contrast, these ARFs only partially regulate IAA7-mediated hypocotyl gravitropism, root and inflorescence stem elongation, and leaf morphology. However, IAA7 regulates hypocotyl auxin sensitivity through ARF activators distinct from ARF7 and ARF19. Our results reveal the diverse degree of contribution by the ARF7 and ARF19, being pairs of IAA7, in regulating plant growth, and highlight the significance of multiple parallel IAA-ARF modules existing in the plant.
Collapse
Affiliation(s)
- Xue Su
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Xiaolong Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Jie Luo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yu Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Bin Feng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yanqi Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Biaoming Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yan Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Haitao Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Wenya Yuan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Haitao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
2
|
Martin-Arevalillo R, Guillotin B, Schön J, Hugues A, Gerentes MF, Tang K, Lucas J, Thévenon E, Dreuillet M, Vissers G, Ateequr MM, Galvan-Ampudia CS, Cerutti G, Legrand J, Cance C, Dubois A, Parcy F, Birnbaum KD, Zurbriggen MD, Dumas R, Roudier F, Vernoux T. Synthetic deconvolution of an auxin-dependent transcriptional code. Cell 2025; 188:2872-2889.e24. [PMID: 40239648 DOI: 10.1016/j.cell.2025.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/17/2025] [Accepted: 03/14/2025] [Indexed: 04/18/2025]
Abstract
How developmental signals program gene expression in space and time is still poorly understood. Here, we addressed this question for the plant master regulator, auxin. Transcriptional responses to auxin rely on a large multigenic transcription factor family, the auxin response factors (ARFs). We deconvoluted the complexity of ARF-regulated transcription using auxin-inducible synthetic promoters built from cis-element pair configurations differentially bound by ARFs. We demonstrate using cellular systems that ARF transcriptional properties are not only intrinsic but also depend on the cis-element pair configurations they bind to, thus identifying a bi-layer ARF/cis-element transcriptional code. Auxin-inducible synthetic promoters were expressed differentially in planta showing at single-cell resolution how this bi-layer code patterns transcriptional responses to auxin. Combining cis-element pair configurations in synthetic promoters created distinct patterns, demonstrating the combinatorial power of the auxin bi-layer code in generating diverse gene expression patterns that are not simply a direct translation of auxin distribution.
Collapse
Affiliation(s)
- Raquel Martin-Arevalillo
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, INRIA, 69342 Lyon, France; Institute of Synthetic Biology, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Bruno Guillotin
- Center for Genomics and Systems Biology, New York University, New York, NY, USA; Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Jonas Schön
- Institute of Synthetic Biology, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Alice Hugues
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, INRIA, 69342 Lyon, France
| | - Marie-France Gerentes
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, INRIA, 69342 Lyon, France
| | - Kun Tang
- Institute of Synthetic Biology, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Jérémy Lucas
- Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, 17 Avenue des Martyrs, 38054 Grenoble, France
| | - Emmanuel Thévenon
- Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, 17 Avenue des Martyrs, 38054 Grenoble, France
| | - Marianne Dreuillet
- Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, 17 Avenue des Martyrs, 38054 Grenoble, France
| | - Graeme Vissers
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Mohammed Mohammed Ateequr
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Carlos S Galvan-Ampudia
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, INRIA, 69342 Lyon, France
| | - Guillaume Cerutti
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, INRIA, 69342 Lyon, France
| | - Jonathan Legrand
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, INRIA, 69342 Lyon, France
| | - Coralie Cance
- Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, 17 Avenue des Martyrs, 38054 Grenoble, France
| | - Annick Dubois
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, INRIA, 69342 Lyon, France
| | - François Parcy
- Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, 17 Avenue des Martyrs, 38054 Grenoble, France
| | - Kenneth D Birnbaum
- Center for Genomics and Systems Biology, New York University, New York, NY, USA; Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Matias D Zurbriggen
- Institute of Synthetic Biology, University of Düsseldorf, 40225 Düsseldorf, Germany; CEPLAS - Cluster of Excellence on Plant Sciences, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Renaud Dumas
- Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, 17 Avenue des Martyrs, 38054 Grenoble, France
| | - François Roudier
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, INRIA, 69342 Lyon, France.
| | - Teva Vernoux
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, INRIA, 69342 Lyon, France.
| |
Collapse
|
3
|
Zhu L, Li H, Tao Z, Ma F, Wu S, Miao X, Cao L, Shi Z. The microRNA OsmiR393 regulates rice brown planthopper resistance by modulating the auxin-ROS signaling cross-talk. SCIENCE ADVANCES 2025; 11:eadu6722. [PMID: 40378225 PMCID: PMC12083543 DOI: 10.1126/sciadv.adu6722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 04/10/2025] [Indexed: 05/18/2025]
Abstract
Auxin plays critical roles in plant development and stress response. However, the roles of auxin and the immune signaling factor, reactive oxygen species (ROS), in resistance to the brown planthopper (BPH), a notorious rice-specific piercing-sucking insect that causes severe yield losses, remain unclear. We revealed that moderate naphthalene acetic acid treatment activates rice resistance to BPH, BPH infestation induces ROS accumulation, and increase in ROS content promotes BPH resistance. Underlying these phenomena, the auxin receptors OsTIR1 and OsAFB2 positively, whereas the posttranscriptional regulator OsmiR393 negatively, regulate BPH resistance. Downstream of the OsmiR393/OsTIR1 module, through successive genetic function analysis of each gene, solid genetic relationship analysis, and various biochemical assays, we established an OsmiR393/OsTIR1-OsIAA10-OsARF12-OsRbohB genetic pathway that mediates BPH resistance, in which ROS are integral. Such cross-talk between auxin and ROS reveals the intricate signaling network underlying BPH resistance, which might assist with BPH resistance breeding.
Collapse
Affiliation(s)
- Lin Zhu
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haichao Li
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhihuan Tao
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feilong Ma
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China
| | - Shujun Wu
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Xuexia Miao
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Liming Cao
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Zhenying Shi
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| |
Collapse
|
4
|
Crespo I, Malfois M, Rienstra J, Tarrés-Solé A, van den Berg W, Weijers D, Boer DR. The structure and function of the DNA binding domain of class B MpARF2 share more traits with class A AtARF5 than to that of class B AtARF1. Structure 2025; 33:960-973.e4. [PMID: 40086441 DOI: 10.1016/j.str.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 08/08/2024] [Accepted: 02/17/2025] [Indexed: 03/16/2025]
Abstract
Plant development is primarily controlled by the auxin phytohormones, which activate the auxin response factors (ARFs). Although the nuclear auxin pathway (NAP) is well studied, little is known on how ARFs specifically select target genes. Here, we investigated the DNA binding mechanism of ARF DNA binding domains (DBDs) from the activator class A and repressor class B in two evolutionary distant plant species, Marchantia polymorpha and Arabidopsis thaliana using fluorescence anisotropy, size exclusion chromatography, macromolecular crystallography (MX), and small-angle X-ray scattering (SAXS). We find that the previously proposed molecular caliper model, which partially explains the variability in binding of the ARFs to DNA, has been preserved throughout evolution. Our results show that the DBD of class B MpARF2 behaves more like class A AtARF5 than class B AtARF1. These findings suggest that DNA recognition of ARFs has diverged independently of the transcriptional output, which has significant implications for understanding diverse responses to auxin.
Collapse
Affiliation(s)
- Isidro Crespo
- ALBA Synchrotron Light Source, Carrer de la Llum 2-26, Cerdanyola del Vallès, 08290 Barcelona, Spain
| | - Marc Malfois
- ALBA Synchrotron Light Source, Carrer de la Llum 2-26, Cerdanyola del Vallès, 08290 Barcelona, Spain
| | - Juriaan Rienstra
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Aleix Tarrés-Solé
- ALBA Synchrotron Light Source, Carrer de la Llum 2-26, Cerdanyola del Vallès, 08290 Barcelona, Spain
| | - Willy van den Berg
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Dirk Roeland Boer
- ALBA Synchrotron Light Source, Carrer de la Llum 2-26, Cerdanyola del Vallès, 08290 Barcelona, Spain.
| |
Collapse
|
5
|
Dong M, Sun L, Wang W, Wang Y, Shan L, Liu X, Ren H. B3 Superfamily in Cucumber ( Cucumis sativus L.): Identification, Evolution, Expression Patterns, and Function in Glandular Trichome Development. Int J Mol Sci 2025; 26:4031. [PMID: 40362269 PMCID: PMC12071739 DOI: 10.3390/ijms26094031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/19/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
The B3 transcription factor superfamily, crucial for plant growth and stress adaptation, remains poorly characterized in cucumber (Cucumis sativus), a globally important vegetable crop. Here, we conducted the first genome-wide identification of 52 B3 superfamily genes in cucumber, classifying them into LAV, ARF, RAV, and REM subfamilies through integrated phylogenetic and structural analyses. These genes exhibited conserved B3 domains with lineage-specific motif architectures and diverse exon-intron organizations, particularly within the structurally divergent REM subfamily. Collinearity analysis revealed segmental duplication as a key driver of family expansion, notably between syntenic REM clusters on chromosomes 2 (CsREM5-7) and 6 (CsREM18-20). Promoter cis-element profiling identified enrichment in hormone-responsive and stress adaptation motifs, suggesting functional diversification in signaling pathways. Furthermore, tissue-specific expression divergence was observed across 10 organs, with ARF members displaying broad regulatory roles and REM genes showing apical meristem enrichment. Strikingly, CsRAV8 exhibited glandular trichome-specific expression, a novel finding, given Arabidopsis RAVs' lack of trichome-related functions. Spatial validation via in situ hybridization localized CsRAV8 transcripts to trichome glandular head cells. Functional investigation using virus-induced gene silencing (VIGS) demonstrated that CsRAV8 suppression caused significant glandular trichome shriveling, implicating its role in maintaining glandular cavity integrity. This study provides the first comprehensive genomic inventory of B3 transcription factors in cucumber, providing evolutionary insights and functional frameworks for future functional genomics studies.
Collapse
Affiliation(s)
- Mingming Dong
- Sanya Institute of China Agricultural University, Sanya 572019, China
| | - Lei Sun
- Frontier Technology Research Institute of China Agricultural University in Shenzhen, Shenzhen 518119, China
| | - Wujun Wang
- Sanya Institute of China Agricultural University, Sanya 572019, China
| | - Yaru Wang
- Sanya Institute of China Agricultural University, Sanya 572019, China
| | - Li Shan
- Sanya Institute of China Agricultural University, Sanya 572019, China
| | - Xingwang Liu
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Huazhong Ren
- Sanya Institute of China Agricultural University, Sanya 572019, China
- Frontier Technology Research Institute of China Agricultural University in Shenzhen, Shenzhen 518119, China
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
6
|
Zheng K, Feng Y, Liu R, Zhang Y, Fan D, Zhong K, Tang X, Zhang Q, Cao S. Bioinformatics Analysis Reveals the Evolutionary Characteristics of the Phoebe bournei ARF Gene Family and Its Expression Patterns in Stress Adaptation. Int J Mol Sci 2025; 26:3701. [PMID: 40332368 PMCID: PMC12027883 DOI: 10.3390/ijms26083701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 05/08/2025] Open
Abstract
Auxin response factors (ARFs) are pivotal transcription factors that regulate plant growth, development, and stress responses. Yet, the genomic characteristics and functions of ARFs in Phoebe bournei remain undefined. In this study, 25 PbARF genes were identified for the first time across the entire genome of P. bournei. Phylogenetic analysis categorized these genes into five subfamilies, with members of each subfamily displaying similar conserved motifs and gene structures. Notably, Classes III and V contained the largest number of members. Collinearity analysis suggested that segmental duplication events were the primary drivers of PbARF gene family expansion. Structural analysis revealed that all PbARF genes possess a conserved B3 binding domain and an auxin response element, while additional motifs varied among different classes. Promoter cis-acting element analysis revealed that PbARF genes are extensively involved in hormonal responses-particularly to abscisic acid and jasmonic acid and abiotic stresses-as well as abiotic stresses, including heat, drought, light, and dark. Tissue-specific expression analysis showed that PbARF25, PbARF23, PbARF19, PbARF22, and PbARF20 genes (class III), and PbARF18 and PbARF11 genes (class V) consistently exhibited high expression levels in the five tissues. In addition, five representative PbARF genes were analyzed using qRT-PCR. The results demonstrated significant differences in the expression of PbARF genes under various abiotic stress conditions (drought, salt stress, light, and dark), indicating their important roles in stress response. This study laid a foundation for elucidating the molecular evolution mechanism of ARF genes in P. bournei and for determining the candidate genes for stress-resistance breeding.
Collapse
Affiliation(s)
- Kehui Zheng
- College of Computer and Information Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Yizhuo Feng
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.F.); (R.L.); (D.F.); (X.T.)
| | - Ronglin Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.F.); (R.L.); (D.F.); (X.T.)
| | - Yanlin Zhang
- College of Jun Cao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (K.Z.)
| | - Dunjin Fan
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.F.); (R.L.); (D.F.); (X.T.)
| | - Kai Zhong
- College of Jun Cao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (K.Z.)
| | - Xinghao Tang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.F.); (R.L.); (D.F.); (X.T.)
- Fujian Academy of Forestry Sciences, Fuzhou 350012, China
| | - Qinghua Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.F.); (R.L.); (D.F.); (X.T.)
| | - Shijiang Cao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.F.); (R.L.); (D.F.); (X.T.)
| |
Collapse
|
7
|
Quan Y, Liu H, Li K, Xu L, Zhao Z, Xiao L, Yao Y, Du D. Genome-wide association study reveals genetic loci for seed density per silique in rapeseed (Brassica napus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:80. [PMID: 40113624 DOI: 10.1007/s00122-025-04857-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/15/2025] [Indexed: 03/22/2025]
Abstract
KEY MESSAGE Two stable QTLs controlling seed density per silique were detected on chromosomes A09 and C05 in rapeseed via GWAS, and ARF18 was the only causal gene of QTL qSDPS-A09. Seed density per silique (SDPS) is a key agronomic trait that directly or indirectly affects seed yield in rapeseed (Brassica napus L.). Exploring the genetic control of SDPS is beneficial for increasing rapeseed production. In this study, we evaluated the SDPS phenotypes of 413 rapeseed cultivars (lines) across five natural environments and genotyped them by resequencing. A GWAS analysis was performed using 5,277,554 high-quality variants with the MLM_PCA + K and FarmCPU models. A total of 51 loci were identified to be significantly (p < - log10(1.88 × 10-6)) associated with SDPS, of which 5 were detected in all environments (except for SNP-2095656) by both GWAS models. Among the five loci, three were located on chromosome A09, whereas the other two loci were located on chromosome C05. The three loci on chromosome A09 and the two loci on chromosome C05 were physically close to each other. Therefore, only the two common candidate QTLs were integrated and named QTL qSDPS-A09 (320 kb) and qSDPS-C05 (331.48 kb), respectively. Sixty-seven and forty-eight candidate genes were initially identified on A09 and C05 and then narrowed down to 17 and 13 candidate genes, respectively, via LD block analyses. Gene-based association studies, haplotype analyses and expression analyses confirmed that three homologs of Arabidopsis auxin-response factor 18 (BnaA09G0559300ZS) was the most likely candidate genes underlying the QTL qSDPS-A09. ARF18Hap4 was identified as a favorable haplotype for high SDPS. These findings will aid in elucidating the genetic and molecular mechanisms of SDPS and promoting genetic modifications in rapeseed breeding.
