1
|
Zhang Q, Shen H, Peng L, Tao Y, Zhou X, Yin B, Fan Z, Zhang J. Intraspecific Variability of Xylem Hydraulic Traits of Calligonum mongolicum Growing in the Desert of Northern Xinjiang, China. PLANTS (BASEL, SWITZERLAND) 2024; 13:3005. [PMID: 39519923 PMCID: PMC11548551 DOI: 10.3390/plants13213005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/07/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Plant hydraulic traits are essential for understanding and predicting plant drought resistance. Investigations into the mechanisms of the xylem anatomical traits of desert shrubs in response to climate can help us to understand plant survival strategies in extreme environments. This study examined the xylem anatomical traits and related functional traits of the branches of seven Calligonum mongolicum populations along a precipitation gradient, to explore their adaptive responses to climatic factors. We found that (1) the vessel diameter (D), vessel diameter contributing to 95% of hydraulic conductivity (D95), hydraulic weighted vessel diameter (Dh), vessel density (VD), percentage of conductive area (CA), thickness-to-span ratio of vessels ((t/b)2), and theoretical hydraulic conductivity (Kth) varied significantly across sites, while the vessel group index (Vg), wood density (WD), and vulnerability index (VI) showed no significant differences. (2) Principal component analysis revealed that efficiency-related traits (Kth, Dh, D95) and safety-related traits (VI, VD, inter-wall thickness of the vessel (t)) were the primary factors driving trait variation. (3) Precipitation during the wettest month (PWM) had the strongest influence, positively correlating with (t/b)2 and negatively with D, D95, Dh, CA, and Kth. (4) Structural equation modeling confirmed PWM as the main driver of Kth, with indirect effects through CA. These findings indicate that C. mongolicum displays high plasticity in xylem traits, enabling adaptation to changing environments, and providing insight into the hydraulic strategies of desert shrubs under climate change.
Collapse
Affiliation(s)
- Quanling Zhang
- Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, College of Life Sciences, Anqing Normal University, Anqing 246133, China;
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (H.S.); (L.P.); (Y.T.); (X.Z.); (B.Y.)
- Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Hui Shen
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (H.S.); (L.P.); (Y.T.); (X.Z.); (B.Y.)
- Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lan Peng
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (H.S.); (L.P.); (Y.T.); (X.Z.); (B.Y.)
- Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- College of Resource and Environment Sciences, Xinjiang University, Urumqi 830017, China
| | - Ye Tao
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (H.S.); (L.P.); (Y.T.); (X.Z.); (B.Y.)
- Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Xinjiang Field Scientific Observation Research Station of Tianshan Wild Fruit Forest Ecosystem, Yili Botanical Garden, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Xiaobing Zhou
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (H.S.); (L.P.); (Y.T.); (X.Z.); (B.Y.)
- Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Xinjiang Field Scientific Observation Research Station of Tianshan Wild Fruit Forest Ecosystem, Yili Botanical Garden, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Benfeng Yin
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (H.S.); (L.P.); (Y.T.); (X.Z.); (B.Y.)
- Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Xinjiang Field Scientific Observation Research Station of Tianshan Wild Fruit Forest Ecosystem, Yili Botanical Garden, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Zhiqiang Fan
- Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, College of Life Sciences, Anqing Normal University, Anqing 246133, China;
| | - Jing Zhang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (H.S.); (L.P.); (Y.T.); (X.Z.); (B.Y.)
- Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Xinjiang Field Scientific Observation Research Station of Tianshan Wild Fruit Forest Ecosystem, Yili Botanical Garden, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| |
Collapse
|
2
|
Liu YN, Fan ZX, Lin YX, Kaewmano A, Wei XL, Fu PL, Grießinger J, Bräuning A. Impact of extreme pre-monsoon drought on xylogenesis and intra-annual radial increments of two tree species in a tropical montane evergreen broad-leaved forest, southwest China. TREE PHYSIOLOGY 2024; 44:tpae086. [PMID: 39030688 PMCID: PMC11387012 DOI: 10.1093/treephys/tpae086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 07/03/2024] [Accepted: 07/17/2024] [Indexed: 07/21/2024]
Abstract
Tropical montane evergreen broad-leaved forests cover the majority of forest areas and have high carbon storage in Xishuangbanna, southwest China. However, stem radial growth dynamics and their correlations with climate factors have never been analyzed in this forest type. By combining bi-weekly microcoring and high-resolution dendrometer measurements, we monitored xylogenesis and stem radius variations of the deciduous species Betula alnoides Buch.-Ham. ex D. Don and the evergreen species Schima wallichii (DC.) Korth. We analyzed the relationships between weekly climate variables prior to sampling and the enlarging zone width or wall-thickening zone width, as well as weekly radial increments and climate factors during two consecutive years (2020 to 2021) showing contrasting hydrothermal conditions in the pre-monsoon season. In the year 2020, which was characterized by a warmer and drier pre-monsoon season, the onset of xylogenesis and radial increments of B. alnoides and S. wallichii were delayed by three months and one month, respectively, compared with the year 2021. In 2020, xylem formation and radial increments were significantly reduced for B. alnoides, but not for S. wallichii. The thickness of enlarging zone and wall-thickening zone in S. wallichii were positively correlated with relative humidity, and minimum and mean air temperature, but were negatively correlated with vapor pressure deficit during 2020 to 2021. The radial increments of both species showed significant positive correlations with precipitation and relative humidity, and negative correlations with vapor pressure deficit and maximum air temperature during two years. Our findings reveal that drier pre-monsoon conditions strongly delay growth initiation and reduce stem radial growth, providing deep insights to understand tree growth and carbon sequestration potential in tropical forests under a predicted increase in frequent drought events.
Collapse
Affiliation(s)
- Ya-Nan Liu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ze-Xin Fan
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- Ailaoshan Station of Subtropical Forest Ecosystem Studies, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Jingdong, Yunnan 676209, China
| | - You-Xing Lin
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, China
| | - Arisa Kaewmano
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Lian Wei
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pei-Li Fu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- Ailaoshan Station of Subtropical Forest Ecosystem Studies, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Jingdong, Yunnan 676209, China
| | - Jussi Grießinger
- Department of Environment and Biodiversity, University of Salzburg, Salzburg 5020, Austria
| | - Achim Bräuning
- Institute of Geography, Friedrich-Alexander-University Erlangen-Nürnberg, Wetterkreuz, Erlangen 91058, Germany
| |
Collapse
|
3
|
Man Z, Zhang J, Liu J, Liu L, Yang J, Cao Z. Process-Based Modeling of Phenology and Radial Growth in Pinus tabuliformis in Response to Climate Factors over a Cold and Semi-Arid Region. PLANTS (BASEL, SWITZERLAND) 2024; 13:980. [PMID: 38611511 PMCID: PMC11013837 DOI: 10.3390/plants13070980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/18/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024]
Abstract
(1) Background: Climate change significantly impacts the phenology and dynamics of radial tree growth in alpine dryland forests. However, there remains a scarcity of reliable information on the physiological processes of tree growth and cambial phenology in response to long-term climate change in cold and semi-arid regions. (2) Methods: We employed the process-based Vaganov-Shashkin (VS) model to simulate the phenology and growth patterns of Chinese pine (Pinus tabuliformis) in the eastern Qilian Mountains, northeastern Tibetan Plateau. The model was informed by observed temperature and precipitation data to elucidate the relationships between climate factors and tree growth. (3) Results: The simulated tree-ring index closely aligned with the observed tree-ring chronology, validating the VS model's effectiveness in capturing the climatic influences on radial growth and cambial phenology of P. tabuliformis. The model outputs revealed that the average growing season spanned from mid-April to mid-October and experienced an extension post-1978 due to ongoing warming trends. However, it is important to note that an increase in the duration of the growing season did not necessarily result in a higher level of radial growth. (4) Conclusions: While the duration of the growing season was primarily determined by temperature, the growth rate was predominantly influenced by water conditions during the growing season, making it the most significant factor contributing to ring formation. Our study provides valuable insights into the potential mechanisms underlying tree growth responses to climate change in cold and semi-arid regions.
