1
|
Tang T, Schmid B, Schuman MC, Bongers FJ, Li S, Liang Y, van Moorsel SJ, von Oheimb G, Durka W, Bruelheide H, Ma K, Liu X. Identifying seed families with high mixture performance in a subtropical forest biodiversity experiment. THE NEW PHYTOLOGIST 2025; 246:2537-2550. [PMID: 40183224 DOI: 10.1111/nph.70130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 03/18/2025] [Indexed: 04/05/2025]
Abstract
Afforestation projects using species mixtures are expected to better support ecosystem services than monoculture plantations. While grassland studies have shown natural selection favoring high-performance genotypes in species-rich communities, this has not been explored in forests. We used seed-family identity (known maternity) to represent genetic identity and investigated how this affected the biomass accumulation (i.e. growth) of individual trees (n = 13 435) along a species richness gradient (1-16 species) and over stand age (9 yr) in a forest biodiversity experiment. We found that among the eight species tested, different seed families responded differently to species richness, some of them growing relatively better in low-diversity plots and others in high-diversity plots. Furthermore, within-species growth variation increased with species richness and stand age, while between-species variation decreased with stand age. These results indicate that seed families within species and their reaction norms along the species richness gradient vary considerably and thus can explain a substantial proportion of the overall variation in tree growth. Our findings suggest that the growth and associated ecosystem services of species-rich mixtures in afforestation projects can be optimized by artificially selecting seed families with high mixture performance in biodiversity experiments.
Collapse
Affiliation(s)
- Ting Tang
- State Key Laboratory of Forage Breeding-by-Design and Utilization, Institue of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Department of Geography, University of Zurich, Zurich, 8057, Switzerland
| | - Bernhard Schmid
- Department of Geography, University of Zurich, Zurich, 8057, Switzerland
| | - Meredith C Schuman
- Department of Geography, University of Zurich, Zurich, 8057, Switzerland
- Department of Chemistry, University of Zurich, Zürich, 8057, Switzerland
| | - Franca J Bongers
- Centre for Crop Systems Analysis, Wageningen University, Wageningen, 6700 AK, the Netherlands
| | - Shan Li
- Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yu Liang
- Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | | | - Goddert von Oheimb
- Institute of General Ecology and Environmental Protection, Technische Universität Dresden, Tharandt, 01737, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
| | - Walter Durka
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
- Department of Community Ecology, Helmholtz Centre for Environmental Research-UFZ, Halle (Saale), 06120, Germany
| | - Helge Bruelheide
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle (Saale), 06108, Germany
| | - Keping Ma
- Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xiaojuan Liu
- State Key Laboratory of Forage Breeding-by-Design and Utilization, Institue of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- China National Botanical Garden, Beijing, 100093, China
| |
Collapse
|
2
|
Xia XX, Yan S, Wang P, Kong CH. A Meta-Analysis of Response Strategies and Interfering Factors of Kin Recognition in Plants. PLANTS (BASEL, SWITZERLAND) 2025; 14:683. [PMID: 40094607 PMCID: PMC11901976 DOI: 10.3390/plants14050683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/19/2025]
Abstract
Conspecific plants exhibit morphological and biochemical plasticity in response to genetic relatedness in varying environments. However, the response strategies and factors influencing kin recognition in plants remain unclear. Meta-analysis is an approach to synthesize the effect size of plant-plant and plant-environment interactions. Here, we present the first case of a meta-analysis for response strategies and interfering factors in relatedness-mediated plant-plant interactions. We synthesized the effect of kin recognition on plant performance and environmental factors, based on 104 studies with 4045 cases. As a result, we found that kin recognition reduces root biomass, root length, root-shoot ratio, and lateral root number, lowering belowground competition. Furthermore, kin cooperation enhances aboveground light acquisition by increasing leaf area and boosts reproductive success by increasing seed biomass. The kinship effects are significantly influenced by both biotic (e.g., root interactions, kinship coefficient r, sex systems, recognition level) and abiotic factors (e.g., nutrient levels, experiment types, stress type, planting spacing and duration). Our meta-analysis highlights the response strategies and interfering factors of kin recognition in plant performance and environment dynamics, laying the foundation for further research on its ecological evolution and agricultural applications.
Collapse
Affiliation(s)
- Xin-Xin Xia
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China;
| | - Shaobin Yan
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Wang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China;
| | - Chui-Hua Kong
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
3
|
Lewis I, Friedman J. Kin discrimination causes plastic responses in floral and clonal allocation. Proc Biol Sci 2025; 292:20242387. [PMID: 39876723 DOI: 10.1098/rspb.2024.2387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 11/22/2024] [Accepted: 12/23/2024] [Indexed: 01/30/2025] Open
Abstract
The composition of a plant's neighbourhood shapes its competitive interactions. Neighbours may be related individuals due to limited seed dispersal or clonal growth, so that the ability to recognize and respond to the presence of kin is beneficial. Here, we ask whether plants plastically adjust their floral and clonal allocation in response to their neighbour's identity. In a species that reproduces both sexually and clonally, we test the following predictions in response to neighbouring kin: (i) a reduction in floral display will occur to minimize costly floral structures and pollinator competition, as well as to mitigate inbreeding; and (ii) a decrease in clonality will occur to minimize resource competition and overcrowding among kin. We grew focal individuals of Mimulus guttatus (syn. Erythranthe guttata) surrounded by neighbours of varying relatedness (non-kin, outcross siblings or self siblings) and measured a suite of vegetative, floral and clonal traits. Consistent with our predictions, focal plants reduced floral and clonal allocation in the presence of kin. Moreover, focal plants increased their floral and clonal allocation when surrounded by non-kin neighbours that were high-performing. Together, we demonstrate a clear and predictable response to kin, which has general implications for the structure and function of plant neighbourhoods.
Collapse
Affiliation(s)
- Isabeau Lewis
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | - Jannice Friedman
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
4
|
Xu Y, Li FL, Li LL, Chen X, Meiners SJ, Kong CH. Discrimination of relatedness drives rice flowering and reproduction in cultivar mixtures. PLANT, CELL & ENVIRONMENT 2024; 47:4572-4585. [PMID: 39038946 DOI: 10.1111/pce.15055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 06/13/2024] [Accepted: 07/11/2024] [Indexed: 07/24/2024]
Abstract
The improvement of performance and yield in both cultivar and species mixtures has been well established. Despite the clear benefits of crop mixtures to agriculture, identifying the critical mechanisms behind performance increases are largely lacking. We experimentally demonstrated that the benefits of rice cultivar mixtures were linked to relatedness-mediated intraspecific neighbour recognition and discrimination under both field and controlled conditions. We then tested biochemical mechanisms of responses in incubation experiments involving the addition of root exudates and a root-secreted signal, (-)-loliolide, followed by transcriptome analysis. We found that closely related cultivar mixtures increased grain yields by modifying root behaviour and accelerating flowering over distantly related mixtures. Importantly, these responses were accompanied by altered concentration of signalling (-)-loliolide that affected rice transcriptome profiling, directly regulating root growth and flowering gene expression. These findings suggest that beneficial crop combinations may be generated a-priori by manipulating neighbour genetic relatedness in rice cultivar mixtures and that root-secreted (-)-loliolide functions as a key mediator of genetic relatedness interactions. The ability of relatedness discrimination to regulate rice flowering and yield raises an intriguing possibility to increase crop production.
Collapse
Affiliation(s)
- You Xu
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Feng-Li Li
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Lei-Lei Li
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Xin Chen
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Scott J Meiners
- Department of Biological Sciences, Eastern Illinois University, Charleston, Illinois, USA
| | - Chui-Hua Kong
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Akbar R, Sun J, Bo Y, Khattak WA, Khan AA, Jin C, Zeb U, Ullah N, Abbas A, Liu W, Wang X, Khan SM, Du D. Understanding the Influence of Secondary Metabolites in Plant Invasion Strategies: A Comprehensive Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:3162. [PMID: 39599372 PMCID: PMC11597624 DOI: 10.3390/plants13223162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024]
Abstract
The invasion of non-native plant species presents a significant ecological challenge worldwide, impacting native ecosystems and biodiversity. These invasive plant species significantly affect the native ecosystem. The threat of invasive plant species having harmful effects on the natural ecosystem is a serious concern. Invasive plant species produce secondary metabolites, which not only help in growth and development but are also essential for the spread of these plant species. This review highlights the important functions of secondary metabolites in plant invasion, particularly their effect on allelopathy, defense system, interaction with micro soil biota, and competitive advantages. Secondary metabolites produced by invasive plant species play an important role by affecting allelopathic interactions and herbivory. They sometimes change the soil chemistry to make a viable condition for their proliferation. The secondary metabolites of invasive plant species inhibit the growth of native plant species by changing the resources available to them. Therefore, it is necessary to understand this complicated interaction between secondary metabolites and plant invasion. This review mainly summarizes all the known secondary metabolites of non-native plant species, emphasizing their significance for integrated weed management and research.
