1
|
Qiu CW, Shi M, Zhaxi Q, Feng X, Jia Y, Li C, Wu F. HvAIR12 confers aluminum tolerance in barley by H 2O 2-mediated activation of HvEXPA4 to facilitate aluminum detoxification and improve root growth. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138293. [PMID: 40239528 DOI: 10.1016/j.jhazmat.2025.138293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/29/2025] [Accepted: 04/13/2025] [Indexed: 04/18/2025]
Abstract
Aluminum (Al) toxicity is a major constraint on crop productivity in acid soils, with barley being particularly susceptible. In our previous transcriptomic analysis, we identified HvAIR12 (AUXIN INDUCED IN ROOT CULTURES), a novel gene that is specifically induced by Al in the roots of the Al-tolerant Tibetan wild barley accession XZ16. In this study, we performed comprehensive physiological, transgenic, and molecular analyses to explore the role of HvAIR12 in Al tolerance. HvAIR12 encodes a plasma membrane-bound protein and is predominantly expressed in the roots, with its expression being strongly upregulated by Al exposure. Knockdown of HvAIR12 resulted in significantly reduced root growth and increased Al accumulation, whereas overexpression of HvAIR12 elevated H2O2 levels in the apoplast and promoted root growth-effects that were reversible by H2O2 scavengers. RNA sequencing further revealed that overexpression of HvAIR12 led to the transcriptional activation of several expansin genes, including HvEXPA4 and HvEXPB2. Functional characterization of HvEXPA4 transgenic lines and gene silencing experiments in HvAIR12-overexpressing backgrounds confirmed that HvEXPA4 is an essential downstream target of HvAIR12, mitigating Al toxicity by modulating cell wall components. This study uncovers the novel role of HvAIR12 in regulating apoplastic H2O2 levels and its interaction with other Al tolerance-related genes. Our findings highlight that HvAIR12 promotes Al tolerance through H2O2-mediated activation of HvEXPA4, forming a regulatory pathway critical for Al exclusion and root elongation under Al stress. These results providing valuable molecular insights and promising target genes for breeding more resilient cereal crops for cultivation in acid soils.
Collapse
Affiliation(s)
- Cheng-Wei Qiu
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Min Shi
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Quncuo Zhaxi
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Agricultural Technology Extension and Service Center of Lhasa, Lhasa, China
| | - Xue Feng
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yong Jia
- Western Barley Genetics Alliance, State Agricultural Biotechnology Centre/Future Food Innovation Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| | - Chengdao Li
- Western Barley Genetics Alliance, State Agricultural Biotechnology Centre/Future Food Innovation Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia.
| | - Feibo Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
2
|
Kang H, Thomas HR, Xia X, Shi H, Zhang L, Hong J, Shi K, Zhou J, Yu J, Zhou Y. An integrative overview of cold response and regulatory pathways in horticultural crops. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:1028-1059. [PMID: 40213955 DOI: 10.1111/jipb.13903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 03/10/2025] [Indexed: 04/24/2025]
Abstract
Global climate change challenges agricultural production, as extreme temperature fluctuations negatively affect crop growth and yield. Low temperature (LT) stress impedes photosynthesis, disrupts metabolic processes, and compromises the integrity of cell membranes, ultimately resulting in diminished yield and quality. Notably, many tropical or subtropical horticultural plants are particularly susceptible to LT stress. To address these challenges, it is imperative to understand the mechanisms underlying cold tolerance in horticultural crops. This review summarizes recent advances in the physiological and molecular mechanisms that enable horticultural crops to withstand LT stress, emphasizing discrepancies between horticultural crops and model systems. These mechanisms include C-repeat binding factor-dependent transcriptional regulation, post-translational modifications, epigenetic control, and metabolic regulation. Reactive oxygen species, plant hormones, and light signaling pathways are integrated into the cold response network. Furthermore, technical advances for improving cold tolerance are highlighted, including genetic improvement, the application of light-emitting diodes, the utility of novel plant growth regulators, and grafting. Finally, prospective directions for fundamental research and practical applications to boost cold tolerance are discussed.
Collapse
Affiliation(s)
- Huijia Kang
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Hannah Rae Thomas
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Xiaojian Xia
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Huanran Shi
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Limeng Zhang
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Jiachen Hong
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Kai Shi
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Jie Zhou
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Jingquan Yu
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Yanhong Zhou
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, 572025, China
- Key Laboratory of Horticultural Plant Growth and Development, Agricultural and Rural Ministry of China, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
3
|
Xu D, Han Y, Zhang Y, Khan A, Dong L, Shao L, Liang A, Liu T, Qi H. CmTGA8-CmAPX1/CmGSTU25 regulatory model involved in trehalose induced cold tolerance in oriental melon seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109432. [PMID: 39884148 DOI: 10.1016/j.plaphy.2024.109432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 12/08/2024] [Accepted: 12/17/2024] [Indexed: 02/01/2025]
Abstract
Plants have developed complex regulatory networks to adapt to various stresses, including cold stress. Trehalose (Tre), known as the "sugar of life," plays a crucial role in enhancing cold tolerance by triggering antioxidation. However, the underlying regulatory mechanisms remain unclear. This study examines the transcription factor gene CmTGA8, which is induced by Tre under normal and cold conditions in melon seedlings (Cucumis melo L.), through transcriptome analysis and RT-qPCR. Reverse genetic analyses showed that silencing CmTGA8 reduced ascorbate peroxidase (APX) and glutathione S-transferase (GST) activities, suppressed CmAPX1 and CmGSTU25 expression, and increased cold susceptibility in melon seedlings. Our previous reports illustrated that Tre treatment significantly induced the expression of respiratory burst oxidase homologues (CmRBOHD) gene, encoding NADPH oxidases responsible for generating apoplastic H2O2. Silencing CmRBOHD markedly inhibited CmTGA8, CmAPX1, and CmGSTU25 expression and reduced cold tolerance. Moreover, H2O2 treatment upregulated CmTGA8 expression, while the NADPH oxidase inhibitor diphenyleneiodonium (DPI) treatment downregulated it. Additionally, CmTGA8 physically interacted with CmAPX1 and CmGSTU25 to promote their expression. Silencing CmGSTU25 decreased GST activity and ferric reducing ability of plasma (FRAP), further increasing cold sensitivity. These findings identify a novel regulatory hierarchy of the H2O2-CmTGA8-CmAPX1/CmGSTU25 cascade in the Tre-mediated cold response pathway in melon seedlings.
Collapse
Affiliation(s)
- Dongdong Xu
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China; Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province, China; Northern National & Local Joint Engineering Research Center of Horticultural Facilities Design and Application Technology, Shenyang, Liaoning, 110866, China
| | - Yuqing Han
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China; Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province, China; Northern National & Local Joint Engineering Research Center of Horticultural Facilities Design and Application Technology, Shenyang, Liaoning, 110866, China
| | - Yujie Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China; Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province, China; Northern National & Local Joint Engineering Research Center of Horticultural Facilities Design and Application Technology, Shenyang, Liaoning, 110866, China
| | - Abid Khan
- Department of Horticulture, The University of Haripur, Haripur, Pakistan
| | - Lin Dong
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China; Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province, China; Northern National & Local Joint Engineering Research Center of Horticultural Facilities Design and Application Technology, Shenyang, Liaoning, 110866, China
| | - Li Shao
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China; Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province, China; Northern National & Local Joint Engineering Research Center of Horticultural Facilities Design and Application Technology, Shenyang, Liaoning, 110866, China
| | - Adan Liang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China; Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province, China; Northern National & Local Joint Engineering Research Center of Horticultural Facilities Design and Application Technology, Shenyang, Liaoning, 110866, China
| | - Tao Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China; Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province, China; Northern National & Local Joint Engineering Research Center of Horticultural Facilities Design and Application Technology, Shenyang, Liaoning, 110866, China.
| | - Hongyan Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China; Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province, China; Northern National & Local Joint Engineering Research Center of Horticultural Facilities Design and Application Technology, Shenyang, Liaoning, 110866, China.
| |
Collapse
|
4
|
Sun S, Zhao X, Shi Z, He F, Qi G, Li X, Niu Y, Zhou W. Exogenous 24-Epibrassinolide Improves Low-Temperature Tolerance of Maize Seedlings by Influencing Sugar Signaling and Metabolism. Int J Mol Sci 2025; 26:585. [PMID: 39859301 PMCID: PMC11765667 DOI: 10.3390/ijms26020585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Low-temperature (LT) stress seriously affects the distribution, seedling survival, and grain yield of maize. At the seedling emergence stage, maize's coleoptile is one of the most sensitive organs in sensing LT signaling and, in general, it can envelop young leaves to protect them from LT damage. In addition, brassinolides (BRs) have been shown to enhance LT tolerance from various species, but the effects of BRs on coleoptiles in maize seedlings under LT stress are unclear. Therefore, in this study, the pre-cultured coleoptiles of Zheng58 seedlings were treated with or without 2.0 μM 24-epibrassinolide (EBR) at 25 °C and 10 °C environments for five days to analyze their physiological and transcriptomic changes. Physiological analysis showed that a 10°C LT stress increased the content of glucose (0.43 mg g-1 FW), sucrose (0.45 mg g-1 FW), and starch (0.76 mg g-1 FW) of Zheng58 coleoptiles compared to a 25°C environment. After the coleoptiles were exposed to a 2.0 μM EBR application under 10°C temperature for five days, the contents of these three sugars continued to increase, and reached 2.68 mg g-1 FW, 4.64 mg g-1 FW, and 9.27 mg g-1 FW, respectively, indicating that sugar signaling and metabolism played key roles in regulating LT tolerance in the coleoptiles of maize seedlings. Meanwhile, a transcriptome analysis showed that 84 and 15 differentially expressed genes (DEGs) were enriched in the sucrose and starch metabolism and photosynthesis pathways, respectively, and multiple DEGs involved in these pathways were significantly up-regulated under LT stress and EBR stimulation. Further analysis speculated that the four DEGs responsible for sucrose-phosphate synthetase (SPS, i.e., Zm00001d048979, probable sucrose-phosphate synthase 5 and Zm00001d012036, sucrose-phosphate synthase 1), sucrose synthase (SUS, Zm00001d029091, sucrose synthase 2 and Zm00001d029087, sucrose synthase 4) were crucial nodes that could potentially link photosynthesis and other unknown pathways to form the complex interaction networks of maize LT tolerance. In conclusion, our findings provide new insights into the molecular mechanisms of exogenous EBR in enhancing LT tolerance of maize seedlings and identified potential candidate genes to be used for LT tolerance breeding in maize.
Collapse
Affiliation(s)
- Siqi Sun
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (S.S.); (Z.S.); (F.H.); (G.Q.); (X.L.); (Y.N.)
| | - Xiaoqiang Zhao
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (S.S.); (Z.S.); (F.H.); (G.Q.); (X.L.); (Y.N.)
| | - Zhenzhen Shi
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (S.S.); (Z.S.); (F.H.); (G.Q.); (X.L.); (Y.N.)
| | - Fuqiang He
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (S.S.); (Z.S.); (F.H.); (G.Q.); (X.L.); (Y.N.)
| | - Guoxiang Qi
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (S.S.); (Z.S.); (F.H.); (G.Q.); (X.L.); (Y.N.)
| | - Xin Li
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (S.S.); (Z.S.); (F.H.); (G.Q.); (X.L.); (Y.N.)
| | - Yining Niu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (S.S.); (Z.S.); (F.H.); (G.Q.); (X.L.); (Y.N.)
| | - Wenqi Zhou
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China;
| |
Collapse
|
5
|
Han Y, Luo F, Liang A, Xu D, Zhang H, Liu T, Qi H. Aquaporin CmPIP2;3 links H2O2 signal and antioxidation to modulate trehalose-induced cold tolerance in melon seedlings. PLANT PHYSIOLOGY 2024; 197:kiae477. [PMID: 39250755 DOI: 10.1093/plphys/kiae477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 09/11/2024]
Abstract
Cold stress severely restricts the growth and development of cold-sensitive crops. Trehalose (Tre), known as the "sugar of life", plays key roles in regulating plant cold tolerance by triggering antioxidation. However, the relevant regulatory mechanism remains unclear. Here, we confirmed that Tre triggers apoplastic hydrogen peroxide (H2O2) production and thus plays key roles in improving the cold tolerance of melon (Cucumis melo var. makuwa Makino) seedlings. Moreover, Tre treatment can promote the transport of apoplastic H2O2 to the cytoplasm. This physiological process may depend on aquaporins. Further studies showed that a Tre-responsive plasma membrane intrinsic protein 2;3 (CmPIP2;3) had strong H2O2 transport function and that silencing CmPIP2;3 significantly weakened apoplastic H2O2 transport and reduced the cold tolerance of melon seedlings. Yeast library and protein-DNA interaction technology were then used to screen 2 Tre-responsive transcription factors, abscisic acid-responsive element (ABRE)-binding factor 2 (CmABF2) and ABRE-binding factor 3 (CmABF3), which can bind to the ABRE motif of the CmPIP2;3 promoter and activate its expression. Silencing of CmABF2 and CmABF3 further dramatically increased the ratio of apoplastic H2O2/cytoplasm H2O2 and reduced the cold tolerance of melon seedlings. This study uncovered that Tre treatment induces CmABF2/3 to positively regulate CmPIP2;3 expression. CmPIP2;3 subsequently enhances the cold tolerance of melon seedlings by promoting the transport of apoplastic H2O2 into the cytoplasm for conducting redox signals and stimulating downstream antioxidation.