Collapse
Affiliation(s)
- Zihong Man
- Gansu Liancheng Forest Ecosystem Field Observation and Research Station, Lanzhou University, Lanzhou 730333, China
- Liancheng National Nature Reserve in Gansu, Lanzhou 730300, China
| | - Junzhou Zhang
- Gansu Liancheng Forest Ecosystem Field Observation and Research Station, Lanzhou University, Lanzhou 730333, China
- Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Junjun Liu
- Gansu Liancheng Forest Ecosystem Field Observation and Research Station, Lanzhou University, Lanzhou 730333, China
- Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Li Liu
- Gansu Liancheng Forest Ecosystem Field Observation and Research Station, Lanzhou University, Lanzhou 730333, China
- Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jiqin Yang
- Gansu Liancheng Forest Ecosystem Field Observation and Research Station, Lanzhou University, Lanzhou 730333, China
- Liancheng National Nature Reserve in Gansu, Lanzhou 730300, China
- Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zongying Cao
- Gansu Liancheng Forest Ecosystem Field Observation and Research Station, Lanzhou University, Lanzhou 730333, China
- Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
4
|
Tian Q, He Z, Xiao S, Peng X, Lin P, Zhu X, Feng X. Intra-annual stem radial growth of Qinghai spruce and its environmental drivers in the Qilian Mountains, northwestern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170093. [PMID: 38224885 DOI: 10.1016/j.scitotenv.2024.170093] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/06/2023] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
Tree stem radial growth could be used to estimate forest productivity, which plays a dominant role in the carbon sink of terrestrial ecosystems. However, it is still obscure how intra-annual stem radial growth is regulated by environmental variables. Here, we monitored Qinghai spruce stem radial growth over seven years and analyzed the environmental drivers of the intra-annual stem radial changes in the Qilian Mountains at low (2700 m) and high altitudes (3200 m). We found that stem radial growth initiated when the daily mean minimum air temperature reached 1.6oC, while the cessation of stem growth was unrelated to temperatures and water conditions. Initiations of stem growth at 2700 m were significantly earlier than that at 3200 m. Maximum growth rates were observed before the summer solstice at low altitude, whereas at high altitude, the majority of them occurred after the summer solstice. Most variability in annual stem increment (AI) can be explained by the rate (Rm) than by the duration of stem growth (∆t), and 78.9 % and 69.6 % of the variability in AI were attributable to Rm for the lower and upper site, respectively. Structural equation modeling revealed that precipitation (P) could both directly positively influence stem radial increment (SRI) and indirectly positively influence SRI through influencing relative humidity (RH), but the positive effect of P on SRI was higher at low altitude than at high altitude. Daily minimum air temperature (Tmin) was also the main direct diver of SRI, and the positive effect of Tmin on SRI was higher at high altitude than at low altitude. Considering the trends in climate warming and humidification over the past decades, climate changes would result in earlier initiation of Qinghai spruce stem growth and promote the growth through positive response to increased precipitation in low altitude and through elevated temperature in high altitude, respectively.
Collapse
Affiliation(s)
- Quanyan Tian
- Linze Inland River Basin Research Station, Chinese Ecosystem Research Network, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, China
| | - Zhibin He
- Linze Inland River Basin Research Station, Chinese Ecosystem Research Network, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, China.
| | - Shengchun Xiao
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, China; Key Laboratory of Eco-hydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xiaomei Peng
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, China; Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Pengfei Lin
- Linze Inland River Basin Research Station, Chinese Ecosystem Research Network, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, China
| | - Xi Zhu
- Linze Inland River Basin Research Station, Chinese Ecosystem Research Network, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, China
| | - Xiangyan Feng
- Linze Inland River Basin Research Station, Chinese Ecosystem Research Network, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Lin S, Wang H, Dai J, Ge Q. Spring wood phenology responds more strongly to chilling temperatures than bud phenology in European conifers. TREE PHYSIOLOGY 2024; 44:tpad146. [PMID: 38079514 DOI: 10.1093/treephys/tpad146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/19/2023] [Accepted: 12/01/2023] [Indexed: 02/09/2024]
Abstract
A comparative assessment of bud and wood phenology could aid a better understanding of tree growth dynamics. However, the reason for asynchronism or synchronism in leaf and cambial phenology remains unclear. To test the assumption that the temporal relationship between the budburst date and the onset date of wood formation is due to their common or different responses to environmental factors, we constructed a wood phenology dataset from previous literature, and compared it with an existing bud phenology dataset in Europe. We selected three common conifers (Larix decidua Mill., Picea abies (L.) H. Karst. and Pinus sylvestris L.) in both datasets and analyzed 909 records of the onset of wood formation at 47 sites and 238,720 records of budburst date at 3051 sites. We quantified chilling accumulation (CA) and forcing requirement (FR) of budburst and onset of wood formation based on common measures of CA and FR. We then constructed negative exponential CA-FR curves for bud and wood phenology separately. The results showed that the median, variance and probability distribution of CA-FR curves varied significantly between bud and wood phenology for three conifers. The different FR under the same chilling condition caused asynchronous bud and wood phenology. Furthermore, the CA-FR curves manifested that wood phenology was more sensitive to chilling than bud phenology. Thus, the FR of the onset of wood formation increases more than that of budburst under the same warming scenarios, explaining the stronger earlier trends in the budburst date than the onset date of woody formation simulated by the process-based model. Our work not only provides a possible explanation for asynchronous bud and wood phenology from the perspective of organ-specific responses to chilling and forcing, but also develops a phenological model for predicting both bud and wood phenology with acceptable uncertainties.
Collapse
Affiliation(s)
- Shaozhi Lin
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101, China
- University of Chinese Academy of Sciences, 19A, Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Huanjiong Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101, China
| | - Junhu Dai
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101, China
- University of Chinese Academy of Sciences, 19A, Yuquan Road, Shijingshan District, Beijing 100049, China
- China-Pakistan Joint Research Center on Earth Sciences, Chinese Academy of Sciences - Higher Education Commission of Pakistan, Sector H-9, East Service Road, Islamabad 45320, Pakistan
| | - Quansheng Ge
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101, China
| |
Collapse
|
6
|
Gong C, Zeng X, Zhu X, Huang W, Compson ZG, Ren Z, Ran H, Song Q, Yang Q, Huang D, Liu J. Bamboo expansion promotes radial growth of surviving trees in a broadleaf forest. FRONTIERS IN PLANT SCIENCE 2023; 14:1242364. [PMID: 37771496 PMCID: PMC10525704 DOI: 10.3389/fpls.2023.1242364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023]
Abstract
Introduction Considerable evidence indicates that some trees are more vulnerable than others during bamboo (Phyllostachys edulis) expansion, which can affect plant community structure and alter the environment, but there has been insufficient research on the growth status of surviving individuals in colonized forests. Methods In this study, we compared the annual growth increment, growth rate, and onset, cessation, and duration of radial growth of Alniphyllum fortunei, Machilus pauhoi, and Castanopsis eyrei in a bamboo-expended broadleaf forest (BEBF) and a bamboo-absent broadleaf forest (BABF) using high-resolution point dendrometers. Results We found that the annual radial growth of A. fortunei, M. pauhoi, and C. eyrei was 22.5%, 172.2%, and 59.3% greater in BEBF than in BABF, respectively. The growth rates of M. pauhoi and C. eyrei in BEBF were significantly higher than in BABF by13.9 μm/d and 19.6 μm/d, whereas A. fortunei decreased significantly by 7.9 μm/d from BABF to BEBF. The onset and cessation of broad-leaf tree growth was later, and the growth duration was longer in BEBF compared to BABF. For example, A. fortunei and M. pauhoi in BEBF had more than one month longer growth duration than in BABF. Additionally, the nighttime growth rates of some surviving broad-leaf trees in BEBF was significantly higher than that in BABF. Discussion These results suggest that the surviving trees have plasticity and can adapt to atmospheric changes and competitive relationships after expansion of bamboo in one of two ways: by increasing their growth rates or by modifying onset and cessation of growth to extend the growth duration of trees or avoid the period of intense competition with bamboo, thereby growing better. Our research reveals for the first time how the growth of surviving broad-leaf trees adjusts to bamboo expansion. These results provide insights into how biological expansions impact primary production and have implications for forest management in the Anthropocene.