Collapse
Affiliation(s)
- Rasheed Akbar
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (R.A.)
- Department of Entomology, Faculty of Physical and Applied Sciences, The University of Haripur, Haripur 22062, Khyber Pakhtunkhwa, Pakistan
| | - Jianfan Sun
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (R.A.)
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yanwen Bo
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (R.A.)
| | - Wajid Ali Khattak
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Amir Abdullah Khan
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (R.A.)
| | - Cheng Jin
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (R.A.)
| | - Umar Zeb
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Najeeb Ullah
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Adeel Abbas
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (R.A.)
| | - Wei Liu
- College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiaoyan Wang
- College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Shah Masaud Khan
- Department of Horticulture, Faculty of Physical and Applied Sciences, The University of Haripur, Haripur 22062, Khyber Pakhtunkhwa, Pakistan
| | - Daolin Du
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (R.A.)
- Jingjiang College, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
6
|
Westgeest AJ, Vasseur F, Enquist BJ, Milla R, Gómez-Fernández A, Pot D, Vile D, Violle C. An allometry perspective on crops. THE NEW PHYTOLOGIST 2024; 244:1223-1237. [PMID: 39288438 DOI: 10.1111/nph.20129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024]
Abstract
Understanding trait-trait coordination is essential for successful plant breeding and crop modeling. Notably, plant size drives variation in morphological, physiological, and performance-related traits, as described by allometric laws in ecology. Yet, as allometric relationships have been limitedly studied in crops, how they influence and possibly limit crop performance remains unknown. Here, we review how an allometry perspective on crops gains insights into the phenotypic evolution during crop domestication, the breeding of varieties adapted to novel conditions, and the prediction of crop yields. As allometry is an active field of research, modeling and manipulating crop allometric relationships can help to develop more resilient and productive agricultural systems to face future challenges.
Collapse
Affiliation(s)
- Adrianus J Westgeest
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, 34090, France
- Département Biologie et Ecologie, Institut Agro, Montpellier, 34060, France
| | - François Vasseur
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, 34090, France
| | - Brian J Enquist
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85719, USA
- Santa Fe Institute, 1399 Hyde Park Rd, Santa Fe, NM, 87501, USA
| | - Rubén Milla
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, C/Tulipán s/n, Móstoles, 28933, Spain
| | - Alicia Gómez-Fernández
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, 34090, France
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, C/Tulipán s/n, Móstoles, 28933, Spain
| | - David Pot
- CIRAD, UMR AGAP Institut, Montpellier, 34980, France
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, 34980, France
| | - Denis Vile
- LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, 34060, France
| | - Cyrille Violle
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, 34090, France
| |
Collapse
|
7
|
de Oliveira MMT, Ko AN, Obersteiner S, Falik O, Rachmilevitch S. Family ties: Root-root communication within Solanaceae. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 347:112203. [PMID: 39069008 DOI: 10.1016/j.plantsci.2024.112203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/05/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Root-root communication effects on several physiological and metabolic aspects among Solanaceae relatives were studied. We examined cherry (C) and field (F) tomato (Solanum lycopersicum) and bell pepper (B) (Capsicum annuum), comprising three degrees of relatedness (DOR): high (H-DOR; CC, FF and BB), medium (M-DOR; CF) and low (L-DOR; CB and FB). Plants were grown in pairs of similar or different plants on a paper-based and non-destructive root growth system, namely, rhizoslides. Root growth, including the proliferation of fine roots, and respiration increased as the DOR decreased and were highest in paired L-DOR plants, as was shown for root respiration that increased by 63, 110 and 88 % for C, F, and B when grown with B, B and F, respectively. On the other hand, root exudates of L-DOR plants had significantly lower levels of total organic carbon and protein than those of H-DOR plants, indicating different root-root communication between individuals with different DOR. Our findings indicate, for the first time, that carbon allocation to root growth, exudation and respiration depends on the degree of genetic relatedness, and that the degree of relatedness between individual plants plays a key role in the root-root communication within Solanaceae.
Collapse
Affiliation(s)
- Milena Maria Tomaz de Oliveira
- The French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Israel; Utah State University, USA.
| | - Aye Nyein Ko
- The French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Israel
| | - Sophie Obersteiner
- The French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Israel
| | - Omer Falik
- Achva Academic College, Arugot 7980400, Israel; Mitrani Department of Desert Ecology, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel
| | - Shimon Rachmilevitch
- The French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Israel.
| |
Collapse
|
8
|
Han A, Huang Q. Effects of kinship and integration between adjacent/non-adjacent ramets on the growth and feedback with soil biota in a clonal invader. Oecologia 2024; 206:11-20. [PMID: 39134878 DOI: 10.1007/s00442-024-05606-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 08/03/2024] [Indexed: 08/17/2024]
Abstract
Many invasive plants can reproduce through both seeds and clonal growth. In habitats, interacting seedlings may originate from the same mother, and interacting ramets originating from the same plant may not be adjacent to each other in the stolon, particularly for vines that can show curved growth. However, in a homogeneous environment, how kinship and integration between adjacent/non-adjacent ramets affect plant growth and feedback with soil biota has been less studied. We address these questions using an invasive stoloniferous vine Mikania micrantha. We found that sibling groups and stranger groups did not differ in biomass production, root allocation and feedback with soil biota, indicating that kin recognition is unlikely in M. micrantha. For two-ramet stolon fragments in which interacting ramets were adjacent to each other, older ramets allocated more biomass to roots than younger ramets when integrated, particularly in comparison with disconnected ramets from different genotypes, indicating that a division of labor was induced. For four-ramet stolon fragments in which there were two unrooted ramets between the two rooted, interacting ramets, integration increased biomass allocation to roots, possibly because only two of the four ramets could absorb belowground resources and a lower shoot allocation decreased aboveground light competition. When inoculated with soil biota conditioned by the four-ramet integrated fragments, plants of M. micrantha also increased biomass allocation to roots. These results indicate that the distance between interacting ramets in the stolon may affect the integration effect and feedback with soil biota in clonal plants.
Collapse
Affiliation(s)
- Aiyan Han
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Qiaoqiao Huang
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.
| |
Collapse
|
9
|
Mathieu L, Ballini E, Morel JB, Méteignier LV. The root of plant-plant interactions: Belowground special cocktails. CURRENT OPINION IN PLANT BIOLOGY 2024; 80:102547. [PMID: 38749206 DOI: 10.1016/j.pbi.2024.102547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 06/14/2024]
Abstract
Plants interact with each other via a multitude of processes among which belowground communication facilitated by specialized metabolites plays an important but overlooked role. Until now, the exact targets, modes of action, and resulting phenotypes that these metabolites induce in neighboring plants have remained largely unknown. Moreover, positive interactions driven by the release of root exudates are prevalent in both natural field conditions and controlled laboratory environments. In particular, intraspecific positive interactions suggest a genotypic recognition mechanism in addition to non-self perception in plant roots. This review concentrates on recent discoveries regarding how plants interact with one another through belowground signals in intra- and interspecific mixtures. Furthermore, we elaborate on how an enhanced understanding of these interactions can propel the field of agroecology forward.
Collapse
Affiliation(s)
- Laura Mathieu
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Elsa Ballini
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Jean-Benoit Morel
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Louis-Valentin Méteignier
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France.
| |
Collapse
|
10
|
Guo Y, Shao M, Guan P, Yu M, Geng L, Gao Y, Meng L, Qu B. Co-Invasion of Congeneric Invasive Plants Adopts Different Strategies Depending on Their Origins. PLANTS (BASEL, SWITZERLAND) 2024; 13:1807. [PMID: 38999647 PMCID: PMC11244186 DOI: 10.3390/plants13131807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/20/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024]
Abstract
Plant communities may be co-invaded by invasive plants, sometimes even by congeneric invasive plants (CIPs). Despite the growing understanding of co-invasion in the environment, little is known about how CIP interactions and mechanisms regulate co-invasion. Darwin's naturalisation conundrum predicts that the coexistence of closely related species is difficult due to their structural and behavioural similarities. Nevertheless, communities containing closely related species are more susceptible to being invaded because close relatives may favour similar environments; therefore, this hypothesis should be followed in the co-invasion of CIPs. To explore whether the phylogenetic relatedness and origins of invasive species to CIPs can promote or hinder co-invasion, we conducted a controlled interaction and soil-legacy greenhouse experiment to quantify the growth response of invasive plants and their congeners. We consistently found that CIPs of identical origin were more likely to co-invade compared to CIPs of distinct origins. CIPs of distinct origins exhibited an antagonistic effect on co-invasion by allelopathy. Invasive plant-conditioned soil was more conducive to the growth of CIPs of identical origin than CIPs of distinct origins. Our results revealed the different effects of invader-invader phylogenetic relatedness on co-invader success and impact, suggesting the operation of different mechanisms across co-invasion.