Collapse
Affiliation(s)
- Yuqing Han
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Fei Luo
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Adan Liang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Dongdong Xu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Hongyi Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Tao Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Hongyan Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| |
Collapse
|
6
|
Zhao Y, Han Q, Zhang D. Recent Advances in the Crosstalk between Brassinosteroids and Environmental Stimuli. PLANT & CELL PHYSIOLOGY 2024; 65:1552-1567. [PMID: 38578169 DOI: 10.1093/pcp/pcae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 04/06/2024]
Abstract
Due to their sessile lifestyle, plants need to optimize their growth in order to adapt to ever-changing environments. Plants receive stimuli from the environment and convert them into cellular responses. Brassinosteroids (BRs), as growth-promoting steroid hormones, play a significant role in the tradeoff between growth and environmental responses. Here, we provide a comprehensive summary for understanding the crosstalk between BR and various environmental stresses, including water availability, temperature fluctuations, salinization, nutrient deficiencies and diseases. We also highlight the bottlenecks that need to be addressed in future studies. Ultimately, we suppose to improve plant environmental adaptability and crop yield by excavating natural BR mutants or modifying BR signaling and its targets.
Collapse
Affiliation(s)
- Yuqing Zhao
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Qing Han
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Dawei Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
7
|
He Z, Zhou M, Feng X, Di Q, Meng D, Yu X, Yan Y, Sun M, Li Y. The Role of Brassinosteroids in Plant Cold Stress Response. Life (Basel) 2024; 14:1015. [PMID: 39202757 PMCID: PMC11355907 DOI: 10.3390/life14081015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Temperature affects plant growth and geographical distribution. Cold stress occurs when temperatures fall below the physiologically optimal range for plants, causing permanent and irreversible damage to plant growth, development, and production. Brassinosteroids (BRs) are steroid hormones that play an important role in plant growth and various stress responses. Recent studies have shown that low temperatures affect BR biosynthesis in many plant species and that BR signaling is involved in the regulation of plant tolerance to low temperatures, both in the CBF-dependent and CBF-independent pathways. These two regulatory pathways correspond to transient and acclimation responses of low temperature, respectively. The crosstalk between BRs and other hormones is a significant factor in low-temperature tolerance. We provide an overview of recent developments in our knowledge of BRs' function in plant responses to cold stress and how they interact with other plant hormones in this review.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mintao Sun
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.H.); (M.Z.); (X.F.); (Q.D.); (D.M.); (X.Y.); (Y.Y.)
| | - Yansu Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.H.); (M.Z.); (X.F.); (Q.D.); (D.M.); (X.Y.); (Y.Y.)
| |
Collapse
|
8
|
Cheng YS, Sun YD, Xing JY, Zhan L, Li XJ, Huang J, Zhao MH, Guo ZF. Transcriptomic and functional analyzes reveal that the brassinosteroid insensitive 1 receptor (OsBRI1) regulates cold tolerance in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108472. [PMID: 38442627 DOI: 10.1016/j.plaphy.2024.108472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/07/2024]
Abstract
Brassinosteroids (BR) play crucial roles in plant development and abiotic stresses in plants. Exogenous application of BR can significantly enhance cold tolerance in rice. However, the regulatory relationship between cold tolerance and the BR signaling pathway in rice remains largely unknown. Here, we characterized functions of the BR receptor OsBRI1 in response to cold tolerance in rice using its loss-of-function mutant (d61-1). Our results showed that mutant d61-1 was less tolerant to cold stress than wild-type (WT). Besides, d61-1 had lower levels than WT for some physiological parameters, including catalase activity (CAT), superoxide dismutase activity (SOD), peroxidase activity (POD), peroxidase activity (PRO), soluble protein, and soluble sugar content, while malondialdehyde content (MDA) and relative electrical conductivity (REC) levels in d61-1 were higher than those in WT plants. These results indicated that the loss of OsBRI1 function resulted in decreased cold tolerance in rice. In addition, we performed RNA sequencing (RNA-seq) of WT and d61-1 mutant under cold stress. Numerous common and unique differentially expressed genes (DEGs) with up- and down-regulation were observed in WT and d61-1 mutant. Some DEGs were expressed to various degrees, even opposite, between CK1 vs. T1 (WT) and CK2 vs. T2 (d61-1). Among these specific DEGs, some typical genes are involved in plant tolerance to cold stress. Through weighted correlation network analysis (WGCNA), 50 hub genes were screened in the turquoise and blue module. Many genes were involved in cold stress and plant hormone, such as Os01g0279800 (BRI1-associated receptor kinase 1 precursor), Os10g0513200 (Dwarf and tiller-enhancing 1, DTE1), Os02g0706400 (MYB-related transcription factor, OsRL3), etc. Differential expression levels of some genes were verified in WT and d61-1 under cold stress using qRT-PCR. These valuable findings and gene resources will be critical for understanding the regulatory relationships between cold stress tolerance and the BR signaling pathways in rice.
Collapse
Affiliation(s)
- Yi-Shan Cheng
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, 110161, China
| | - Ye-Dong Sun
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, 110161, China
| | - Jia-Ying Xing
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, 110161, China
| | - Lu Zhan
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, 110161, China
| | - Xiu-Jie Li
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, 110161, China
| | - Jing Huang
- Department of Agronomy, College of Agriculture, Purdue University, West Lafayette, IN, 47907, United States
| | - Ming-Hui Zhao
- Rice Research Institute/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang, 110161, China.
| | - Zhi-Fu Guo
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, 110161, China.
| |
Collapse
|
9
|
Zhang W, Wu M, Zhong X, Liu Y, Yang X, Cai W, Zhu K, Zhang H, Gu J, Wang Z, Liu L, Zhang J, Yang J. Involvement of brassinosteroids and abscisic acid in spikelet degeneration in rice under soil drying during meiosis. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1580-1600. [PMID: 38035729 DOI: 10.1093/jxb/erad461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023]
Abstract
Spikelet degeneration in rice (Oryza sativa L.) is a serious physiological defect, and can be regulated by soil moisture status and phytohormones. This study investigated the possibility that brassinosteroids (BRs) in collaboration with abscisic acid (ABA) are involved in mediating the effect of soil drying during meiosis on spikelet degeneration in rice. Three rice cultivars were field grown and three irrigation regimes including well watered (WW), moderate soil drying (MD), and severe soil drying (SD) were imposed during meiosis. MD significantly decreased spikelet degeneration in comparison with WW, due mainly to the alleviation in oxidative damage via enhancing ascorbate-glutathione (AsA-GSH) cycle activity in young panicles, and SD exhibited the opposite effects. Enhanced AsA-GSH cycle strength, decreased oxidative stress, and spikelet degeneration rate were closely associated with the synergistically elevated BR and ABA levels in young panicles in MD. In contrast, low BR and excessive ABA levels led to an increase in spikelet degeneration in SD. The three cultivars exhibited the same tendencies. The intrinsic link among AsA-GSH cycle, oxidative stress, spikelet degeneration rate, and BR and ABA levels was further verified by using transgenic rice lines and chemical regulators. BRs or ABA play a unique role in regulating spikelet degeneration. Synergistically increased BR and ABA levels in MD could work together to strengthen AsA-GSH cycle activity, leading to a reduction in oxidative damage and spikelet degeneration. On the other hand, a severe imbalance between low BR and excessive ABA levels may have contributed to the opposite effects in SD.
Collapse
Affiliation(s)
- Weiyang Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Mengyin Wu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Xiaohan Zhong
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Ying Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Xinxin Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Wei Cai
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Kuanyu Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Hao Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Junfei Gu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Zhiqin Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Lijun Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong 999077, China
| | - Jianchang Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
10
|
Jiménez A, López-Martínez R, Martí MC, Cano-Yelo D, Sevilla F. The integration of TRX/GRX systems and phytohormonal signalling pathways in plant stress and development. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108298. [PMID: 38176187 DOI: 10.1016/j.plaphy.2023.108298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024]
Abstract
Plant acclimation to changing environmental conditions involves the interaction of different signalling molecules, including reactive oxygen species and hormones. Redox regulation exerted by thioredoxin (TRX) and glutaredoxin (GRX), two oxidoreductases, is emerging as a specific point of control mediating signal transduction pathways associated with plant growth and stress response. Phytohormones are messengers that coordinate plant cell activities to regulate growth, defence, and productivity, although their cross-talk with components of the redox system is less known. The present review focuses on our current knowledge of the interplay that occurs between TRX and GRX systems and phytohormonal signalling pathways in connection with the control of plant development and stress responses. Here, we consider the regulation that phytohormones exert on TRX and GRX systems, as well as the involvement of these redox proteins in the control of phytohormone-mediated signalling pathways.
Collapse
Affiliation(s)
- Ana Jiménez
- Abiotic Stress, Production and Quality Laboratory, Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Murcia, Spain.
| | - Raquel López-Martínez
- Abiotic Stress, Production and Quality Laboratory, Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Murcia, Spain.
| | - María Carmen Martí
- Abiotic Stress, Production and Quality Laboratory, Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Murcia, Spain.
| | - Desiré Cano-Yelo
- Abiotic Stress, Production and Quality Laboratory, Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Murcia, Spain.
| | - Francisca Sevilla
- Abiotic Stress, Production and Quality Laboratory, Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Murcia, Spain.
| |
Collapse
|
11
|
Nie W, Gong B, Geng B, Wen D, Qiao P, Guo H, Shi Q. The Effects of Exogenous 2,4-Epibrassinolide on the Germination of Cucumber Seeds under NaHCO 3 Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:394. [PMID: 38337927 PMCID: PMC10856843 DOI: 10.3390/plants13030394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/20/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
This investigation focused on the suppressive impact of varying NaHCO3 concentrations on cucumber seed germination and the ameliorative effects of 2,4-Epibrassinolide (EBR). The findings revealed a negative correlation between NaHCO3 concentration and cucumber seed germination, with increased NaHCO3 concentrations leading to a notable decline in germination. Crucially, the application of exogenous EBR significantly counteracted this inhibition, effectively enhancing germination rates and seed vigor. Exogenous EBR was observed to substantially elevate the activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD), thereby mitigating oxidative damage triggered under NaHCO3 stress conditions. Additionally, EBR improved enzyme activity under alkaline stress conditions and reduced starch content in the seeds. Pertinently, EBR upregulated genes that were associated with gibberellin (GA) synthesis (GA20ox and GA3ox), and downregulated genes that were linked to abscisic acid (ABA) synthesis (NCED1 and NCED2). This led to an elevation in GA3 concentration and a reduction in ABA concentration within the cucumber seeds. Therefore, this study elucidates that alleviating oxidative stress, promoting starch catabolism, and regulating the GA and ABA balance are key mechanisms through which exogenous EBR mitigates the suppression of cucumber seed germination resulting from alkaline stress.
Collapse
Affiliation(s)
- Wenjing Nie
- Yantai Engineering Research Center for Plant Stem Cell Targeted Breeding, Shandong Institute of Sericulture, Yantai 264001, China; (W.N.)
| | - Biao Gong
- Stage Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Bing Geng
- Yantai Engineering Research Center for Plant Stem Cell Targeted Breeding, Shandong Institute of Sericulture, Yantai 264001, China; (W.N.)
| | - Dan Wen
- Yantai Engineering Research Center for Plant Stem Cell Targeted Breeding, Shandong Institute of Sericulture, Yantai 264001, China; (W.N.)
| | - Peng Qiao
- Yantai Engineering Research Center for Plant Stem Cell Targeted Breeding, Shandong Institute of Sericulture, Yantai 264001, China; (W.N.)
| | - Hongen Guo
- Yantai Engineering Research Center for Plant Stem Cell Targeted Breeding, Shandong Institute of Sericulture, Yantai 264001, China; (W.N.)
| | - Qinghua Shi
- Stage Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
| |
Collapse
|
12
|
Yueshan J, Sun M, Yansu L, Xiaojie F, Menglu L, Aokun S, Chaoxing H, Yan Y, Jun W, Xianchang Y. Sodium nitrophenolate mediates brassinosteroids signaling to enhance cold tolerance of cucumber seedling. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108317. [PMID: 38171135 DOI: 10.1016/j.plaphy.2023.108317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/12/2023] [Accepted: 12/25/2023] [Indexed: 01/05/2024]
Abstract
Cold stress (CS) significantly limits cucumber yield. However, it remains unclear whether and how sodium nitrophenolate (CSN) regulates plant responses to cold stress. Here, H2O, CSN, 24-epibrassinolide (EBR), and CSN + EBR were sprayed on cucumber seedlings before or after CS, and on control plants. We found that CSN, EBR, or EBR + CSN pre-treatment improved seedling growth under normal conditions (control condition) and cold tolerance under CS conditions. EBR pre-treatment promoted the expression of approximately half of the genes involved in BR synthesis and signaling and CsICE-CsCBF-CsCOR under CS. However, CSN pre-treatment promoted almost all the expression of BR synthesis and signaling genes, and CsICE-CsCBF-CsCOR genes, which showed the highest expression in early CS, remarkably improving the cold tolerance of cucumber. Interestingly, EBR and CSN had a superimposed effect on the expression of BR synthesis and signaling and CsICE-CsCBF-CsCOR genes, which rapidly increased their expression under normal temperature. Spraying EBR after CS accelerated seedling recovery, whereas CSN had the opposite effect. However, spraying CSN combined with EBR accelerated the recovery of CS-injured seedlings and was better than spraying EBR alone. Although CS-injured seedlings were negatively influenced by CSN, pre-treatment with CSN accelerated seedling growth and increased cold tolerance, suggesting that the effect of CSN was related to whether the seedlings were damaged by CS. In conclusion, we firstly found that CSN enhanced cold tolerance by activating BR signaling, contributing to the gene expression of ICE-CBF-COR and that CSN + EBR contributed to cold tolerance and CS-injured seedling recovery in cucumber.