Collapse
Affiliation(s)
- Chao Gong
- Jiangxi Province Key Laboratory for Bamboo Germplasm Resources and Utilization, College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Xiaoxia Zeng
- Jiangxi Province Key Laboratory for Bamboo Germplasm Resources and Utilization, College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Xianglong Zhu
- Department of Scientific Research, Administration of Jiangxi Qiyunshan Nature Reserve, Ganzhou, China
| | - Wenhui Huang
- Department of Scientific Research, Administration of Jiangxi Qiyunshan Nature Reserve, Ganzhou, China
| | - Zacchaeus G. Compson
- Department of Biological Sciences, Advanced Environmental Research Institute, University of North Texas, Denton, TX, United States
| | - Zewen Ren
- Jiangxi Province Key Laboratory for Bamboo Germplasm Resources and Utilization, College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Huan Ran
- Jiangxi Province Key Laboratory for Bamboo Germplasm Resources and Utilization, College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Qingni Song
- Jiangxi Province Key Laboratory for Bamboo Germplasm Resources and Utilization, College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Qingpei Yang
- Jiangxi Province Key Laboratory for Bamboo Germplasm Resources and Utilization, College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Dongmei Huang
- School of Humanities and Public Administration, Jiangxi Agricultural University, Nanchang, China
| | - Jun Liu
- Jiangxi Province Key Laboratory for Bamboo Germplasm Resources and Utilization, College of Forestry, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
7
|
Xin Z, Feng W, Zhan H, Bai X, Yang W, Cheng Y, Wu X. Atmospheric Vapor Impact on Desert Vegetation and Desert Ecohydrological System. PLANTS (BASEL, SWITZERLAND) 2023; 12:223. [PMID: 36678936 PMCID: PMC9865631 DOI: 10.3390/plants12020223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/12/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
The ability of plants to absorb unsaturated atmospheric water vapor is a controversial topic. To study how vegetation in arid areas survives under limited water resources, this study uses Tamarisk in the Ulan Buh Desert of China as an example. The in-situ observation of a newly designed Lysimeter and sap flow meter system were used to monitor the precipitation infiltration and the utilization efficiency of Tamarisk of atmospheric vapor. The results show that the annual precipitation of 84 mm in arid areas could still result in deep soil recharge (DSR) with a recharge rate of 5 mm/year. Furthermore, DSR is detectable even in the winter, and the 5-year average DSR was 5.77% of the annual precipitation. It appears that the small precipitation events are critically important for the survival of Tamarisk. When the atmospheric relative humidity reaches 70%, Tamarisk leaves can absorb the unsaturated atmospheric vapor, which accounts for 13.2% of the annual precipitation amount. To adapt to the arid environment, Tamarisk can harvest its water supply from several sources including atmospheric vapor and micro-precipitation events (whose precipitation is below the measurement limit of 0.2 mm of the precipitation gauge) and can still permit a certain amount of recharge to replenish the deep soil moisture. Such an ecohydrological dynamic is of great significance to desert vegetation.
Collapse
Affiliation(s)
- Zhiming Xin
- School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
- The Sand Forestry Experimental Center, Chinese Academy of Forestry, Hohhot 015200, China
| | - Wei Feng
- Department of Grass and Livestock, Xilingol Vocational College, Xilingol League 026000, China
| | - Hongbin Zhan
- Department of Geology and Geophysics, Texas A&M University, College Station, TX 77843, USA
| | - Xuying Bai
- School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Wenbin Yang
- Low-Coverage Sand Control Company, Hohhot 010000, China
| | - Yiben Cheng
- School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Xiuqin Wu
- School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
8
|
Pompa-García M, Camarero JJ, Valeriano C, Vivar-Vivar ED. Climate sensitivity of seasonal radial growth in young stands of Mexican conifers. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2022; 66:1711-1723. [PMID: 35672588 PMCID: PMC9300551 DOI: 10.1007/s00484-022-02312-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Alteration of forest by climate change and human activities modify the growth response of trees to temperature and moisture. Growth trends of young forests with even-aged stands recruited recently when the climate became warmer and drier are not well known. We analyze the radial growth response of young conifer trees (37-63 years old) to climatic parameters and drought stress employing Pearson correlations and the Vaganov-Shashkin Lite (VS-Lite) model. This study uses tree rings of six species of conifer trees (Pinus teocote, Pinus pseudostrobus, Pinus pinceana, Pinus montezumae, Pinus ayacahuite, and Taxodium mucronatum) collected from young forests with diverse growth conditions in northern and central Mexico. Seasonal ring growth and earlywood width (EW) were modeled as a function of temperature and soil moisture using the VS-Lite model. Wet and cool conditions in the previous winter and current spring enhance ring growth and EW production, mainly in sensitive species from dry sites (P. teocote, P. pseudostrobus, P. pinceana, and P. montezumae), whereas the growth of species from mesic sites (P. ayacahuite and T. mucronatum) shows little responsiveness to soil moisture. In P. ayacahuite and T. mucronatum, latewood growth is enhanced by warm summer conditions. The VS-Lite model shows that low soil moisture during April and May constrains growth in the four sensitive species, particularly in P. pinceana, the species dominant in the most xeric sites. Assessing seasonal ring growth and combining its response to climate with process-based growth models could complement xylogenesis data. Such framework should be widely applied, given the predicted warming and its impact on young forests.
Collapse
Affiliation(s)
- Marin Pompa-García
- Facultad de Ciencias Forestales y Ambientales de la Universidad Juárez del Estado de Durango, Rio Papaloapan Y Blvd. Durango S/N. Col. Valle del Sur, 34120 Durango, Mexico
| | - J. Julio Camarero
- Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Montañana 1005, 50192 Zaragoza, Spain
| | - Cristina Valeriano
- Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Montañana 1005, 50192 Zaragoza, Spain
| | - Eduardo D. Vivar-Vivar
- Facultad de Ciencias Forestales y Ambientales de la Universidad Juárez del Estado de Durango, Rio Papaloapan Y Blvd. Durango S/N. Col. Valle del Sur, 34120 Durango, Mexico
| |
Collapse
|
9
|
Dussarrat T, Prigent S, Latorre C, Bernillon S, Flandin A, Díaz FP, Cassan C, Van Delft P, Jacob D, Varala K, Joubes J, Gibon Y, Rolin D, Gutiérrez RA, Pétriacq P. Predictive metabolomics of multiple Atacama plant species unveils a core set of generic metabolites for extreme climate resilience. THE NEW PHYTOLOGIST 2022; 234:1614-1628. [PMID: 35288949 PMCID: PMC9324839 DOI: 10.1111/nph.18095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Current crop yield of the best ideotypes is stagnating and threatened by climate change. In this scenario, understanding wild plant adaptations in extreme ecosystems offers an opportunity to learn about new mechanisms for resilience. Previous studies have shown species specificity for metabolites involved in plant adaptation to harsh environments. Here, we combined multispecies ecological metabolomics and machine learning-based generalized linear model predictions to link the metabolome to the plant environment in a set of 24 species belonging to 14 families growing along an altitudinal gradient in the Atacama Desert. Thirty-nine common compounds predicted the plant environment with 79% accuracy, thus establishing the plant metabolome as an excellent integrative predictor of environmental fluctuations. These metabolites were independent of the species and validated both statistically and biologically using an independent dataset from a different sampling year. Thereafter, using multiblock predictive regressions, metabolites were linked to climatic and edaphic stressors such as freezing temperature, water deficit and high solar irradiance. These findings indicate that plants from different evolutionary trajectories use a generic metabolic toolkit to face extreme environments. These core metabolites, also present in agronomic species, provide a unique metabolic goldmine for improving crop performances under abiotic pressure.