Collapse
Affiliation(s)
- Yujun Guo
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Meini Shao
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
- Liaoning Key Laboratory for Biological Invasions and Global Changes, Shenyang Agricultural University, Shenyang 110866, China
| | - Ping Guan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
- Liaoning Key Laboratory for Biological Invasions and Global Changes, Shenyang Agricultural University, Shenyang 110866, China
| | - Mengyang Yu
- Yixian Water Conservancy Affairs Service Center, Jinzhou 121100, China
| | - Lin Geng
- Yixian Water Conservancy Affairs Service Center, Jinzhou 121100, China
| | - Ying Gao
- Yixian Water Conservancy Affairs Service Center, Jinzhou 121100, China
| | - Lin Meng
- Yixian Water Conservancy Affairs Service Center, Jinzhou 121100, China
| | - Bo Qu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
- Liaoning Key Laboratory for Biological Invasions and Global Changes, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
11
|
Montazeaud G, Keller L. Greenbeards in plants? THE NEW PHYTOLOGIST 2024; 242:870-877. [PMID: 38403933 DOI: 10.1111/nph.19599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/15/2024] [Indexed: 02/27/2024]
Abstract
Greenbeards are selfish genetic elements that make their bearers behave either altruistically towards individuals bearing similar greenbeard copies or harmfully towards individuals bearing different copies. They were first proposed by W. D. Hamilton over 50 yr ago, to illustrate that kin selection may operate at the level of single genes. Examples of greenbeards have now been reported in a wide range of taxa, but they remain undocumented in plants. In this paper, we discuss the theoretical likelihood of greenbeard existence in plants. We then question why the greenbeard concept has never been applied to plants and speculate on how hypothetical greenbeards could affect plant-plant interactions. Finally, we point to different research directions to improve our knowledge of greenbeards in plants.
Collapse
Affiliation(s)
- Germain Montazeaud
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland
- AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, 34000, France
| | - Laurent Keller
- Social Evolution Unit, Cornuit 8, BP 855, Chesières, Switzerland
| |
Collapse
|
12
|
Bawin T, Krause K. Rising from the shadows: Selective foraging in model shoot parasitic plants. PLANT, CELL & ENVIRONMENT 2024; 47:1118-1127. [PMID: 38058242 DOI: 10.1111/pce.14781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/17/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
Despite being sessile, plants nonetheless forage for resources by modulating their growth. Adaptative foraging in response to changes in resource availability and presence of neighbours has strong implications for performance and fitness. It is an even more pressing issue for parasitic plants, which draw resources directly from other plants. Indeed, parasitic plants were demonstrated over the years to direct their growth towards preferred hosts and invest resources in parasitism relative to host quality. In contrast to root parasites that rely mostly on chemical cues, some shoot parasites seem to profit from the ability to integrate different types of abiotic and biotic cues. While significant progress in this field has been made recently, there are still many open questions regarding the molecular perception and the integration of diverse signalling pathways under different ecological contexts. Addressing how different cues are integrated in parasitic plants will be important when unravelling variations in plant interaction pathways, and essential to predict the spread of parasites in natural and agricultural environments. In this review, we discuss this with a focus on Cuscuta species as an emerging parasitic model, and provide research perspectives based on the recent advances in the topic and plant-plant interactions in general.
Collapse
Affiliation(s)
- Thomas Bawin
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Kirsten Krause
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
13
|
Kong CH, Li Z, Li FL, Xia XX, Wang P. Chemically Mediated Plant-Plant Interactions: Allelopathy and Allelobiosis. PLANTS (BASEL, SWITZERLAND) 2024; 13:626. [PMID: 38475470 DOI: 10.3390/plants13050626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
Plant-plant interactions are a central driver for plant coexistence and community assembly. Chemically mediated plant-plant interactions are represented by allelopathy and allelobiosis. Both allelopathy and allelobiosis are achieved through specialized metabolites (allelochemicals or signaling chemicals) produced and released from neighboring plants. Allelopathy exerts mostly negative effects on the establishment and growth of neighboring plants by allelochemicals, while allelobiosis provides plant neighbor detection and identity recognition mediated by signaling chemicals. Therefore, plants can chemically affect the performance of neighboring plants through the allelopathy and allelobiosis that frequently occur in plant-plant intra-specific and inter-specific interactions. Allelopathy and allelobiosis are two probably inseparable processes that occur together in plant-plant chemical interactions. Here, we comprehensively review allelopathy and allelobiosis in plant-plant interactions, including allelopathy and allelochemicals and their application for sustainable agriculture and forestry, allelobiosis and plant identity recognition, chemically mediated root-soil interactions and plant-soil feedback, and biosynthesis and the molecular mechanisms of allelochemicals and signaling chemicals. Altogether, these efforts provide the recent advancements in the wide field of allelopathy and allelobiosis, and new insights into the chemically mediated plant-plant interactions.
Collapse
Affiliation(s)
- Chui-Hua Kong
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Zheng Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Feng-Li Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Xin-Xin Xia
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Peng Wang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
14
|
Li Y, Parven N, Akimoto SI. Interspecific recognition based on cuticular hydrocarbons mediates reproduction control in aphids. Sci Rep 2024; 14:4079. [PMID: 38374306 PMCID: PMC10876990 DOI: 10.1038/s41598-024-54019-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/07/2024] [Indexed: 02/21/2024] Open
Abstract
The preset study tested whether an aphid species can control its reproduction by recognizing the presence and density of a rival species. Acyrthosiphon pisum and Megoura crassicauda often coexist on the same leguminous plant. We established clonal colonies from each species and mixed colonies with one A. pisum and one M. crassicauda adult. There were no significant differences in the population growth patterns of the two species at 20 °C. However, mixed colonies increased faster and attained larger colony sizes than the clonal colonies. Thus, positive interspecific interactions were confirmed. A mixed colony was dominated by the members of a clone that produced a greater number of newborns in the initial stage, irrespective of the species. Thus, we confirmed the priority effect in the interspecific competition. To simulate the priority effect, 15 glass beads coated with the hexane extract of M. crassicauda aphids were attached to a cut leaf, to which one A. pisum adult was transferred. The presence of the hexane extract of M. crassicauda greatly reduced the reproductive rate of A. pisum adults. We conclude that aphids can control their reproduction by evaluating the relative density of rivals to fellow aphids based on the cuticular hydrocarbons.
Collapse
Affiliation(s)
- Yang Li
- Department of Ecology and Systematics, Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan.
- College of Biology and Agriculture, Zunyi Normal University, Zunyi, 563006, Guizhou, China.
| | - Nousheen Parven
- Department of Ecology and Systematics, Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
- Department of Zoology, University of Dhaka, Dhaka University Campus, Dhaka, 1000, Bangladesh
| | - Shin-Ichi Akimoto
- Department of Ecology and Systematics, Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan.
- The Hokkaido University Museum, Hokkaido University, Sapporo, 060-0810, Japan.
| |
Collapse
|
15
|
Tian M, Li D, Cisse EHM, Miao L, Zhou J, Yang W, Chen B, Li L, Tian H, Ye B, Yang F. Intra- and interspecific ecophysiological responses to waterlogging stress in two contrasting waterlogging-tolerant arbor species. FRONTIERS IN PLANT SCIENCE 2023; 14:1257730. [PMID: 38023841 PMCID: PMC10679334 DOI: 10.3389/fpls.2023.1257730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023]
Abstract
At present, establishing planted forests, typically composed of not more than two tree species, to avoid forest losses has received increasing attention. In addition, investigating the impact of environmental stress such as waterlogging on different planting patterns is essential for improving wetland ecosystem resilience. Knowledge about the impact of waterlogging on planted forests is crucial for developing strategies to mitigate its adverse effects. Here, we conducted experimentally a simulated pure and mixed planting system composed of two contrasting WL-tolerant species (Cleistocalyx operculatus and Syzygium cumini) to determine their ecophysiological responses based on the type of interaction. Results showed that the aboveground growth performance of S. cumini was better than that of C. operculatus under well-watered conditions regardless of the planting model, which is contrary to the belowground accumulation that was significantly improved in C. operculatus. Intra- and interspecific interactions in different planting models facilitated the growth performance of C. operculatus while provoking a significant competition in S. cumini under waterlogging. Such phenomenon was explained through the remarkable ability of C. operculatus to naturally increase its root network under stress on non-stress conditions compared with S. cumini. In this study, two main factors are proposed to play key roles in the remarkable performance of C. operculatus compared with S. cumini following the planting model under waterlogging. The high level of nitrogen and phosphor absorption through C. operculatus primary roots and the significant starch biosynthesis constituted the key element that characterized the facilitation or competition within the intra- or interspecific interactions shown in C. operculatus compared with S. cumini. Furthermore, the intraspecific competition is more pronounced in S. cumini than in C. operculatus when grown in a pure planting pattern, particularly when subjected to waterlogging. However, when the two species are planted together, this competition is alleviated, resulting in enhanced waterlogging tolerance.