Collapse
Affiliation(s)
- Youjuan Quan
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai Spring Rape Engineering Research Center, Qinghai Research Branch of the National Oil Crop Genetic Improvement Center, Spring Rape Scientific Observation Experimental Station of Ministry of Agriculture and Rural Areas, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China
| | - Haidong Liu
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai Spring Rape Engineering Research Center, Qinghai Research Branch of the National Oil Crop Genetic Improvement Center, Spring Rape Scientific Observation Experimental Station of Ministry of Agriculture and Rural Areas, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China.
| | - Kaixiang Li
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai Spring Rape Engineering Research Center, Qinghai Research Branch of the National Oil Crop Genetic Improvement Center, Spring Rape Scientific Observation Experimental Station of Ministry of Agriculture and Rural Areas, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China
| | - Liang Xu
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai Spring Rape Engineering Research Center, Qinghai Research Branch of the National Oil Crop Genetic Improvement Center, Spring Rape Scientific Observation Experimental Station of Ministry of Agriculture and Rural Areas, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China
| | - Zhigang Zhao
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai Spring Rape Engineering Research Center, Qinghai Research Branch of the National Oil Crop Genetic Improvement Center, Spring Rape Scientific Observation Experimental Station of Ministry of Agriculture and Rural Areas, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China
| | - Lu Xiao
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai Spring Rape Engineering Research Center, Qinghai Research Branch of the National Oil Crop Genetic Improvement Center, Spring Rape Scientific Observation Experimental Station of Ministry of Agriculture and Rural Areas, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China
| | - Yanmei Yao
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai Spring Rape Engineering Research Center, Qinghai Research Branch of the National Oil Crop Genetic Improvement Center, Spring Rape Scientific Observation Experimental Station of Ministry of Agriculture and Rural Areas, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China
| | - Dezhi Du
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai Spring Rape Engineering Research Center, Qinghai Research Branch of the National Oil Crop Genetic Improvement Center, Spring Rape Scientific Observation Experimental Station of Ministry of Agriculture and Rural Areas, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China.
| |
Collapse
|
8
|
Haim D, Pochamreddy M, Doron-Faigenboim A, Kamara I, Ben-Ari G, Sadka A. Auxin treatment reduces inflorescences number and delays bud development in the alternate bearing Citrus cultivar Murcott mandarin. TREE PHYSIOLOGY 2025; 45:tpaf009. [PMID: 39834014 DOI: 10.1093/treephys/tpaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/02/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Specific cultivars of many commercial fruit trees undergo cycles of heavy fruit load (ON-crop) one year, followed by low fruit load (OFF-crop) the next (termed alternate bearing). Fruit load may affect flowering at various developmental stages, and its presence is suggested to generate a flowering-inhibitory signal. In a previous report, we showed that the presence of fruit induces polar auxin transport from the fruit into the stem, interfering with indole acetic acid release from the bud and thus elevating its levels in the bud meristem. To better understand the relationship between auxin homeostasis in the bud and flowering, indole acetic acid or 2,4-dichlorophenoxyacetic acid (2,4-D) was applied with the polar auxin transport blocker 2,3,5-triiodobenzoic acid to OFF-crop 'Murcott' mandarin (Citrus reticulata × Citrus sinensis) trees during the flowering-induction period. The treatment reduced inflorescence number and delayed bud development. Transcriptome analysis following the treatment revealed a reduction in the expression of a few flowering-control genes, including LEAFY and SQUAMOSA PROMOTER BINDING PROTEIN-LIKE. In addition, genes related to carbohydrate metabolism were reduced. We suggest that the elevation of auxin levels in the bud by heavy fruit load directly affects the expression of flowering-control, flower-development and developmental genes.
Collapse
Affiliation(s)
- Dor Haim
- Department of Fruit Tree Sciences, The Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Rd, P.O. Box 15159, Rishon LeZion 7528809, Israel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 229 Herzl St., P.O. Box 12, Rehovot 7610001, Israel
| | - Madhuri Pochamreddy
- Department of Fruit Tree Sciences, The Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Rd, P.O. Box 15159, Rishon LeZion 7528809, Israel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 229 Herzl St., P.O. Box 12, Rehovot 7610001, Israel
| | - Adi Doron-Faigenboim
- Department of Fruit Tree Sciences, The Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Rd, P.O. Box 15159, Rishon LeZion 7528809, Israel
| | - Itzahk Kamara
- Department of Fruit Tree Sciences, The Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Rd, P.O. Box 15159, Rishon LeZion 7528809, Israel
| | - Giora Ben-Ari
- Department of Fruit Tree Sciences, The Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Rd, P.O. Box 15159, Rishon LeZion 7528809, Israel
| | - Avi Sadka
- Department of Fruit Tree Sciences, The Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Rd, P.O. Box 15159, Rishon LeZion 7528809, Israel
| |
Collapse
|
9
|
Wang Y, Sun M, Zhu W, Chen L, Zhu S, Zhao J, Teixeira da Silva JA, Yu X. Advances in the study of senescence mechanisms in the genus Paeonia. HORTICULTURE RESEARCH 2025; 12:uhae344. [PMID: 40236982 PMCID: PMC11997661 DOI: 10.1093/hr/uhae344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/01/2024] [Indexed: 04/17/2025]
Abstract
Tree and herbaceous peony are considerably important ornamental plants within the genus Paeonia, and hold substantial horticultural value. This review summarizes the progress in research on the senescence mechanisms of tree and herbaceous peony flowers, focusing on the regulation of gene expression, hormonal interactions, and the influence of environmental factors on senescence. Using high-throughput sequencing technologies, key genes displaying differential expression during senescence have been identified, and these play central roles in hormone signaling and cellular senescence. The interactions among plant hormones, including ethylene, abscisic acid, gibberellins, cytokinins, and auxins, also play key roles in the regulation of senescence. Adjustments in antioxidant levels, as well as water and energy metabolism, are critical factors in the delay of senescence. Environmental factors, including light, temperature, drought, and salt stress, also significantly affect senescence. Additionally, this review proposes future research directions, including the expansion of the molecular regulatory network of senescence in Paeonia, the use of gene editing technologies like CRISPR/Cas9, multiomics studies, and exploratory comparative research on spatial biology senescence mechanisms. These studies aim to deepen our understanding of the molecular mechanisms that underlie senescence in Paeonia and provide a scientific basis for cultivar improvement and postharvest management of these ornamental commodities in the horticultural industry.
Collapse
Affiliation(s)
- Yuxuan Wang
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, and Laboratory of Urban and Rural Ecological Environment, Beijing 100083, China
| | - Miao Sun
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, and Laboratory of Urban and Rural Ecological Environment, Beijing 100083, China
| | - Wei Zhu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Le Chen
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, and Laboratory of Urban and Rural Ecological Environment, Beijing 100083, China
| | - Shaocai Zhu
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, and Laboratory of Urban and Rural Ecological Environment, Beijing 100083, China
| | - Jiageng Zhao
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, and Laboratory of Urban and Rural Ecological Environment, Beijing 100083, China
| | | | - Xiaonan Yu
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, and Laboratory of Urban and Rural Ecological Environment, Beijing 100083, China
| |
Collapse
|
10
|
Hu Y, Xue D, Wang S, Zhang Q, Zhang X, Yang J, Lv Y, Yan B, Yin Y, Cui Z, Li T, Chen W, Wang X. An auxin response factor regulates tiller angle and shoot gravitropism by directly activating related gene expression in rice. J Adv Res 2025:S2090-1232(25)00124-9. [PMID: 40015454 DOI: 10.1016/j.jare.2025.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/01/2025] Open
Abstract
INTRODUCTION The angle of tillers is crucial for shaping plant architecture, which in turn affects grain yield of rice. The formation of tiller angle is associated with the asymmetrical distribution and polar transport of auxin. However, the roles of auxin signaling in regulating tiller angle in rice remain unclear. OBJECTIVE This study identifies Oryza sativa Auxin Response Factor 5 (OsARF5) as a key regulator of tiller angle development in rice. METHODS The osarf5-1 mutant was obtained through using chemical mutagenesis. The differentially expressed genes were identified through quantitative RT-PCR and high-throughput mRNA sequencing. The interactions between OsARF5 protein and its targeted-DNAs was analyzed by chromatin immunoprecipitation and dual-luciferase reporter assays. Protein-protein interactions were assessed using yeast two-hybrid and bimolecular fluorescence complementation methods. RESULTS The osarf5-1 mutation enlarges the tiller angle, weakens shoot gravitropism, and diminishes the response to auxin in rice. OsARF5 binds to the cis-acting elements in the promoters of genes related to tiller angle development and activates their expression. Genome-wide studies identify thousands of differentially expressed genes (DEGs), including auxin response genes, between wild-type and osarf5-1. Under gravistimulation, the number of DEGs in osarf5-1 decreases, indicating the involvement of OsARF5 in shoot gravitropism. The OsARF5 physically interact with three rice Indole Acetic Acid (OsIAA) repressors, forming complexes that facilitate their functions. Mutations in OsIAAs lead to a more compact plant architecture, and the expression of OsARF5-target genes is elevated in osiaa mutants, suggesting that the OsIAAs counteract OsARF5's effects on tiller angle control. CONCLUSION OsARF5 is associated with three OsIAAs to bind to the promoter of the target genes, regulating their expression to modulate shoot gravitropism and tiller angle in rice. These findings offer new insights into the principles governing tiller angle control in rice.
Collapse
Affiliation(s)
- Yanjuan Hu
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China.
| | - Dan Xue
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China.
| | - Shiyu Wang
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China; Liaoning Institute of Saline-Alkali and Utilization, Panjin 124010, China.
| | - Qi Zhang
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China.
| | - Xinfeng Zhang
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China.
| | - Jingyan Yang
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China.
| | - Yanpeng Lv
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China.
| | - Bowen Yan
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China; Liaoning Academy of Agricultural Sciences, Shenyang 110161, China.
| | - Yanbin Yin
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China; College of Agriculture, Northeast Agricultural University, Harbin 150038, China.
| | - Zhibo Cui
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China.
| | - Tong Li
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China; College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.
| | - Wenfu Chen
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China.
| | - Xiaoxue Wang
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
11
|
Fu R, Zhang M, Wei F, Lin M, Fang J, Wang R, Li Y, Chen J, Sun L, Qi X. RNA-Seq Analysis Reveals Potential Genes Involved in Plant Growth Regulator-Induced Ovary Development in Male Kiwifruit ( Actinidia eriantha). PLANTS (BASEL, SWITZERLAND) 2025; 14:703. [PMID: 40099584 PMCID: PMC11902103 DOI: 10.3390/plants14050703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/15/2025] [Accepted: 02/24/2025] [Indexed: 03/20/2025]
Abstract
Kiwifruit is a dioecious woody liana fruit tree, and the non-fruitfulness of male plants leads to a great deal of blindness in the selection of male plants in crossbreeding. In this study, we induced the development of male plant ovary by externally applying plant growth regulators (PGRs) and performed histological observation, phytohormone content determination and transcriptome analysis on the abortive ovary of the male kiwifruit (Con), the ovary of the female kiwifruit (Fem) and the PGR-induced developing ovary of the male kiwifruit (PT). Histological analysis showed that the Con ovary was devoid of ovules and the carpels were atrophied, the Fem ovary had ovules and the PT ovary was devoid of ovules, but the carpels developed normally and were not atrophied. Endogenous phytohormone content measurements displayed higher levels of trans-zeatin (tZT) in PT and Fem than Con, and lower levels of gibberellin (GA3) and abscisic acid (ABA) than Con. Transcriptome analysis revealed significant differences in many key genes in the cytokinin and auxin pathways, which were consistent with the results of phytohormone content measurements. Meanwhile, the genes related to carpel development, SPT (DTZ79_04g03580) and SK41 (DTZ79_19g04340), were highly expressed in PT, suggesting that they may play a key role in PGR-induced development of the ovary in male kiwifruit. These results provide information for elucidating the potential regulatory network of PGR-induced ovary development in male flowers and contribute to further identification of valuable target genes.
Collapse
Affiliation(s)
- Rong Fu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (R.F.); (F.W.)
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (M.Z.); (M.L.); (J.F.); (R.W.); (Y.L.); (J.C.)
| | - Min Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (M.Z.); (M.L.); (J.F.); (R.W.); (Y.L.); (J.C.)
| | - Feng Wei
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (R.F.); (F.W.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Miaomiao Lin
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (M.Z.); (M.L.); (J.F.); (R.W.); (Y.L.); (J.C.)
| | - Jinbao Fang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (M.Z.); (M.L.); (J.F.); (R.W.); (Y.L.); (J.C.)
| | - Ran Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (M.Z.); (M.L.); (J.F.); (R.W.); (Y.L.); (J.C.)
| | - Yukuo Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (M.Z.); (M.L.); (J.F.); (R.W.); (Y.L.); (J.C.)
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453500, China
| | - Jinyong Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (M.Z.); (M.L.); (J.F.); (R.W.); (Y.L.); (J.C.)
| | - Leiming Sun
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (M.Z.); (M.L.); (J.F.); (R.W.); (Y.L.); (J.C.)
- Chuxiong Yunguo Agriculture Technology Research Institute, Chuxiong 675000, China
| | - Xiujuan Qi
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (M.Z.); (M.L.); (J.F.); (R.W.); (Y.L.); (J.C.)
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453500, China
| |
Collapse
|
12
|
Wang M, Liu W, Feng G, Nie G, Yang Z, Hao F, Huang L, Zhang X. Comprehensive genome-wide analysis of ARF transcription factors in orchardgrass (Dactylis glomerata): the positive regulatory role of DgARF7 in drought resistance. BMC Genomics 2025; 26:101. [PMID: 39901077 PMCID: PMC11792575 DOI: 10.1186/s12864-025-11241-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/13/2025] [Indexed: 02/05/2025] Open
Abstract
Auxin response factor (ARF), a transcription factor, is crucial in controlling growth, development, and response to environmental stress. Orchardgrass (Dactylis glomerata) is an economically significant, widely cultivated forage grass. However, information on the genome-wide information and functional characterization of ARFs in orchardgrass is limited. This study identified 27 ARF genes based on the orchardgrass genome database. These DgARFs were unevenly distributed across the seven orchardgrass chromosomes and clustered into four classes. Phylogenetic analysis with multispecies of ARF proteins indicated that the ARFs exhibit a relatively conserved evolutionary path. Focusing on hormone signaling responses, DgARF7 demonstrated a potential positive regulatory role in response to 3-indole acetic acid, methyl jasmonate, gibberellin, salicylic acid, and abscisic acid signals. Additionally, exposure to drought stress induced noticeable oscillatory changes in DgARF7 gene. Notably, DgARF7 enhanced drought tolerance through heterologous expression in yeast and overexpression in Arabidopsis. Overexpressed Arabidopsis lines of DgARF7 exhibited a markedly higher relative water content and superoxide dismutase activity, while the malondialdehyde content was significantly decreased compared to wild type under drought stress. DgARF7 also accelerated flowering time by inducing the flowering-related gene expression levels in Arabidopsis. This research provides important insights into the role of DgARF7 in orchardgrass and provides further understanding in molecular breeding.
Collapse
Affiliation(s)
- Miaoli Wang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wen Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guangyan Feng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Gang Nie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhongfu Yang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Feixiang Hao
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
13
|
Huang R, Zhang X, Luo K, Tembrock LR, Li S, Wu Z. The Identification of Auxin Response Factors and Expression Analyses of Different Floral Development Stages in Roses. Genes (Basel) 2025; 16:41. [PMID: 39858591 PMCID: PMC11764539 DOI: 10.3390/genes16010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/25/2024] [Accepted: 12/25/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives:Auxin response factors (ARFs) are important in plant growth and development, especially flower development. However, there is limited research on the comprehensive identification and characterization of ARF genes in roses. Methods: We employed bioinformatics tools to identify the ARF genes of roses. These genes were characterized for their phylogenetic relationships, chromosomal positions, conserved motifs, gene structures, and expression patterns. Results: In this study, a total of 17 ARF genes were identified in the genomes of Rosa chinensis 'OB', R. chinensis 'CH', R. rugosa, and R. wichurana. Based on RNA-seq analyses, we found that the ARF genes had diverse transcript patterns in various tissues and cultivars. In 'CH', the expression levels of RcCH_ARFs during different flower-development stages were classified into four clusters. In cluster 3 and cluster 4, RcCH_ARFs were specifically high and low in different stages of floral evocation. Gene expression and phylogenetic analyses showed that RcCH_ARF3, RcCH_ARF4, and RcCH_ARF18 were likely to be the key genes for rose flower development. Conclusions: The identification and characterization of ARF genes in Rosa were investigated. The results presented here provide a theoretical basis for the molecular mechanisms of ARF genes in plant development and flowering for roses, with a broader application for other species in the rose family and for the development of novel cultivars.