Collapse
Affiliation(s)
- Thomas Dussarrat
- Departamento de Genética Molecular y MicrobiologíaPontificia Universidad Católica de ChileFONDAP Center for Genome Regulation and Millenium Institute for Integrative Biology (iBio)Av Libertador Bernardo O'Higgins 340SantiagoChile
- Univ. BordeauxINRAEUMR1332 BFP, 33882Villenave d'OrnonFrance
| | - Sylvain Prigent
- Univ. BordeauxINRAEUMR1332 BFP, 33882Villenave d'OrnonFrance
- Bordeaux MetabolomeMetaboHUBPHENOME‐EMPHASIS33140Villenave d'OrnonFrance
| | - Claudio Latorre
- Departamento de EcologíaPontificia Universidad Católica de ChileAv Libertador Bernardo O'Higgins 340SantiagoChile
- Institute of Ecology and Biodiversity (IEB)Las Palmeras3425ÑuñoaSantiagoChile
| | - Stéphane Bernillon
- Univ. BordeauxINRAEUMR1332 BFP, 33882Villenave d'OrnonFrance
- Bordeaux MetabolomeMetaboHUBPHENOME‐EMPHASIS33140Villenave d'OrnonFrance
| | - Amélie Flandin
- Univ. BordeauxINRAEUMR1332 BFP, 33882Villenave d'OrnonFrance
- Bordeaux MetabolomeMetaboHUBPHENOME‐EMPHASIS33140Villenave d'OrnonFrance
| | - Francisca P. Díaz
- Departamento de Genética Molecular y MicrobiologíaPontificia Universidad Católica de ChileFONDAP Center for Genome Regulation and Millenium Institute for Integrative Biology (iBio)Av Libertador Bernardo O'Higgins 340SantiagoChile
| | - Cédric Cassan
- Univ. BordeauxINRAEUMR1332 BFP, 33882Villenave d'OrnonFrance
- Bordeaux MetabolomeMetaboHUBPHENOME‐EMPHASIS33140Villenave d'OrnonFrance
| | - Pierre Van Delft
- Bordeaux MetabolomeMetaboHUBPHENOME‐EMPHASIS33140Villenave d'OrnonFrance
- Laboratoire de Biogenèse Membranaire, CNRSUniv. Bordeaux, UMR 5200Villenave d'OrnonFrance
| | - Daniel Jacob
- Univ. BordeauxINRAEUMR1332 BFP, 33882Villenave d'OrnonFrance
- Bordeaux MetabolomeMetaboHUBPHENOME‐EMPHASIS33140Villenave d'OrnonFrance
| | - Kranthi Varala
- Department of Horticulture and Landscape ArchitecturePurdue UniversityWest LafayetteIN47907USA
- Center for Plant BiologyPurdue UniversityWest LafayetteIN47907USA
| | - Jérôme Joubes
- Laboratoire de Biogenèse Membranaire, CNRSUniv. Bordeaux, UMR 5200Villenave d'OrnonFrance
| | - Yves Gibon
- Univ. BordeauxINRAEUMR1332 BFP, 33882Villenave d'OrnonFrance
- Bordeaux MetabolomeMetaboHUBPHENOME‐EMPHASIS33140Villenave d'OrnonFrance
| | - Dominique Rolin
- Univ. BordeauxINRAEUMR1332 BFP, 33882Villenave d'OrnonFrance
- Bordeaux MetabolomeMetaboHUBPHENOME‐EMPHASIS33140Villenave d'OrnonFrance
| | - Rodrigo A. Gutiérrez
- Departamento de Genética Molecular y MicrobiologíaPontificia Universidad Católica de ChileFONDAP Center for Genome Regulation and Millenium Institute for Integrative Biology (iBio)Av Libertador Bernardo O'Higgins 340SantiagoChile
| | - Pierre Pétriacq
- Univ. BordeauxINRAEUMR1332 BFP, 33882Villenave d'OrnonFrance
- Bordeaux MetabolomeMetaboHUBPHENOME‐EMPHASIS33140Villenave d'OrnonFrance
| |
Collapse
|
10
|
Tree growth sensitivity to climate varies across a seasonal precipitation gradient. Oecologia 2022; 198:933-946. [DOI: 10.1007/s00442-022-05156-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 03/28/2022] [Indexed: 10/18/2022]
|
11
|
Liu X, Ziaco E, Biondi F. Water-Use Efficiency of Co-occurring Sky-Island Pine Species in the North American Great Basin. FRONTIERS IN PLANT SCIENCE 2021; 12:787297. [PMID: 34925427 PMCID: PMC8678526 DOI: 10.3389/fpls.2021.787297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/02/2021] [Indexed: 06/14/2023]
Abstract
Water-use efficiency (WUE), weighing the balance between plant transpiration and growth, is a key characteristic of ecosystem functioning and a component of tree drought resistance. Seasonal dynamics of tree-level WUE and its connections with drought variability have not been previously explored in sky-island montane forests. We investigated whole-tree transpiration and stem growth of bristlecone (Pinus longaeva) and limber pine (Pinus flexilis) within a high-elevation stand in central-eastern Nevada, United States, using sub-hourly measurements over 5 years (2013-2017). A moderate drought was generally observed early in the growing season, whereas interannual variability of summer rains determined drought levels between years, i.e., reducing drought stress in 2013-2014 while enhancing it in 2015-2017. Transpiration and basal area increment (BAI) of both pines were coupled throughout June-July, resulting in a high but relatively constant early season WUE. In contrast, both pines showed high interannual plasticity in late-season WUE, with a predominant role of stem growth in driving WUE. Overall, bristlecone pine was characterized by a lower WUE compared to limber pine. Dry or wet episodes in the late growing season overrode species differences. Our results suggested thresholds of vapor pressure deficit and soil moisture that would lead to opposite responses of WUE to late-season dry or wet conditions. These findings provide novel insights and clarify potential mechanisms modulating tree-level WUE in sky-island ecosystems of semi-arid regions, thereby helping land managers to design appropriate science-based strategies and reduce uncertainties associated with the impact of future climatic changes.
Collapse
Affiliation(s)
- Xinsheng Liu
- School of Geography and Tourism, Anhui Normal University, Wuhu, China
- DendroLab, Department of Natural Resources and Environmental Science, University of Nevada, Reno, NV, United States
- College of Tourism and Geography, Jiujiang University, Jiujiang, China
| | - Emanuele Ziaco
- Department of Ecology and Genetics, Plant Ecology and Evolution, University of Uppsala, Uppsala, Sweden
| | - Franco Biondi
- DendroLab, Department of Natural Resources and Environmental Science, University of Nevada, Reno, NV, United States
| |
Collapse
|
12
|
Pompa-García M, Camarero JJ, Colangelo M, González-Cásares M. Inter and intra-annual links between climate, tree growth and NDVI: improving the resolution of drought proxies in conifer forests. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2021; 65:2111-2121. [PMID: 34264389 PMCID: PMC8566664 DOI: 10.1007/s00484-021-02170-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
The inter- and intra-annual variability in radial growth reflects responses to climatic variability and water shortage, especially in areas subjected to seasonal drought. However, it is unknown how this variability is related to forest productivity, which can be assessed by measuring changes in canopy greenness and cover through remote sensing products as the Normalized Difference Vegetation Index (NDVI). We combine xylogenesis with measurements of inter-annual changes in seasonal wood production (earlywood width, adjusted latewood width) and NDVI to improve the understanding of climate and drought impacts on growth and forest productivity in a Pinus teocote stand located in northern Mexico. Cambial dynamics accelerated in March and a high production of radially enlarging and thickening tracheids were observed from April to October and from June to October, respectively. Tracheid maturation was very active in October when latewood production peaked. Wet conditions in winter-spring and summer-autumn enhanced earlywood and latewood production, respectively. Earlywood and latewood were constrained by long (4-10 months) and short (2-3 months) droughts, respectively. The earlywood production depended on April soil moisture, which agrees with the peak of radially enlarging tracheid production found during that month. Aligning drought proxies at inter- and intra-annual scales by using growth and productivity measures improves our understanding of conifer forest responses to water shortage.