Collapse
Affiliation(s)
- Mengjie Tian
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environment Restoration Engineering of Hainan Province, School of Ecological and Environmental Sciences, Hainan University, Haikou, China
| | - Dadong Li
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environment Restoration Engineering of Hainan Province, School of Ecological and Environmental Sciences, Hainan University, Haikou, China
- School of Life Sciences, Hainan University, Haikou, China
| | - El-Hadji Malick Cisse
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environment Restoration Engineering of Hainan Province, School of Ecological and Environmental Sciences, Hainan University, Haikou, China
- School of Life Sciences, Hainan University, Haikou, China
| | - Lingfeng Miao
- School of Plant Protection, Hainan University, Haikou, China
| | - Jingjing Zhou
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environment Restoration Engineering of Hainan Province, School of Ecological and Environmental Sciences, Hainan University, Haikou, China
| | - Weizong Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environment Restoration Engineering of Hainan Province, School of Ecological and Environmental Sciences, Hainan University, Haikou, China
| | - Boshen Chen
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environment Restoration Engineering of Hainan Province, School of Ecological and Environmental Sciences, Hainan University, Haikou, China
| | - Lijun Li
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environment Restoration Engineering of Hainan Province, School of Ecological and Environmental Sciences, Hainan University, Haikou, China
| | - Huimin Tian
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environment Restoration Engineering of Hainan Province, School of Ecological and Environmental Sciences, Hainan University, Haikou, China
| | - Bingbing Ye
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environment Restoration Engineering of Hainan Province, School of Ecological and Environmental Sciences, Hainan University, Haikou, China
| | - Fan Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environment Restoration Engineering of Hainan Province, School of Ecological and Environmental Sciences, Hainan University, Haikou, China
| |
Collapse
|
16
|
Montazeaud G, Helleu Q, Wuest SE, Keller L. Indirect genetic effects are shaped by demographic history and ecology in Arabidopsis thaliana. Nat Ecol Evol 2023; 7:1878-1891. [PMID: 37749402 DOI: 10.1038/s41559-023-02189-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/07/2023] [Indexed: 09/27/2023]
Abstract
The phenotype of an individual can be affected by the genes of its conspecifics through indirect genetic effects (IGEs). IGEs have been studied across different organisms including wild and domesticated animals and plants, but little is known about their genetic architecture. Here, in a large-scale intraspecific interaction experiment, we show that the contribution of IGEs to the biomass variation of Arabidopsis thaliana is comparable to values classically reported in animals. Moreover, we identify 11 loci explaining 85.1% of the variability in IGEs. We find that positive IGE alleles (that is, those with positive effects on neighbour biomass) occur both in relict accessions from southern Eurasia and in post-glacial colonizers from northern Scandinavia, and that they are likely to have two divergent origins: for nine loci, they evolved in the post-glacial colonizers independently from the relicts, while the two others were introgressed in the post-glacial colonizer from the relicts. Finally, we find that variation in IGEs probably reflects divergent adaptations to the contrasting environments of the edges and the centre of the native range of the species. These findings reveal a surprisingly tractable genetic basis of IGEs in A. thaliana that is shaped by the ecology and the demographic history of the species.
Collapse
Affiliation(s)
- Germain Montazeaud
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.
| | - Quentin Helleu
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Structure et Instabilité des Génomes, Muséum National d'Histoire Naturelle, CNRS UMR7196, INSERM U1154, Paris, France
| | - Samuel E Wuest
- Group Breeding Research, Division Plant Breeding, Agroscope, Wädenswil, Switzerland
| | - Laurent Keller
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.
- Social Evolution Unit, Chesières, Switzerland.
| |
Collapse
|
17
|
Tyagi A, Ali S, Park S, Bae H. Deciphering the role of mechanosensitive channels in plant root biology: perception, signaling, and adaptive responses. PLANTA 2023; 258:105. [PMID: 37878056 DOI: 10.1007/s00425-023-04261-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/02/2023] [Indexed: 10/26/2023]
Abstract
MAIN CONCLUSION Mechanosensitive channels are integral membrane proteins that rapidly translate extrinsic or intrinsic mechanical tensions into biological responses. They can serve as potential candidates for developing smart-resilient crops with efficient root systems. Mechanosensitive (MS) calcium channels are molecular switches for mechanoperception and signal transduction in all living organisms. Although tremendous progress has been made in understanding mechanoperception and signal transduction in bacteria and animals, this remains largely unknown in plants. However, identification and validation of MS channels such as Mid1-complementing activity channels (MCAs), mechanosensitive-like channels (MSLs), and Piezo channels (PIEZO) has been the most significant discovery in plant mechanobiology, providing novel insights into plant mechanoperception. This review summarizes recent advances in root mechanobiology, focusing on MS channels and their related signaling players, such as calcium ions (Ca2+), reactive oxygen species (ROS), and phytohormones. Despite significant advances in understanding the role of Ca2+ signaling in root biology, little is known about the involvement of MS channel-driven Ca2+ and ROS signaling. Additionally, the hotspots connecting the upstream and downstream signaling of MS channels remain unclear. In light of this, we discuss the present knowledge of MS channels in root biology and their role in root developmental and adaptive traits. We also provide a model highlighting upstream (cell wall sensors) and downstream signaling players, viz., Ca2+, ROS, and hormones, connected with MS channels. Furthermore, we highlighted the importance of emerging signaling molecules, such as nitric oxide (NO), hydrogen sulfide (H2S), and neurotransmitters (NTs), and their association with root mechanoperception. Finally, we conclude with future directions and knowledge gaps that warrant further research to decipher the complexity of root mechanosensing.
Collapse
Affiliation(s)
- Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk, 38541, Republic of Korea.
| | - Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk, 38541, Republic of Korea
| | - Suvin Park
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk, 38541, Republic of Korea
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
18
|
Hall RM, Markovic D, Kaul HP, Wagentristl H, Urban B, Durec N, Renner-Martin K, Ninkovic V. Talking Different Languages: The Role of Plant-Plant Communication When an Invader Beats up a Strange Neighborhood. PLANTS (BASEL, SWITZERLAND) 2023; 12:3298. [PMID: 37765461 PMCID: PMC10534427 DOI: 10.3390/plants12183298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
Communication through airborne volatile organic compounds (VOCs) and root exudates plays a vital role in the multifarious interactions of plants. Common ragweed (Ambrosia artemesiifolia L.) is one of the most troublesome invasive alien species in agriculture. Below- and aboveground chemical interactions of ragweed with crops might be an important factor in the invasive species' success in agriculture. In laboratory experiments, we investigated the contribution of intra- and interspecific airborne VOCs and root exudates of ragweed to its competitiveness. Wheat, soybean, and maize were exposed to VOCs emitted from ragweed and vice versa, and the adaptation response was measured through plant morphological and physiological traits. We observed significant changes in plant traits of crops in response to ragweed VOCs, characterized by lower biomass production, lower specific leaf area, or higher chlorophyll contents. After exposure to ragweed VOCs, soybean and wheat produced significantly less aboveground dry mass, whereas maize did not. Ragweed remained unaffected when exposed to VOCs from the crops or a conspecific. All crops and ragweed significantly avoided root growth toward the root exudates of ragweed. The study shows that the plant response to either above- or belowground chemical cues is highly dependent on the identity of the neighbor, pointing out the complexity of plant-plant communication in plant communities.
Collapse
Affiliation(s)
- Rea Maria Hall
- Institute of Agronomy, University of Natural Resources and Life Science, 3430 Tulln an der Donau, Austria; (H.-P.K.); (B.U.); (N.D.); (K.R.-M.)