Collapse
Affiliation(s)
- Jiang Yueshan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Mintao Sun
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Li Yansu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Feng Xiaojie
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Li Menglu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shi Aokun
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - He Chaoxing
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yan Yan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wang Jun
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yu Xianchang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
13
|
Mahati K, Padmasree K. Brassinolide promotes interaction between chloroplasts and mitochondria during the optimization of photosynthesis by the mitochondrial electron transport chain in mesophyll cell protoplasts of Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2023; 14:1099474. [PMID: 37113597 PMCID: PMC10126290 DOI: 10.3389/fpls.2023.1099474] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
The current experimental data unveils the role of brassinolide (BL), a phytohormone of class brassinosteroids (BRs), in augmenting the cross-talk between the mitochondrial electron transport chain (mETC) and chloroplasts to strengthen the efficiency of the Calvin-Benson cycle (CBC) for higher assimilation of carbon dioxide in the mesophyll cell protoplasts (MCP) of Arabidopsis thaliana. The outcome of total respiration (TR) and photosynthetic carbon assimilation (PCA) was monitored as O2 uptake under dark and NaHCO3-dependent O2 evolution under light, respectively, after pre-incubation of MCP at a broad spectrum of BL concentration from 0.05 pM to 5 pM at 25 °C and optimum light intensity of 1000 μmol m-2 s-1. The addition of optimal concentration (0.5 pM) of BL to MCP stimulated the (i) TR, (ii) PCA, and (iii) para-benzoquinone-dependent O2 evolution (PSII activity). Further, in response to BL, the enzyme activity or transcript levels of redox-regulated CBC enzymes and glucose-6-phosphate raised considerably. Also, the addition of BL to MCP remarkably accelerated the capacity of the cytochrome oxidase (COX) and alternative oxidase (AOX) pathways concurrently with an increase in total cellular pyruvate and reactive oxygen species (ROS) levels. Besides, malate valve components (Malate, Chl-MDH, M-MDH) increased in response to BL. At the same time, the cellular redox ratios of pyridine nucleotides (NADPH and NADH) were kept low in the presence of BL. However, BL could not keep up the CBC activity of photosynthesis along with its associated light-activated enzymes/transcripts when mETC through COX or AOX pathway is restricted by antimycin A (AA) or salicylhydroxamic acid (SHAM), respectively. In contrast, adding BL to MCP under restricted mETC showed aggravation in total cellular ROS, pyruvate, malate, and redox ratio of pyridine nucleotides with a concomitant increase in transcripts associated with malate valve and antioxidant systems. These results suggest that BL enhances the PCA by coordinating in cross-talk of chloroplasts and mitochondria to regulate the cellular redox ratio or ROS through the involvement of COX and AOX pathways along with the malate valve and antioxidant systems.
Collapse
|
14
|
Bilal S, Khan T, Asaf S, Khan NA, Saad Jan S, Imran M, Al-Rawahi A, Khan AL, Lee IJ, Al-Harrasi A. Silicon-Induced Morphological, Biochemical and Molecular Regulation in Phoenix dactylifera L. under Low-Temperature Stress. Int J Mol Sci 2023; 24:ijms24076036. [PMID: 37047009 PMCID: PMC10094002 DOI: 10.3390/ijms24076036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
Climate changes abruptly affect optimum growth temperatures, leading to a negative influence on plant physiology and productivity. The present study aimed to investigate the extent of low-temperature stress effects on date palm growth and physiological indicators under the exogenous application of silicon (Si). Date palm seedlings were treated with Si (1.0 mM) and exposed to different temperature regimes (5, 15, and 30 °C). It was observed that the application of Si markedly improved fresh and dry biomass, photosynthetic pigments (chlorophyll and carotenoids), plant morphology, and relative water content by ameliorating low-temperature-induced oxidative stress. Low-temperature stress (5 and 15 °C), led to a substantial upregulation of ABA-signaling-related genes (NCED-1 and PyL-4) in non Si treated plants, while Si treated plants revealed an antagonistic trend. However, jasmonic acid and salicylic acid accumulation were markedly elevated in Si treated plants under stress conditions (5 and 15 °C) in comparison with non Si treated plants. Interestingly, the upregulation of low temperature stress related plant plasma membrane ATPase (PPMA3 and PPMA4) and short-chain dehydrogenases/reductases (SDR), responsible for cellular physiology, stomatal conductance and nutrient translocation under silicon applications, was observed in Si plants under stress conditions in comparison with non Si treated plants. Furthermore, a significant expression of LSi-2 was detected in Si plants under stress, leading to the significant accumulation of Si in roots and shoots. In contrast, non Si plants demonstrated a low expression of LSi-2 under stress conditions, and thereby, reduced level of Si accumulation were observed. Less accumulation of oxidative stress was evident from the expression of superoxide dismutase (SOD) and catalase (CAT). Additionally, Si plants revealed a significant exudation of organic acids (succinic acid and citric acid) and nutrient accumulation (K and Mg) in roots and shoots. Furthermore, the application of Si led to substantial upregulation of the low temperature stress related soybean cold regulated gene (SRC-2) and ICE-1 (inducer of CBF expression 1), involved in the expression of CBF/DREB (C-repeat binding factor/dehydration responsive element binding factor) gene family under stress conditions in comparison with non Si plants. The current research findings are crucial for exploring the impact on morpho-physio-biochemical attributes of date palms under low temperature and Si supplementation, which may provide an efficient strategy for growing plants in low-temperature fields.
Collapse
Affiliation(s)
- Saqib Bilal
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Taimoor Khan
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Sajjad Asaf
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Nasir Ali Khan
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX 79409, USA
| | - Syed Saad Jan
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Muhammad Imran
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, 80 Dahak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Ahmed Al-Rawahi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Abdul Latif Khan
- Department of Engineering Technology, University of Houston, Sugar Land, TX 77479, USA
| | - In-Jung Lee
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, 80 Dahak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| |
Collapse
|
15
|
Zhou M, Li Y, Yan Y, Gao L, He C, Wang J, Yuan Q, Miao L, Li S, Di Q, Yu X, Sun M. Proteome and phosphoproteome analysis of 2,4-epibrassinolide-mediated cold stress response in cucumber seedlings. FRONTIERS IN PLANT SCIENCE 2023; 14:1104036. [PMID: 36895878 PMCID: PMC9989176 DOI: 10.3389/fpls.2023.1104036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The 2, 4-epibrassinolide (EBR) significantly increased plants cold tolerance. However, mechanisms of EBR in regulating cold tolerance in phosphoproteome and proteome levels have not been reported. The mechanism of EBR regulating cold response in cucumber was studied by multiple omics analysis. In this study, phosphoproteome analysis showed that cucumber responded to cold stress through multi-site serine phosphorylation, while EBR further upregulated single-site phosphorylation for most of cold-responsive phosphoproteins. Association analysis of the proteome and phosphoproteome revealed that EBR reprogrammed proteins in response to cold stress by negatively regulating protein phosphorylation and protein content, and phosphorylation negatively regulated protein content in cucumber. Further functional enrichment analysis of proteome and phosphoproteome showed that cucumber mainly upregulated phosphoproteins related to spliceosome, nucleotide binding and photosynthetic pathways in response to cold stress. However, different from the EBR regulation in omics level, hypergeometric analysis showed that EBR further upregulated 16 cold-up-responsive phosphoproteins participated photosynthetic and nucleotide binding pathways in response to cold stress, suggested their important function in cold tolerance. Analysis of cold-responsive transcription factors (TFs) by correlation between proteome and phosphoproteome showed that cucumber regulated eight class TFs may through protein phosphorylation under cold stress. Further combined with cold-related transcriptome found that cucumber phosphorylated eight class TFs, and mainly through targeting major hormone signal genes by bZIP TFs in response to cold stress, while EBR further increased these bZIP TFs (CsABI5.2 and CsABI5.5) phosphorylation level. In conclusion, the EBR mediated schematic of molecule response mechanisms in cucumber under cold stress was proposed.
Collapse
Affiliation(s)
- Mengdi Zhou
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Tablecrops, China Agricultural University, Beijing, China
| | - Yansu Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan Yan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lihong Gao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Tablecrops, China Agricultural University, Beijing, China
| | - Chaoxing He
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Quan Yuan
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Li Miao
- College of Horticulture, Zhejiang A & F University, Hangzhou, China
| | - Shuzhen Li
- College of Life Science, Gannan Normal University, Ganzhou, China
| | - Qinghua Di
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xianchang Yu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mintao Sun
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
16
|
An S, Liu Y, Sang K, Wang T, Yu J, Zhou Y, Xia X. Brassinosteroid signaling positively regulates abscisic acid biosynthesis in response to chilling stress in tomato. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:10-24. [PMID: 36053143 DOI: 10.1111/jipb.13356] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Brassinosteroids (BRs) and abscisic acid (ABA) are essential regulators of plant growth and stress tolerance. Although the antagonistic interaction of BRs and ABA is proposed to ensure the balance between growth and defense in model plants, the crosstalk between BRs and ABA in response to chilling in tomato (Solanum lycopersicum), a warm-climate horticultural crop, is unclear. Here, we determined that overexpression of the BR biosynthesis gene DWARF (DWF) or the key BR signaling gene BRASSINAZOLE-RESISTANT1 (BZR1) increases ABA levels in response to chilling stress via positively regulating the expression of the ABA biosynthesis gene 9-CIS-EPOXYCAROTENOID DIOXYGENASE1 (NCED1). BR-induced chilling tolerance was mostly dependent on ABA biosynthesis. Chilling stress or high BR levels decreased the abundance of BRASSINOSTEROID-INSENSITIVE2 (BIN2), a negative regulator of BR signaling. Moreover, we observed that chilling stress increases BR levels and results in the accumulation of BZR1. BIN2 negatively regulated both the accumulation of BZR1 protein and chilling tolerance by suppressing ABA biosynthesis. Our results demonstrate that BR signaling positively regulates chilling tolerance via ABA biosynthesis in tomato. The study has implications in production of warm-climate crops in horticulture.
Collapse
Affiliation(s)
- Shengmin An
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Yue Liu
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Kangqi Sang
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Ting Wang
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Jingquan Yu
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
- Hainan Institute, Zhejiang University, Sanya, 572025, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Hangzhou, 310058, China
| | - Yanhong Zhou
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
- Hainan Institute, Zhejiang University, Sanya, 572025, China
| | - Xiaojian Xia
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
- Hainan Institute, Zhejiang University, Sanya, 572025, China
| |
Collapse
|
17
|
Zhang Y, Fu X, Feng Y, Zhang X, Bi H, Ai X. Abscisic Acid Mediates Salicylic Acid Induced Chilling Tolerance of Grafted Cucumber by Activating H 2O 2 Biosynthesis and Accumulation. Int J Mol Sci 2022; 23:ijms232416057. [PMID: 36555697 PMCID: PMC9783703 DOI: 10.3390/ijms232416057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Grafting is widely applied to enhance the tolerance of some vegetables to biotic and abiotic stress. Salicylic acid (SA) is known to be involved in grafting-induced chilling tolerance in cucumber. Here, we revealed that grafting with pumpkin (Cucurbita moschata, Cm) as a rootstock improved chilling tolerance and increased the accumulation of SA, abscisic acid (ABA) and hydrogen peroxide (H2O2) in grafted cucumber (Cucumis sativus/Cucurbita moschata, Cs/Cm) leaves. Exogenous SA improved the chilling tolerance and increased the accumulation of ABA and H2O2 and the mRNA abundances of CBF1, COR47, NCED, and RBOH1. However, 2-aminoindan-2-phosphonic acid (AIP) and L-a-aminooxy-b-phenylpropionic acid (AOPP) (biosynthesis inhibitors of SA) reduced grafting-induced chilling tolerance, as well as the synthesis of ABA and H2O2, in cucumber leaves. ABA significantly increased endogenous H2O2 production and the resistance to chilling stress, as proven by the lower electrolyte leakage (EL) and chilling injury index (CI). However, application of the ABA biosynthesis inhibitors sodium tungstate (Na2WO4) and fluridone (Flu) abolished grafting or SA-induced H2O2 accumulation and chilling tolerance. SA-induced plant response to chilling stress was also eliminated by N,N'-dimethylthiourea (DMTU, an H2O2 scavenger). In addition, ABA-induced chilling tolerance was attenuated by DMTU and diphenyleneiodonium (DPI, an H2O2 inhibitor) chloride, but AIP and AOPP had little effect on the ABA-induced mitigation of chilling stress. Na2WO4 and Flu diminished grafting- or SA-induced H2O2 biosynthesis, but DMTU and DPI did not affect ABA production induced by SA under chilling stress. These results suggest that SA participated in grafting-induced chilling tolerance by stimulating the biosynthesis of ABA and H2O2. H2O2, as a downstream signaler of ABA, mediates SA-induced chilling tolerance in grafted cucumber plants.