Collapse
Affiliation(s)
- Marín Pompa-García
- Facultad de Ciencias Forestales de la, Universidad Juárez del Estado de Durango, Río Papaloapan Y Blvd., Durango S/N Col. Valle del Sur, Durango, México
| | - J. Julio Camarero
- Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Montañana 1005, Apdo. 202, 50192 Zaragoza, Spain
| | - Michele Colangelo
- Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Montañana 1005, Apdo. 202, 50192 Zaragoza, Spain
- School of Agricultural, Forest, Food and Environmental Sciences, Univ. Basilicata, Potenza, Italy
| | - Marcos González-Cásares
- Facultad de Ciencias Forestales de la, Universidad Juárez del Estado de Durango, Río Papaloapan Y Blvd., Durango S/N Col. Valle del Sur, Durango, México
| |
Collapse
|
13
|
Morino K, Minor RL, Barron-Gafford GA, Brown PM, Hughes MK. Bimodal cambial activity and false-ring formation in conifers under a monsoon climate. TREE PHYSIOLOGY 2021; 41:1893-1905. [PMID: 33823053 DOI: 10.1093/treephys/tpab045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Tracking wood formation in semiarid regions during the seasonal march of precipitation extremes has two important applications. It can provide (i) insight into the adaptive capacities of trees to drought and (ii) a basis for a richer interpretation of tree-ring data, assisting in a deeper understanding of past and current climate. In the southwestern USA, the anatomical signature of seasonally bimodal precipitation is the 'false ring'-a band of latewood-like cells in the earlywood. These occur when a particularly deep drought during the early growing season ends abruptly with timely, mid-growing season monsoonal rains. Such conditions presented in southern Arizona in 2014, enabling us to explore false-ring formation in ponderosa pine (Pinus ponderosa Lawson and C. Lawson) and Douglas-fir (Pseudotsuga menziesii Mirb. Franco) in mixed-conifer forest at 2573 m above sea level. We ask: what were the cell-by-cell timings and durations in the phases of wood cell development in 2014? How do these seasonal patterns relate to strongly fluctuating environmental conditions during the growing season? We took weekly microcores from March through November from six ponderosa pine and seven Douglas-fir trees at a well-instrumented flux tower site. Thin sections were prepared, and we counted cells in cambial, expansion, cell wall thickening and mature phases. For ponderosa pine trees forming a false ring, the first impact of intensifying seasonal drought was seen in the enlarging phase and then, almost a month later, in cambial activity. In this species, recovery from drought was associated with recovery first in cambial activity, followed by cell enlargement. This timing raised the possibility that cell division may be affected by atmospheric moisture increases before soil recharge. In both species, the last false-ring cells matured during the summer rainy season. Bimodal cambial activity coincident with moisture availability was observed in both species, whether or not they formed a false ring. This deeper knowledge of the precise timing of both developmental and environmental events should help define mechanistic connections among these factors in creating bimodal growth patterns.
Collapse
Affiliation(s)
- Kiyomi Morino
- Laboratory of Tree-Ring Research, University of Arizona, Tucson, AZ 85721, USA
| | - Rebecca L Minor
- Department of Earth and Climate Sciences, Bates College, Lewiston, ME 04240, USA
| | - Greg A Barron-Gafford
- School of Geography, Development and Environment, University of Arizona, Tucson, AZ 85721, USA
- B2 Earthscience, Biosphere 2, Office of Research Development and Innovation, University of Arizona, Tucson, AZ 85721, USA
| | - Peter M Brown
- Rocky Mountain Tree-Ring Research, Ft. Collins, CO 80526, USA
| | - Malcolm K Hughes
- Laboratory of Tree-Ring Research, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
14
|
Balanzategui D, Nordhauß H, Heinrich I, Biondi F, Miley N, Hurley AG, Ziaco E. Wood Anatomy of Douglas-Fir in Eastern Arizona and Its Relationship With Pacific Basin Climate. FRONTIERS IN PLANT SCIENCE 2021; 12:702442. [PMID: 34539695 PMCID: PMC8440974 DOI: 10.3389/fpls.2021.702442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Dendroclimatic reconstructions, which are a well-known tool for extending records of climatic variability, have recently been expanded by using wood anatomical parameters. However, the relationships between wood cellular structures and large-scale climatic patterns, such as El Niño-Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO), are still not completely understood, hindering the potential for wood anatomy as a paleoclimatic proxy. To better understand the teleconnection between regional and local climate processes in the western United States, our main objective was to assess the value of these emerging tree-ring parameters for reconstructing climate dynamics. Using Confocal Laser Scanning Microscopy, we measured cell lumen diameter and cell wall thickness (CWT) for the period 1966 to 2015 in five Douglas-firs [Pseudotsuga menziesii (Mirb.) Franco] from two sites in eastern Arizona (United States). Dendroclimatic analysis was performed using chronologies developed for 10 equally distributed sectors of the ring and daily climatic records to identify the strongest climatic signal for each sector. We found that lumen diameter in the first ring sector was sensitive to previous fall-winter temperature (September 25th to January 23rd), while a precipitation signal (October 27th to February 13th) persisted for the entire first half of the ring. The lack of synchronous patterns between trees for CWT prevented conducting meaningful climate-response analysis for that anatomical parameter. Time series of lumen diameter showed an anti-phase relationship with the Southern Oscillation Index (a proxy for ENSO) at 10 to 14year periodicity and particularly in 1980-2005, suggesting that chronologies of wood anatomical parameters respond to multidecadal variability of regional climatic modes. Our findings demonstrate the potential of cell structural characteristics of southwestern United States conifers for reconstructing past climatic variability, while also improving our understanding of how large-scale ocean-atmosphere interactions impact local hydroclimatic patterns.
Collapse
Affiliation(s)
- Daniel Balanzategui
- GFZ German Research Centre for Geosciences, Potsdam, Germany
- Institute of Geography, Humboldt-University, Berlin, Germany
- Department of Natural Sciences, DAI German Archaeological Institute, Berlin, Germany
| | - Henry Nordhauß
- GFZ German Research Centre for Geosciences, Potsdam, Germany
| | - Ingo Heinrich
- GFZ German Research Centre for Geosciences, Potsdam, Germany
- Institute of Geography, Humboldt-University, Berlin, Germany
- Department of Natural Sciences, DAI German Archaeological Institute, Berlin, Germany
| | - Franco Biondi
- DendroLab, Department of Natural Resources & Environmental Science, University of Nevada, Reno, NV, United States
| | - Nicholas Miley
- DendroLab, Department of Natural Resources & Environmental Science, University of Nevada, Reno, NV, United States
| | - Alexander G. Hurley
- DendroLab, Department of Natural Resources & Environmental Science, University of Nevada, Reno, NV, United States
| | - Emanuele Ziaco
- GFZ German Research Centre for Geosciences, Potsdam, Germany
- Department of Ecology and Genetics, Plant Ecology and Evolution, University of Uppsala, Uppsala, Sweden
| |
Collapse
|
15
|
Transition Dates from Earlywood to Latewood and Early Phloem to Late Phloem in Norway Spruce. FORESTS 2021. [DOI: 10.3390/f12030331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Climate change will affect radial growth patterns of trees, which will result in different forest productivity, wood properties, and timber quality. While many studies have been published on xylem phenology and anatomy lately, little is known about the phenology of earlywood and latewood formation, also in relation to cambial phenology. Even less information is available for phloem. Here, we examined year-to-year variability of the transition dates from earlywood to latewood and from early phloem to late phloem in Norway spruce (Picea abies) from three temperate sites, two in Slovenia and one in the Czech Republic. Data on xylem and phloem formation were collected during 2009–2011. Sensitivity analysis was performed to determine the specific contribution of growth rate and duration on wood and phloem production, separately for early and late formed parts. We found significant differences in the transition date from earlywood to latewood between the selected sites, but not between growth seasons in trees from the same site. It occurred in the first week of July at PAN and MEN and more than two weeks later at RAJ. The duration of earlywood formation was longer than that of latewood formation; from 31.4 days at PAN to 61.3 days at RAJ. In phloem, we found differences in transition date from early phloem to late phloem also between the analysed growth seasons; from 2.5 weeks at PAN to 4 weeks at RAJ Compared to the transition from earlywood to latewood the transition from early phloem to late phloem occurred 25–64 days earlier. There was no significant relationship between the onset of cambial cell production and the transition dates. The findings are important to better understand the inter-annual variability of these phenological events in spruce from three contrasting temperate sites, and how it is reflected in xylem and phloem anatomy.