Collapse
Affiliation(s)
- Rui Huang
- College of Horticulture, Shanxi Agricultural University, Jinzhong 030801, China;
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (X.Z.); (K.L.)
| | - Xiaoni Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (X.Z.); (K.L.)
- Kunpeng Institute of Modern Agriculture at Foshan, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Kaiqing Luo
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (X.Z.); (K.L.)
| | - Luke R. Tembrock
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA;
| | - Sen Li
- College of Horticulture, Shanxi Agricultural University, Jinzhong 030801, China;
| | - Zhiqiang Wu
- College of Horticulture, Shanxi Agricultural University, Jinzhong 030801, China;
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (X.Z.); (K.L.)
- Kunpeng Institute of Modern Agriculture at Foshan, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| |
Collapse
|
14
|
Cavalleri A, Astori C, Truskina J, Cucinotta M, Farcot E, Chrysanthou E, Xu X, Muino JM, Kaufmann K, Kater MM, Vernoux T, Weijers D, Bennett MJ, Bhosale R, Bishopp A, Colombo L. Auxin-dependent post-translational regulation of MONOPTEROS in the Arabidopsis root. Cell Rep 2024; 43:115083. [PMID: 39675001 DOI: 10.1016/j.celrep.2024.115083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/26/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024] Open
Abstract
Auxin plays a pivotal role in plant development by activating AUXIN RESPONSE FACTORs (ARFs). Under low auxin levels, ARF activity is inhibited by interacting with Aux/IAAs. Aux/IAAs are degraded when the cellular auxin concentration increases, causing the release of ARF inhibition. Here, we show that levels of the ARF5/MONOPTEROS (MP) protein are regulated in a cell-type-specific and isoform-dependent manner. We find that the stability of MP isoforms is differentially controlled depending on the auxin level. The canonical MP isoform is degraded by the proteasome in root tissues with low auxin levels. While auxin sharpens the MP localization domain in roots, it does not do so in ovules or embryos. Our research highlights a mechanism for providing spatial control of auxin signaling capacity. Together with recent advances in understanding the tissue-specific expression and post-transcriptional modification of auxin signaling components, these results provide insights into understanding how auxin can elicit so many distinct responses.
Collapse
Affiliation(s)
- Alex Cavalleri
- Departiment of BioScience, University of Milan, 20133 Milano, Italy
| | - Chiara Astori
- Departiment of BioScience, University of Milan, 20133 Milano, Italy
| | - Jekaterina Truskina
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Mara Cucinotta
- Departiment of BioScience, University of Milan, 20133 Milano, Italy
| | - Etienne Farcot
- School of Mathematical Sciences, University of Nottingham, NG7 2RD Nottingham, UK
| | - Elina Chrysanthou
- School of Biosciences, University of Nottingham, LE12 5RD Loughborough, UK
| | - Xiaocai Xu
- Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Jose M Muino
- Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Kerstin Kaufmann
- Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Martin M Kater
- Departiment of BioScience, University of Milan, 20133 Milano, Italy
| | - Teva Vernoux
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, 6700 ET Wageningen, the Netherlands
| | - Malcolm J Bennett
- School of Biosciences, University of Nottingham, LE12 5RD Loughborough, UK
| | - Rahul Bhosale
- School of Biosciences, University of Nottingham, LE12 5RD Loughborough, UK
| | - Anthony Bishopp
- School of Biosciences, University of Nottingham, LE12 5RD Loughborough, UK
| | - Lucia Colombo
- Departiment of BioScience, University of Milan, 20133 Milano, Italy.
| |
Collapse
|
15
|
Tian Z, Chen B, Sun Y, Sun G, Gao X, Pan Z, Song G, Du X, He S. GhGRF4/GhARF2-GhGASA24 module regulates fiber cell wall thickness by modulating cellulose biosynthesis in upland cotton (Gossypium hirsutum). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1842-1856. [PMID: 39427330 DOI: 10.1111/tpj.17083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 10/03/2024] [Indexed: 10/22/2024]
Abstract
Fiber elongation rate is an essential characteristic of cotton fiber in the textile industry, yet it has been largely overlooked in genetic studies. Gibberellins (GAs) and auxin (IAA) are recognized for their role in directing numerous developmental processes in plants by influencing cell differentiation and elongation. However, the degree to which GA-IAA interaction governs cellular elongation in cotton fiber cells remains to be fully understood. In this study, we identified a causal gene, Gibberellic Acid-Stimulated in Arabidopsis 24 (GhGASA24), that appears to be responsible for fiber elongation rate via regulating fiber cell wall thickness. Subsequent experiments revealed that GhGASA24 influences cell wall formation by promoting the expression of GhCesA8 and GhCesA10. Our findings suggest that Auxin Response Factor 2 (GhARF2) regulates fiber elongation rate by directly binding to the AuxRE elements in GhGASA24 promoter. In addition, we identified Growth Regulation Factor 4 (GhGRF4) as a transcription factor that interacts with GhARF2 to form a heterodimer complex, which also transcriptionally activates GhGASA24. Intriguingly, GhGRF4 regulates GhARF2 expression by directly binding to its promoter, thereby acting as a cascade regulator to enhance the transcriptional levels of GhGASA24. We propose that the GhGRF4/GhARF2-GhGASA24-GhCesAs module may contribute to fiber cell wall thickness by modulating cellulose biosynthesis, and provide a theoretical basis for improvement of fiber quality.
Collapse
Affiliation(s)
- Zailong Tian
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, China
| | - Baojun Chen
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yaru Sun
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Gaofei Sun
- School of Computer Science and Information Engineering, Anyang Institute of Technology, Anyang, China
| | - Xu Gao
- National Supercomputing Center in Zhengzhou, Zhengzhou University, Zhengzhou, China
| | - Zhaoe Pan
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Guoli Song
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiongming Du
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Shoupu He
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
16
|
Liu Y, Ma N, Gao Z, Hua Y, Cao Y, Yin D, Jia Q, Wang D. Systematic analysis of the ARF gene family in Fagopyrum dibotrys and its potential roles in stress tolerance. Genetica 2024; 152:159-178. [PMID: 39365431 DOI: 10.1007/s10709-024-00214-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/20/2024] [Indexed: 10/05/2024]
Abstract
The auxin response factor (ARF) is a plant-specific transcription factor that regulates the expression of auxin response genes by binding directly to their promoters. They play an important role in the regulation of plant growth and development, as well as in the response to biotic and abiotic stresses. However, the identification and functional analysis of ARFs in Fagopyrum dibotrys are still unclear. In this study, a total of 26 FdARF genes were identified using bioinformatic methods. Their chromosomal location, gene structure, physical and chemical properties of their encoded protein, subcellular location, phylogenetic tree, conserved motifs and cis-acting elements in FdARF promoters were analyzed. The results showed that 26 FdARF genes were unevenly distributed on 8 chromosomes, with the largest distribution on chromosome 4 and the least distribution on chromosome 3. Most FdARF proteins are located in the nucleus, except for the proteins FdARF7 and FdARF21 located to the cytoplasm and nucleus, while FdARF14, FdARF16, and FdARF25 proteins are located outside the chloroplast and nucleus. According to phylogenetic analysis, 26 FdARF genes were divided into 6 subgroups. Duplication analysis indicates that the expansion of the FdARF gene family was derived from segmental duplication rather than tandem duplication. The prediction based on cis-elements of the promoter showed that 26 FdARF genes were rich in multiple stress response elements, suggesting that FdARFs may be involved in the response to abiotic stress. Expression profiling analysis showed that most of the FdARF genes were expressed in the roots, stems, leaves, and tubers of F. dibotrys, but their expression exhibits a certain degree of tissue specificity. qRT-PCR analysis revealed that most members of the FdARF gene were up- or down-regulated in response to abiotic stress. The results of this study expand our understanding of the functional role of FdARFs in response to abiotic stress and lay a theoretical foundation for further exploration of other functions of FdARF genes.
Collapse
Affiliation(s)
- Ying Liu
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Nan Ma
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Ziyong Gao
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Yangguang Hua
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Yu Cao
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Dengpan Yin
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Qiaojun Jia
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Dekai Wang
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China.
| |
Collapse
|
17
|
Mei J, Tang X, Gu Y, Lu H, Yang Y, Shen Q, Yang L, Li B, Zuo J, Singh VP, Sharma A, Yuan H, Zheng B. Role of TIR1/AFB family genes during grafting in Carya cathayensis. FRONTIERS IN PLANT SCIENCE 2024; 15:1494579. [PMID: 39649807 PMCID: PMC11622252 DOI: 10.3389/fpls.2024.1494579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/25/2024] [Indexed: 12/11/2024]
Abstract
Auxins play significant roles in plant growth and development. The transporter inhibitor response1/auxin signaling F-box (TIR1/AFB) gene family encodes the auxin receptor proteins and plays an essential role in the auxin signaling pathway. Here we identified and characterized the TIR1/AFB family in Carya cathayensis (Cc) plants (named as CcTIR1/AFB). Seven CcTIR1/AFBs were identified and further confirmed by cloning. All proteins encoded by these genes conservatively contained two domains, the F-box and leucine-rich repeat (LRR) domains. The CcTIR1/AFBs were located in the nucleus. Phylogenetic analysis suggested that CcTIR1/AFBs were evenly scattered in four different subgroups. The cis-acting element analysis indicates that CcTIR1/AFBs might be activated by auxin. The spatial and temporal expression of CcTIR1/AFBs during grafting suggested that both CcAFB1 and CcAFB2 in scions and CcAFB4 in the rootstocks were significantly upregulated at 3 days after grafting, which indicated the specialization of three CcAFBs during grafting. The Y2H assay indicated that three CcAFBs were capable of interacting with CcIAA16, CcIAA27b, and CcIAA29a, among which CcAFB4 interacted strongly with CcIAA1 and CcIAA16. Our study provides the opportunity to understand the potential role of not only CcTIR1/AFBs but also special CcAFBs (CcAFB1, CcAFB2, and CcAFB4), which is a great aspect to further explore the molecular mechanism during the grafting process.
Collapse
Affiliation(s)
- Jiaqi Mei
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Xiaoyu Tang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Yujie Gu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Huijie Lu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Ying Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Qinyuan Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Lingwei Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Bei Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Jianfang Zuo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Vijay Pratap Singh
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Plant Physiology Laboratory, Department of Botany, Chaudhary Mahadeo Prasad (C.M.P.) Degree College, University of Allahabad, Prayagraj, India
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Huwei Yuan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
18
|
An ZS, Zuo CW, Mao J, Ma ZH, Li WF, Chen BH. Integration of mRNA-miRNA Reveals the Possible Role of PyCYCD3 in Increasing Branches Through Bud-Notching in Pear ( Pyrus bretschneideri Rehd.). PLANTS (BASEL, SWITZERLAND) 2024; 13:2928. [PMID: 39458875 PMCID: PMC11511176 DOI: 10.3390/plants13202928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Bud-notching in pear varieties with weak-branches enhances branch development, hormone distribution, and germination, promoting healthier growth and improving early yield. To examine the regulatory mechanisms of endogenous hormones on lateral bud germination in Pyrus spp. (cv. 'Huangguan') (Pyrus bretschneideri Rehd.), juvenile buds were collected from 2-year-old pear trees. Then, a comprehensive study, including assessments of endogenous hormones, germination and branching rates, RNA-seq analysis, and gene function analysis in these lateral buds was conducted. The results showed that there was no significant difference in germination rate between the control and bud-notching pear trees, but the long branch rate was significantly increased in bud-notching pear trees compared to the control (p < 0.05). After bud-notching, there was a remarkable increase in IAA and BR levels in the pruned section of shoots, specifically by 141% and 93%, respectively. However, the content of ABA in the lateral buds after bud-notching was not significantly different from the control. Based on RNA-seq analysis, a notable proportion of the differentially expressed genes (DEGs) were linked to the plant hormone signal transduction pathway. Notably, the brassinosteroid signaling pathway seemed to have the closest connection with the branching ability of pear with the related genes encoding BRI1 and CYCD3, which showed significant differences between lateral buds. Finally, the heterologous expression of PyCYCD3 has a positive regulatory effect on the increased Arabidopsis growth and branching numbers. Therefore, the PyCYCD3 was identified as an up-regulated gene that is induced via brassinosteroid (BR) and could act as a conduit, transforming bud-notching cues into proliferative signals, thereby governing lateral branching mechanisms in pear trees.
Collapse
Affiliation(s)
| | | | | | | | | | - Bai-Hong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China (Z.-H.M.)
| |
Collapse
|
19
|
Xu S, He X, Trinh DC, Zhang X, Wu X, Qiu D, Zhou M, Xiang D, Roeder AHK, Hamant O, Hong L. A 3-component module maintains sepal flatness in Arabidopsis. Curr Biol 2024; 34:4007-4020.e4. [PMID: 39146940 DOI: 10.1016/j.cub.2024.07.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/05/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024]
Abstract
As in origami, morphogenesis in living systems heavily relies on tissue curving and folding through the interplay between biochemical and biomechanical cues. By contrast, certain organs maintain their flat posture over several days. Here, we identified a pathway that is required for the maintenance of organ flatness, taking the sepal, the outermost floral organ, in Arabidopsis as a model system. Through genetic, cellular, and mechanical approaches, our results demonstrate that the global gene expression regulator VERNALIZATION INDEPENDENCE 4 (VIP4) fine-tunes the mechanical properties of sepal cell walls and maintains balanced growth on both sides of the sepals, mainly by orchestrating the distribution pattern of AUXIN RESPONSE FACTOR 3 (ARF3). vip4 mutation results in softer cell walls and faster cell growth on the adaxial sepal side, which eventually cause sepals to bend outward. Downstream of VIP4, ARF3 works through modulating auxin to downregulate pectin methylesterase VANGUARD1, resulting in decreased cell wall stiffness. Thus, our work unravels a 3-component module that relates hormonal patterns to organ curvature and actively maintains sepal flatness during its growth.
Collapse
Affiliation(s)
- Shouling Xu
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xi He
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Duy-Chi Trinh
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, CNRS, 46 Allee d'Italie, 69364 Lyon Cedex 07, France; University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Ha Noi 11355, Vietnam
| | - Xinyu Zhang
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, CNRS, 46 Allee d'Italie, 69364 Lyon Cedex 07, France; Cell and Developmental Biology Department, John Innes Centre, Norwich NR4 7UH, UK
| | - Xiaojiang Wu
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; The Advanced Seed Institute, National Key Laboratory of Rice Breeding and Biology, Zhejiang Provincial Key Laboratory of Crop Germplasm, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Dengying Qiu
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Ming Zhou
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dan Xiang
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Adrienne H K Roeder
- Weill Institute for Cell and Molecular Biology and Section of Plant Biology, School of Integrative Plant Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, CNRS, 46 Allee d'Italie, 69364 Lyon Cedex 07, France.
| | - Lilan Hong
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
20
|
Gao J, Zhuang S, Zhang W. Advances in Plant Auxin Biology: Synthesis, Metabolism, Signaling, Interaction with Other Hormones, and Roles under Abiotic Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:2523. [PMID: 39274009 PMCID: PMC11397301 DOI: 10.3390/plants13172523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/16/2024]
Abstract
Auxin is a key hormone that regulates plant growth and development, including plant shape and sensitivity to environmental changes. Auxin is biosynthesized and metabolized via many parallel pathways, and it is sensed and transduced by both normal and atypical pathways. The production, catabolism, and signal transduction pathways of auxin primarily govern its role in plant growth and development, and in the response to stress. Recent research has discovered that auxin not only responds to intrinsic developmental signals, but also mediates various environmental signals (e.g., drought, heavy metals, and temperature stresses) and interacts with hormones such as cytokinin, abscisic acid, gibberellin, and ethylene, all of which are involved in the regulation of plant growth and development, as well as the maintenance of homeostatic equilibrium in plant cells. In this review, we discuss the latest research on auxin types, biosynthesis and metabolism, polar transport, signaling pathways, and interactions with other hormones. We also summarize the important role of auxin in plants under abiotic stresses. These discussions provide new perspectives to understand the molecular mechanisms of auxin's functions in plant development.