Collapse
Affiliation(s)
- Yanyan Zhang
- State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
- Tai’an Academy of Agricultural Sciences, Tai’an 271000, China
| | - Xin Fu
- State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Yiqing Feng
- State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Xiaowei Zhang
- State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Huangai Bi
- State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
- Correspondence: author: (H.B.); (X.A.)
| | - Xizhen Ai
- State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
- Correspondence: author: (H.B.); (X.A.)
| |
Collapse
|
18
|
Nowicka B. Modifications of Phytohormone Metabolism Aimed at Stimulation of Plant Growth, Improving Their Productivity and Tolerance to Abiotic and Biotic Stress Factors. PLANTS (BASEL, SWITZERLAND) 2022; 11:3430. [PMID: 36559545 PMCID: PMC9781743 DOI: 10.3390/plants11243430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Due to the growing human population, the increase in crop yield is an important challenge for modern agriculture. As abiotic and biotic stresses cause severe losses in agriculture, it is also crucial to obtain varieties that are more tolerant to these factors. In the past, traditional breeding methods were used to obtain new varieties displaying demanded traits. Nowadays, genetic engineering is another available tool. An important direction of the research on genetically modified plants concerns the modification of phytohormone metabolism. This review summarizes the state-of-the-art research concerning the modulation of phytohormone content aimed at the stimulation of plant growth and the improvement of stress tolerance. It aims to provide a useful basis for developing new strategies for crop yield improvement by genetic engineering of phytohormone metabolism.
Collapse
Affiliation(s)
- Beatrycze Nowicka
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
19
|
Abiotic Stress Tolerance in Plants: Brassinosteroids Navigate Competently. Int J Mol Sci 2022; 23:ijms232314577. [PMID: 36498906 PMCID: PMC9737064 DOI: 10.3390/ijms232314577] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/24/2022] Open
Abstract
Brassinosteroid hormones (BRs) multitask to smoothly regulate a broad spectrum of vital physiological processes in plants, such as cell division, cell expansion, differentiation, seed germination, xylem differentiation, reproductive development and light responses (photomorphogenesis and skotomorphogenesis). Their importance is inferred when visible abnormalities arise in plant phenotypes due to suboptimal or supraoptimal hormone levels. This group of steroidal hormones are major growth regulators, having pleiotropic effects and conferring abiotic stress resistance to plants. Numerous abiotic stresses are the cause of significant loss in agricultural yield globally. However, plants are well equipped with efficient stress combat machinery. Scavenging reactive oxygen species (ROS) is a unique mechanism to combat the deleterious effects of abiotic stresses. In light of numerous reports in the past two decades, the complex BR signaling under different stress conditions (drought, salinity, extreme temperatures and heavy metals/metalloids) that drastically hinders the normal metabolism of plants is gradually being untangled and revealed. Thus, crop improvement has substantial potential by tailoring either the brassinosteroid signaling, biosynthesis pathway or perception. This review aims to explore and dissect the actual mission of BRs in signaling cascades and summarize their positive role with respect to abiotic stress tolerance.
Collapse
|
20
|
Gan Q, Luan M, Hu M, Liu Z, Zhang Z. Functional study of CYP90A1 and ALDH3F1 gene obtained by transcriptome sequencing analysis of Brassica napus seedlings treated with brassinolide. FRONTIERS IN PLANT SCIENCE 2022; 13:1040511. [PMID: 36407633 PMCID: PMC9669335 DOI: 10.3389/fpls.2022.1040511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Sclerotinia disease and weeds of Brassica napus greatly reduce crop yields. However, brassinolides can improve the resistance of plants to sclerotinia diseases and herbicides. In this study, we investigated the effects of brassinolide on the occurrence, physiological indices, yield, and gene expression of Fanming No. 1 seeds under sclerotinia and glufosinate stress. The results showed that soaking of the seeds in 0.015% brassinolide for 6 h reduced the incidence of sclerotinia by 10%. Additionally, in response to glufosinate stress at the seedling stage, the enzyme activities of catalase and superoxide dismutase increased by 9.6 and 19.0 U/gFW/min, respectively, and the soluble sugar content increased by 9.4 mg/g, increasing the stress resistance of plants and yield by 2.4%. LHCB1, fabF, psbW, CYP90A1, ALDH3F1, ACOX1, petF, and ACSL were screened by transcriptome analysis. ALDH3F1 and CYP90A1 were identified as key genes. Following glufosinate treatment, transgenic plants overexpressing ALDH3F1 and CYP90A1 were found to be resistant to glufosinate, and the expression levels of the ALDH3F1 and CYP90A1 were 1.03-2.37-fold as high as those in the control. The expression level of ATG3, which is an antibacterial gene related to sclerotinia disease, in transgenic plants was 2.40-2.37-fold as high as that in the control. Our results indicate that these two key genes promote plant resistance to sclerotinia and glufosinate. Our study provides a foundation for further studies on the molecular mechanisms of rapeseed resistance breeding and selection of new resistant varieties.
Collapse
Affiliation(s)
- Qingqin Gan
- College of Agriculture, Hunan Agricultural University, Changsha, China
| | - Mingbao Luan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences/Key Laboratory of Stem-Fiber Biomass and Engineering Microbiology, Ministry of Agriculture, Changsha, China
| | - Maolong Hu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Zhongsong Liu
- College of Agriculture, Hunan Agricultural University, Changsha, China
| | - Zhenqian Zhang
- College of Agriculture, Hunan Agricultural University, Changsha, China
| |
Collapse
|
21
|
Mohapatra S, Sirhindi G, Dogra V. Seed priming with brassinolides improves growth and reinforces antioxidative defenses under normal and heat stress conditions in seedlings of Brassica juncea. PHYSIOLOGIA PLANTARUM 2022; 174:e13814. [PMID: 36326060 DOI: 10.1111/ppl.13814] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Environmental stresses pose a major challenge for plant researchers to fulfill increasing food demand. Researchers are trying to generate high-yielding and stress-tolerant or resistant varieties using classical genetics and modern gene-editing tools; however, both approaches have limitations. Chemical treatments emerged as an alternative to improve yield and impart stress resilience. Brassinosteroids (BRs) are a group of phytohormones that regulate various biological processes, including stress management. With foliar spray methods, BR treatments showed promising results but are not economically feasible. We hypothesize that priming of seeds, which requires lesser amounts of BRs, could be equally effective in promoting growth and stress tolerance. Owing to this notion, we analyzed the impact of priming seeds with selected BRs, namely, 24-epibrassinolide (EBL) and 28-homobrassinolide (HBL), in Brassica juncea under normal and heat shock stress conditions. Seeds primed with BRs and grown until seedlings stage at normal conditions (20°C) were subjected to a heat shock (35°C) for a few hours, relating to what plants experience in natural conditions. Heat shock reduced the growth and biomass with an increased accumulation of reactive oxygen species. As anticipated, BRs treatments significantly improved the growth and physiological parameters with an enhanced antioxidant defense under both conditions. Transcriptional analyses revealed that BRs concomitantly induce growth and oxidative stress-responsive gene expression via the canonical BR-signaling pathway. Transfer of unstressed and heat-shock-treated seedlings to field conditions demonstrated the long-term effectivity of BR-priming. Our results showed seed priming with BRs could improve growth and resilience against heat shock; hence, it appears to be a viable strategy to enhance crop yields and stress tolerance.
Collapse
Affiliation(s)
- Sumanta Mohapatra
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | | | - Vivek Dogra
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
22
|
BZR proteins: identification, evolutionary and expression analysis under various exogenous growth regulators in plants. Mol Biol Rep 2022; 49:12039-12053. [DOI: 10.1007/s11033-022-07814-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/20/2022] [Indexed: 11/27/2022]
|
23
|
Raza A, Salehi H, Rahman MA, Zahid Z, Madadkar Haghjou M, Najafi-Kakavand S, Charagh S, Osman HS, Albaqami M, Zhuang Y, Siddique KHM, Zhuang W. Plant hormones and neurotransmitter interactions mediate antioxidant defenses under induced oxidative stress in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:961872. [PMID: 36176673 PMCID: PMC9514553 DOI: 10.3389/fpls.2022.961872] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/03/2022] [Indexed: 05/24/2023]
Abstract
Due to global climate change, abiotic stresses are affecting plant growth, productivity, and the quality of cultivated crops. Stressful conditions disrupt physiological activities and suppress defensive mechanisms, resulting in stress-sensitive plants. Consequently, plants implement various endogenous strategies, including plant hormone biosynthesis (e.g., abscisic acid, jasmonic acid, salicylic acid, brassinosteroids, indole-3-acetic acid, cytokinins, ethylene, gibberellic acid, and strigolactones) to withstand stress conditions. Combined or single abiotic stress disrupts the normal transportation of solutes, causes electron leakage, and triggers reactive oxygen species (ROS) production, creating oxidative stress in plants. Several enzymatic and non-enzymatic defense systems marshal a plant's antioxidant defenses. While stress responses and the protective role of the antioxidant defense system have been well-documented in recent investigations, the interrelationships among plant hormones, plant neurotransmitters (NTs, such as serotonin, melatonin, dopamine, acetylcholine, and γ-aminobutyric acid), and antioxidant defenses are not well explained. Thus, this review discusses recent advances in plant hormones, transgenic and metabolic developments, and the potential interaction of plant hormones with NTs in plant stress response and tolerance mechanisms. Furthermore, we discuss current challenges and future directions (transgenic breeding and genome editing) for metabolic improvement in plants using modern molecular tools. The interaction of plant hormones and NTs involved in regulating antioxidant defense systems, molecular hormone networks, and abiotic-induced oxidative stress tolerance in plants are also discussed.
Collapse
Affiliation(s)
- Ali Raza
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hajar Salehi
- Laboratory of Plant Cell Biology, Department of Biology, Bu-Ali Sina University, Hamedan, Iran
| | - Md Atikur Rahman
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan, South Korea
| | - Zainab Zahid
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | - Maryam Madadkar Haghjou
- Department of Biology, Plant Physiology, Faculty of Science, Lorestan University, Khorramabad, Iran
| | - Shiva Najafi-Kakavand
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sidra Charagh
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Hany S. Osman
- Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Mohammed Albaqami
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Yuhui Zhuang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | | | - Weijian Zhuang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
24
|
Zheng G, Dong X, Wei J, Liu Z, Aslam A, Cui J, Li H, Wang Y, Tian H, Cao X. Integrated methylome and transcriptome analysis unravel the cold tolerance mechanism in winter rapeseed(Brassica napus L.). BMC PLANT BIOLOGY 2022; 22:414. [PMID: 36008781 PMCID: PMC9414130 DOI: 10.1186/s12870-022-03797-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Cytosine methylation, the main type of DNA methylation, regulates gene expression in plant response to environmental stress. The winter rapeseed has high economic and ecological value in China's Northwest, but the DNA methylation pattern of winter rapeseed during freezing stress remains unclear. RESULT This study integrated the methylome and transcriptome to explore the genome-scale DNA methylation pattern and its regulated pathway of winter rapeseed, using freezing-sensitive (NF) and freezing-resistant (NS) cultivars.The average methylation level decreased under freezing stress, and the decline in NF was stronger than NS after freezing stress. The CG methylation level was the highest among the three contexts of CG, CHG, and CHH. At the same time, the CHH proportion was high, and the methylation levels were highest 2 kb up/downstream, followed by the intron region. The C sub-genomes methylation level was higher than the A sub-genomes. The methylation levels of chloroplast and mitochondrial DNA were much lower than the B. napus nuclear DNA, the SINE methylation level was highest among four types of transposable elements (TEs), and the preferred sequence of DNA methylation did not change after freezing stress. A total of 1732 differentially expressed genes associated with differentially methylated genes (DMEGs) were identified in two cultivars under 12 h and 24 h in three contexts by combining whole-genome bisulfite sequencing( and RNA-Seq data. Function enrichment analysis showed that most DMEGs participated in linoleic acid metabolism, alpha-linolenic acid metabolism, carbon fixation in photosynthetic organisms, flavonoid biosynthesis, and plant hormone signal transduction pathways. Meanwhile, some DMEGs encode core transcription factors in plant response to stress. CONCLUSION Based on the findings of DNA methylation, the freezing tolerance of winter rapeseed is achieved by enhanced signal transduction, lower lipid peroxidation, stronger cell stability, increased osmolytes, and greater reactive oxygen species (ROS) scavenging. These results provide novel insights into better knowledge of the methylation regulation of tolerance mechanism in winter rapeseed under freezing stress.