Collapse
|
16
|
Photoperiod and temperature as dominant environmental drivers triggering secondary growth resumption in Northern Hemisphere conifers. Proc Natl Acad Sci U S A 2020; 117:20645-20652. [PMID: 32759218 PMCID: PMC7456155 DOI: 10.1073/pnas.2007058117] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Wood formation consumes around 15% of the anthropogenic CO2 emissions per year and plays a critical role in long-term sequestration of carbon on Earth. However, the exogenous factors driving wood formation onset and the underlying cellular mechanisms are still poorly understood and quantified, and this hampers an effective assessment of terrestrial forest productivity and carbon budget under global warming. Here, we used an extensive collection of unique datasets of weekly xylem tissue formation (wood formation) from 21 coniferous species across the Northern Hemisphere (latitudes 23 to 67°N) to present a quantitative demonstration that the onset of wood formation in Northern Hemisphere conifers is primarily driven by photoperiod and mean annual temperature (MAT), and only secondarily by spring forcing, winter chilling, and moisture availability. Photoperiod interacts with MAT and plays the dominant role in regulating the onset of secondary meristem growth, contrary to its as-yet-unquantified role in affecting the springtime phenology of primary meristems. The unique relationships between exogenous factors and wood formation could help to predict how forest ecosystems respond and adapt to climate warming and could provide a better understanding of the feedback occurring between vegetation and climate that is mediated by phenology. Our study quantifies the role of major environmental drivers for incorporation into state-of-the-art Earth system models (ESMs), thereby providing an improved assessment of long-term and high-resolution observations of biogeochemical cycles across terrestrial biomes.
Collapse
|
17
|
Szejner P, Clute T, Anderson E, Evans MN, Hu J. Reduction in lumen area is associated with the δ 18 O exchange between sugars and source water during cellulose synthesis. THE NEW PHYTOLOGIST 2020; 226:1583-1593. [PMID: 32058599 DOI: 10.1111/nph.16484] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
High temporal resolution measurements of wood anatomy and the isotopic composition in tree-rings have the potential to enhance our interpretation of climate variability, but the sources of variation within the growing season are still not well understood. Here we test the response of wood anatomical features in Pinus ponderosa and Pseudotsuga menziesii, including cell-wall thickness (CWT) and lumen area (LA), along with the oxygen isotopic composition of α-cellulose (δ18 Ocell ) to shifts in relative humidity (RH) in two treatments, one from high-low RH and the second one form low-high RH. We observed a significant decrease in LA and a small increase in CWT within the experimental growing season in both treatments. The measured δ18 Ocell along the ring was responsive to RH variations in both treatments. However, estimated δ18 Ocell did not agree with measured δ18 Ocell when the proportion of exchangeable oxygen during cellulose synthesis (Pex ) was kept constant. We found that Pex increased throughout the ring as LA decreased. Based on this varying Pex within an annual ring, we propose a targeted sampling strategy for different hydroclimate signals: earlier season cellulose is a better recorder of RH while late-season cellulose is a better recorder of the source water.
Collapse
Affiliation(s)
- Paul Szejner
- School of Natural Resources and Environment, University of Arizona, Tucson, AZ, 85721, USA
- Instituto de Geología, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Timothy Clute
- Department of Ecology, Montana State University, Bozeman, MT, 59717, USA
| | - Erik Anderson
- School of Natural Resources and Environment, University of Arizona, Tucson, AZ, 85721, USA
| | - Michael N Evans
- Department of Geology and Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, 20742, USA
| | - Jia Hu
- School of Natural Resources and Environment, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
18
|
Guérin M, von Arx G, Martin-Benito D, Andreu-Hayles L, Griffin KL, McDowell NG, Pockman W, Gentine P. Distinct xylem responses to acute vs prolonged drought in pine trees. TREE PHYSIOLOGY 2020; 40:605-620. [PMID: 31976523 DOI: 10.1093/treephys/tpz144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 09/17/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
Increasing dryness challenges trees' ability to maintain water transport to the leaves. Most plant hydraulics models use a static xylem response to water stress. Yet, in reality, lower soil moisture and warmer temperatures during growing seasons feed back onto xylem development. In turn, adjustments to water stress in the newly built xylem influence future physiological responses to droughts. In this study, we investigate the annual variation of anatomical traits in branch xylem in response to different soil and atmospheric moisture conditions and tree stress levels, as indicated by seasonal predawn leaf water potential (ΨL,pd). We used a 6-year field experiment in southwestern USA with three soil water treatments applied to Pinus edulis Engelm trees-ambient, drought (45% rain reduction) and irrigation (15-35% annual water addition). All trees were also subject to a natural 1-year acute drought (soil and atmospheric) that occurred during the experiment. The irrigated trees showed only moderate changes in anatomy-derived hydraulic traits compared with the ambient trees, suggesting a generally stable, well-balanced xylem structure under unstressed conditions. The artificial prolonged soil drought increased hydraulic efficiency but lowered xylem construction costs and decreased tracheid implosion safety ((t/b)2), suggesting that annual adjustments of xylem structure follow a safety-efficiency trade-off. The acute drought plunged hydraulic efficiency across all treatments. The combination of acute and prolonged drought resulted in vulnerable and inefficient new xylem, disrupting the stability of the anatomical trade-off observed in the rest of the years. The xylem hydraulic traits showed no consistent direct link to ΨL,pd. In the future, changes in seasonality of soil and atmospheric moisture are likely to have a critical impact on the ability of P. edulis to acclimate its xylem to warmer climate. Furthermore, the increasing frequency of acute droughts might reduce hydraulic resilience of P. edulis by repeatedly creating vulnerable and less efficient anatomical structure.
Collapse
Affiliation(s)
- Marceau Guérin
- Department of Earth and Environmental Engineering, Columbia University, New York, NY 10027, USA
| | - Georg von Arx
- Forest Dynamics Research Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111 CH-8903 Birmensdorf, Switzerland
| | - Dario Martin-Benito
- INIA, CIFOR, Ctra La Coruña km 7.5, 28040 Madrid, Spain
- Forest Ecology, Department of Environmental Sciences, Swiss Federal Institute of Technology, ETH Zurich, Universitätstrasse 16, 8092 Zürich, Switzerland
| | - Laia Andreu-Hayles
- Tree-Ring Laboratory, Lamont-Doherty Earth Observatory of Columbia University, 61 Route 9 W, Palisades, NY 10964, USA
| | - Kevin L Griffin
- Department of Earth and Environmental Sciences, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964, USA
| | - Nate G McDowell
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99354, USA
| | - William Pockman
- Biology Department, MSC03 202, University of New Mexico, Albuquerque, NM 87131, USA
| | - Pierre Gentine
- Department of Earth and Environmental Engineering, Columbia University, New York, NY 10027, USA
- Earth Institute, Columbia University, Hogan Hall, 2910 Broadway, New York, NY 10027, USA
| |
Collapse
|
19
|
Lange J, Carrer M, Pisaric MFJ, Porter TJ, Seo JW, Trouillier M, Wilmking M. Moisture-driven shift in the climate sensitivity of white spruce xylem anatomical traits is coupled to large-scale oscillation patterns across northern treeline in northwest North America. GLOBAL CHANGE BIOLOGY 2020; 26:1842-1856. [PMID: 31799729 DOI: 10.1111/gcb.14947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
Tree growth at northern treelines is generally temperature-limited due to cold and short growing seasons. However, temperature-induced drought stress was repeatedly reported for certain regions of the boreal forest in northwestern North America, provoked by a significant increase in temperature and possibly reinforced by a regime shift of the pacific decadal oscillation (PDO). The aim of this study is to better understand physiological growth reactions of white spruce, a dominant species of the North American boreal forest, to PDO regime shifts using quantitative wood anatomy and traditional tree-ring width (TRW) analysis. We investigated white spruce growth at latitudinal treeline across a >1,000 km gradient in northwestern North America. Functionally important xylem anatomical traits (lumen area, cell-wall thickness, cell number) and TRW were correlated with the drought-sensitive standardized precipitation-evapotranspiration index of the growing season. Correlations were computed separately for complete phases of the PDO in the 20th century, representing alternating warm/dry (1925-1946), cool/wet (1947-1976) and again warm/dry (1977-1998) climate regimes. Xylem anatomical traits revealed water-limiting conditions in both warm/dry PDO regimes, while no or spatially contrasting associations were found for the cool/wet regime, indicating a moisture-driven shift in growth-limiting factors between PDO periods. TRW reflected only the last shift of 1976/1977, suggesting different climate thresholds and a higher sensitivity to moisture availability of xylem anatomical traits compared to TRW. This high sensitivity of xylem anatomical traits permits to identify first signs of moisture-driven growth in treeline white spruce at an early stage, suggesting quantitative wood anatomy being a powerful tool to study climate change effects in the northwestern North American treeline ecotone. Projected temperature increase might challenge growth performance of white spruce as a key component of the North American boreal forest biome in the future, when drier conditions are likely to occur with higher frequency and intensity.