Collapse
Affiliation(s)
- Jianshuang Gao
- State Key Lab of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- School of Economic Geography, Hunan University of Finance and Economics, Changsha 410205, China
| | - Shunyao Zhuang
- State Key Lab of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Weiwei Zhang
- State Key Lab of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
21
|
Sun Y, Tian Z, Zuo D, Cheng H, Wang Q, Zhang Y, Lv L, Song G. Strigolactone-induced degradation of SMXL7 and SMXL8 contributes to gibberellin- and auxin-mediated fiber cell elongation in cotton. THE PLANT CELL 2024; 36:3875-3893. [PMID: 39046066 PMCID: PMC11371155 DOI: 10.1093/plcell/koae212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 05/22/2024] [Accepted: 07/18/2024] [Indexed: 07/25/2024]
Abstract
Cotton (Gossypium) fiber length, a key trait determining fiber yield and quality, is highly regulated by a class of recently identified phytohormones, strigolactones (SLs). However, the underlying molecular mechanisms of SL signaling involved in fiber cell development are largely unknown. Here, we show that the SL signaling repressors MORE AXILLARY GROWTH2-LIKE7 (GhSMXL7) and GhSMXL8 negatively regulate cotton fiber elongation. Specifically, GhSMXL7 and GhSMXL8 inhibit the polyubiquitination and degradation of the gibberellin (GA)-triggered DELLA protein (GhSLR1). Biochemical analysis revealed that GhSMXL7 and GhSMXL8 physically interact with GhSLR1, which interferes with the association of GhSLR1 with the E3 ligase GA INSENSITIVE2 (GhGID2), leading to the repression of GA signal transduction. GhSMXL7 also interacts with the transcription factor GhHOX3, preventing its binding to the promoters of essential fiber elongation regulatory genes. Moreover, both GhSMXL7 and GhSMXL8 directly bind to the promoter regions of the AUXIN RESPONSE FACTOR (ARF) genes GhARF18-10A, GhARF18-10D, and GhARF19-7D to suppress their expression. Cotton plants in which GhARF18-10A, GhARF18-10D, and GhARF19-7D transcript levels had been reduced by virus-induced gene silencing (VIGS) displayed reduced fiber length compared with control plants. Collectively, our findings reveal a mechanism illustrating how SL integrates GA and auxin signaling to coordinately regulate plant cell elongation at the single-cell level.
Collapse
Affiliation(s)
- Yaru Sun
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Zailong Tian
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan 572024, China
| | - Dongyun Zuo
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Hailiang Cheng
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Qiaolian Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Youping Zhang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Limin Lv
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Guoli Song
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan 572024, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
22
|
Gao X, Liu X, Zhang H, Cheng L, Wang X, Zhen C, Du H, Chen Y, Yu H, Zhu B, Xiao J. Genome-Wide Identification, Expression, and Interaction Analysis of the Auxin Response Factor and AUX/ IAA Gene Families in Vaccinium bracteatum. Int J Mol Sci 2024; 25:8385. [PMID: 39125955 PMCID: PMC11312502 DOI: 10.3390/ijms25158385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Auxin, a plant hormone, plays diverse roles in the modulation of plant growth and development. The transport and signal transduction of auxin are regulated by various factors involved in shaping plant morphology and responding to external environmental conditions. The auxin signal transduction is primarily governed by the following two gene families: the auxin response factor (ARF) and auxin/indole-3-acetic acid (AUX/IAA). However, a comprehensive genomic analysis involving the expression profiles, structures, and functional features of the ARF and AUX/IAA gene families in Vaccinium bracteatum has not been carried out to date. RESULTS Through the acquisition of genomic and expression data, coupled with an analysis using online tools, two gene family members were identified. This groundwork provides a distinguishing characterization of the chosen gene families in terms of expression, interaction, and response in the growth and development of plant fruits. In our genome-wide search of the VaARF and VaIAA genes in Vaccinium bracteatum, we identified 26 VaARF and 17 VaIAA genes. We analyzed the sequence and structural characteristics of these VaARF and VaIAA genes. We found that 26 VaARF and 17 VaIAA genes were divided into six subfamilies. Based on protein interaction predictions, VaIAA1 and VaIAA20 were designated core members of VaIAA gene families. Moreover, an analysis of expression patterns showed that 14 ARF genes and 12 IAA genes exhibited significantly varied expressions during fruit development. CONCLUSION Two key genes, namely, VaIAA1 and VaIAA20, belonging to a gene family, play a potentially crucial role in fruit development through 26 VaARF-IAAs. This study provides a valuable reference for investigating the molecular mechanism of fruit development and lays the foundation for further research on Vaccinium bracteatum.
Collapse
Affiliation(s)
- Xuan Gao
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (X.G.); (X.L.); (L.C.); (C.Z.); (H.D.)
| | - Xiaohui Liu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (X.G.); (X.L.); (L.C.); (C.Z.); (H.D.)
| | - Hong Zhang
- Anhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (H.Z.); (X.W.); (Y.C.); (H.Y.)
| | - Li Cheng
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (X.G.); (X.L.); (L.C.); (C.Z.); (H.D.)
| | - Xingliang Wang
- Anhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (H.Z.); (X.W.); (Y.C.); (H.Y.)
| | - Cheng Zhen
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (X.G.); (X.L.); (L.C.); (C.Z.); (H.D.)
| | - Haijing Du
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (X.G.); (X.L.); (L.C.); (C.Z.); (H.D.)
| | - Yufei Chen
- Anhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (H.Z.); (X.W.); (Y.C.); (H.Y.)
| | - Hongmei Yu
- Anhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (H.Z.); (X.W.); (Y.C.); (H.Y.)
| | - Bo Zhu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (X.G.); (X.L.); (L.C.); (C.Z.); (H.D.)
| | - Jiaxin Xiao
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (X.G.); (X.L.); (L.C.); (C.Z.); (H.D.)
| |
Collapse
|
23
|
Marciniak K, Przedniczek K, Kęsy J, Święcicki W, Kopcewicz J. The development of yellow lupin anthers depends on the relationship between jasmonic acid and indole-3-acetic acid. PHYSIOLOGIA PLANTARUM 2024; 176:e14385. [PMID: 38956782 DOI: 10.1111/ppl.14385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 07/04/2024]
Abstract
The main purpose of this study was to demonstrate that the course of anther development, including post-meiotic maturation, dehiscence and senescence, is ensured by the interdependencies between jasmonic acid (JA) and indole-3-acetic acid (IAA) in yellow lupin (Lupinus luteus L.). The concentration of JA peaked during anther dehiscence when IAA level was low, whereas the inverse relationship was specific to anther senescence. Cellular and tissue localization of JA and IAA, in conjunction with broad expression profile for genes involved in biosynthesis, signalling, response, and homeostasis under different conditions, allowed to complete and define the role of studied phytohormones during late anther development, as well as predict events triggered by them. The development/degeneration of septum and anther wall cells, dehydration of epidermis, and rupture of stomium may involve JA signalling, while the formation of secondary thickening in endothecial cell walls is rather JA independent. The IAA is involved in programmed cell death (PCD)-associated processes during anther senescence but does not exclude its participation in the anther dehiscence processes, mainly related to cell disintegration and degeneration. A detailed understanding of these multistage processes, especially at the level of phytohormonal interplay, can contribute to the effective control of male fertility, potentially revolutionizing the breeding of L. luteus.
Collapse
Affiliation(s)
- Katarzyna Marciniak
- Faculty of Biological and Veterinary Sciences, Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Toruń, Poland
| | - Krzysztof Przedniczek
- Faculty of Biological and Veterinary Sciences, Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Toruń, Poland
| | - Jacek Kęsy
- Faculty of Biological and Veterinary Sciences, Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Toruń, Poland
| | | | - Jan Kopcewicz
- Faculty of Biological and Veterinary Sciences, Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
24
|
Liu L, Yahaya BS, Li J, Wu F. Enigmatic role of auxin response factors in plant growth and stress tolerance. FRONTIERS IN PLANT SCIENCE 2024; 15:1398818. [PMID: 38903418 PMCID: PMC11188990 DOI: 10.3389/fpls.2024.1398818] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024]
Abstract
Abiotic and biotic stresses globally constrain plant growth and impede the optimization of crop productivity. The phytohormone auxin is involved in nearly every aspect of plant development. Auxin acts as a chemical messenger that influences gene expression through a short nuclear pathway, mediated by a family of specific DNA-binding transcription factors known as Auxin Response Factors (ARFs). ARFs thus act as effectors of auxin response and translate chemical signals into the regulation of auxin responsive genes. Since the initial discovery of the first ARF in Arabidopsis, advancements in genetics, biochemistry, genomics, and structural biology have facilitated the development of models elucidating ARF action and their contributions to generating specific auxin responses. Yet, significant gaps persist in our understanding of ARF transcription factors despite these endeavors. Unraveling the functional roles of ARFs in regulating stress response, alongside elucidating their genetic and molecular mechanisms, is still in its nascent phase. Here, we review recent research outcomes on ARFs, detailing their involvement in regulating leaf, flower, and root organogenesis and development, as well as stress responses and their corresponding regulatory mechanisms: including gene expression patterns, functional characterization, transcriptional, post-transcriptional and post- translational regulation across diverse stress conditions. Furthermore, we delineate unresolved questions and forthcoming challenges in ARF research.
Collapse
Affiliation(s)
- Ling Liu
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Baba Salifu Yahaya
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, Sichuan, China
| | - Jing Li
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, Sichuan, China
| | - Fengkai Wu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, Sichuan, China
| |
Collapse
|
25
|
Gao Z, Wu Y, Li M, Ding L, Li J, Liu Y, Cao Y, Hua Y, Jia Q, Wang D. The auxin response factor ( ARF) gene family in Cyclocarya paliurus: genome-wide identification and their expression profiling under heat and drought stresses. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:921-944. [PMID: 38974352 PMCID: PMC11222355 DOI: 10.1007/s12298-024-01474-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/20/2024] [Accepted: 06/18/2024] [Indexed: 07/09/2024]
Abstract
Auxin response factors (ARFs), as the main components of auxin signaling, play a crucial role in various processes of plant growth and development, as well as in stress response. So far, there have been no reports on the genome-wide identification of the ARF transcription factor family in Cyclocarya paliurus, a deciduous tree plant in the family Juglaceae. In this study, a total of 34 CpARF genes were identified based on whole genome sequence, and they were unevenly distributed on 16 chromosomes, with the highest distribution on chromosome 6. Domain analysis of CpARF proteins displayed that 31 out of 34 CpARF proteins contain a typical B3 domain (DBD domain), except CpARF12/ CpARF14/CpARF31, which all belong to Class VI. And 20 CpARFs (58.8%) contain an auxin_IAA binding domain, and are mainly distributed in classes I, and VI. Phylogenetic analysis showed that CpARF was divided into six classes (I-VI), each containing 4, 4, 1, 8, 4, and 13 members, respectively. Gene duplication analysis showed that there are 14 segmental duplications and zero tandem repeats were identified in the CpARF gene family of the C. paliurus genome. The Ka/Ks ratio of duplicate gene pairs indicates that CpARF genes are subjected to strong purification selection pressure. Synteny analysis showed that C. paliurus shared the highest homology in 74 ARF gene pairs with Juglans regia, followed by 73, 51, 25, and 11 homologous gene pairs with Populus trichocarpa, Juglans cathayensis, Arabidopsis, and rice, respectively. Promoter analysis revealed that 34 CpARF genes had cis-elements related to hormones, stress, light, and growth and development except for CpARF12. The expression profile analysis showed that almost all CpARF genes were differentially expressed in at least one tissue, and several CpARF genes displayed tissue-specific expression. Furthermore, 24 out of the 34 CpARF genes have significantly response to drought stress (P < 0.05), and most of them (16) being significantly down-regulated under moderate drought treatment. Meanwhile, the majority of CpARF genes (28) have significantly response to drought stress (P < 0.05), and most of them (26) are significantly down-regulated under severe drought treatment. Furthermore, 32 out of the 34 CpARF genes have significantly response to high, middle, and low salt stress under salt treatment (P < 0.05). Additionally, subcellular localization analysis confirmed that CpARF16 and CpARF32 were all localized to nucleus. Thus, our findings expand the understanding of the function of CpARF genes and provide a basis for further functional studies on CpARF genes in C. paliurus. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01474-1.
Collapse
Affiliation(s)
- Ziyong Gao
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018 Zhejiang China
| | - Yazhu Wu
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018 Zhejiang China
| | - Muzi Li
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018 Zhejiang China
| | - Lan Ding
- Linan District Agriculture and Rural Bureau, Hangzhou, 311399 People’s Republic of China
| | - Junyi Li
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018 Zhejiang China
| | - Ying Liu
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018 Zhejiang China
| | - Yu Cao
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018 Zhejiang China
| | - Yangguang Hua
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018 Zhejiang China
| | - Qiaojun Jia
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018 Zhejiang China
| | - Dekai Wang
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018 Zhejiang China
| |
Collapse
|
26
|
Marash I, Leibman-Markus M, Gupta R, Israeli A, Teboul N, Avni A, Ori N, Bar M. Abolishing ARF8A activity promotes disease resistance in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 343:112064. [PMID: 38492890 DOI: 10.1016/j.plantsci.2024.112064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/18/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
Auxin response factors (ARFs) are a family of transcription factors that regulate auxin-dependent developmental processes. Class A ARFs function as activators of auxin-responsive gene expression in the presence of auxin, while acting as transcriptional repressors in its absence. Despite extensive research on the functions of ARF transcription factors in plant growth and development, the extent, and mechanisms of their involvement in plant resistance, remain unknown. We have previously reported that mutations in the tomato AUXIN RESPONSE FACTOR8 (ARF8) genes SlARF8A and SlARF8B result in the decoupling of fruit development from pollination and fertilization, leading to partial or full parthenocarpy and increased yield under extreme temperatures. Here, we report that fine-tuning of SlARF8 activity results in increased resistance to fungal and bacterial pathogens. This resistance is mostly preserved under fluctuating temperatures. Thus, fine-tuning SlARF8 activity may be a potent strategy for increasing overall growth and yield.
Collapse
Affiliation(s)
- Iftah Marash
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Bet Dagan 50250, Israel; School of Plant Science and Food Security, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Meirav Leibman-Markus
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Bet Dagan 50250, Israel
| | - Rupali Gupta
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Bet Dagan 50250, Israel
| | - Alon Israeli
- Institute of Plant Science and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Naama Teboul
- Institute of Plant Science and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Adi Avni
- School of Plant Science and Food Security, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Naomi Ori
- Institute of Plant Science and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Maya Bar
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Bet Dagan 50250, Israel.
| |
Collapse
|
27
|
Wang WX, Yang C, Xiong W, Chen CY, Li N. Transcriptome-wide identification of ARF gene family in medicinal plant Polygonatum kingianum and expression analysis of PkARF members in different tissues. Mol Biol Rep 2024; 51:648. [PMID: 38727802 DOI: 10.1007/s11033-024-09608-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/02/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Polygonatum kingianum holds significant importance in Traditional Chinese Medicine due to its medicinal properties, characterized by its diverse chemical constituents including polysaccharides, terpenoids, flavonoids, phenols, and phenylpropanoids. The Auxin Response Factor (ARF) is a pivotal transcription factor known for its regulatory role in both primary and secondary metabolite synthesis. However, our understanding of the ARF gene family in P. kingianum remains limited. METHODS AND RESULTS We employed RNA-Seq to sequence three distinct tissues (leaf, root, and stem) of P. kingianum. The analysis revealed a total of 31,558 differentially expressed genes (DEGs), with 43 species of transcription factors annotated among them. Analyses via gene ontology and the Kyoto Encyclopedia of Genes and Genomes demonstrated that these DEGs were predominantly enriched in metabolic pathways and secondary metabolite biosynthesis. The proposed temporal expression analysis categorized the DEGs into nine clusters, suggesting the same expression trends that may be coordinated in multiple biological processes across the three tissues. Additionally, we conducted screening and expression pattern analysis of the ARF gene family, identifying 12 significantly expressed PkARF genes in P. kingianum roots. This discovery lays the groundwork for investigations into the role of PkARF genes in root growth, development, and secondary metabolism regulation. CONCLUSION The obtained data and insights serve as a focal point for further research studies, centred on genetic manipulation of growth and secondary metabolism in P. kingianum. Furthermore, these findings contribute to the understanding of functional genomics in P. kingianum, offering valuable genetic resources.