Collapse
Affiliation(s)
- Guoqiang Zheng
- State Key Laboratory of Aridland Crop Sciences, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Xiaoyun Dong
- State Key Laboratory of Aridland Crop Sciences, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Jiaping Wei
- State Key Laboratory of Aridland Crop Sciences, Lanzhou, China
| | - Zigang Liu
- State Key Laboratory of Aridland Crop Sciences, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Ali Aslam
- Affiliation Faculty of Agriculture and Veterinary Sciences, Superior University, Lahore, Pakistan
| | - JunMei Cui
- State Key Laboratory of Aridland Crop Sciences, Lanzhou, China
| | - Hui Li
- State Key Laboratory of Aridland Crop Sciences, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Ying Wang
- State Key Laboratory of Aridland Crop Sciences, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Haiyan Tian
- State Key Laboratory of Aridland Crop Sciences, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Xiaodong Cao
- State Key Laboratory of Aridland Crop Sciences, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
25
|
Shuai H, Chen T, Wlk T, Rozhon W, Pimenta Lange MJ, Sieberer T, Lange T, Poppenberger B. SlCESTA Is a Brassinosteroid-Regulated bHLH Transcription Factor of Tomato That Promotes Chilling Tolerance and Fruit Growth When Over-Expressed. FRONTIERS IN PLANT SCIENCE 2022; 13:930805. [PMID: 35909777 PMCID: PMC9337221 DOI: 10.3389/fpls.2022.930805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Brassinosteroids (BRs) are required for various aspects of plant growth and development, but also participate in stress responses. The hormones convey their activity through transcriptional regulation and posttranslational modification of transcription factors and one class are basic helix-loop-helix (bHLH) proteins of the BR Enhanced Expression (BEE) subfamily, which in Arabidopsis thaliana include BEE1-3 and CESTA (CES). CES and the BEEs promote the expression of different BR-responsive genes, including genes encoding gibberellin (GA) biosynthetic and catabolizing enzymes, as well as cold-responsive genes. Interestingly, in terms of an application, CES could promote both fruit growth and cold stress tolerance when over-expressed in A. thaliana and here it was investigated, if this function is conserved in the fruit crop Solanum lycopersicum (cultivated tomato). Based on amino acid sequence similarity and the presence of regulatory motifs, a CES orthologue of S. lycopersicum, SlCES, was identified and the effects of its over-expression were analysed in tomato. This showed that SlCES, like AtCES, was re-localized to nuclear bodies in response to BR signaling activation and that it effected GA homeostasis, with related phenotypes, when over-expressed. In addition, over-expression lines showed an increased chilling tolerance and had altered fruit characteristics. The possibilities and potential limitations of a gain of SlCES function as a breeding strategy for tomato are discussed.
Collapse
Affiliation(s)
- Haiwei Shuai
- Biotechnology of Horticultural Crops, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Tingting Chen
- Biotechnology of Horticultural Crops, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Tanja Wlk
- Biotechnology of Horticultural Crops, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Wilfried Rozhon
- Biotechnology of Horticultural Crops, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | | | - Tobias Sieberer
- Plant Growth Regulation, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Theo Lange
- Institute of Plant Biology, Technical University of Braunschweig, Braunschweig, Germany
| | - Brigitte Poppenberger
- Biotechnology of Horticultural Crops, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
26
|
Massolo JF, Sánchez R, Zaro MJ, Concellón A, Vicente AR. Low‐dose prestorage 24‐epibrassinolide spray enhance postharvest chilling tolerance in zucchini squash (
Cucurbita pepo
L.) by eliciting peroxidase and phenolic antioxidants. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Juan Facundo Massolo
- Laboratorio de Investigación en Productos Agroindustriales (LIPA) Facultad de Cs. Agrarias y Forestales UNLP. Calle 60 y 118. La Plata, pcia. de BsAs Argentina
| | - Ramiro Sánchez
- Centro de Investigación en Ciencia y Tecnología de Alimentos (CIDCA) Facultad de Cs. Exactas UNLP Calle 47 y 116 (s/n). La Plata, Pcia. de Bs. As Argentina
| | - María José Zaro
- Centro de Investigación en Ciencia y Tecnología de Alimentos (CIDCA) Facultad de Cs. Exactas UNLP Calle 47 y 116 (s/n). La Plata, Pcia. de Bs. As Argentina
| | - Analía Concellón
- Centro de Investigación en Ciencia y Tecnología de Alimentos (CIDCA) Facultad de Cs. Exactas UNLP Calle 47 y 116 (s/n). La Plata, Pcia. de Bs. As Argentina
| | - Ariel Roberto Vicente
- Laboratorio de Investigación en Productos Agroindustriales (LIPA) Facultad de Cs. Agrarias y Forestales UNLP. Calle 60 y 118. La Plata, pcia. de BsAs Argentina
| |
Collapse
|
27
|
Glutaredoxin Interacts with GR and AhpC to Enhance Low-Temperature Tolerance of Antarctic Psychrophile Psychrobacter sp. ANT206. Int J Mol Sci 2022; 23:ijms23031313. [PMID: 35163237 PMCID: PMC8836231 DOI: 10.3390/ijms23031313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/22/2022] [Accepted: 01/22/2022] [Indexed: 02/05/2023] Open
Abstract
Glutaredoxin (Grx) is an important oxidoreductase to maintain the redox homoeostasis of cells. In our previous study, cold-adapted Grx from Psychrobacter sp. ANT206 (PsGrx) has been characterized. Here, we constructed an in-frame deletion mutant of psgrx (Δpsgrx). Mutant Δpsgrx was more sensitive to low temperature, demonstrating that psgrx was conducive to the growth of ANT206. Mutant Δpsgrx also had more malondialdehyde (MDA) and protein carbonylation content, suggesting that PsGrx could play a part in the regulation of tolerance against low temperature. A yeast two-hybrid system was adopted to screen interacting proteins of 26 components. Furthermore, two target proteins, glutathione reductase (GR) and alkyl hydroperoxide reductase subunit C (AhpC), were regulated by PsGrx under low temperature, and the interactions were confirmed via bimolecular fluorescence complementation (BiFC) and co-immunoprecipitation (Co-IP). Moreover, PsGrx could enhance GR activity. trxR expression in Δpsgrx, Δahpc, and ANT206 were illustrated 3.7, 2.4, and 10-fold more than mutant Δpsgrx Δahpc, indicating that PsGrx might increase the expression of trxR by interacting with AhpC. In conclusion, PsGrx may participate in glutathione metabolism and ROS-scavenging by regulating GR and AhpC to protect the growth of ANT206. These findings preliminarily suggest the role of PsGrx in the regulation of oxidative stress, which could improve the low-temperature tolerance of ANT206.
Collapse
|
28
|
Kakeshpour T, Tamang TM, Motolai G, Fleming ZW, Park JE, Wu Q, Park S. CGFS-type glutaredoxin mutations reduce tolerance to multiple abiotic stresses in tomato. PHYSIOLOGIA PLANTARUM 2021; 173:1263-1279. [PMID: 34392538 DOI: 10.1111/ppl.13522] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/23/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Sessile organisms such as plants have adopted diverse reactive oxygen species (ROS) scavenging mechanisms to mitigate damage under abiotic stress conditions. Though CGFS-type glutaredoxin (GRX) genes are important regulators of ROS homeostasis, each of their functions in crop plants have not yet been well understood. We performed a targeted mutagenesis analysis of four CGFS-type GRXs (SlGRXS14, SlGRXS15, SlGRXS16, and SlGRXS17) in tomato plants (Solanum lycopersicum) using a multiplex clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system and found that Slgrxs mutants were more sensitive to various abiotic stresses compared with the wild-type tomatoes. Slgrxs15 mutants were embryonic lethal. Single, double, and triple combinations of Slgrxs14, 16, and 17 mutants were examined under heat, chilling, drought, heavy metal toxicity, nutrient deficiency, and short photoperiod stresses. Slgrxs14 and 17 mutants showed hypersensitivity to almost all stresses while Slgrxs16 mutants were affected by chilling stress and showed milder sensitivity to other stresses. Additionally, Slgrxs14 and 17 mutants showed delayed flowering time. Our results indicate that the CGFS-type SlGRXs have specific roles against abiotic stresses, providing valuable resources to develop tomato and, possibly, other crop species that are tolerant to multiple abiotic stresses by genetic engineering.
Collapse
Affiliation(s)
- Tayebeh Kakeshpour
- Department of Horticulture and Natural Resources, Kansas State University, Manhattan, Kansas, USA
| | - Tej Man Tamang
- Department of Horticulture and Natural Resources, Kansas State University, Manhattan, Kansas, USA
| | - Gergely Motolai
- Department of Horticulture and Natural Resources, Kansas State University, Manhattan, Kansas, USA
| | - Zachary Wayne Fleming
- Department of Horticulture and Natural Resources, Kansas State University, Manhattan, Kansas, USA
| | - Jung-Eun Park
- Department of Horticulture and Natural Resources, Kansas State University, Manhattan, Kansas, USA
| | - Qingyu Wu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Sunghun Park
- Department of Horticulture and Natural Resources, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
29
|
Mira MM, Ibrahim S, Hill RD, Stasolla C. Cold stress in maize (Zea mays) is alleviated by the over-expression of Phytoglobin 1 (ZmPgb1.1). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:901-910. [PMID: 34544007 DOI: 10.1016/j.plaphy.2021.08.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Maize (Zea mays) plants over-expressing or suppressing the class 1 Phytoglobin (ZmPgb1.1) were evaluated for their ability to cope with low temperature stress. Cold treatment (10 °C day/4 °C night) depressed several gas exchange parameters including photosynthetic rate, stomatal conductance and transpiration, while elevated the levels of reactive oxygen species (ROS) and ROS-induced damage. These effects were attenuated by the over-expression of ZmPgb1.1, and aggravated when the level of the same gene was suppressed. Combination of transcriptomic and pharmacological studies revealed that over-expression of ZmPgb1.1 suppressed the level of nitric oxide (NO), which lowers the transcription of several Brassinosteroid (BR) biosynthetic and response genes. Cellular BR was required to induce the expression of ZmMPK5, a component of the mitogen-activated protein kinase (MAPK) cascade, which is known to be involved in the regulation of ROS-producing pathways. Experimental reduction of NO content, suppression of BR or inhibition of ZmMPK5 reverted the beneficial effects of ZmPgb1.1 over-expression, and increased plant susceptibility to cold stress through accumulation of ROS. Conversely, tolerance to cold was augmented in the ZmPgb1.1 down-regulating line when the levels of NO or BR were elevated. Together, this study demonstrates a novel role of ZmPgb1.1 in modulating plant performance to cold stress, and integrates the ZmPgb1.1 response in a model requiring NO and BR to alleviate oxidative stress through ZmMPK5.
Collapse
Affiliation(s)
- Mohamed M Mira
- Department of Plant Science, University of Manitoba, Winnipeg, R3T2N2, MB, Canada
| | - Shimaa Ibrahim
- Department of Plant Science, University of Manitoba, Winnipeg, R3T2N2, MB, Canada
| | - Robert D Hill
- Department of Plant Science, University of Manitoba, Winnipeg, R3T2N2, MB, Canada
| | - Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, R3T2N2, MB, Canada.
| |
Collapse
|
30
|
Liu D, Cui Y, Zhao Z, Li S, Liang D, Wang C, Feng G, Wang J, Liu Z. Genome-wide identification and characterization of the BES/BZR gene family in wheat and foxtail millet. BMC Genomics 2021; 22:682. [PMID: 34548036 PMCID: PMC8456565 DOI: 10.1186/s12864-021-08002-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022] Open
Abstract
Background BES/BZR family genes have vital roles in plant growth, development, and adaptation to environmental stimuli. However, they have not yet been characterized and systematically analyzed in wheat and foxtail millet. Results In the current study, five common and two unique BES/BZR genes were identified by genome-wide analysis in wheat and foxtail millet, respectively. These genes were unevenly distributed on 14 and five chromosomes of wheat and foxtail millet, respectively, and clustered in two subgroups in a phylogenetic analysis. The BES/BZR gene family members in each subgroup contained similar conserved motifs. Investigation of cis-acting elements and expression profile analysis revealed that the BES/BZR genes were predominantly expressed in leaf tissues of wheat and foxtail millet seedlings and responded to brassinosteroid, abscisic acid, and NaCl treatments. Conclusions Our results provide a basis for future studies on the function and molecular mechanisms of the BES/BZR gene family in wheat, foxtail millet, and other plants. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08002-5.