- Institute of Botany, University of Natural Resources and Life Science, 1180 Vienna, Austria
| | - Dimitrije Markovic
- Department of Ecology, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden;
- Faculty of Agriculture, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina
| | - Hans-Peter Kaul
- Institute of Agronomy, University of Natural Resources and Life Science, 3430 Tulln an der Donau, Austria; (H.-P.K.); (B.U.); (N.D.); (K.R.-M.)
| | - Helmut Wagentristl
- Experimental Farm Groß-Enzerdorf, University of Natural Resources and Life Sciences, 2301 Groß-Enzersdorf, Austria;
| | - Bernhard Urban
- Institute of Agronomy, University of Natural Resources and Life Science, 3430 Tulln an der Donau, Austria; (H.-P.K.); (B.U.); (N.D.); (K.R.-M.)
- Institute of Botany, University of Natural Resources and Life Science, 1180 Vienna, Austria
| | - Nora Durec
- Institute of Agronomy, University of Natural Resources and Life Science, 3430 Tulln an der Donau, Austria; (H.-P.K.); (B.U.); (N.D.); (K.R.-M.)
| | - Katharina Renner-Martin
- Institute of Agronomy, University of Natural Resources and Life Science, 3430 Tulln an der Donau, Austria; (H.-P.K.); (B.U.); (N.D.); (K.R.-M.)
- Institute of Mathematics, University of Natural Resources and Life Science, 1180 Vienna, Austria
| | - Velemir Ninkovic
- Department of Ecology, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden;
| |
Collapse
|
19
|
Mahal HF, Barber-Cross T, Brown C, Spaner D, Cahill JF. Changes in the Amount and Distribution of Soil Nutrients and Neighbours Have Differential Impacts on Root and Shoot Architecture in Wheat ( Triticum aestivum). PLANTS (BASEL, SWITZERLAND) 2023; 12:2527. [PMID: 37447087 DOI: 10.3390/plants12132527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023]
Abstract
Plants exhibit differential behaviours through changes in biomass development and distribution in response to environmental cues, which may impact crops uniquely. We conducted a mesocosm experiment in pots to determine the root and shoot behavioural responses of wheat, T. aestivum. Plants were grown in homogeneous or heterogeneous and heavily or lightly fertilized soil, and alone or with a neighbour of the same or different genetic identity (cultivars: CDC Titanium, Carberry, Glenn, Go Early, and Lillian). Contrary to predictions, wheat did not alter relative reproductive effort in the presence of neighbours, more nutrients, or homogenous soil. Above and below ground, the plants' tendency to use potentially shared space exhibited high levels of plasticity. Above ground, they generally avoided shared, central aerial space when grown with neighbours. Unexpectedly, nutrient amount and distribution also impacted shoots; plants that grew in fertile or homogenous environments increased shared space use. Below ground, plants grown with related neighbours indicated no difference in neighbour avoidance. Those in homogenous soil produced relatively even roots, and plants in heterogeneous treatments produced more roots in nutrient patches. Additionally, less fertile soil resulted in pot-level decreases in root foraging precision. Our findings illustrate that explicit coordination between above- and belowground biomass in wheat may not exist.
Collapse
Affiliation(s)
- Habba F Mahal
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Tianna Barber-Cross
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Charlotte Brown
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Dean Spaner
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - James F Cahill
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| |
Collapse
|
20
|
Mazal L, Fajardo A, Till-Bottraud I, Corenblit D, Fumanal B. Kin selection, kin recognition and kin discrimination in plants revisited: A claim for considering environmental and genetic variability. PLANT, CELL & ENVIRONMENT 2023; 46:2007-2016. [PMID: 36916702 DOI: 10.1111/pce.14584] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/17/2023] [Accepted: 03/10/2023] [Indexed: 06/08/2023]
Affiliation(s)
- Lucas Mazal
- Université Clermont Auvergne, CNRS, GEOLAB, Clermont-Ferrand, France
| | - Alex Fajardo
- Instituto de Investigación Interdisciplinaria (I3), Vicerrectoría Académica, Universidad de Talca, Campus Lircay, Talca, Chile
| | | | - Dov Corenblit
- Université Clermont Auvergne, CNRS, GEOLAB, Clermont-Ferrand, France
| | - Boris Fumanal
- Université Clermont Auvergne, INRAE, UMR 547 PIAF, Clermont-Ferrand, France
| |
Collapse
|
21
|
Båvik LM, Mehta RS, Weissman DB. Fifty shades of greenbeard: robust evolution of altruism based on similarity of complex phenotypes. Proc Biol Sci 2023; 290:20222579. [PMID: 37312545 PMCID: PMC10265020 DOI: 10.1098/rspb.2022.2579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 05/19/2023] [Indexed: 06/15/2023] Open
Abstract
We study the evolution of altruistic behaviour under a model where individuals choose to cooperate by comparing a set of continuous phenotype tags. Individuals play a donation game and only donate to other individuals that are sufficiently similar to themselves in a multidimensional phenotype space. We find the generic maintenance of robust altruism when phenotypes are multidimensional. Selection for altruism is driven by the coevolution of individual strategy and phenotype; altruism levels shape the distribution of individuals in phenotype space. Low donation rates induce a phenotype distribution that renders the population vulnerable to the invasion of altruists, whereas high donation rates prime a population for cheater invasion, resulting in cyclic dynamics that maintain substantial levels of altruism. Altruism is therefore robust to invasion by cheaters in the long term in this model. Furthermore, the shape of the phenotype distribution in high phenotypic dimension allows altruists to better resist the invasion by cheaters, and as a result the amount of donation increases with increasing phenotype dimension. We also generalize previous results in the regime of weak selection to two competing strategies in continuous phenotype space, and show that success under weak selection is crucial to success under strong selection in our model. Our results support the viability of a simple similarity-based mechanism for altruism in a well-mixed population.
Collapse
Affiliation(s)
| | - Rohan S. Mehta
- Department of Physics, Emory University, Atlanta, GA, USA
| | | |
Collapse
|
22
|
Poelman EH, Bourne ME, Croijmans L, Cuny MAC, Delamore Z, Joachim G, Kalisvaart SN, Kamps BBJ, Longuemare M, Suijkerbuijk HAC, Zhang NX. Bringing Fundamental Insights of Induced Resistance to Agricultural Management of Herbivore Pests. J Chem Ecol 2023; 49:218-229. [PMID: 37138167 PMCID: PMC10495479 DOI: 10.1007/s10886-023-01432-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/05/2023]
Abstract
In response to herbivory, most plant species adjust their chemical and morphological phenotype to acquire induced resistance to the attacking herbivore. Induced resistance may be an optimal defence strategy that allows plants to reduce metabolic costs of resistance in the absence of herbivores, allocate resistance to the most valuable plant tissues and tailor its response to the pattern of attack by multiple herbivore species. Moreover, plasticity in resistance decreases the potential that herbivores adapt to specific plant resistance traits and need to deal with a moving target of variable plant quality. Induced resistance additionally allows plants to provide information to other community members to attract natural enemies of its herbivore attacker or inform related neighbouring plants of pending herbivore attack. Despite the clear evolutionary benefits of induced resistance in plants, crop protection strategies to herbivore pests have not exploited the full potential of induced resistance for agriculture. Here, we present evidence that induced resistance offers strong potential to enhance resistance and resilience of crops to (multi-) herbivore attack. Specifically, induced resistance promotes plant plasticity to cope with multiple herbivore species by plasticity in growth and resistance, maximizes biological control by attracting natural enemies and, enhances associational resistance of the plant stand in favour of yield. Induced resistance may be further harnessed by soil quality, microbial communities and associational resistance offered by crop mixtures. In the transition to more sustainable ecology-based cropping systems that have strongly reduced pesticide and fertilizer input, induced resistance may prove to be an invaluable trait in breeding for crop resilience.
Collapse
Affiliation(s)
- Erik H Poelman
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700AA, Wageningen, the Netherlands.
| | - Mitchel E Bourne
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700AA, Wageningen, the Netherlands
| | - Luuk Croijmans
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700AA, Wageningen, the Netherlands
| | - Maximilien A C Cuny
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700AA, Wageningen, the Netherlands
| | - Zoë Delamore
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700AA, Wageningen, the Netherlands
| | - Gabriel Joachim
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700AA, Wageningen, the Netherlands
| | - Sarah N Kalisvaart
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700AA, Wageningen, the Netherlands
| | - Bram B J Kamps
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700AA, Wageningen, the Netherlands
| | - Maxence Longuemare
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700AA, Wageningen, the Netherlands
| | - Hanneke A C Suijkerbuijk
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700AA, Wageningen, the Netherlands
| | - Nina Xiaoning Zhang
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700AA, Wageningen, the Netherlands
| |
Collapse
|
23
|
Karst J, Jones MD, Hoeksema JD. Positive citation bias and overinterpreted results lead to misinformation on common mycorrhizal networks in forests. Nat Ecol Evol 2023; 7:501-511. [PMID: 36782032 DOI: 10.1038/s41559-023-01986-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/06/2023] [Indexed: 02/15/2023]
Abstract
A common mycorrhizal network (CMN) is formed when mycorrhizal fungal hyphae connect the roots of multiple plants of the same or different species belowground. Recently, CMNs have captured the interest of broad audiences, especially with respect to forest function and management. We are concerned, however, that recent claims in the popular media about CMNs in forests are disconnected from evidence, and that bias towards citing positive effects of CMNs has developed in the scientific literature. We first evaluated the evidence supporting three common claims. The claims that CMNs are widespread in forests and that resources are transferred through CMNs to increase seedling performance are insufficiently supported because results from field studies vary too widely, have alternative explanations or are too limited to support generalizations. The claim that mature trees preferentially send resources and defence signals to offspring through CMNs has no peer-reviewed, published evidence. We next examined how the results from CMN research are cited and found that unsupported claims have doubled in the past 25 years; a bias towards citing positive effects may obscure our understanding of the structure and function of CMNs in forests. We conclude that knowledge on CMNs is presently too sparse and unsettled to inform forest management.