Collapse
Affiliation(s)
- Wen-Xiang Wang
- School of Pharmacy, Chongqing Three Gorges Medical College, Chongqing, 404120, China
| | - Ce Yang
- School of Pharmacy, Chongqing Three Gorges Medical College, Chongqing, 404120, China
| | - Wei Xiong
- Faculty of Basic Medical Sciences, Chongqing Three Gorges Medical College, Chongqing, 404120, China
| | - Chun-Yu Chen
- School of Pharmacy, Chongqing Three Gorges Medical College, Chongqing, 404120, China.
| | - Ning Li
- School of Pharmacy, Chongqing Three Gorges Medical College, Chongqing, 404120, China.
| |
Collapse
|
28
|
Chen D, Xu Y, Li J, Shiba H, Ezura H, Wang N. ERECTA Modulates Seed Germination and Fruit Development via Auxin Signaling in Tomato. Int J Mol Sci 2024; 25:4754. [PMID: 38731974 PMCID: PMC11084166 DOI: 10.3390/ijms25094754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Tomato (Solanum lycopersicum) breeding for improved fruit quality emphasizes selecting for desirable taste and characteristics, as well as enhancing disease resistance and yield. Seed germination is the initial step in the plant life cycle and directly affects crop productivity and yield. ERECTA (ER) is a receptor-like kinase (RLK) family protein known for its involvement in diverse developmental processes. We characterized a Micro-Tom EMS mutant designated as a knock-out mutant of sler. Our research reveals that SlER plays a central role in controlling critical traits such as inflorescence development, seed number, and seed germination. The elevation in auxin levels and alterations in the expression of ABSCISIC ACID INSENSITIVE 3 (ABI3) and ABI5 in sler seeds compared to the WT indicate that SlER modulates seed germination via auxin and abscisic acid (ABA) signaling. Additionally, we detected an increase in auxin content in the sler ovary and changes in the expression of auxin synthesis genes YUCCA flavin monooxygenases 1 (YUC1), YUC4, YUC5, and YUC6 as well as auxin response genes AUXIN RESPONSE FACTOR 5 (ARF5) and ARF7, suggesting that SlER regulates fruit development via auxin signaling.
Collapse
Affiliation(s)
- Daoyun Chen
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan; (D.C.); (Y.X.); (J.L.); (H.S.); (H.E.)
| | - Yuqing Xu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan; (D.C.); (Y.X.); (J.L.); (H.S.); (H.E.)
| | - Jiawei Li
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan; (D.C.); (Y.X.); (J.L.); (H.S.); (H.E.)
| | - Hiroshi Shiba
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan; (D.C.); (Y.X.); (J.L.); (H.S.); (H.E.)
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan
| | - Hiroshi Ezura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan; (D.C.); (Y.X.); (J.L.); (H.S.); (H.E.)
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan
| | - Ning Wang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan; (D.C.); (Y.X.); (J.L.); (H.S.); (H.E.)
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan
| |
Collapse
|
29
|
Libao C, Shiting L, Chen Z, Shuyan L. NnARF17 and NnARF18 from lotus promote root formation and modulate stress tolerance in transgenic Arabidopsis thaliana. BMC PLANT BIOLOGY 2024; 24:163. [PMID: 38431568 PMCID: PMC10908128 DOI: 10.1186/s12870-024-04852-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
Auxin response factors (ARFs) play a crucial role in regulating gene expression within the auxin signal transduction pathway, particularly during adventitious root (AR) formation. In this investigation, we identified full-length sequences for ARF17 and ARF18, encompassing 1,800 and 2,055 bp, encoding 599 and 684 amino acid residues, respectively. Despite exhibiting low sequence homology, the ARF17- and ARF18-encoded proteins displayed significant structural similarity and shared identical motifs. Phylogenetic analysis revealed close relationships between NnARF17 and VvARF17, as well as NnARF18 and BvARF18. Both ARF17 and ARF18 demonstrated responsiveness to exogenous indole-3-acetic acid (IAA), ethephon, and sucrose, exhibiting organ-specific expression patterns. Beyond their role in promoting root development, these ARFs enhanced stem growth and conferred drought tolerance while mitigating waterlogging stress in transgenic Arabidopsis plants. RNA sequencing data indicated upregulation of 51 and 75 genes in ARF17 and ARF18 transgenic plants, respectively, including five and three genes associated with hormone metabolism and responses. Further analysis of transgenic plants revealed a significant decrease in IAA content, accompanied by a marked increase in abscisic acid content under normal growth conditions. Additionally, lotus seedlings treated with IAA exhibited elevated levels of polyphenol oxidase, IAA oxidase, and peroxidase. The consistent modulation of IAA content in both lotus and transgenic plants highlights the pivotal role of IAA in AR formation in lotus seedlings.
Collapse
Affiliation(s)
- Cheng Libao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, P. R. China.
| | - Liang Shiting
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, P. R. China
| | - Zhao Chen
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, P. R. China
| | - Li Shuyan
- College of Guangling, Yangzhou University, Yangzhou, Jiangsu, P. R. China.
| |
Collapse
|
30
|
Lian C, Lan J, Ma R, Li J, Zhang F, Zhang B, Liu X, Chen S. Genome-Wide Analysis of Aux/IAA Gene Family in Artemisia argyi: Identification, Phylogenetic Analysis, and Determination of Response to Various Phytohormones. PLANTS (BASEL, SWITZERLAND) 2024; 13:564. [PMID: 38475411 PMCID: PMC10934841 DOI: 10.3390/plants13050564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024]
Abstract
Artemisia argyi is a traditional herbal medicine plant, and its folium artemisia argyi is widely in demand due to moxibustion applications globally. The Auxin/indole-3-acetic acid (Aux/IAA, or IAA) gene family has critical roles in the primary auxin-response process, with extensive involvement in plant development and stresses, controlling various essential traits of plants. However, the systematic investigation of the Aux/IAA gene family in A. argyi remains limited. In this study, a total of 61 Aux/IAA genes were comprehensively identified and characterized. Gene structural analysis indicated that 46 Aux/IAA proteins contain the four typical domains, and 15 Aux/IAA proteins belong to non-canonical IAA proteins. Collinear prediction and phylogenetic relationship analyses suggested that Aux/IAA proteins were grouped into 13 distinct categories, and most Aux/IAA genes might experience gene loss during the tandem duplication process. Promoter cis-element investigation indicated that Aux/IAA promoters contain a variety of plant hormone response and stress response cis-elements. Protein interaction prediction analysis demonstrated that AaIAA26/29/7/34 proteins are possibly core members of the Aux/IAA family interaction. Expression analysis in roots and leaves via RNA-seq data indicated that the expression of some AaIAAs exhibited tissue-specific expression patterns, and some AaIAAs were involved in the regulation of salt and saline-alkali stresses. In addition, RT-qPCR results indicated that AaIAA genes have differential responses to auxin, with complex response patterns in response to other hormones, indicating that Aux/IAA may play a role in connecting auxin and other hormone signaling pathways. Overall, these findings shed more light on AaIAA genes and offer critical foundational knowledge toward the elucidation of their function during plant growth, stress response, and hormone networking of Aux/IAA family genes in A. argyi.
Collapse
Affiliation(s)
- Conglong Lian
- School of Pharmacy, Henan University of Chinese Medicine, 156 East Jin-shui Rd., Zhengzhou 450046, China; (C.L.); (B.Z.); (X.L.)
- Henan Key Laboratory of Chinese Medicine Resources and Chemistry, 156 East Jin-shui Rd., Zhengzhou 450046, China
| | - Jinxu Lan
- School of Pharmacy, Henan University of Chinese Medicine, 156 East Jin-shui Rd., Zhengzhou 450046, China; (C.L.); (B.Z.); (X.L.)
- Henan Key Laboratory of Chinese Medicine Resources and Chemistry, 156 East Jin-shui Rd., Zhengzhou 450046, China
| | - Rui Ma
- School of Pharmacy, Henan University of Chinese Medicine, 156 East Jin-shui Rd., Zhengzhou 450046, China; (C.L.); (B.Z.); (X.L.)
- Henan Key Laboratory of Chinese Medicine Resources and Chemistry, 156 East Jin-shui Rd., Zhengzhou 450046, China
| | - Jingjing Li
- School of Pharmacy, Henan University of Chinese Medicine, 156 East Jin-shui Rd., Zhengzhou 450046, China; (C.L.); (B.Z.); (X.L.)
- Henan Key Laboratory of Chinese Medicine Resources and Chemistry, 156 East Jin-shui Rd., Zhengzhou 450046, China
| | - Fei Zhang
- School of Pharmacy, Henan University of Chinese Medicine, 156 East Jin-shui Rd., Zhengzhou 450046, China; (C.L.); (B.Z.); (X.L.)
- Henan Key Laboratory of Chinese Medicine Resources and Chemistry, 156 East Jin-shui Rd., Zhengzhou 450046, China
| | - Bao Zhang
- School of Pharmacy, Henan University of Chinese Medicine, 156 East Jin-shui Rd., Zhengzhou 450046, China; (C.L.); (B.Z.); (X.L.)
- Henan Key Laboratory of Chinese Medicine Resources and Chemistry, 156 East Jin-shui Rd., Zhengzhou 450046, China
| | - Xiuyu Liu
- School of Pharmacy, Henan University of Chinese Medicine, 156 East Jin-shui Rd., Zhengzhou 450046, China; (C.L.); (B.Z.); (X.L.)
- Henan Key Laboratory of Chinese Medicine Resources and Chemistry, 156 East Jin-shui Rd., Zhengzhou 450046, China
| | - Suiqing Chen
- School of Pharmacy, Henan University of Chinese Medicine, 156 East Jin-shui Rd., Zhengzhou 450046, China; (C.L.); (B.Z.); (X.L.)
- Henan Key Laboratory of Chinese Medicine Resources and Chemistry, 156 East Jin-shui Rd., Zhengzhou 450046, China
| |
Collapse
|
31
|
Xu L, Liu Y, Zhang J, Wu W, Hao Z, He S, Li Y, Shi J, Chen J. Genomic survey and expression analysis of LcARFs reveal multiple functions to somatic embryogenesis in Liriodendron. BMC PLANT BIOLOGY 2024; 24:94. [PMID: 38326748 PMCID: PMC10848544 DOI: 10.1186/s12870-024-04765-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/24/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND Auxin response factors (ARFs) are critical transcription factors that mediate the auxin signaling pathway and are essential for regulating plant growth. However, there is a lack of understanding regarding the ARF gene family in Liriodendron chinense, a vital species in landscaping and economics. Thus, further research is needed to explore the roles of ARFs in L. chinense and their potential applications in plant development. RESULT In this study, we have identified 20 LcARF genes that belong to three subfamilies in the genome of L. chinense. The analysis of their conserved domains, gene structure, and phylogeny suggests that LcARFs may be evolutionarily conserved and functionally similar to other plant ARFs. The expression of LcARFs varies in different tissues. Additionally, they are also involved in different developmental stages of somatic embryogenesis. Overexpression of LcARF1, LcARF2a, and LcARF5 led to increased activity within callus. Additionally, our promoter-GFP fusion study indicated that LcARF1 may play a role in embryogenesis. Overall, this study provides insights into the functions of LcARFs in plant development and embryogenesis, which could facilitate the improvement of somatic embryogenesis in L. chinense. CONCLUSION The research findings presented in this study shed light on the regulatory roles of LcARFs in somatic embryogenesis in L. chinense and may aid in accelerating the breeding process of this tree species. By identifying the specific LcARFs involved in different stages of somatic embryogenesis, this study provides a basis for developing targeted breeding strategies aimed at optimizing somatic embryogenesis in L. chinense, which holds great potential for improving the growth and productivity of this economically important species.
Collapse
Affiliation(s)
- Lin Xu
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, China
| | - Ye Liu
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, China
| | - Jiaji Zhang
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, China
| | - Weihuang Wu
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, China
| | - Zhaodong Hao
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, China
| | - Shichan He
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, China
| | - Yiran Li
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, China
| | - Jisen Shi
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, China.
| | - Jinhui Chen
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, China.
| |
Collapse
|
32
|
Wu F, Yahaya BS, Gong Y, He B, Gou J, He Y, Li J, Kang Y, Xu J, Wang Q, Feng X, Tang Q, Liu Y, Lu Y. ZmARF1 positively regulates low phosphorus stress tolerance via modulating lateral root development in maize. PLoS Genet 2024; 20:e1011135. [PMID: 38315718 PMCID: PMC10868794 DOI: 10.1371/journal.pgen.1011135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 02/15/2024] [Accepted: 01/10/2024] [Indexed: 02/07/2024] Open
Abstract
Phosphorus (P) deficiency is one of the most critical factors for plant growth and productivity, including its inhibition of lateral root initiation. Auxin response factors (ARFs) play crucial roles in root development via auxin signaling mediated by genetic pathways. In this study, we found that the transcription factor ZmARF1 was associated with low inorganic phosphate (Pi) stress-related traits in maize. This superior root morphology and greater phosphate stress tolerance could be ascribed to the overexpression of ZmARF1. The knock out mutant zmarf1 had shorter primary roots, fewer root tip number, and lower root volume and surface area. Transcriptomic data indicate that ZmLBD1, a direct downstream target gene, is involved in lateral root development, which enhances phosphate starvation tolerance. A transcriptional activation assay revealed that ZmARF1 specifically binds to the GC-box motif in the promoter of ZmLBD1 and activates its expression. Moreover, ZmARF1 positively regulates the expression of ZmPHR1, ZmPHT1;2, and ZmPHO2, which are key transporters of Pi in maize. We propose that ZmARF1 promotes the transcription of ZmLBD1 to modulate lateral root development and Pi-starvation induced (PSI) genes to regulate phosphate mobilization and homeostasis under phosphorus starvation. In addition, ZmERF2 specifically binds to the ABRE motif of the promoter of ZmARF1 and represses its expression. Collectively, the findings of this study revealed that ZmARF1 is a pivotal factor that modulates root development and confers low-Pi stress tolerance through the transcriptional regulation of the biological function of ZmLBD1 and the expression of key Pi transport proteins.