Collapse
Affiliation(s)
- Jelena Lange
- Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, Germany
| | - Marco Carrer
- Department TESAF, University of Padova, Padova, Italy
| | - Michael F J Pisaric
- Department of Geography and Tourism Studies, Brock University, Saint Catharines, ON, Canada
| | - Trevor J Porter
- Department of Geography, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Jeong-Wook Seo
- Department of Wood & Paper Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Mario Trouillier
- Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, Germany
| | - Martin Wilmking
- Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, Germany
| |
Collapse
|
20
|
Environmental Drivers for Cambial Reactivation of Qilian Junipers (Juniperus przewalskii) in a Semi-Arid Region of Northwestern China. ATMOSPHERE 2020. [DOI: 10.3390/atmos11030232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Although cambial reactivation is considered to be strongly dependent on temperature, the importance of water availability at the onset of xylogenesis in semi-arid regions still lacks sufficient evidences. In order to explore how environmental factors influence the initiation of cambial activity and wood formation, we monitored weekly cambial phenology in Qilian juniper (Juniperus przewalskii) from a semi-arid high-elevation region of northwestern China. We collected microcores from 12 trees at two elevations during the growing seasons in 2013 and 2014, testing the hypothesis that rainfall limits cambial reactivation in spring. Cambium was reactivated from late April to mid-May, and completed cell division from late July to early August, lasting 70–100 days. Both sites suffered from severe drought from January to April 2013, receiving < 1 mm of rain in April. In contrast, rainfall from January to April 2014 was 5–6 times higher than that in 2013. However, cambial reactivation in 2014 was delayed by 10 days. In spring, soil moisture gradually increased with warming temperatures, reaching 0.15 m3/m3 before the onset of xylogenesis, which may have ensured water availability for tree growth during the rainless period. We were unable to confirm the hypothesis that rainfall is a limiting factor of cambial reactivation. Our results highlight the importance of soil moisture in semi-arid regions, which better describe the environmental conditions that are favorable for cambial reactivation in water-limited ecosystems.
Collapse
|
21
|
Vieira J, Carvalho A, Campelo F. Tree Growth Under Climate Change: Evidence From Xylogenesis Timings and Kinetics. FRONTIERS IN PLANT SCIENCE 2020; 11:90. [PMID: 32133022 PMCID: PMC7040628 DOI: 10.3389/fpls.2020.00090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/21/2020] [Indexed: 05/31/2023]
Abstract
Tree growth is one of the most studied aspects of tree biology, particularly secondary growth. In the Mediterranean region, cambial activity is mostly determined by water availability. Climatic projections for the Mediterranean region predict more frequent and intense droughts, and longer periods without precipitation. To investigate tree growth under the predicted scenarios of climate change, a water manipulation experiment was conducted in a maritime pine stand (Pinus pinaster Aiton). In 2017, fifteen trees were divided into three groups: control, rain exclusion, and irrigation. Drought conditions were simulated by installing a continuous plastic sheet on the forest floor from March to September. Trees under irrigation treatment were watered twice a week in September. Cambial activity and xylem formation was monitored every 10 days from February 2017 until March 2018. Cell production was maximal around the spring equinox in all treatments. Trees under rain exclusion decreased cell production rates, xylogenesis duration, and latewood cell wall thickness. The extra irrigation in September did not produce noticeable differences in xylogenesis compared to trees in the control treatment. The synchronization of maximum cambial division rates around the vernal equinox (spring) could allow Mediterranean trees to mitigate the impact of summer drought. With the predicted increase in drought intensity and frequency, lower tree productivity, carbon sequestration, and wood biomass are expected.
Collapse
|
22
|
Buttò V, Shishov V, Tychkov I, Popkova M, He M, Rossi S, Deslauriers A, Morin H. Comparing the Cell Dynamics of Tree-Ring Formation Observed in Microcores and as Predicted by the Vaganov-Shashkin Model. FRONTIERS IN PLANT SCIENCE 2020; 11:1268. [PMID: 32922430 PMCID: PMC7457011 DOI: 10.3389/fpls.2020.01268] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/03/2020] [Indexed: 05/17/2023]
Abstract
New insights into the intra-annual dynamics of tree-ring formation can improve our understanding of tree-growth response to environmental conditions at high-resolution time scales. Obtaining this information requires, however, a weekly monitoring of wood formation, sampling that is extremely time-intensive and scarcely feasible over vast areas. Estimating the timing of cambial and xylem differentiation by modeling thus represents an interesting alternative for obtaining this important information by other means. Temporal dynamics of cambial divisions can be extracted from the daily tree-ring growth rate computed by the Vaganov-Shashkin (VS) simulation model, assuming that cell production is tightly linked to tree-ring growth. Nonetheless, these predictions have yet to be compared with direct observations of wood development, i.e., via microcoring, over a long time span. We tested the performance of the VS model by comparing the observed and predicted timing of wood formation in black spruce [Picea mariana (Mill.)]. We obtained microcores over 15 years at 5 sites along a latitudinal gradient in Quebec (Canada). The measured variables included cell size and the timing of cell production and differentiation. We calibrated the VS model using daily temperature and precipitation recorded by weather stations located on each site. The predicted and observed timing of cambial and enlarging cells were highly correlated (R 2 = 0.8); nonetheless, we detected a systematic overestimation in the predicted timing of cambial cells, with predictions delayed by 1-20 days compared with observations. The growth rate of cell diameter was correlated with the predicted growth rate assigned to each cambial cell, confirming that cell diameter developmental dynamics have the potential to be inferred by the tree-ring growth curve of the VS model. Model performances decrease substantially in estimating the end of wood formation. The systematic errors suggest that the actual relationships implemented in the model are unable to explain the phenological events in autumn. The mismatch between the observed and predicted timing of wood formation in black spruce within our study area can be reduced by better adapting the VS model to wet sites, a context for which this model has been rarely used.
Collapse
Affiliation(s)
- Valentina Buttò
- Département des Sciences fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
- *Correspondence: Valentina Buttò,
| | - Vladimir Shishov
- Laboratory for Integral Studies of Forest Dynamics of Eurasia, Siberian Federal University, Krasnoyarsk, Russia
- Environmental and Research Center, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Ivan Tychkov
- Laboratory for Integral Studies of Forest Dynamics of Eurasia, Siberian Federal University, Krasnoyarsk, Russia
| | - Margarita Popkova
- Laboratory for Integral Studies of Forest Dynamics of Eurasia, Siberian Federal University, Krasnoyarsk, Russia
| | - Minhui He
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, China
| | - Sergio Rossi
- Département des Sciences fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Annie Deslauriers
- Département des Sciences fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
| | - Hubert Morin
- Département des Sciences fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
| |
Collapse
|
23
|
Seasonal Drought Effects on Intra-Annual Stem Growth of Taiwan Pine along an Elevational Gradient in Subtropical China. FORESTS 2019. [DOI: 10.3390/f10121128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Knowledge of intra-annual stem growth dynamics across environmental gradients is important for advancing our ability to understand the adaptability and vulnerability of subtropical tree species to future climate change. To assess the effects of seasonal drought on intra-annual stem growth, stem radial variation of Taiwan pine (Pinus taiwanensis Hayata) was monitored with band dendrometers for two years along an elevation transect from 921 to 1402 m in the Lushan Mountains, a transect that covers the contrasting climatic growing conditions for Taiwan pine in southeastern China. We found that the onset of stem growth was nearly synchronous across the transect, in early April 2017 and in late March 2018, whereas large elevational differences were observed for the end of the growing season, which was much earlier at lower elevations. Tree stems frequently rehydrated during the dry growing seasons at the two higher elevations, suggesting that seasonal drought had minor influence on the offset of high-elevation stem growth. A substantial and continuous tree water deficit of low-elevation Taiwan pine was detected during dry seasons, leading to an early growth cessation in late July in both years. Tree water status (reflected by tree water deficit) revealed a higher sensitivity to precipitation and soil water content across wet- and dry-seasons at the lowest elevation than at high elevations, indicating that low-elevation stem radial growth was highly dependent on moisture variables over the whole growing season. Due to the influences of seasonal drought on growth cessation and rates, Taiwan pine produced a rather narrow annual growth at the lowest site, whereas high-elevation Taiwan pine could benefit from the optimal wet-season environmental conditions and the reactivation of cambial activity during dry seasons. Our findings suggest that the more frequent and intensive drought episodes in the future will reduce tree growth of Taiwan pine at the dry edge, probably resulting in upward shifting of the optimal elevation for Taiwan pine in subtropical China.