Collapse
Affiliation(s)
- Dan Liu
- Tianjin Key Laboratory of Crop Genetics and Breeding, Institute of Crop Sciences, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Yanjiao Cui
- Department of Life Sciences, Tangshan Normal University, Tangshan, China
| | - Zilong Zhao
- Department of Life Sciences, Tangshan Normal University, Tangshan, China
| | - Suying Li
- Department of Life Sciences, Tangshan Normal University, Tangshan, China
| | - Dan Liang
- Tianjin Key Laboratory of Crop Genetics and Breeding, Institute of Crop Sciences, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Conglei Wang
- Tianjin Key Laboratory of Crop Genetics and Breeding, Institute of Crop Sciences, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Gang Feng
- Tianjin Key Laboratory of Crop Genetics and Breeding, Institute of Crop Sciences, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Jianhe Wang
- Tianjin Key Laboratory of Crop Genetics and Breeding, Institute of Crop Sciences, Tianjin Academy of Agricultural Sciences, Tianjin, China.
| | - Zhengli Liu
- Department of Life Sciences, Tangshan Normal University, Tangshan, China.
| |
Collapse
|
31
|
Role of Reactive Oxygen Species and Hormones in Plant Responses to Temperature Changes. Int J Mol Sci 2021; 22:ijms22168843. [PMID: 34445546 PMCID: PMC8396215 DOI: 10.3390/ijms22168843] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 12/22/2022] Open
Abstract
Temperature stress is one of the major abiotic stresses that adversely affect agricultural productivity worldwide. Temperatures beyond a plant's physiological optimum can trigger significant physiological and biochemical perturbations, reducing plant growth and tolerance to stress. Improving a plant's tolerance to these temperature fluctuations requires a deep understanding of its responses to environmental change. To adapt to temperature fluctuations, plants tailor their acclimatory signal transduction events, and specifically, cellular redox state, that are governed by plant hormones, reactive oxygen species (ROS) regulatory systems, and other molecular components. The role of ROS in plants as important signaling molecules during stress acclimation has recently been established. Here, hormone-triggered ROS produced by NADPH oxidases, feedback regulation, and integrated signaling events during temperature stress activate stress-response pathways and induce acclimation or defense mechanisms. At the other extreme, excess ROS accumulation, following temperature-induced oxidative stress, can have negative consequences on plant growth and stress acclimation. The excessive ROS is regulated by the ROS scavenging system, which subsequently promotes plant tolerance. All these signaling events, including crosstalk between hormones and ROS, modify the plant's transcriptomic, metabolomic, and biochemical states and promote plant acclimation, tolerance, and survival. Here, we provide a comprehensive review of the ROS, hormones, and their joint role in shaping a plant's responses to high and low temperatures, and we conclude by outlining hormone/ROS-regulated plant responsive strategies for developing stress-tolerant crops to combat temperature changes.
Collapse
|
32
|
Ahmed S, Kouser S, Asgher M, Gandhi SG. Plant aquaporins: A frontward to make crop plants drought resistant. PHYSIOLOGIA PLANTARUM 2021; 172:1089-1105. [PMID: 33826759 DOI: 10.1111/ppl.13416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 02/10/2021] [Accepted: 04/03/2021] [Indexed: 05/25/2023]
Abstract
Drought stress alters gene expression and causes cellular damage in crop plants. Drought inhibits photosynthesis by reducing the content and the activity of the photosynthetic carbon reduction cycle, ultimately decreasing the crop yield. The role of aquaporins (AQP) in improving the growth and adaptation of crop plants under drought stress is of importance. AQP form channels and control water transport in and out of the cells and are associated with drought tolerance mechanisms. The current review addresses: (1) the evolution of AQPs in plants, (2) the classification of plant AQPs, (3) the role of AQPs in drought alleviation in crop plants, and (4) the phytohormone crosstalk with AQPs in crops exposed to drought stress.
Collapse
Affiliation(s)
- Sajad Ahmed
- Plant Biotechnology Division, Indian Institute of Integrative Medicine (CSIR), Jammu, India
| | - Shaista Kouser
- Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Mohd Asgher
- Plant Physiology and Biochemistry Laboratory, Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Sumit G Gandhi
- Plant Biotechnology Division, Indian Institute of Integrative Medicine (CSIR), Jammu, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
33
|
Khan MIR, Ashfaque F, Chhillar H, Irfan M, Khan NA. The intricacy of silicon, plant growth regulators and other signaling molecules for abiotic stress tolerance: An entrancing crosstalk between stress alleviators. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:36-47. [PMID: 33667965 DOI: 10.1016/j.plaphy.2021.02.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 02/01/2021] [Indexed: 05/28/2023]
Abstract
Unfavorable environmental conditions are the critical inimical to the sustainable agriculture. Among various novel strategies designed to protect plants from abiotic stress threats, use of mineral elements as 'stress mitigators' has emerged as the most crucial and interesting aspect. Silicon (Si) is a quasi-essential nutrient that mediates plant growth and development and interacts with plant growth regulators (PGRs) and signaling molecules to combat abiotic stress induced adversities in plants and increase stress tolerance. PGRs are one of the most important chemical messengers that mediate plant growth and development during stressful conditions. However, the individual roles of Si and PGRs have extensively defined but their exquisite crosstalk with each other to mediate plant stress responses is still indiscernible. The present review is an upfront effort to delineate an intricate crosstalk/interaction between Si and PGRs to reduce abiotic stress adversities. The combined effects of interaction of Si with other signaling molecules such as reactive oxygen species (ROS), nitric oxide (NO) and calcium (Ca2+) for the survival of plants under stress and optimal conditions are also discussed.
Collapse
Affiliation(s)
| | - Farha Ashfaque
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, India
| | | | - Mohammad Irfan
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, New Jersey, USA
| | - Nafees A Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, India.
| |
Collapse
|
34
|
Wei J, Zheng G, Yu X, Liu S, Dong X, Cao X, Fang X, Li H, Jin J, Mi W, Liu Z. Comparative Transcriptomics and Proteomics Analyses of Leaves Reveals a Freezing Stress-Responsive Molecular Network in Winter Rapeseed ( Brassica rapa L.). FRONTIERS IN PLANT SCIENCE 2021; 12:664311. [PMID: 33995460 PMCID: PMC8113625 DOI: 10.3389/fpls.2021.664311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Winter rapeseed is susceptible to low temperature during winter in Northwest China, which could lead to a severe reduction of crop production. The freezing temperature could stress the whole plant, especially the leaf, and ultimately harm the survival rate of winter rapeseed. However, the molecular mechanism underlying freezing tolerance is still unclear in winter rapeseed. In this study, a comprehensive investigation of winter rapeseed freezing tolerance was conducted at the levels of transcript, protein, and physiology and biochemistry, using a pair of freezing-sensitive and freezing-resistant cultivars NQF24 and 17NTS57. There were 4,319 unique differentially expressed genes (DEGs) and 137 unique differentially abundant proteins (DAPs) between two cultivars identified in leaf under freezing stress. Function enrichment analysis showed that most of the enriched DEGs and DAPs were involved in plant hormone signal transduction, alpha-linolenic/linoleic acid metabolism, peroxisome, glutathione metabolism, fatty acid degradation, and secondary metabolite biosynthesis pathways. Based on our findings, it was speculated that freezing tolerance formation is caused by increased signal transduction, enhanced biosynthesis of protein, secondary metabolites, and plant hormones, elevated energy supply, greater reactive oxygen species scavenging, and lower lipid peroxidation as well as stronger cell stability in leaf under freezing stress. These results provide a comprehensive profile of leaf response under freezing stress, which have potential to be used as selection indicators of breeding programs to improve freezing tolerance in rapeseed.
Collapse
Affiliation(s)
- Jiaping Wei
- Gansu Province Key Laboratory of Aridland Crop Sciences, Lanzhou, China
| | - Guoqiang Zheng
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Xingwang Yu
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, United States
| | - Sushuang Liu
- Department of Life Sciences and Health, Huzhou University, Huzhou, China
| | - Xiaoyun Dong
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Xiaodong Cao
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Xinling Fang
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Hui Li
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Jiaojiao Jin
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Wenbo Mi
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Zigang Liu
- Gansu Province Key Laboratory of Aridland Crop Sciences, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
35
|
Exogenous EBR Ameliorates Endogenous Hormone Contents in Tomato Species under Low-Temperature Stress. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7040084] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Low-temperature stress is a type of abiotic stress that limits plant growth and production in both subtropical and tropical climate conditions. In the current study, the effects of 24-epi-brassinolide (EBR) as analogs of brassinosteroids (BRs) were investigated, in terms of hormone content, antioxidant enzyme activity, and transcription of several cold-responsive genes, under low-temperature stress (9 °C) in two different tomato species (cold-sensitive and cold-tolerant species). Results indicated that the treatment with exogenous EBR increases the content of gibberellic acid (GA3) and indole-3-acetic acid (IAA), whose accumulation is reduced by low temperatures in cold-sensitive species. Furthermore, the combination or contribution of BR and abscisic acid (ABA) as a synergetic interaction was recognized between BR and ABA in response to low temperatures. The content of malondialdehyde (MDA) and proline was significantly increased in both species, in response to low-temperature stress; however, EBR treatment did not affect the MDA and proline content. Moreover, in the present study, the effect of EBR application was different in the tomato species under low-temperature stress, which increased the catalase (CAT) activity in the cold-tolerant species and increased the glutathione peroxidase (GPX) activity in the cold-sensitive species. Furthermore, expression levels of cold-responsive genes were influenced by low-temperature stress and EBR treatment. Overall, our findings revealed that a low temperature causes oxidative stress while EBR treatment may decrease the reactive oxygen species (ROS) damage into increasing antioxidant enzymes, and improve the growth rate of the tomato by affecting auxin and gibberellin content. This study provides insight into the mechanism by which BRs regulate stress-dependent processes in tomatoes, and provides a theoretical basis for promoting cold resistance of the tomato.
Collapse
|
36
|
Fang P, Wang Y, Wang M, Wang F, Chi C, Zhou Y, Zhou J, Shi K, Xia X, Foyer CH, Yu J. Crosstalk between Brassinosteroid and Redox Signaling Contributes to the Activation of CBF Expression during Cold Responses in Tomato. Antioxidants (Basel) 2021; 10:antiox10040509. [PMID: 33805859 PMCID: PMC8064343 DOI: 10.3390/antiox10040509] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 11/16/2022] Open
Abstract
Brassinosteroids (BRs) play a critical role in plant responses to stress. However, the interplay of BRs and reactive oxygen species signaling in cold stress responses remains unclear. Here, we demonstrate that a partial loss of function in the BR biosynthesis gene DWARF resulted in lower whilst overexpression of DWARF led to increased levels of C-REPEAT BINDING FACTOR (CBF) transcripts. Exposure to cold stress increased BR synthesis and led to an accumulation of brassinazole-resistant 1 (BZR1), a central component of BR signaling. Mutation of BZR1 compromised the cold- and BR-dependent increases in CBFs and RESPIRATORY BURST OXIDASE HOMOLOG 1(RBOH1) transcripts, as well as preventing hydrogen peroxide (H2O2) accumulation in the apoplast. Cold- and BR-induced BZR1 bound to the promoters of CBF1, CBF3 and RBOH1 and promoted their expression. Significantly, suppression of RBOH1 expression compromised cold- and BR-induced accumulation of BZR1 and related increases in CBF transcripts. Moreover, RBOH1-dependent H2O2 production regulated BZR1 accumulation and the levels of CBF transcripts by influencing glutathione homeostasis. Taken together, these results demonstrate that crosstalk between BZR1 and reactive oxygen species mediates cold- and BR-activated CBF expression, leading to cold tolerance in tomato (Solanum lycopersicum).
Collapse
Affiliation(s)
- Pingping Fang
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (P.F.); (Y.W.); (M.W.); (F.W.); (C.C.); (Y.Z.); (J.Z.); (K.S.); (X.X.)
| | - Yu Wang
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (P.F.); (Y.W.); (M.W.); (F.W.); (C.C.); (Y.Z.); (J.Z.); (K.S.); (X.X.)
| | - Mengqi Wang
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (P.F.); (Y.W.); (M.W.); (F.W.); (C.C.); (Y.Z.); (J.Z.); (K.S.); (X.X.)
| | - Feng Wang
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (P.F.); (Y.W.); (M.W.); (F.W.); (C.C.); (Y.Z.); (J.Z.); (K.S.); (X.X.)
| | - Cheng Chi
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (P.F.); (Y.W.); (M.W.); (F.W.); (C.C.); (Y.Z.); (J.Z.); (K.S.); (X.X.)
| | - Yanhong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (P.F.); (Y.W.); (M.W.); (F.W.); (C.C.); (Y.Z.); (J.Z.); (K.S.); (X.X.)
- Key Laboratory of Horticultural Plants Growth and Development, Agricultural Ministry of China, Yuhangtang Road 866, Hangzhou 310058, China
| | - Jie Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (P.F.); (Y.W.); (M.W.); (F.W.); (C.C.); (Y.Z.); (J.Z.); (K.S.); (X.X.)
| | - Kai Shi
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (P.F.); (Y.W.); (M.W.); (F.W.); (C.C.); (Y.Z.); (J.Z.); (K.S.); (X.X.)
| | - Xiaojian Xia
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (P.F.); (Y.W.); (M.W.); (F.W.); (C.C.); (Y.Z.); (J.Z.); (K.S.); (X.X.)
| | - Christine Helen Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, UK;
| | - Jingquan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (P.F.); (Y.W.); (M.W.); (F.W.); (C.C.); (Y.Z.); (J.Z.); (K.S.); (X.X.)