Collapse
Affiliation(s)
- Fengkai Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, China
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, China
| | - Baba Salifu Yahaya
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, China
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, China
| | - Ying Gong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, China
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, China
| | - Bing He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, China
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, China
| | - Junlin Gou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, China
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, China
| | - Yafeng He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, China
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, China
| | - Jing Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, China
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, China
| | - Yan Kang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, China
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, China
| | - Jie Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, China
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, China
| | - Qingjun Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, China
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, China
| | - Xuanjun Feng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, China
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, China
| | - Qi Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, China
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, China
| | - Yaxi Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Yanli Lu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, China
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, China
| |
Collapse
|
33
|
Peng Y, Zhao K, Zheng R, Chen J, Zhu X, Xie K, Huang R, Zhan S, Su Q, Shen M, Niu M, Chen X, Peng D, Ahmad S, Liu ZJ, Zhou Y. A Comprehensive Analysis of Auxin Response Factor Gene Family in Melastoma dodecandrum Genome. Int J Mol Sci 2024; 25:806. [PMID: 38255880 PMCID: PMC10815038 DOI: 10.3390/ijms25020806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Auxin Response Factors (ARFs) mediate auxin signaling and govern diverse biological processes. However, a comprehensive analysis of the ARF gene family and identification of their key regulatory functions have not been conducted in Melastoma dodecandrum, leading to a weak understanding of further use and development for this functional shrub. In this study, we successfully identified a total of 27 members of the ARF gene family in M. dodecandrum and classified them into Class I-III. Class II-III showed more significant gene duplication than Class I, especially for MedARF16s. According to the prediction of cis-regulatory elements, the AP2/ERF, BHLH, and bZIP transcription factor families may serve as regulatory factors controlling the transcriptional pre-initiation expression of MedARF. Analysis of miRNA editing sites reveals that miR160 may play a regulatory role in the post-transcriptional expression of MeARF. Expression profiles revealed that more than half of the MedARFs exhibited high expression levels in the stem compared to other organs. While there are some specific genes expressed only in flowers, it is noteworthy that MedARF16s, MedARF7A, and MedARF9B, which are highly expressed in stems, also demonstrate high expressions in other organs of M. dodecandrum. Further hormone treatment experiments revealed that these MedARFs were sensitive to auxin changes, with MedARF6C and MedARF7A showing significant and rapid changes in expression upon increasing exogenous auxin. In brief, our findings suggest a crucial role in regulating plant growth and development in M. dodecandrum by responding to changes in auxin. These results can provide a theoretical basis for future molecular breeding in Myrtaceae.
Collapse
Affiliation(s)
- Yukun Peng
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.P.); (R.Z.); (J.C.); (X.Z.); (K.X.); (R.H.); (S.Z.); (Q.S.); (M.N.); (X.C.); (D.P.); (S.A.)
| | - Kai Zhao
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (K.Z.); (M.S.)
| | - Ruiyue Zheng
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.P.); (R.Z.); (J.C.); (X.Z.); (K.X.); (R.H.); (S.Z.); (Q.S.); (M.N.); (X.C.); (D.P.); (S.A.)
| | - Jiemin Chen
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.P.); (R.Z.); (J.C.); (X.Z.); (K.X.); (R.H.); (S.Z.); (Q.S.); (M.N.); (X.C.); (D.P.); (S.A.)
| | - Xuanyi Zhu
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.P.); (R.Z.); (J.C.); (X.Z.); (K.X.); (R.H.); (S.Z.); (Q.S.); (M.N.); (X.C.); (D.P.); (S.A.)
| | - Kai Xie
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.P.); (R.Z.); (J.C.); (X.Z.); (K.X.); (R.H.); (S.Z.); (Q.S.); (M.N.); (X.C.); (D.P.); (S.A.)
| | - Ruiliu Huang
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.P.); (R.Z.); (J.C.); (X.Z.); (K.X.); (R.H.); (S.Z.); (Q.S.); (M.N.); (X.C.); (D.P.); (S.A.)
| | - Suying Zhan
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.P.); (R.Z.); (J.C.); (X.Z.); (K.X.); (R.H.); (S.Z.); (Q.S.); (M.N.); (X.C.); (D.P.); (S.A.)
| | - Qiuli Su
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.P.); (R.Z.); (J.C.); (X.Z.); (K.X.); (R.H.); (S.Z.); (Q.S.); (M.N.); (X.C.); (D.P.); (S.A.)
| | - Mingli Shen
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (K.Z.); (M.S.)
| | - Muqi Niu
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.P.); (R.Z.); (J.C.); (X.Z.); (K.X.); (R.H.); (S.Z.); (Q.S.); (M.N.); (X.C.); (D.P.); (S.A.)
| | - Xiuming Chen
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.P.); (R.Z.); (J.C.); (X.Z.); (K.X.); (R.H.); (S.Z.); (Q.S.); (M.N.); (X.C.); (D.P.); (S.A.)
| | - Donghui Peng
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.P.); (R.Z.); (J.C.); (X.Z.); (K.X.); (R.H.); (S.Z.); (Q.S.); (M.N.); (X.C.); (D.P.); (S.A.)
| | - Sagheer Ahmad
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.P.); (R.Z.); (J.C.); (X.Z.); (K.X.); (R.H.); (S.Z.); (Q.S.); (M.N.); (X.C.); (D.P.); (S.A.)
| | - Zhong-Jian Liu
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.P.); (R.Z.); (J.C.); (X.Z.); (K.X.); (R.H.); (S.Z.); (Q.S.); (M.N.); (X.C.); (D.P.); (S.A.)
| | - Yuzhen Zhou
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.P.); (R.Z.); (J.C.); (X.Z.); (K.X.); (R.H.); (S.Z.); (Q.S.); (M.N.); (X.C.); (D.P.); (S.A.)
| |
Collapse
|
34
|
Xu S, He X, Trinh DC, Zhang X, Wu X, Qiu D, Zhou M, Xiang D, Roeder AHK, Hamant O, Hong L. A 3-component module maintains sepal flatness in Arabidopsis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.06.570430. [PMID: 38106021 PMCID: PMC10723459 DOI: 10.1101/2023.12.06.570430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
As in origami, morphogenesis in living systems heavily relies on tissue curving and folding, through the interplay between biochemical and biomechanical cues. In contrast, certain organs maintain their flat posture over several days. Here we identified a pathway, which is required for the maintenance of organ flatness, taking the sepal, the outermost floral organ, in Arabidopsis as a model system. Through genetic, cellular and mechanical approaches, our results demonstrate that global gene expression regulator VERNALIZATION INDEPENDENCE 4 (VIP4) fine-tunes the mechanical properties of sepal cell walls and maintains balanced growth on both sides of the sepals, mainly by orchestrating the distribution pattern of AUXIN RESPONSE FACTOR 3 (ARF3). vip4 mutation results in softer cell walls and faster cell growth on the adaxial sepal side, which eventually cause sepals to bend outward. Downstream of VIP4, ARF3 works through modulating auxin signaling to down-regulate pectin methylesterase VANGUARD1, resulting in decreased cell wall stiffness. Our work unravels a 3-component module, which relates hormonal patterns to organ curvature, and actively maintains sepal flatness during its growth.
Collapse
|
35
|
Li HL, Liu ZY, Wang XN, Han Y, You CX, An JP. E3 ubiquitin ligases SINA4 and SINA11 regulate anthocyanin biosynthesis by targeting the IAA29-ARF5-1-ERF3 module in apple. PLANT, CELL & ENVIRONMENT 2023; 46:3902-3918. [PMID: 37658649 DOI: 10.1111/pce.14709] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/13/2023] [Accepted: 08/22/2023] [Indexed: 09/03/2023]
Abstract
Auxin/indole-3-acetic acid (AUX/IAA) and auxin response factor (ARF) proteins are important components of the auxin signalling pathway, but their ubiquitination modification and the mechanism of auxin-mediated anthocyanin biosynthesis remain elusive. Here, the ARF MdARF5-1 was identified as a negative regulator of anthocyanin biosynthesis in apple, and it integrates auxin and ethylene signals by inhibiting the expression of the ethylene response factor MdERF3. The auxin repressor MdIAA29 decreased the inhibitory effect of MdARF5-1 on anthocyanin biosynthesis by attenuating the transcriptional inhibition of MdERF3 by MdARF5-1. In addition, the E3 ubiquitin ligases MdSINA4 and MdSINA11 played negative and positive regulatory roles in anthocyanin biosynthesis by targeting MdIAA29 and MdARF5-1 for ubiquitination degradation, respectively. MdSINA4 destabilized MdSINA11 to regulate anthocyanin accumulation in response to auxin signalling. In sum, our data revealed the crosstalk between auxin and ethylene signals mediated by the IAA29-ARF5-1-ERF3 module and provide new insights into the ubiquitination modification of the auxin signalling pathway.
Collapse
Affiliation(s)
- Hong-Liang Li
- Apple Technology Innovation Center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Zhi-Ying Liu
- Apple Technology Innovation Center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Xiao-Na Wang
- Apple Technology Innovation Center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Yuepeng Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, China
| | - Chun-Xiang You
- Apple Technology Innovation Center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Jian-Ping An
- Apple Technology Innovation Center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
36
|
Diao R, Zhao M, Liu Y, Zhang Z, Zhong B. The advantages of crosstalk during the evolution of the BZR1-ARF6-PIF4 (BAP) module. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:2631-2644. [PMID: 37552560 DOI: 10.1111/jipb.13554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/07/2023] [Indexed: 08/10/2023]
Abstract
The BAP module, comprising BRASSINAZOLE RESISTANT 1 (BZR1), AUXIN RESPONSE FACTOR 6 (ARF6), and PHYTOCHROME-INTERACTING FACTOR 4 (PIF4), functions as a molecular hub to orchestrate plant growth and development. In Arabidopsis thaliana, components of the BAP module physically interact to form a complex system that integrates light, brassinosteroid (BR), and auxin signals. Little is known about the origin and evolution of the BAP module. Here, we conducted comparative genomic and transcriptomic analyses to investigate the evolution and functional diversification of the BAP module. Our results suggest that the BAP module originated in land plants and that the ζ, ε, and γ whole-genome duplication/triplication events contributed to the expansion of BAP module components in seed plants. Comparative transcriptomic analysis suggested that the prototype BAP module arose in Marchantia polymorpha, experienced stepwise evolution, and became established as a mature regulatory system in seed plants. We developed a formula to calculate the signal transduction productivity of the BAP module and demonstrate that more crosstalk among components enables higher signal transduction efficiency. Our results reveal the evolutionary history of the BAP module and provide insights into the evolution of plant signaling networks and the strategies employed by plants to integrate environmental and endogenous signals.
Collapse
Affiliation(s)
- Runjie Diao
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Mengru Zhao
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Yannan Liu
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Zhenhua Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Bojian Zhong
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
37
|
Li ZA, Li Y, Liu D, Molloy DP, Luo ZF, Li HO, Zhao J, Zhou J, Su Y, Wang RZ, Huang C, Xiao LT. YUCCA2 (YUC2)-Mediated 3-Indoleacetic Acid (IAA) Biosynthesis Regulates Chloroplast RNA Editing by Relieving the Auxin Response Factor 1 (ARF1)-Dependent Inhibition of Editing Factors in Arabidopsis thaliana. Int J Mol Sci 2023; 24:16988. [PMID: 38069311 PMCID: PMC10706925 DOI: 10.3390/ijms242316988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Although recent research progress on the abundant C-to-U RNA editing events in plant chloroplasts and mitochondria has uncovered many recognition factors and their molecular mechanisms, the intrinsic regulation of RNA editing within plants remains largely unknown. This study aimed to establish a regulatory relationship in Arabidopsis between the plant hormone auxin and chloroplast RNA editing. We first analyzed auxin response elements (AuxREs) present within promoters of chloroplast editing factors reported to date. We found that each has more than one AuxRE, suggesting a potential regulatory role of auxin in their expression. Further investigation unveiled that the depletion of auxin synthesis gene YUC2 reduces the expression of several editing factors. However, in yuc2 mutants, only the expression of CRR4, DYW1, ISE2, and ECD1 editing factors and the editing efficiency of their corresponding editing sites, ndhD-2 and rps14-149, were simultaneously suppressed. In addition, exogenous IAA and the overexpression of YUC2 enhanced the expression of these editing factors and the editing efficiency at the ndhD-2 and rps14-149 sites. These results suggested a direct effect of auxin upon the editing of the ndhD-2 and rps14-149 sites through the modulation of the expression of the editing factors. We further demonstrated that ARF1, a downstream transcription factor in the auxin-signaling pathway, could directly bind to and inactivate the promoters of CRR4, DYW1, and ISE2 in a dual-luciferase reporter system, thereby inhibiting their expression. Moreover, the overexpression of ARF1 in Arabidopsis significantly reduced the expression of the three editing factors and the editing efficiency at the ndhD-2 and rps14-149 sites. These data suggest that YUC2-mediated auxin biosynthesis governs the RNA-editing process through the ARF1-dependent signal transduction pathway.
Collapse
Affiliation(s)
- Zi-Ang Li
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (Z.-A.L.); (Y.L.); (D.L.); (Z.-F.L.); (H.-O.L.); (J.Z.); (J.Z.); (Y.S.); (R.-Z.W.)
| | - Yi Li
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (Z.-A.L.); (Y.L.); (D.L.); (Z.-F.L.); (H.-O.L.); (J.Z.); (J.Z.); (Y.S.); (R.-Z.W.)
| | - Dan Liu
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (Z.-A.L.); (Y.L.); (D.L.); (Z.-F.L.); (H.-O.L.); (J.Z.); (J.Z.); (Y.S.); (R.-Z.W.)
| | - David P. Molloy
- Department of Basic Medicine, Chongqing Medical University, Chongqing 400016, China;
| | - Zhou-Fei Luo
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (Z.-A.L.); (Y.L.); (D.L.); (Z.-F.L.); (H.-O.L.); (J.Z.); (J.Z.); (Y.S.); (R.-Z.W.)
| | - Hai-Ou Li
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (Z.-A.L.); (Y.L.); (D.L.); (Z.-F.L.); (H.-O.L.); (J.Z.); (J.Z.); (Y.S.); (R.-Z.W.)
| | - Jing Zhao
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (Z.-A.L.); (Y.L.); (D.L.); (Z.-F.L.); (H.-O.L.); (J.Z.); (J.Z.); (Y.S.); (R.-Z.W.)
| | - Jing Zhou
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (Z.-A.L.); (Y.L.); (D.L.); (Z.-F.L.); (H.-O.L.); (J.Z.); (J.Z.); (Y.S.); (R.-Z.W.)
| | - Yi Su
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (Z.-A.L.); (Y.L.); (D.L.); (Z.-F.L.); (H.-O.L.); (J.Z.); (J.Z.); (Y.S.); (R.-Z.W.)
| | - Ruo-Zhong Wang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (Z.-A.L.); (Y.L.); (D.L.); (Z.-F.L.); (H.-O.L.); (J.Z.); (J.Z.); (Y.S.); (R.-Z.W.)
| | - Chao Huang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (Z.-A.L.); (Y.L.); (D.L.); (Z.-F.L.); (H.-O.L.); (J.Z.); (J.Z.); (Y.S.); (R.-Z.W.)
| | - Lang-Tao Xiao
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (Z.-A.L.); (Y.L.); (D.L.); (Z.-F.L.); (H.-O.L.); (J.Z.); (J.Z.); (Y.S.); (R.-Z.W.)
| |
Collapse
|
38
|
Singh CM, Purwar S, Singh AK, Singh BK, Kumar M, Kumar H, Pratap A, Mishra AK, Baek KH. Analysis of Auxin-Encoding Gene Family in Vigna radiata and It's Cross-Species Expression Modulating Waterlogging Tolerance in Wild Vigna umbellata. PLANTS (BASEL, SWITZERLAND) 2023; 12:3858. [PMID: 38005755 PMCID: PMC10674698 DOI: 10.3390/plants12223858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023]
Abstract
Mungbean is known to be susceptible to waterlogging (WL) stress. Some of the wild species have the potential to tolerate this through various physiological and molecular mechanisms. Auxin Response Factor (ARF) and Auxin/Indole Acetic Acid (AUX/IAA), an early responsive gene family, has multiple functions in growth, development, and stress tolerance. Here, we report the first comprehensive analysis of the ARF and AUX/IAA gene family in mungbean. A total of 26 ARF and 19 AUX/IAA genes were identified from the mungbean genome. The ARF and AUX/IAA candidates were clearly grouped into two major clades. Further, the subgrouping within the major clades indicated the presence of significant diversity. The gene structure, motif analysis, and protein characterization provided the clue for further fundamental research. Out of the10 selected candidate genes, VrARF-5, VrARF-11, VrARF-25, and VrAUX/IAA-9 were found to significantly multiple-fold gene expression in the hypocotyl region of WL-tolerant wild relatives (PRR 2008-2) provides new insight into a role in the induction of lateral root formation under WL stress. The analysis provides an insight into the structural diversity of ARF and AUX/IAA genes in mungbean. These results increase our understanding of ARF and AUX/IAA genes and therefore offer robust information for functional investigations, which can be taken up in the future and will form a foundation for improving tolerance against waterlogging stress.