Collapse
Affiliation(s)
- Justine Karst
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada.
| | - Melanie D Jones
- Department of Biology, University of British Columbia, Kelowna, British Columbia, Canada
| | - Jason D Hoeksema
- Department of Biology, University of Mississippi, Oxford, MS, USA
| |
Collapse
|
24
|
Ding L, Zhao HH, Li HY, Yang XF, Kong CH. Kin Recognition in an Herbicide-Resistant Barnyardgrass ( Echinochloa crus-galli L.) Biotype. PLANTS (BASEL, SWITZERLAND) 2023; 12:1498. [PMID: 37050124 PMCID: PMC10096639 DOI: 10.3390/plants12071498] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Despite increasing evidence of kin recognition in natural and crop plants, there is a lack of knowledge of kin recognition in herbicide-resistant weeds that are escalating in cropping systems. Here, we identified a penoxsulam-resistant barnyardgrass biotype with the ability for kin recognition from two biotypes of penoxsulam-susceptible barnyardgrass and normal barnyardgrass at different levels of relatedness. When grown with closely related penoxsulam-susceptible barnyardgrass, penoxsulam-resistant barnyardgrass reduced root growth and distribution, lowering belowground competition, and advanced flowering and increased seed production, enhancing reproductive effectiveness. However, such kin recognition responses were not occurred in the presence of distantly related normal barnyardgrass. Root segregation, soil activated carbon amendment, and root exudates incubation indicated chemically-mediated kin recognition among barnyardgrass biotypes. Interestingly, penoxsulam-resistant barnyardgrass significantly reduced a putative signaling (-)-loliolide production in the presence of closely related biotype but increased production when growing with distantly related biotype and more distantly related interspecific allelopathic rice cultivar. Importantly, genetically identical penoxsulam-resistant and -susceptible barnyardgrass biotypes synergistically interact to influence the action of allelopathic rice cultivar. Therefore, kin recognition in plants could also occur at the herbicide-resistant barnyardgrass biotype level, and intraspecific kin recognition may facilitate cooperation between genetically related biotypes to compete with interspecific rice, offering many potential implications and applications in paddy systems.
Collapse
Affiliation(s)
- Le Ding
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (L.D.); (H.-Y.L.)
| | - Huan-Huan Zhao
- College of Geography and Environmental Science, Henan University, Kaifeng 475004, China;
| | - Hong-Yu Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (L.D.); (H.-Y.L.)
| | - Xue-Fang Yang
- College of Life Science, Hebei University, Baoding 071000, China;
| | - Chui-Hua Kong
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (L.D.); (H.-Y.L.)
| |
Collapse
|
25
|
Author Correction: Positive citation bias and overinterpreted results lead to misinformation on common mycorrhizal networks in forests. Nat Ecol Evol 2023; 7:623. [PMID: 36922655 DOI: 10.1038/s41559-023-02035-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
26
|
Bawa K, Pannell JR. Editorial: Kin selection and kin cooperation in plants. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2022.1068096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
27
|
Adu MO, Asare PA, Yawson DO, Amoah KK, Atiah K, Duah MK, Graham A. Root System Traits Contribute to Variability and Plasticity in Response to Phosphorus Fertilization in 2 Field-Grown Sorghum [ Sorghum bicolor (L.) Moench] Cultivars. PLANT PHENOMICS (WASHINGTON, D.C.) 2022; 2022:0002. [PMID: 37266139 PMCID: PMC10230958 DOI: 10.34133/plantphenomics.0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/17/2022] [Indexed: 06/03/2023]
Abstract
Due to roots' physical and physiological roles in crop productivity, interest in root system architecture (RSA) and plasticity in responses to abiotic stresses is growing. Sorghum is significant for the food security of millions of people. Phosphorus deficiency is an important limitation of sorghum productivity. There is little information on the RSA-based responses of sorghum to variations in external P supply ([P]ext). This study evaluated the phenotypic plasticity and RSA responses to a range of [P]ext in 2 sorghum genotypes. The results showed that both genotypes responded to [P]ext but with significant variations in about 80% of the RSA traits analyzed. Aboveground biomass and most RSA traits increased with increasing [P]ext. Plasticity was both genotype- and trait-dependent. For most RSA traits, the white sorghum genotype showed significantly higher plasticity than the red genotype, with the former having about 28.4% higher total plasticity than the former. RSA traits, such as convex area, surface area, total root length, and length diameter ranges, showed sizeable genetic variability. Root biomass had a high degree of plasticity, but root number and angle traits were the leading contributors to variation. The results suggested 2 root trait spectra: root exploration and developmental spectrum, and there was an indication of potential trade-offs among groups of root traits. It is concluded that RSA traits in sorghum contribute to variability and plasticity in response to [P]ext. Given that there might be trade-offs among sorghum root traits, it would be instructive to determine the fundamental constraints underlying these trade-offs.
Collapse
Affiliation(s)
- Michael O. Adu
- Department of Crop Science, School of Agriculture, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Paul A. Asare
- Department of Crop Science, School of Agriculture, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - David O. Yawson
- Centre for Resource Management and Environmental Studies (CERMES), The University of the West Indies, Cave Hill Campus, P.O. Box 64, Bridgetown BB11000, Barbados
| | - Kwadwo K. Amoah
- Department of Crop Science, School of Agriculture, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Kofi Atiah
- Department of Soil Science, School of Agriculture, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Matthew K. Duah
- Department of Crop Science, School of Agriculture, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Alex Graham
- Department of Crop Science, School of Agriculture, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
28
|
Discovering cooperative traits in crop plants. PLoS Biol 2022; 20:e3001892. [PMID: 36449481 PMCID: PMC9730670 DOI: 10.1371/journal.pbio.3001892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Plants should cooperate, but do they? What does plant cooperation look like? A study in PLOS Biology demonstrates a practical and powerful methodology for exploring plant cooperation.
Collapse
|
29
|
Biernaskie JM. Kin selection theory and the design of cooperative crops. Evol Appl 2022; 15:1555-1564. [PMID: 36330299 PMCID: PMC9624078 DOI: 10.1111/eva.13418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/29/2022] Open
Abstract
In agriculture and plant breeding, plant traits may be favoured because they benefit neighbouring plants and ultimately increase total crop yield. This idea of promoting cooperation among crop plants has existed almost as long as W.D. Hamilton's inclusive fitness (kin selection) theory, the leading framework for explaining cooperation in biology. However, kin selection thinking has not been adequately applied to the idea of cooperative crops. Here, I give an overview of modern kin selection theory and consider how it explains three key strategies for designing cooperative crops: (1) selection for a less-competitive plant type (a 'communal ideotype'); (2) group-level selection for yield; and (3) exploiting naturally selected cooperation. The first two strategies, using artificial selection, have been successful in the past but suffer from limitations that could hinder future progress. Instead, I propose an alternative strategy and a new 'colonial ideotype' that exploits past natural selection for cooperation among the modules (e.g., branches or stems) of individual plants. More generally, I suggest that Hamiltonian agriculture-a kin selection view of agriculture and plant breeding-transforms our understanding of how to improve crops of the future.