- Key Laboratory of Horticultural Plants Growth and Development, Agricultural Ministry of China, Yuhangtang Road 866, Hangzhou 310058, China
- Correspondence: ; Tel.: +86-571-88982351
| |
Collapse
|
37
|
Kour J, Kohli SK, Khanna K, Bakshi P, Sharma P, Singh AD, Ibrahim M, Devi K, Sharma N, Ohri P, Skalicky M, Brestic M, Bhardwaj R, Landi M, Sharma A. Brassinosteroid Signaling, Crosstalk and, Physiological Functions in Plants Under Heavy Metal Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:608061. [PMID: 33841453 PMCID: PMC8024700 DOI: 10.3389/fpls.2021.608061] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/27/2021] [Indexed: 05/05/2023]
Abstract
Brassinosteroids (BRs) are group of plant steroidal hormones that modulate developmental processes and also have pivotal role in stress management. Biosynthesis of BRs takes place through established early C-6 and late C-6 oxidation pathways and the C-22 hydroxylation pathway triggered by activation of the DWF4 gene that acts on multiple intermediates. BRs are recognized at the cell surface by the receptor kinases, BRI1 and BAK1, which relay signals to the nucleus through a phosphorylation cascade involving phosphorylation of BSU1 protein and proteasomal degradation of BIN2 proteins. Inactivation of BIN2 allows BES1/BZR1 to enter the nucleus and regulate the expression of target genes. In the whole cascade of signal recognition, transduction and regulation of target genes, BRs crosstalk with other phytohormones that play significant roles. In the current era, plants are continuously exposed to abiotic stresses and heavy metal stress is one of the major stresses. The present study reveals the mechanism of these events from biosynthesis, transport and crosstalk through receptor kinases and transcriptional networks under heavy metal stress.
Collapse
Affiliation(s)
- Jaspreet Kour
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Sukhmeen Kaur Kohli
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Kanika Khanna
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Palak Bakshi
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Pooja Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Arun Dev Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Mohd Ibrahim
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Kamini Devi
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Neerja Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar, India
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Czech University of Life Sciences Prague, Prague, Czechia
| | - Marian Brestic
- Department of Botany and Plant Physiology, Czech University of Life Sciences Prague, Prague, Czechia
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovakia
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
38
|
Ma B, Suo Y, Zhang J, Xing N, Gao Z, Lin X, Zheng L, Wang Y. Glutaredoxin like protein (RtGRL1) regulates H 2O 2 and Na + accumulation by maintaining the glutathione pool during abiotic stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 159:135-147. [PMID: 33360237 DOI: 10.1016/j.plaphy.2020.11.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
Reaumuria trigyna, an endangered recretohalophyte, is a small archaic wild shrub endemic to arid and semiarid plateau regions of Inner Mongolia, China. Based on salt-related transcriptomic data, we isolated a GRX family gene, glutaredoxin like protein (RtGRL1), from R. trigyna that is associated with the removal of active oxygen and regulation of redox status. RtGRL1 encodes a plasma membrane and chloroplast-localized protein induced by salt, cold, drought stress, ABA, and H2O2. In Arabidopsis thaliana, ectopically expressed RtGRL1 positively regulated biomass accumulation, chlorophyll content, germination rate, and primary root length under salt and drought stress. Overexpression of RtGRL1 induced expression of genes related to antioxidant enzymes and proline biosynthesis, thus increasing glutathione biosynthesis, glutathione-dependent detoxification of reactive oxygen species (ROS), and proline content under stress. Changes in RtGRL1 expression consistently affected glutathione/oxidizedglutathione and ascorbate/dehydroascorbate ratios and H2O2 concentrations. Furthermore, RtGRL1 promoted several GSH biosynthesis gene transcripts, decreased leaf Na+ content, and maintained lower Na+/K+ ratios in transgenic A. thaliana compared to wild type plants. These results suggest a critical link between RtGRL1 and ROS modulation, and contribute to a better understanding of the mechanisms governing plant responses to drought and salt stress.
Collapse
Affiliation(s)
- Binjie Ma
- Key Laboratory of Herbage and Endemic Crop Biotechnology, And College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China.
| | - Yafei Suo
- Key Laboratory of Herbage and Endemic Crop Biotechnology, And College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China.
| | - Jie Zhang
- Key Laboratory of Herbage and Endemic Crop Biotechnology, And College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China.
| | - Ningning Xing
- Key Laboratory of Herbage and Endemic Crop Biotechnology, And College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China.
| | - Ziqi Gao
- Key Laboratory of Herbage and Endemic Crop Biotechnology, And College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China.
| | - Xiaofei Lin
- Key Laboratory of Herbage and Endemic Crop Biotechnology, And College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China.
| | - Linlin Zheng
- Key Laboratory of Herbage and Endemic Crop Biotechnology, And College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China.
| | - Yingchun Wang
- Key Laboratory of Herbage and Endemic Crop Biotechnology, And College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China.
| |
Collapse
|
39
|
Li T, Li M, Jiang Y, Duan X. Genome-wide identification, characterization and expression profile of glutaredoxin gene family in relation to fruit ripening and response to abiotic and biotic stresses in banana (Musa acuminata). Int J Biol Macromol 2020; 170:636-651. [PMID: 33385451 DOI: 10.1016/j.ijbiomac.2020.12.167] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 11/30/2022]
Abstract
Glutaredoxins (GRXs) are disulfide oxidoreductases that are involved in various biological processes. However, little information on the role of GRXs in the regulation of fruit ripening and the response to stress is available. In this study, we isolated 64 GRX genes from banana genome. Their encoded GRX proteins could be classified into four classes: CC, CGFS, CPYC and GRL types. The distribution and synteny of these GRXs on chromosomes, the gene structures, the promoter sequences, and the possible protein subcellular localizations were characterized. Molecular interaction network analysis suggested that MaGRX might interact with glutathione reductase (GR), sulfiredoxin, peroxiredoxin (Prx), and NADPH-dependent thioredoxin reductase C (NTRC), contributing to the antioxidative defense of banana fruit. MicroRNA prediction showed that MaGRX genes might be targeted by different miRNAs. Transcriptome analysis characterized the expression profiles of different MaGRX genes during banana fruit ripening, and in response to different storage stresses. The results suggested that CC-type, CPYC-type and GRL-type MaGRXs might be more active than CGFS-type MaGRXs during banana fruit ripening and the response to stress. Moreover, MaGRX6/7/9/11/17/23/28 and MaGRL3/16/19 might play important roles in regulating fruit ripening or in response to low and high temperature, or Fusarium proliferatum infection.
Collapse
Affiliation(s)
- Taotao Li
- Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture/Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Mingzhi Li
- Independent Researcher, Guangzhou, 510650, China
| | - Yueming Jiang
- Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture/Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xuewu Duan
- Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture/Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
40
|
Ramirez VE, Poppenberger B. Modes of Brassinosteroid Activity in Cold Stress Tolerance. FRONTIERS IN PLANT SCIENCE 2020; 11:583666. [PMID: 33240301 PMCID: PMC7677411 DOI: 10.3389/fpls.2020.583666] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
Cold stress is a significant environmental factor that negatively affects plant growth and development in particular when it occurs during the growth phase. Plants have evolved means to protect themselves from damage caused by chilling or freezing temperatures and some plant species, in particular those from temperate geographical zones, can increase their basal level of freezing tolerance in a process termed cold acclimation. Cold acclimation improves plant survival, but also represses growth, since it inhibits activity of the growth-promoting hormones gibberellins (GAs). In addition to GAs, the steroid hormones brassinosteroids (BRs) also take part in growth promotion and cold stress signaling; however, in contrast to Gas, BRs can improve cold stress tolerance with fewer trade-offs in terms of growth and yields. Here we summarize our current understanding of the roles of BRs in cold stress responses with a focus on freezing tolerance and cold acclimation pathways.
Collapse
|
41
|
Pan DY, Fu X, Zhang XW, Liu FJ, Bi HG, Ai XZ. Hydrogen sulfide is required for salicylic acid-induced chilling tolerance of cucumber seedlings. PROTOPLASMA 2020; 257:1543-1557. [PMID: 32621044 DOI: 10.1007/s00709-020-01531-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 06/29/2020] [Indexed: 05/03/2023]
Abstract
Salicylic acid (SA) and hydrogen sulfide (H2S) have been proved to be multifunctional signal molecules to participate in the response of plants to abiotic stresses. However, it is still unclear whether there is interaction between SA and H2S in response to chilling intensity of cucumber seedlings. Here, we found SA was sensitive to chilling intensity. Under normal condition, NaHS (H2S donor) or removing endogenous H2S with hypotaurine (HT, a specific scavenger of H2S) and DL-propargylglycine (PAG, a specific inhibitor of H2S) has no effect on endogenous SA level; however, SA induced endogenous H2S content and activated the activities and mRNA level of L-/D-cysteine desulfhydrase (L-/D-CD), and inhibiting endogenous SA with paclobutrazol (PAC) or 2-aminoindan-2-phosphonic acid (AIP) blocked this effect, implying H2S may play a role after SA signal. Further studies showed that both SA and NaHS notably alleviated chilling injury, which was evidenced by lower electrolyte leakage (EL), MDA content, and ROS accumulation, compared with H2O treatment. Of note, SA and H2S improved the activities and mRNA level of antioxidant enzymes (SOD, POD, CAT, APX, and GR) as well as the contents of AsA and GSH. Additionally, the chilling-response genes (ICE, CBF1, and COR) were obviously upregulated by exogenous SA and NaHS. However, the positive effect of SA on chilling tolerance was inhibited by HT, whereas PAC or AIP did not affect NaHS-induced chilling tolerance. Taken together, the data reveals that H2S acts as a downstream signal of SA-induced chilling tolerance of cucumber via modulating antioxidant system and chilling-response genes.
Collapse
Affiliation(s)
- Dong-Yun Pan
- State Key Laboratory of Crop Biology; Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huang huai Region; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Xin Fu
- State Key Laboratory of Crop Biology; Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huang huai Region; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Xiao-Wei Zhang
- State Key Laboratory of Crop Biology; Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huang huai Region; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Feng-Jiao Liu
- State Key Laboratory of Crop Biology; Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huang huai Region; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Huan-Gai Bi
- State Key Laboratory of Crop Biology; Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huang huai Region; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| | - Xi-Zhen Ai
- State Key Laboratory of Crop Biology; Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huang huai Region; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
42
|
|
43
|
Yan MY, Xie DL, Cao JJ, Xia XJ, Shi K, Zhou YH, Zhou J, Foyer CH, Yu JQ. Brassinosteroid-mediated reactive oxygen species are essential for tapetum degradation and pollen fertility in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:931-947. [PMID: 31908046 DOI: 10.1111/tpj.14672] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 12/01/2019] [Accepted: 12/18/2019] [Indexed: 05/19/2023]
Abstract
Phytohormone brassinosteroids (BRs) are essential for plant growth and development, but the mechanisms of BR-mediated pollen development remain largely unknown. In this study, we show that pollen viability, pollen germination and seed number decreased in the BR-deficient mutant d^im , which has a lesion in the BR biosynthetic gene DWARF (DWF), and in the bzr1 mutant, which is deficient in BR signaling regulator BRASSINAZOLE RESISTANT 1 (BZR1), compared with those in wild-type plants, whereas plants overexpressing DWF or BZR1 exhibited the opposite effects. Loss or gain of function in the DWF or BZR1 genes altered the timing of reactive oxygen species (ROS) production and programmed cell death (PCD) in tapetal cells, resulting in delayed or premature tapetal degeneration, respectively. Further analysis revealed that BZR1 could directly bind to the promoter of RESPIRATORY BURST OXIDASE HOMOLOG 1 (RBOH1), and that RBOH1-mediated ROS promote pollen and seed development by triggering PCD and tapetal cell degradation. In contrast, the suppression of RBOH1 compromised BR signaling-mediated ROS production and pollen development. These findings provide strong evidence that BZR1-dependent ROS production plays a critical role in the BR-mediated regulation of tapetal cell degeneration and pollen development in Solanum lycopersicum (tomato) plants.
Collapse
Affiliation(s)
- Meng-Yu Yan
- Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
| | - Dong-Ling Xie
- Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
| | - Jia-Jian Cao
- Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
| | - Xiao-Jian Xia
- Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Kai Shi
- Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Yan-Hong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Jie Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Jing-Quan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, 866 Yuhangtang Road, Hangzhou, 310058, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Yuhangtang Road 866, Hangzhou, 310058, China
| |
Collapse
|
44
|
Wang B, Wang G, Zhu S. DNA Damage Inducible Protein 1 is Involved in Cold Adaption of Harvested Cucumber Fruit. FRONTIERS IN PLANT SCIENCE 2020; 10:1723. [PMID: 32038689 PMCID: PMC6992665 DOI: 10.3389/fpls.2019.01723] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Chilling stress can cause cellular DNA damage, affecting the faithful transmission of genetic information. Cold acclimation enhances chilling tolerance, but it is not clear that the process of cold adaption involves DNA damage responses, as cold acclimation does not form real chilling stress. Here we showed with cucumber fruit that pre-storage cold acclimation (PsCA) reduces chilling injury and upregulates DNA damage inducible protein1 (CsDDI1), suggesting that the chilling tolerance induced by cold acclimation involves CsDDI1 transcription. Application of nitric oxide (NO), abscisic acid (ABA) or H2O2 biosynthesis inhibitor before PsCA treatment downregulates CsDDI1 and aggravates chilling injury, while H2O2 generation inhibition plus exogenous NO or ABA application before PsCA treatment restores chilling tolerance, but does not restore CsDDI1 expression, suggesting H2O2 plays a crucial role in triggering cold adaption. CsDDI1 overexpression Arabidopsis lines show faster growth, stronger chilling tolerance, lower reactive oxygen species levels, enhanced catalase and superoxide dismutase activities and higher expression of nine other Arabidopsis defense genes under chilling stress, suggesting CsDDI1 strengthens defenses against chilling stress by enhancing antioxidant defense system. Taken together, CsDDI1 positively regulates chilling tolerance induced by cold acclimation in cucumber. In addition, H2O2 is involved in initiation of cold acclimation. While CsDDI1 upregulation requires H2O2 as a key signaling molecule, the upregulation of CsDDI1 activates an antioxidant system to reduce biotoxic accumulation of H2O2 and helps in DNA repair.