Collapse
Affiliation(s)
- Chandra Mohan Singh
- Department of Genetics and Plant Breeding, Banda University of Agriculture and Technology, Banda 210 001, India; (C.M.S.); (M.K.); (H.K.)
| | - Shalini Purwar
- Department of Basic and Social Sciences, Banda University of Agriculture and Technology, Banda 210 001, India;
| | - Akhilesh Kumar Singh
- Department of Plant Protection, Banda University of Agriculture and Technology, Banda 210 001, India;
| | - Bhupendra Kumar Singh
- Department of Entomology, Banda University of Agriculture and Technology, Banda 210 001, India;
| | - Mukul Kumar
- Department of Genetics and Plant Breeding, Banda University of Agriculture and Technology, Banda 210 001, India; (C.M.S.); (M.K.); (H.K.)
| | - Hitesh Kumar
- Department of Genetics and Plant Breeding, Banda University of Agriculture and Technology, Banda 210 001, India; (C.M.S.); (M.K.); (H.K.)
| | - Aditya Pratap
- Crop Improvement Division, ICAR-Indian Institute of Pulses Research, Kanpur 208 024, India;
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
39
|
Ekta, Biswas D, Mukherjee G, Maiti MK. Rice Big Grain1 enhances biomass and plant growth-promoting traits in rhizospheric yeast Candida tropicalis. Appl Microbiol Biotechnol 2023; 107:6553-6571. [PMID: 37688595 DOI: 10.1007/s00253-023-12740-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 09/11/2023]
Abstract
The Big Grain1 (BG1) gene of rice (Oryza sativa L.) is reported to increase the yield of rice crops; however, its molecular mechanism is largely concealed. To explore its functional prospects, we have taken a structure-function-based approach. In silico analyses suggest OsBG1 is a DNA- and phytohormone-binding protein. Heterologous expression of OsBG1 with galactose-inducible promoter GAL1p in the rhizospheric yeast Candida tropicalis SY005 revealed 7.9- and 1.5-fold higher expression of the gene at 12 and 24 h, respectively, compared to the expression at 36 h post-galactose induction. Functional activity of the induced OsBG1 in engineered yeast increased cell density, specific growth rate, and biomass by 28.5%, 29.8%, and 14.1%, respectively, and decreased the generation time by 21.25%. Flow cytometry-based cell cycle analysis of OsBG1-expressing yeast cells exhibited an increase in the cells of the G2/M population by 15.8% after 12 h of post-galactose induction. The gene expression study of yeast transformants disclosed that OsBG1 regulates cell division by upregulating the expression of the endogenous gene cyclin B1 (CtCYB1) by 1.3- and 1.9-folds at 10 and 12 h, respectively, compared to the control, and is positively influenced by the phytohormone indole acetic acid (IAA). Further, the study revealed that OsBG1 significantly increases biofilm formation, stress tolerance, and IAA production in C. tropicalis SY005, implying its prospective role in enhancing plant growth-promoting traits in microbes. OsBG1-expressing rhizospheric yeast cells significantly improved the germination and growth parameters of the bio-inoculated rice seeds. Altogether, this study suggests OsBG1 can be employed to genetically improve suitable bio-inoculants for their plant growth-promoting traits to augment crop productivity. KEY POINTS: • In silico analyses suggested OsBG1 is a phytohormone-binding transcription factor. • OsBG1 enhanced growth in rhizospheric Candida tropicalis by upregulating CtCYB1. • OsBG1 improved plant growth-promoting traits of the rhizospheric yeast C. tropicalis.
Collapse
Affiliation(s)
- Ekta
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Debarati Biswas
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Gayatri Mukherjee
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Mrinal K Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
40
|
Cai K, Zhao Q, Zhang J, Yuan H, Li H, Han L, Li X, Li K, Jiang T, Zhao X. Unraveling the Guardians of Growth: A Comprehensive Analysis of the Aux/ IAA and ARF Gene Families in Populus simonii. PLANTS (BASEL, SWITZERLAND) 2023; 12:3566. [PMID: 37896029 PMCID: PMC10610179 DOI: 10.3390/plants12203566] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/27/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023]
Abstract
The auxin/indole-3-acetic acid (Aux/IAA) and auxin response factor (ARF) genes are two crucial gene families in the plant auxin signaling pathway. Nonetheless, there is limited knowledge regarding the Aux/IAA and ARF gene families in Populus simonii. In this study, we first identified 33 putative PsIAAs and 35 PsARFs in the Populus simonii genome. Analysis of chromosomal location showed that the PsIAAs and PsARFs were distributed unevenly across 17 chromosomes, with the greatest abundance observed on chromosomes 2. Furthermore, based on the homology of PsIAAs and PsARFs, two phylogenetic trees were constructed, classifying 33 PsIAAs and 35 PsARFs into three subgroups each. Five pairs of PsIAA genes were identified as the outcome of tandem duplication, but no tandem repeat gene pairs were found in the PsARF family. The expression profiling of PsIAAs and PsARFs revealed that several genes exhibited upregulation in different tissues and under various stress conditions, indicating their potential key roles in plant development and stress responses. The variance in expression patterns of specific PsIAAs and PsARFs was corroborated through RT-qPCR analysis. Most importantly, we instituted that the PsIAA7 gene, functioning as a central hub, exhibits interactions with numerous Aux/IAA and ARF proteins. Furthermore, subcellular localization findings indicate that PsIAA7 functions as a protein localized within the nucleus. To conclude, the in-depth analysis provided in this study will contribute significantly to advancing our knowledge of the roles played by PsIAA and PsARF families in both the development of P. simonii tissue and its responses to stress. The insights gained will serve as a valuable asset for further inquiries into the biological functions of these gene families.
Collapse
Affiliation(s)
- Kewei Cai
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (K.C.); (Q.Z.); (H.L.); (K.L.); (T.J.)
| | - Qiushuang Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (K.C.); (Q.Z.); (H.L.); (K.L.); (T.J.)
| | - Jinwang Zhang
- Tongliao Forestry and Grassland Science Research Institute, Tongliao 028000, China; (J.Z.); (H.Y.)
| | - Hongtao Yuan
- Tongliao Forestry and Grassland Science Research Institute, Tongliao 028000, China; (J.Z.); (H.Y.)
| | - Hanxi Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (K.C.); (Q.Z.); (H.L.); (K.L.); (T.J.)
| | - Lu Han
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China;
| | - Xuebo Li
- Changling County Front Seven State-Owned Forest Protection Center, Changling 131500, China
| | - Kailong Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (K.C.); (Q.Z.); (H.L.); (K.L.); (T.J.)
| | - Tingbo Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (K.C.); (Q.Z.); (H.L.); (K.L.); (T.J.)
| | - Xiyang Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (K.C.); (Q.Z.); (H.L.); (K.L.); (T.J.)
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China;
| |
Collapse
|
41
|
Noureddine Y, da Rocha M, An J, Médina C, Mejias J, Mulet K, Quentin M, Abad P, Zouine M, Favery B, Jaubert-Possamai S. AUXIN RESPONSIVE FACTOR8 regulates development of the feeding site induced by root-knot nematodes in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5752-5766. [PMID: 37310189 DOI: 10.1093/jxb/erad208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 06/12/2023] [Indexed: 06/14/2023]
Abstract
Root-knot nematodes (RKN) from the genus Meloidogyne induce the dedifferentiation of root vascular cells into giant multinucleate feeding cells. These feeding cells result from an extensive reprogramming of gene expression, and auxin is known to be a key player in their development. However, little is known about how the auxin signal is transmitted during giant cell development. Integrative analyses combining transcriptome and small non-coding RNA datasets with the specific sequencing of cleaved transcripts identified genes targeted by miRNAs in tomato (Solanum lycopersicum) galls. The two auxin-responsive transcription factors ARF8A and ARF8B, and their miRNA167 regulators, were identified as robust gene-miRNA pair candidates to be involved in the tomato response to M. incognita. Spatiotemporal expression analysis using promoter-β-glucuronidase (GUS) fusions showed the up-regulation of ARF8A and ARF8B in RKN-induced feeding cells and surrounding cells. The generation and phenotyping of CRISPR (clustered regularly interspaced palindromic repeats) mutants demonstrated the role of ARF8A and ARF8B in giant cell development and allowed the characterization of their downstream regulated genes.
Collapse
Affiliation(s)
- Yara Noureddine
- INRAE, Université Côte d'Azur, CNRS, ISA, F-06903 Sophia Antipolis, France
| | - Martine da Rocha
- INRAE, Université Côte d'Azur, CNRS, ISA, F-06903 Sophia Antipolis, France
| | - Jing An
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, 31320 Auzeville-Tolosane, France
| | - Clémence Médina
- INRAE, Université Côte d'Azur, CNRS, ISA, F-06903 Sophia Antipolis, France
| | - Joffrey Mejias
- INRAE, Université Côte d'Azur, CNRS, ISA, F-06903 Sophia Antipolis, France
| | - Karine Mulet
- INRAE, Université Côte d'Azur, CNRS, ISA, F-06903 Sophia Antipolis, France
| | - Michaël Quentin
- INRAE, Université Côte d'Azur, CNRS, ISA, F-06903 Sophia Antipolis, France
| | - Pierre Abad
- INRAE, Université Côte d'Azur, CNRS, ISA, F-06903 Sophia Antipolis, France
| | - Mohamed Zouine
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, 31320 Auzeville-Tolosane, France
| | - Bruno Favery
- INRAE, Université Côte d'Azur, CNRS, ISA, F-06903 Sophia Antipolis, France
- International Research Organization for Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | | |
Collapse
|
42
|
Lin JX, Ali A, Chu N, Fu HY, Huang MT, Mbuya SN, Gao SJ, Zhang HL. Identification of ARF transcription factor gene family and its defense responses to bacterial infection and salicylic acid treatment in sugarcane. Front Microbiol 2023; 14:1257355. [PMID: 37744907 PMCID: PMC10513436 DOI: 10.3389/fmicb.2023.1257355] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023] Open
Abstract
Auxin response factor (ARF) is a critical regulator in the auxin signaling pathway, involved in a variety of plant biological processes. Here, gene members of 24 SpapARFs and 39 SpnpARFs were identified in two genomes of Saccharum spontaneum clones AP85-441 and Np-X, respectively. Phylogenetic analysis showed that all ARF genes were clustered into four clades, which is identical to those ARF genes in maize (Zea mays) and sorghum (Sorghum bicolor). The gene structure and domain composition of this ARF family are conserved to a large degree across plant species. The SpapARF and SpnpARF genes were unevenly distributed on chromosomes 1-8 and 1-10 in the two genomes of AP85-441 and Np-X, respectively. Segmental duplication events may also contribute to this gene family expansion in S. spontaneum. The post-transcriptional regulation of ARF genes likely involves sugarcane against various stressors through a miRNA-medicated pathway. Expression levels of six representative ShARF genes were analyzed by qRT-PCR assays on two sugarcane cultivars [LCP85-384 (resistant to leaf scald) and ROC20 (susceptible to leaf scald)] triggered by Acidovorax avenae subsp. avenae (Aaa) and Xanthomonas albilineans (Xa) infections and salicylic acid (SA) treatment. ShARF04 functioned as a positive regulator under Xa and Aaa stress, whereas it was a negative regulator under SA treatment. ShARF07/17 genes played positive roles against both pathogenic bacteria and SA stresses. Additionally, ShARF22 was negatively modulated by Xa and Aaa stimuli in both cultivars, particularly LCP85-384. These findings imply that sugarcane ARFs exhibit functional redundancy and divergence against stressful conditions. This work lays the foundation for further research on ARF gene functions in sugarcane against diverse environmental stressors.
Collapse
Affiliation(s)
- Jia-Xin Lin
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ahmad Ali
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Na Chu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hua-Ying Fu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mei-Ting Huang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sylvain Ntambo Mbuya
- Faculté des Sciences Agronomiques, Département de production végétale, Laboratoire de Recherche en Biofortification, Defense et Valorisation des Cultures (BioDev), Université de Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - San-Ji Gao
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hui-Li Zhang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
43
|
Chen X, Liu Y, Zhang X, Zheng B, Han Y, Zhang RX. PpARF6 acts as an integrator of auxin and ethylene signaling to promote fruit ripening in peach. HORTICULTURE RESEARCH 2023; 10:uhad158. [PMID: 37719277 PMCID: PMC10500152 DOI: 10.1093/hr/uhad158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/27/2023] [Indexed: 09/19/2023]
Abstract
Although auxin is known to induce ethylene biosynthesis in some Rosaceae fruit crops, the mechanisms underlying the auxin-ethylene interaction during fruit ripening remain largely unknown. Here, the regulatory role of an auxin response factor, PpARF6, in fruit ripening was investigated in peach. Peach fruits showed accelerated ripening after treatment with auxin and PpARF6 was found to be significantly induced. PpARF6 not only could induce ethylene synthesis by directly activating the transcription of ethylene biosynthetic genes, but also competed with EIN3-binding F-box proteins PpEBF1/2 for binding to ethylene-insensitive3-like proteins PpEIL2/3, thereby keeping PpEIL2/3 active. Moreover, PpARF6 showed an interaction with PpEIL2/3 to enhance the PpEIL2/3-activated transcription of ethylene biosynthetic genes. Additionally, ectopic overexpression of PpARF6 in tomato accelerated fruit ripening by promoting the expression of genes involved in ethylene synthesis and fruit texture. In summary, our results revealed a positive regulatory role of PpARF6 in peach fruit ripening via integrating auxin and ethylene signaling.
Collapse
Affiliation(s)
- Xiaomei Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Yudi Liu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Xian Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Beibei Zheng
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan 430074, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yuepeng Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan 430074, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Ruo-Xi Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan 430074, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
44
|
Zhai Y, Shen X, Sun Y, Liu Q, Ma N, Zhang X, Jia Q, Liang Z, Wang D. Genome-wide investigation of ARF transcription factor gene family and its responses to abiotic stress in Coix (Coix lacryma-jobi L.). PROTOPLASMA 2023; 260:1389-1405. [PMID: 37041371 DOI: 10.1007/s00709-023-01855-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Auxin response factor (ARF) is an important transcription factor that regulates the expression of auxin-responsive genes by direct binding to their promoters, which play a central role in plant growth, development, and response to abiotic stresses. The availability of the entire Coix (Coix lacryma-jobi L.) genome sequence provides an opportunity to investigate the characteristics and evolutionary history of the ARF gene family in this medicine and food homology plant for the first time. In this study, a total of 27 ClARF genes were identified based on the genome-wide sequence of Coix. Twenty-four of the 27 ClARF genes were unevenly distributed on 8 chromosomes except Chr 4 and 10, and the remaining three genes (ClARF25-27) were not assigned to any chromosome. Most of the ClARF proteins were predicted to be localized to the nucleus, except ClARF24, which was localized to both the plasma membrane and nucleus. Twenty-seven ClARFs were clustered into six subgroups based on the phylogenetic analysis. Duplication analysis showed that segmental duplication, rather than tandem duplications promoting the expansion of the ClARF gene family. Synteny analysis showed that purifying selection might have been a primary driving force in the development of the ARF gene family in Coix and other investigated cereal plants. The prediction of the cis element of the promoter showed that 27 ClARF genes contain several stress response elements, suggesting that ClARFs might be involved in the abiotic stress response. Expression profile analysis shows that 27 ClARF genes were all expressed in the root, shoot, leaf, kernel, glume, and male flower of Coix with varying expression levels. Furthermore, qRT-PCR analyses revealed that the majority of ClARFs members were upregulated or downregulated in response to hormone treatment and abiotic stress. The current study expands our understanding of the functional roles of ClARFs in stress responses and provides basic information for the ClARF genes.