Collapse
|
30
|
Tomiolo S, Damgaard CF, Gay L, Ronfort J, Ehlers BK. A plant growth model to test for changes in plant–plant interaction over a growing season: the case of kin competition. OIKOS 2022. [DOI: 10.1111/oik.09358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sara Tomiolo
- Inst. of Ecology and Evolution, Tübingen Univ. Tübingen Germany
- Dept of Ecoscience, Aarhus Univ. Aarhus Denmark
| | | | - Laurène Gay
- CIRAD, INRAE, Inst. Agro, UMR AGAP Inst., Univ. Montpellier Montpellier France
| | - Joëlle Ronfort
- CIRAD, INRAE, Inst. Agro, UMR AGAP Inst., Univ. Montpellier Montpellier France
| | | |
Collapse
|
31
|
Fan Y, Zhang R, Zhang Y, Yue M. The effects of genetic distance, nutrient conditions, and recognition ways on outcomes of kin recognition in Glechoma longituba. FRONTIERS IN PLANT SCIENCE 2022; 13:950758. [PMID: 36061780 PMCID: PMC9428624 DOI: 10.3389/fpls.2022.950758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Kin recognition might help plants decrease competitive cost and improve inclusive fitness with close genes; thus it might interact with environmental factors to affect communities. Whether and how various factors, such as the genetic distance of neighbors, environmental stressors, or the way a plant recognizes its neighbors, might modify plant growth strategies remains unclear. To answer these questions, we conducted experiments in which ramets of a clonal plant, Glechoma longituba, were grown adjacent to different genetically related neighbors (clone kin / close kin / distant kin) in different nutrient conditions (high / medium / low), or with only root exudates from pre-treatment in culture solution. By comparing competitive traits, we found that: (1) kin recognition in G. longituba was enhanced with closer genetic distance; (2) the outcomes of kin recognition were influenced by the extent of nutrient shortage; (3) kin recognition helped to alleviate the nutrient shortage effect; (4) kin recognition via root exudates affected only below-ground growth. Our results provide new insights on the potential for manipulating the outcome of kin recognition by altering neighbor genetic distance, nutrient conditions and recognition ways. Moreover, kin recognition can help plants mitigate the effects of nutrient shortage, with potential implications in agricultural research.
Collapse
|
32
|
Fréville H, Montazeaud G, Forst E, David J, Papa R, Tenaillon MI. Shift in beneficial interactions during crop evolution. Evol Appl 2022; 15:905-918. [PMID: 35782010 PMCID: PMC9234679 DOI: 10.1111/eva.13390] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 03/30/2022] [Accepted: 04/22/2022] [Indexed: 11/30/2022] Open
Abstract
Plant domestication can be viewed as a form of co-evolved interspecific mutualism between humans and crops for the benefit of the two partners. Here, we ask how this plant-human mutualism has, in turn, impacted beneficial interactions within crop species, between crop species, and between crops and their associated microbial partners. We focus on beneficial interactions resulting from three main mechanisms that can be promoted by manipulating genetic diversity in agrosystems: niche partitioning, facilitation, and kin selection. We show that a combination of factors has impacted either directly or indirectly plant-plant interactions during domestication and breeding, with a trend toward reduced benefits arising from niche partitioning and facilitation. Such factors include marked decrease of molecular and functional diversity of crops and other organisms present in the agroecosystem, mass selection, and increased use of chemical inputs. For example, the latter has likely contributed to the relaxation of selection pressures on nutrient-mobilizing traits such as those associated to root exudation and plant nutrient exchanges via microbial partners. In contrast, we show that beneficial interactions arising from kin selection have likely been promoted since the advent of modern breeding. We highlight several issues that need further investigation such as whether crop phenotypic plasticity has evolved and could trigger beneficial interactions in crops, and whether human-mediated selection has impacted cooperation via kin recognition. Finally, we discuss how plant breeding and agricultural practices can help promoting beneficial interactions within and between species in the context of agroecology where the mobilization of diversity and complexity of crop interactions is viewed as a keystone of agroecosystem sustainability.
Collapse
Affiliation(s)
- Hélène Fréville
- AGAPUniv MontpellierCIRADINRAEInstitut AgroMontpellierFrance
| | - Germain Montazeaud
- AGAPUniv MontpellierCIRADINRAEInstitut AgroMontpellierFrance
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
| | - Emma Forst
- Department of Agricultural, Food and Environmental SciencesUniversità Politecnica delle MarcheAnconaItaly
| | - Jacques David
- AGAPUniv MontpellierCIRADINRAEInstitut AgroMontpellierFrance
| | - Roberto Papa
- Department of Agricultural, Food and Environmental SciencesUniversità Politecnica delle MarcheAnconaItaly
| | - Maud I. Tenaillon
- Génétique Quantitative et Evolution – Le MoulonINRAE, CNRS, AgroParisTechUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| |
Collapse
|
33
|
Rasool F, Khan MR, Schneider M, Uzair M, Aqeel M, Ajmal W, Léon J, Naz AA. Transcriptome unveiled the gene expression patterns of root architecture in drought-tolerant and sensitive wheat genotypes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 178:20-30. [PMID: 35247694 DOI: 10.1016/j.plaphy.2022.02.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/26/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Drought is a big challenge for agricultural production. Root attributes are the important target traits for breeding high-yielding sustainable wheat varieties against ever changing climatic conditions. However, the transcriptomic of wheat concerning root architecture remained obscure. Here, we explored RNA-Seq based transcriptome to dissect putative genes involved in root system variations in naturally occurring six genotypes (drought-tolerant and sensitive) of wheat. Global RNA-Seq based root transcriptome analysis revealed single nucleotide polymorphisms (SNPs) variations and differentially expressed genes. Putative 56 SNPs were identified related to 15 genes involved in root architecture. Enrichment of these genes using GO terms demonstrated that differentially expressed genes (DEGs) are divided into sub-categories implicated in molecular functions, cellular components and biological processes. The KEGG analysis of DEGs in each comparison of genotype include metabolic, biosynthesis of secondary metabolites, microbial metabolism in diverse environments and biosynthesis of antibiotics. A deeper insight into DEGs unveiled various pathways involved in drought response and positive gravitropism. These genes belong to various transcription factor families such as DOF, C3H, MYB, and NAC involved in root developmental and stress-related pathways. Local White and UZ-11-CWA-8, which are drought-tolerant genotypes, harbor over-representation of most of DEGs or transcription factors. Notably, a microtubule-associated protein MAPRE1 belonging to RP/EB family recruited in positive gravitropism was enriched. Real-time PCR analysis revealed expression of MAPRE1 and PAL genes is consistent with RNA-seq data. The presented data and genetic resources seem valuable for providing genes involved in the root system architecture of drought-tolerant and susceptible genotypes.
Collapse
Affiliation(s)
- Fatima Rasool
- Genome Editing & Sequencing Lab, National Centre for Bioinformatics, Quaid-i-Azam University, Islamabad, 45320, Pakistan; National Institute for Genomics and Advanced Biotechnology, National Agricultural Research Centre, Park Road, Islamabad, 45500, Pakistan
| | - Muhammad Ramzan Khan
- Genome Editing & Sequencing Lab, National Centre for Bioinformatics, Quaid-i-Azam University, Islamabad, 45320, Pakistan; National Institute for Genomics and Advanced Biotechnology, National Agricultural Research Centre, Park Road, Islamabad, 45500, Pakistan.
| | - Michael Schneider
- Institute of Crop Science and Resource Conservation (INRES), Department of Crop Genetics and Biotechnology, Rheinische Friedrich-Wilhelms University of Bonn, Germany
| | - Muhammad Uzair
- National Institute for Genomics and Advanced Biotechnology, National Agricultural Research Centre, Park Road, Islamabad, 45500, Pakistan
| | - Muhammad Aqeel
- National Institute for Genomics and Advanced Biotechnology, National Agricultural Research Centre, Park Road, Islamabad, 45500, Pakistan
| | - Wajya Ajmal
- National Institute for Genomics and Advanced Biotechnology, National Agricultural Research Centre, Park Road, Islamabad, 45500, Pakistan
| | - Jens Léon
- Institute of Crop Science and Resource Conservation (INRES), Department of Crop Genetics and Biotechnology, Rheinische Friedrich-Wilhelms University of Bonn, Germany
| | - Ali Ahmed Naz
- Institute of Crop Science and Resource Conservation (INRES), Department of Crop Genetics and Biotechnology, Rheinische Friedrich-Wilhelms University of Bonn, Germany.
| |
Collapse
|
34
|
Shivaprakash KN, Bawa KS. The Evolution of Placentation in Flowering Plants: A Possible Role for Kin Selection. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.784077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Placentation refers to the mode of ovule attachment on the wall of the ovary. In multiovulate ovaries, placentation influences interactions among developing seeds with varying degrees of kinships. Placentation is a taxonomically informative character in flowering plants, yet little has been written about the origin and evolutionary trends of various placentation types in flowering plants since Puri’s and Stebbins’ work, over six decades and almost four decades ago, respectively. More recently, some authors have written about the evolution of placentation in certain groups, but an overall perspective for angiosperms is lacking. For 421 families of angiosperms, we collected data on placentation types and ovule number, and analyzed the data in the phylogenetic context using recent comprehensive phylogeny of angiosperms to test the hypotheses on the evolution of various placentation types and their association with ovule number. The distribution of placentation types across flowering plants suggests that axile placentation, followed by parietal and basal placentation, occurs more frequently than laminar and free central placentation that are very rare. Our results are more consistent with evolutionary trends proposed by Puri than by Stebbins and suggest that marginal placentation is the ancestral and most primitive placentation type, while axile is the most advanced. Placentation types show strong association with ovule number. Finally, our results on ovule number and placentation types indicate that most angiosperms may fall into two categories: one with one or few ovule(s) and basal placentation, and another with many ovules and parietal and axile placentation. Kin selection within ovaries may play a role in explaining the observed patterns. Overall, our results provide new insights into the evolution of placentation, particularly into the drivers underlying the diversification of various placentation types.