Collapse
Affiliation(s)
- Bin Wang
- Guangdong Province Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
- College of Ying-Tong Agricultural Science and Engineering, Shaoguan University, Shaoguan, China
| | - Guang Wang
- Guangdong Province Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Shijiang Zhu
- Guangdong Province Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
45
|
Chi C, Li X, Fang P, Xia X, Shi K, Zhou Y, Zhou J, Yu J. Brassinosteroids act as a positive regulator of NBR1-dependent selective autophagy in response to chilling stress in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1092-1106. [PMID: 31639824 DOI: 10.1093/jxb/erz466] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 10/08/2019] [Indexed: 05/20/2023]
Abstract
Autophagy is a highly conserved and regulated catabolic process involved in the degradation of protein aggregates, which plays critical roles in eukaryotes. In plants, multiple molecular processes can induce or suppress autophagy but the mechanism of its regulation by phytohormones is poorly understood. Brassinosteroids (BRs) are steroid phytohormones that play crucial roles in plant response to stresses. Here, we investigate the role of BRs in NBR1-dependent selective autophagy in response to chilling stress in tomato. BRs and their signaling element BZR1 can induce autophagy and accumulation of the selective autophagy receptor NBR1 in tomato under chilling stress. Cold increased the stability of BZR1, which was promoted by BRs. Cold- and BR-induced increased BZR1 stability activated the transcription of several autophagy-related genes (ATGs) and NBR1 genes by directly binding to their promoters, which resulted in selective autophagy. Furthermore, silencing of these ATGs or NBR1 genes resulted in a decreased accumulation of several functional proteins and an increased accumulation of ubiquitinated proteins, subsequently compromising BR-induced cold tolerance. These results strongly suggest that BRs regulate NBR1-dependent selective autophagy in a BZR1-dependent manner in response to chilling stress in tomato.
Collapse
Affiliation(s)
- Cheng Chi
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Xiaomeng Li
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Pingping Fang
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Xiaojian Xia
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Kai Shi
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Yanhong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Jie Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Jingquan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Hangzhou, China
| |
Collapse
|
46
|
Genetic Architecture of Chilling Tolerance in Sorghum Dissected with a Nested Association Mapping Population. G3-GENES GENOMES GENETICS 2019; 9:4045-4057. [PMID: 31611346 PMCID: PMC6893202 DOI: 10.1534/g3.119.400353] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Dissecting the genetic architecture of stress tolerance in crops is critical to understand and improve adaptation. In temperate climates, early planting of chilling-tolerant varieties could provide longer growing seasons and drought escape, but chilling tolerance (<15°) is generally lacking in tropical-origin crops. Here we developed a nested association mapping (NAM) population to dissect the genetic architecture of early-season chilling tolerance in the tropical-origin cereal sorghum (Sorghum bicolor [L.] Moench). The NAM resource, developed from reference line BTx623 and three chilling-tolerant Chinese lines, is comprised of 771 recombinant inbred lines genotyped by sequencing at 43,320 single nucleotide polymorphisms. We phenotyped the NAM population for emergence, seedling vigor, and agronomic traits (>75,000 data points from ∼16,000 plots) in multi-environment field trials in Kansas under natural chilling stress (sown 30-45 days early) and normal growing conditions. Joint linkage mapping with early-planted field phenotypes revealed an oligogenic architecture, with 5-10 chilling tolerance loci explaining 20-41% of variation. Surprisingly, several of the major chilling tolerance loci co-localize precisely with the classical grain tannin (Tan1 and Tan2) and dwarfing genes (Dw1 and Dw3) that were under strong directional selection in the US during the 20th century. These findings suggest that chilling sensitivity was inadvertently selected due to coinheritance with desired nontannin and dwarfing alleles. The characterization of genetic architecture with NAM reveals why past chilling tolerance breeding was stymied and provides a path for genomics-enabled breeding of chilling tolerance.
Collapse
|
47
|
Zhou S, Cheng X, Li F, Feng P, Hu G, Chen G, Xie Q, Hu Z. Overexpression of SlOFP20 in Tomato Affects Plant Growth, Chlorophyll Accumulation, and Leaf Senescence. FRONTIERS IN PLANT SCIENCE 2019; 10:1510. [PMID: 31850017 PMCID: PMC6896838 DOI: 10.3389/fpls.2019.01510] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
Previous studies have shown that OVATE family proteins (OFPs) participate in various aspects of plant growth and development. How OFPs affect leaf chlorophyll accumulation and leaf senescence has not been reported yet. Here, we found that overexpression of SlOFP20 in tomato not only impacted plant architecture but also enhanced the leaf chlorophyll accumulation and retarded leaf senescence. Gene expression analysis of SlGLK1, SlGLK2, and HY5, encoding transcription factors that are putatively involved in chloroplast development and chlorophyll levels, were significantly up-regulated in SlOFP20-OE lines. Both chlorophyll biosynthesis and degradation genes were distinctly regulated in transgenic plants. Moreover, SlOFP20-OE plants accumulated more starch and soluble sugar than wild-type plants, indicating that an increased chlorophyll content conferred some higher photosynthetic performance in SlOFP20-OE plants. Furthermore, The levels of leaf senescence-related indexes, such as hydrogen peroxide, malondialdehyde, and antioxidant enzymes activities, were differently altered, too. SlOFP20 overexpression repressed the expression of senescence-related genes, SAG12, RAV1, and WRKY53. Moreover, abscisic acid and ethylene synthesis genes were down-regulated in transgenic lines. These results provide new insights into how SlOFP20 regulates chlorophyll accumulation and leaf senescence.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qiaoli Xie
- *Correspondence: Qiaoli Xie, ; Zongli Hu,
| | - Zongli Hu
- *Correspondence: Qiaoli Xie, ; Zongli Hu,
| |
Collapse
|
48
|
Cerveau D, Henri P, Blanchard L, Rey P. Variability in the redox status of plant 2-Cys peroxiredoxins in relation to species and light cycle. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5003-5016. [PMID: 31128069 DOI: 10.1093/jxb/erz252] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/15/2019] [Indexed: 06/09/2023]
Abstract
Plant 2-Cys peroxiredoxins (2-CysPRXs) are abundant plastidial thiol-peroxidases involved in key signaling processes such as photosynthesis deactivation at night. Their functions rely on the redox status of their two cysteines and on the enzyme quaternary structure, knowledge of which remains poor in plant cells. Using ex vivo and biochemical approaches, we thoroughly characterized the 2-CysPRX dimer/monomer distribution, hyperoxidation level, and thiol content in Arabidopsis, barley, and potato in relation to the light cycle. Our data reveal that the enzyme hyperoxidization level and its distribution as a dimer and monomer vary through the light cycle in a species-dependent manner. A differential susceptibility to hyperoxidation was observed for the two Arabidopsis 2-CysPRX isoforms and among the proteins of the three species, and was associated to sequence variation in hyperoxidation resistance motifs. Alkylation experiments indicate that only a minor fraction of the 2-CysPRX pool carries one free thiol in the three species, and that this content does not change during the light period. We conclude that most plastidial 2-CysPRX forms are oxidized and propose that there is a species-dependent variability in their functions since dimer and hyperoxidized forms fulfill distinct roles regarding direct oxidation of partners and signal transmission.
Collapse
Affiliation(s)
- Delphine Cerveau
- Aix Marseille Univ, CEA, CNRS, BIAM, Plant Protective Proteins Team, Saint Paul-Lez-Durance, France
| | - Patricia Henri
- Aix Marseille Univ, CEA, CNRS, BIAM, Plant Protective Proteins Team, Saint Paul-Lez-Durance, France
| | - Laurence Blanchard
- Aix Marseille Univ., CEA, CNRS, BIAM, Molecular and Environmental Microbiology Team, Saint Paul-Lez-Durance, France
| | - Pascal Rey
- Aix Marseille Univ, CEA, CNRS, BIAM, Plant Protective Proteins Team, Saint Paul-Lez-Durance, France
| |
Collapse
|
49
|
Si T, Wang X, Huang M, Cai J, Zhou Q, Dai T, Jiang D. Double benefits of mechanical wounding in enhancing chilling tolerance and lodging resistance in wheat plants. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:813-824. [PMID: 30977948 DOI: 10.1111/plb.12995] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/05/2019] [Indexed: 06/09/2023]
Abstract
Chilling and lodging are major threats to wheat production. However, strategies that can be used to effectively mitigate the adverse effects of these threats are still far from clear. Mechanical wounding is a traditional agronomic measure, whereas information about the role it plays in wheat chilling and lodging is scant. The aim of the present study was to investigate mechanisms underlying the protective roles of mechanical wounding in alleviating damage from chilling at jointing stage and enhancing lodging resistance after anthesis of winter wheat (Triticum aestivum L.). Our data show that net photosynthesis rate, maximum photochemical efficiency of photosystem II, activity of the antioxidant enzymes and osmolytes were significantly increased in the latest fully expanded leaves of wounded plants under chilling. Wounding also reduced hydrogen peroxide accumulation, electrolyte leakage and water loss in wounded plants. Moreover, mechanical wounding significantly reduced the length but increased the diameter and wall thickness of the basal second internode of the main stem. Quantitative and histochemical analysis further indicated that wounding increased lignin accumulation and activity of enzymes involved in lignin synthesis, which resulted in increased mechanical strength and the lodging resistance index in the main stem. We conclude from our data that mechanical wounding confers both cold tolerance by alleviating the damage caused by chilling at jointing stage and lodging resistance after anthesis of wheat plants.
Collapse
Affiliation(s)
- T Si
- National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, China
- Dry Farming Technology Key Laboratory of Shandong Province/College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - X Wang
- National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, China
| | - M Huang
- National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, China
| | - J Cai
- National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Q Zhou
- National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, China
| | - T Dai
- National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, China
| | - D Jiang
- National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
50
|
Zaffagnini M, Fermani S, Marchand CH, Costa A, Sparla F, Rouhier N, Geigenberger P, Lemaire SD, Trost P. Redox Homeostasis in Photosynthetic Organisms: Novel and Established Thiol-Based Molecular Mechanisms. Antioxid Redox Signal 2019; 31:155-210. [PMID: 30499304 DOI: 10.1089/ars.2018.7617] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Significance: Redox homeostasis consists of an intricate network of reactions in which reactive molecular species, redox modifications, and redox proteins act in concert to allow both physiological responses and adaptation to stress conditions. Recent Advances: This review highlights established and novel thiol-based regulatory pathways underlying the functional facets and significance of redox biology in photosynthetic organisms. In the last decades, the field of redox regulation has largely expanded and this work is aimed at giving the right credit to the importance of thiol-based regulatory and signaling mechanisms in plants. Critical Issues: This cannot be all-encompassing, but is intended to provide a comprehensive overview on the structural/molecular mechanisms governing the most relevant thiol switching modifications with emphasis on the large genetic and functional diversity of redox controllers (i.e., redoxins). We also summarize the different proteomic-based approaches aimed at investigating the dynamics of redox modifications and the recent evidence that extends the possibility to monitor the cellular redox state in vivo. The physiological relevance of redox transitions is discussed based on reverse genetic studies confirming the importance of redox homeostasis in plant growth, development, and stress responses. Future Directions: In conclusion, we can firmly assume that redox biology has acquired an established significance that virtually infiltrates all aspects of plant physiology.
Collapse
Affiliation(s)
- Mirko Zaffagnini
- 1 Department of Pharmacy and Biotechnology and University of Bologna, Bologna, Italy
| | - Simona Fermani
- 2 Department of Chemistry Giacomo Ciamician, University of Bologna, Bologna, Italy
| | - Christophe H Marchand
- 3 Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, UMR8226, Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Sorbonne Université, Paris, France
| | - Alex Costa
- 4 Department of Biosciences, University of Milan, Milan, Italy
| | - Francesca Sparla
- 1 Department of Pharmacy and Biotechnology and University of Bologna, Bologna, Italy
| | | | - Peter Geigenberger
- 6 Department Biologie I, Ludwig-Maximilians-Universität München, LMU Biozentrum, Martinsried, Germany
| | - Stéphane D Lemaire
- 3 Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, UMR8226, Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Sorbonne Université, Paris, France
| | - Paolo Trost
- 1 Department of Pharmacy and Biotechnology and University of Bologna, Bologna, Italy
| |
Collapse
|