Collapse
Affiliation(s)
- Yufeng Zhai
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Xiaoxia Shen
- Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
- Songyang Institute of Zhejiang Chinese Medical University, Lishui, 323400, China
| | - Yimin Sun
- Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Qiao Liu
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Nan Ma
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Xiaodan Zhang
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
- State Key Laboratory of Dao-Di Herbs, Beijng, 100700, China
| | - Qiaojun Jia
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Zongsuo Liang
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
- State Key Laboratory of Dao-Di Herbs, Beijng, 100700, China
| | - Dekai Wang
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China.
| |
Collapse
|
45
|
Gomez MD, Cored I, Barro-Trastoy D, Sanchez-Matilla J, Tornero P, Perez-Amador MA. DELLA proteins positively regulate seed size in Arabidopsis. Development 2023; 150:dev201853. [PMID: 37435751 PMCID: PMC10445750 DOI: 10.1242/dev.201853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/03/2023] [Indexed: 07/13/2023]
Abstract
Human and animal nutrition is mainly based on seeds. Seed size is a key factor affecting seed yield and has thus been one of the primary objectives of plant breeders since the domestication of crop plants. Seed size is coordinately regulated by signals of maternal and zygotic tissues that control the growth of the seed coat, endosperm and embryo. Here, we provide previously unreported evidence for the role of DELLA proteins, key repressors of gibberellin responses, in the maternal control of seed size. The gain-of-function della mutant gai-1 produces larger seeds as a result of an increase in the cell number in ovule integuments. This leads to an increase in ovule size and, in turn, to an increase in seed size. Moreover, DELLA activity promotes increased seed size by inducing the transcriptional activation of AINTEGUMENTA, a genetic factor that controls cell proliferation and organ growth, in the ovule integuments of gai-1. Overall, our results indicate that DELLA proteins are involved in the control of seed size and suggest that modulation of the DELLA-dependent pathway could be used to improve crop yield.
Collapse
Affiliation(s)
- Maria Dolores Gomez
- Department of Development and Hormonal Action in Plants, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), CPI 8E, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | - Isabel Cored
- Department of Development and Hormonal Action in Plants, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), CPI 8E, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | - Daniela Barro-Trastoy
- Department of Development and Hormonal Action in Plants, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), CPI 8E, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | - Joaquin Sanchez-Matilla
- Department of Development and Hormonal Action in Plants, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), CPI 8E, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | - Pablo Tornero
- Department of Development and Hormonal Action in Plants, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), CPI 8E, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | - Miguel A. Perez-Amador
- Department of Development and Hormonal Action in Plants, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), CPI 8E, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| |
Collapse
|
46
|
Li Z, Ahammed GJ. Hormonal regulation of anthocyanin biosynthesis for improved stress tolerance in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107835. [PMID: 37348389 DOI: 10.1016/j.plaphy.2023.107835] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/06/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023]
Abstract
Due to unprecedented climate change, rapid industrialization and increasing use of agrochemicals, abiotic stress, such as drought, low temperature, high salinity and heavy metal pollution, has become an increasingly serious problem in global agriculture. Anthocyanins, an important plant pigment, are synthesized through the phenylpropanoid pathway and have a variety of physiological and ecological functions, providing multifunctional and effective protection for plants under stress. Foliar anthocyanin accumulation often occurs under abiotic stress including high light, cold, drought, salinity, nutrient deficiency and heavy metal stress, causing leaf reddening or purpling in many plant species. Anthocyanins are used as sunscreens and antioxidants to scavenge reactive oxygen species (ROS), as metal(loid) chelators to mitigate heavy metal stress, and as crucial molecules with a role in delaying leaf senescence. In addition to environmental factors, anthocyanin synthesis is affected by various endogenous factors. Plant hormones such as abscisic acid, jasmonic acid, ethylene and gibberellin have been shown to be involved in regulating anthocyanin synthesis either positively or negatively. Particularly when plants are under abiotic stress, several plant hormones can induce foliar anthocyanin synthesis to enhance plant stress resistance. In this review, we revisit the role of plant hormones in anthocyanin biosynthesis and the mechanism of plant hormone-mediated anthocyanin accumulation and abiotic stress tolerance. We conclude that enhancing anthocyanin content with plant hormones could be a prospective management strategy for improving plant stress resistance, but extensive further research is essentially needed to provide future guidance for practical crop production.
Collapse
Affiliation(s)
- Zhe Li
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China; Henan International Joint Laboratory of Stress Resistance Regulation and Safe Production of Protected Vegetables, Luoyang, 471023, PR China; Henan Engineering Technology Research Center for Horticultural Crop Safety and Disease Control, Luoyang, 471023, PR China.
| |
Collapse
|
47
|
Lv Z, Zhou D, Shi X, Ren J, Zhang H, Zhong C, Kang S, Zhao X, Yu H, Wang C. The determination of peanut (Arachis hypogaea L.) pod-sizes during the rapid-growth stage by phytohormones. BMC PLANT BIOLOGY 2023; 23:371. [PMID: 37491223 PMCID: PMC10369843 DOI: 10.1186/s12870-023-04382-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 07/14/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND Pod size is an important yield target trait for peanut breeding. However, the molecular mechanism underlying the determination of peanut pod size still remains unclear. RESULTS In this study, two peanut varieties with contrasting pod sizes were used for comparison of differences on the transcriptomic and endogenous hormonal levels. Developing peanut pods were sampled at 10, 15, 20, 25 and 30 days after pegging (DAP). Our results showed that the process of peanut pod-expansion could be divided into three stages: the gradual-growth stage, the rapid-growth stage and the slow-growth stage. Cytological analysis confirmed that the faster increase of cell-number during the rapid-growth stage was the main reason for the formation of larger pod size in Lps. Transcriptomic analyses showed that the expression of key genes related to the auxin, the cytokinin (CK) and the gibberellin (GA) were mostly up-regulated during the rapid-growth stage. Meanwhile, the cell division-related differentially expressed genes (DEGs) were mostly up-regulated at 10DAP which was consistent with the cytological-observation. Additionally, the absolute quantification of phytohormones were carried out by liquid-chromatography coupled with the tandem-mass-spectrometry (LC-MS/MS), and results supported the findings from comparative transcriptomic studies. CONCLUSIONS It was speculated that the differential expression levels of TAA1 and ARF (auxin-related), IPT and B-ARR (CK-related), KAO, GA20ox and GA3ox (GA-related), and certain cell division-related genes (gene-LOC112747313 and gene-LOC112754661) were important participating factors of the determination-mechanism of peanut pod sizes. These results were informative for the elucidation of the underlying regulatory network in peanut pod-growth and would facilitate further identification of valuable target genes.
Collapse
Affiliation(s)
- Zhenghao Lv
- College of Agronomy, Peanut Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Dongying Zhou
- College of Agronomy, Peanut Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Xiaolong Shi
- College of Agronomy, Peanut Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Jingyao Ren
- College of Agronomy, Peanut Research Institute, Shenyang Agricultural University, Shenyang, China
| | - He Zhang
- College of Agronomy, Peanut Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Chao Zhong
- College of Agronomy, Peanut Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Shuli Kang
- College of Agronomy, Peanut Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Xinhua Zhao
- College of Agronomy, Peanut Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Haiqiu Yu
- College of Agronomy, Peanut Research Institute, Shenyang Agricultural University, Shenyang, China.
| | | |
Collapse
|
48
|
Lomin SN, Kolachevskaya OO, Arkhipov DV, Romanov GA. Canonical and Alternative Auxin Signaling Systems in Mono-, Di-, and Tetraploid Potatoes. Int J Mol Sci 2023; 24:11408. [PMID: 37511169 PMCID: PMC10380454 DOI: 10.3390/ijms241411408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
It has long been known that the phytohormone auxin plays a promoting role in tuber formation and stress tolerance in potatoes. Our study aimed to identify and characterize the complete sets of auxin-related genes that presumably constitute the entire auxin signaling system in potato (Solanum tuberosum L.). The corresponding genes were retrieved from sequenced genomes of the doubled monoploid S. tuberosum DM1-3-516-R44 (DM) of the Phureja group, the heterozygous diploid line RH89-039-16 (RH), and the autotetraploid cultivar Otava. Both canonical and noncanonical auxin signaling pathways were considered. Phylogenetic and domain analyses of deduced proteins were supplemented by expression profiling and 3D molecular modeling. The canonical and ABP1-mediated pathways of auxin signaling appeared to be well conserved. The total number of potato genes/proteins presumably involved in canonical auxin signaling is 46 and 108 in monoploid DM and tetraploid Otava, respectively. Among the studied potatoes, spectra of expressed genes obviously associated with auxin signaling were partly cultivar-specific and quite different from analogous spectrum in Arabidopsis. Most of the noncanonical pathways found in Arabidopsis appeared to have low probability in potato. This was equally true for all cultivars used irrespective of their ploidy. Thus, some important features of the (noncanonical) auxin signaling pathways may be variable and species-specific.
Collapse
Affiliation(s)
- Sergey N Lomin
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Oksana O Kolachevskaya
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Dmitry V Arkhipov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Georgy A Romanov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| |
Collapse
|
49
|
Israeli A, Schubert R, Man N, Teboul N, Serrani Yarce JC, Rosowski EE, Wu MF, Levy M, Efroni I, Ljung K, Hause B, Reed JW, Ori N. Modulating auxin response stabilizes tomato fruit set. PLANT PHYSIOLOGY 2023; 192:2336-2355. [PMID: 37032117 PMCID: PMC10315294 DOI: 10.1093/plphys/kiad205] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 06/01/2023]
Abstract
Fruit formation depends on successful fertilization and is highly sensitive to weather fluctuations that affect pollination. Auxin promotes fruit initiation and growth following fertilization. Class A auxin response factors (Class A ARFs) repress transcription in the absence of auxin and activate transcription in its presence. Here, we explore how multiple members of the ARF family regulate fruit set and fruit growth in tomato (Solanum lycopersicum) and Arabidopsis thaliana, and test whether reduction of SlARF activity improves yield stability in fluctuating temperatures. We found that several tomato Slarf mutant combinations produced seedless parthenocarpic fruits, most notably mutants deficient in SlARF8A and SlARF8B genes. Arabidopsis Atarf8 mutants deficient in the orthologous gene had less complete parthenocarpy than did tomato Slarf8a Slarf8b mutants. Conversely, Atarf6 Atarf8 double mutants had reduced fruit growth after fertilization. AtARF6 and AtARF8 likely switch from repression to activation of fruit growth in response to a fertilization-induced auxin increase in gynoecia. Tomato plants with reduced SlARF8A and SlARF8B gene dosage had substantially higher yield than the wild type under controlled or ambient hot and cold growth conditions. In field trials, partial reduction in the SlARF8 dose increased yield under extreme temperature with minimal pleiotropic effects. The stable yield of the mutant plants resulted from a combination of early onset of fruit set, more fruit-bearing branches and more flowers setting fruits. Thus, ARF8 proteins mediate the control of fruit set, and relieving this control with Slarf8 mutations may be utilized in breeding to increase yield stability in tomato and other crops.
Collapse
Affiliation(s)
- Alon Israeli
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, PO Box 12, Rehovot 76100, Israel
| | - Ramona Schubert
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle 06120, Germany
| | - Nave Man
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, PO Box 12, Rehovot 76100, Israel
| | - Naama Teboul
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, PO Box 12, Rehovot 76100, Israel
| | | | - Emily E Rosowski
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | - Miin-Feng Wu
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | - Matan Levy
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, PO Box 12, Rehovot 76100, Israel
| | - Idan Efroni
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, PO Box 12, Rehovot 76100, Israel
| | - Karin Ljung
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå 901 83, Sweden
| | - Bettina Hause
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle 06120, Germany
| | - Jason W Reed
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | - Naomi Ori
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, PO Box 12, Rehovot 76100, Israel
| |
Collapse
|
50
|
Bai Y, Ma Y, Chang Y, Zhang W, Deng Y, Zhang N, Zhang X, Fan K, Hu X, Wang S, Jiang Z, Hu T. Identification and transcriptome data analysis of ARF family genes in five Orchidaceae species. PLANT MOLECULAR BIOLOGY 2023; 112:85-98. [PMID: 37103774 DOI: 10.1007/s11103-023-01354-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 04/13/2023] [Indexed: 05/09/2023]
Abstract
The Orchidaceae is a large family of perennial herbs especially noted for the exceptional diversity of specialized flowers. Elucidating the genetic regulation of flowering and seed development of orchids is an important research goal with potential utility in orchid breeding programs. Auxin Response Factor (ARF) genes encode auxin-responsive transcription factors, which are involved in the regulation of diverse morphogenetic processes, including flowering and seed development. However, limited information on the ARF gene family in the Orchidaceae is available. In this study, 112 ARF genes were identified in the genomes of 5 orchid species (Apostasia shenzhenica, Dendrobium catenatum, Phalaenopsis aphrodite, Phalaenopsis equestris and Vanilla planifolia,). These genes were grouped into 7 subfamilies based on their phylogenetic relationships. Compared with the ARF family in model plants, such as Arabidopsis thaliana and Oryza sativa, one group of ARF genes involved in pollen wall synthesis has been lost during evolution of the Orchidaceae. This loss corresponds with absence of the exine in the pollinia. Through mining of the published genomic and transcriptomic data for the 5 orchid species: the ARF genes of subfamily 4 may play an important role in flower formation and plant growth, whereas those of subfamily 3 are potentially involved in pollen wall development. the study results provide novel insights into the genetic regulation of unique morphogenetic phenomena of orchids, which lay a foundation for further analysis of the regulatory mechanisms and functions of sexual reproduction-related genes in orchids.
Collapse
Affiliation(s)
- Yiwei Bai
- International Center for Bamboo and Rattan, Chaoyang District, Beijing, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Chaoyang District, Beijing, China
| | - Yanjun Ma
- International Center for Bamboo and Rattan, Chaoyang District, Beijing, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Chaoyang District, Beijing, China
- Pingxiang Bamboo Forest Ecosystem Research Station, Pingxiang, Guangxi, China
| | - Yanting Chang
- International Center for Bamboo and Rattan, Chaoyang District, Beijing, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Chaoyang District, Beijing, China
| | - Wenbo Zhang
- International Center for Bamboo and Rattan, Chaoyang District, Beijing, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Chaoyang District, Beijing, China
- Pingxiang Bamboo Forest Ecosystem Research Station, Pingxiang, Guangxi, China
| | - Yayun Deng
- International Center for Bamboo and Rattan, Chaoyang District, Beijing, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Chaoyang District, Beijing, China
| | - Na Zhang
- International Center for Bamboo and Rattan, Chaoyang District, Beijing, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Chaoyang District, Beijing, China
| | - Xue Zhang
- International Center for Bamboo and Rattan, Chaoyang District, Beijing, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Chaoyang District, Beijing, China
| | - Keke Fan
- International Center for Bamboo and Rattan, Chaoyang District, Beijing, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Chaoyang District, Beijing, China
| | - Xiaomeng Hu
- International Center for Bamboo and Rattan, Chaoyang District, Beijing, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Chaoyang District, Beijing, China
| | - Shuhua Wang
- International Center for Bamboo and Rattan, Chaoyang District, Beijing, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Chaoyang District, Beijing, China
| | - Zehui Jiang
- International Center for Bamboo and Rattan, Chaoyang District, Beijing, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Chaoyang District, Beijing, China
| | - Tao Hu
- International Center for Bamboo and Rattan, Chaoyang District, Beijing, China.
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Chaoyang District, Beijing, China.
- Pingxiang Bamboo Forest Ecosystem Research Station, Pingxiang, Guangxi, China.
| |
Collapse
|