Collapse
|
24
|
Eisenach C. How plants respond to climate change: A new Virtual Special Issue of Plant, Cell & Environment. PLANT, CELL & ENVIRONMENT 2019; 42:2537-2539. [PMID: 31256418 DOI: 10.1111/pce.13604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 06/09/2023]
|
25
|
Liang E, Dawadi B, Pederson N, Piao S, Zhu H, Sigdel SR, Chen D. Strong link between large tropical volcanic eruptions and severe droughts prior to monsoon in the central Himalayas revealed by tree-ring records. Sci Bull (Beijing) 2019; 64:1018-1023. [PMID: 36659801 DOI: 10.1016/j.scib.2019.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/22/2019] [Accepted: 04/25/2019] [Indexed: 01/21/2023]
Abstract
Large tropical volcanic eruptions can cause short-term global cooling. However, little is known whether large tropical volcanic eruptions, like the one in Tambora/Indonesia in 1815, cause regional hydroclimatic anomalies. Using a tree-ring network of precisely dated Himalayan birch in the central Himalayas, we reconstructed variations in the regional pre-monsoon precipitation back to 1650 CE. A superposed epoch analysis indicates that the pre-monsoon regional droughts are associated with large tropical volcanic eruptions, appearing to have a strong influence on hydroclimatic conditions in the central Himalayas. In fact, the most severe drought since 1650 CE occurred after the Tambora eruption. These results suggest that dry conditions prior to monsoon in the central Himalayas were associated with explosive tropical volcanism. Prolonged La Niña events also correspond with persistent pre-monsoon droughts in the central Himalayas. Our results provide evidence that large tropical volcanic eruptions most likely induced severe droughts prior to monsoon in the central Himalayas.
Collapse
Affiliation(s)
- Eryuan Liang
- Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101, China.
| | - Binod Dawadi
- Central Department of Hydrology and Meteorology, Tribhuvan University, Kathmandu, Nepal
| | - Neil Pederson
- Harvard Forest, Harvard University, Petersham, MA 01366, USA
| | - Shilong Piao
- Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101, China; College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Haifeng Zhu
- Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Shalik Ram Sigdel
- Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Deliang Chen
- Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; Regional Climate Group, Department of Earth Sciences, University of Gothenburg, Gothenburg 40530, Sweden
| |
Collapse
|
26
|
Seasonal Analysis of the 2011–2017 North American Monsoon near its Northwest Boundary. ATMOSPHERE 2019. [DOI: 10.3390/atmos10070420] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The seasonal extent of the North American Monsoon (NAM) is highly variable and potentially sensitive to future climate change. Our objective was to determine how regional monsoonal patterns influence mountain precipitation near the NAM northwest boundary. Among the data we analyzed, a unique opportunity was provided by hourly observations collected on the Sheep Range (2300 m asl), in the Mojave Desert of southern Nevada, during 2011–2017. Long-term 800-m Parameter-elevation Relationships on Independent Slopes Model (PRISM) precipitation time series showed that the site is representative of mountain areas in the NAM northwest region. Based on in situ observations, we divided the water year into three seasons: cool (1 October through 31 March), early warm (1 April through last day with dewpoint <9.4 °C), and late warm (first day with dewpoint ≥9.4 °C through 30 September). Dewpoint temperature differed by about 8 °C between early warm season (mean of −6.3 °C) and late warm season (mean of 2.3 °C). According to ANCOVA model results, increasing hourly dewpoint associated with afternoon thunderstorms in the late warm season had the greatest relationship with hourly precipitation (F-value = 237.8, p-value < 0.01). Except for 2016, more precipitation fell at our study site during the late than the early warm season. Late warm season precipitation contributed the most (43–56%) to total water-year precipitation during the 2012–2015 extended drought. Southwestern USA regional composites of vertically integrated water vapor transport (IVT) suggested that water vapor in the cool and early warm season originated from the Pacific Ocean to the west, while a transition to a NAM-like pattern of northward IVT coincided with the late warm season.
Collapse
|
27
|
Szejner P, Wright WE, Belmecheri S, Meko D, Leavitt SW, Ehleringer JR, Monson RK. Disentangling seasonal and interannual legacies from inferred patterns of forest water and carbon cycling using tree-ring stable isotopes. GLOBAL CHANGE BIOLOGY 2018; 24:5332-5347. [PMID: 29999573 DOI: 10.1111/gcb.14395] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 05/31/2018] [Accepted: 06/20/2018] [Indexed: 06/08/2023]
Abstract
Tree-ring carbon and oxygen isotope ratios have been used to understand past dynamics in forest carbon and water cycling. Recently, this has been possible for different parts of single growing seasons by isolating anatomical sections within individual annual rings. Uncertainties in this approach are associated with correlated climate legacies that can occur at a higher frequency, such as across successive seasons, or a lower frequency, such as across years. The objective of this study was to gain insight into how legacies affect cross-correlation in the δ13 C and δ18 O isotope ratios in the earlywood (EW) and latewood (LW) fractions of Pinus ponderosa trees at thirteen sites across a latitudinal gradient influenced by the North American Monsoon (NAM) climate system. We observed that δ13 C from EW and LW has significant positive cross-correlations at most sites, whereas EW and LW δ18 O values were cross-correlated at about half the sites. Using combined statistical and mechanistic models, we show that cross-correlations in both δ13 C and δ18 O can be largely explained by a low-frequency (multiple-year) mode that may be associated with long-term climate change. We isolated, and statistically removed, the low-frequency correlation, which resulted in greater geographical differentiation of the EW and LW isotope signals. The remaining higher-frequency (seasonal) cross-correlations between EW and LW isotope ratios were explored using a mechanistic isotope fractionation-climate model. This showed that lower atmospheric vapor pressure deficits associated with monsoon rain increase the EW-LW differentiation for both δ13 C and δ18 O at southern sites, compared to northern sites. Our results support the hypothesis that dominantly unimodal precipitation regimes, such as near the northern boundary of the NAM, are more likely to foster cross-correlations in the isotope signals of EW and LW, potentially due to greater sharing of common carbohydrate and soil water resource pools, compared to southerly sites with bimodal precipitation regimes.
Collapse
Affiliation(s)
- Paul Szejner
- Laboratory of Tree-Ring Research, University of Arizona, Tucson, Arizona
| | - William E Wright
- Laboratory of Tree-Ring Research, University of Arizona, Tucson, Arizona
| | - Soumaya Belmecheri
- Laboratory of Tree-Ring Research, University of Arizona, Tucson, Arizona
| | - David Meko
- Laboratory of Tree-Ring Research, University of Arizona, Tucson, Arizona
| | - Steven W Leavitt
- Laboratory of Tree-Ring Research, University of Arizona, Tucson, Arizona
| | - James R Ehleringer
- Stable Isotope Ratio Facility for Environmental Research, Department of Biology, University of Utah, Salt Lake City, Utah
| | - Russell K Monson
- Laboratory of Tree-Ring Research, University of Arizona, Tucson, Arizona
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona
| |
Collapse
|
28
|
Stem Circadian Phenology of Four Pine Species in Naturally Contrasting Climates from Sky-Island Forests of the Western USA. FORESTS 2018. [DOI: 10.3390/f9070396] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
29
|
Species- and Elevation-Dependent Growth Responses to Climate Warming of Mountain Forests in the Qinling Mountains, Central China. FORESTS 2018. [DOI: 10.3390/f9050248] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|