Collapse
|
35
|
Biedrzycki ML, Bais HP. Kin Recognition in Plants: Did We Learn Anything From Roots? Front Ecol Evol 2022. [DOI: 10.3389/fevo.2021.785019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Kin recognition, manifesting through various traits such as changes in root or shoot growth, has been documented in several species of plants. Identifying this phenomenon in plants has intrinsic value itself, understanding why plants recognize kin and how it might benefit them evolutionarily has been of recent interest. Here we explore studies regarding nutrient and resource allocation in regard to kin recognition as well as discuss how kin recognition is involved in multispecies interactions with an emphasis on how plant roots are involved in these processes. Future directions of this research are also discussed.
Collapse
|
36
|
Zsögön A, Peres LEP, Xiao Y, Yan J, Fernie AR. Enhancing crop diversity for food security in the face of climate uncertainty. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:402-414. [PMID: 34882870 DOI: 10.1111/tpj.15626] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 11/30/2021] [Accepted: 12/04/2021] [Indexed: 05/23/2023]
Abstract
Global agriculture is dominated by a handful of species that currently supply a huge proportion of our food and feed. It additionally faces the massive challenge of providing food for 10 billion people by 2050, despite increasing environmental deterioration. One way to better plan production in the face of current and continuing climate change is to better understand how our domestication of these crops included their adaptation to environments that were highly distinct from those of their centre of origin. There are many prominent examples of this, including the development of temperate Zea mays (maize) and the alteration of day-length requirements in Solanum tuberosum (potato). Despite the pre-eminence of some 15 crops, more than 50 000 species are edible, with 7000 of these considered semi-cultivated. Opportunities afforded by next-generation sequencing technologies alongside other methods, including metabolomics and high-throughput phenotyping, are starting to contribute to a better characterization of a handful of these species. Moreover, the first examples of de novo domestication have appeared, whereby key target genes are modified in a wild species in order to confer predictable traits of agronomic value. Here, we review the scale of the challenge, drawing extensively on the characterization of past agriculture to suggest informed strategies upon which the breeding of future climate-resilient crops can be based.
Collapse
Affiliation(s)
- Agustin Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, CEP 36570-900, Viçosa, MG, Brazil
| | - Lázaro E P Peres
- Laboratory of Plant Developmental Genetics, Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, CP 09, 13418-900, Piracicaba, SP, Brazil
| | - Yingjie Xiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Alisdair R Fernie
- Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| |
Collapse
|
37
|
Bento TS, Moffett MB, Centeno DC, Scrocco APD, Fox A, Palmer AG. Biomass allocation in response to accession recognition in Arabidopsis thaliana depends on nutrient availability and plant age. PLANT SIGNALING & BEHAVIOR 2021; 16:2004025. [PMID: 35057709 PMCID: PMC9208805 DOI: 10.1080/15592324.2021.2004025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 06/14/2023]
Abstract
Many organisms have evolved to identify and respond to differences in genetic relatedness between conspecifics, allowing them to select between competitive and facilitative strategies to improve fitness. Due to their sessile nature, plants frequently draw from the same pool of nutrients, and the ability to limit competition between closely related conspecifics would be advantageous. Studies with Arabidopsis thaliana have confirmed that plants can detect variations at the accession level and alter their root system architecture (RSA) in response, presumably for regulating nutrient uptake. The phenotypic impact of this accession-recognition on the RSA is influenced by nutrient availability, underscoring the importance of plant-plant recognition in their growth and fitness. Thus far, these observations have been limited to short-term studies (<21 days) of only the RSA of this model angiosperm. Here we exploit nutrient-mediated regulation of accession-recognition to observe how this plant-plant recognition phenomenon influences growth from germination to flowering in A. thaliana. Our work identifies root and shoot traits that are affected by nutrient-mediated accession recognition. By coupling phenotypic assays to mass spectrometry-based studies of primary metabolite distribution, we provide preliminary insight into the biochemical underpinnings of the changes observed during these plant-plant responses. Most notably that late-stage changes in sucrose metabolism in members of the same accession drove early flowering. This work underscores the need to evaluate accession-recognition under the context of nutrient availability and consider responses throughout the plant's life, not simply at the earliest stages of interaction.
Collapse
Affiliation(s)
- Thiara S. Bento
- Department of Ocean Engineering and Marine Sciences, Florida Institute of Technology, Melbourne, Florida, USA
| | - Mark B. Moffett
- Department of Aerospace, Physics and Space Sciences, Florida Institute of Technology, Melbourne, Florida, USA
| | - Danilo C. Centeno
- Centro de Ciências Naturais E Humanas, Universidade Federal Do Abc, São Bernardo Do Campo, Brazil
| | - Anna Paula D. Scrocco
- Instituto de Botânica de São Paulo, Núcleo de Pesquisa Em Fisiologia E Bioquímica de Plantas, Avenida Miguel Stéfano, Brazil
| | - Austin Fox
- Department of Ocean Engineering and Marine Sciences, Florida Institute of Technology, Melbourne, Florida, USA
| | - Andrew G. Palmer
- Department of Ocean Engineering and Marine Sciences, Florida Institute of Technology, Melbourne, Florida, USA
- Department of Biomedical and Chemical Engineering and Science, Florida Institute of Technology, Melbourne, Florida, USA
- Aldrin Space Institute, Florida Institute of Technology, Melbourne, Florida, USA
| |
Collapse
|
38
|
Anten NPR, Chen BJW. Kin discrimination in allelopathy and consequences for agricultural weed control. PLANT, CELL & ENVIRONMENT 2021; 44:3475-3478. [PMID: 34449084 PMCID: PMC9290514 DOI: 10.1111/pce.14173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/23/2021] [Accepted: 08/06/2021] [Indexed: 06/08/2023]
Affiliation(s)
- Niels P. R. Anten
- Crop & Weed Ecology Group, Centre for Crop Systems AnalysisWageningen UniversityWageningenThe Netherlands
| | - Bin J. W. Chen
- College of Biology and the EnvironmentNanjing Forestry UniversityNanjingChina
| |
Collapse
|
39
|
Xu Y, Cheng HF, Kong CH, Meiners SJ. Intra-specific kin recognition contributes to inter-specific allelopathy: A case study of allelopathic rice interference with paddy weeds. PLANT, CELL & ENVIRONMENT 2021; 44:3479-3491. [PMID: 33993534 DOI: 10.1111/pce.14083] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/04/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
Species interactions and mechanisms affect plant coexistence and community assembly. Despite increasing knowledge of kin recognition and allelopathy in regulating inter-specific and intra-specific interactions among plants, little is known about whether kin recognition mediates allelopathic interference. We used allelopathic rice cultivars with the ability for kin recognition grown in kin versus non-kin mixtures to determine their impacts on paddy weeds in field trials and a series of controlled experiments. We experimentally tested potential mechanisms of the interaction via altered root behaviour, allelochemical production and resource partitioning in the dominant weed competitor, as well as soil microbial communities. We consistently found that the establishment and growth of paddy weeds were more inhibited by kin mixtures compared to non-kin mixtures. The effect was driven by kin recognition that induced changes in root placement, altered weed carbon and nitrogen partitioning, but was associated with similar soil microbial communities. Importantly, genetic relatedness enhanced the production of intrusive roots towards weeds and reduced the production of rice allelochemicals. These findings suggest that relatedness allows allelopathic plants to discriminate their neighbouring collaborators (kin) or competitors and adjust their growth, competitiveness and chemical defense accordingly.
Collapse
Affiliation(s)
- You Xu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Hui-Fang Cheng
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Chui-Hua Kong
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Scott J Meiners
- Department of Biological Sciences, Eastern Illinois University, Charleston, Illinois, USA
| |
Collapse
|
40
|
Karlova R, Boer D, Hayes S, Testerink C. Root plasticity under abiotic stress. PLANT PHYSIOLOGY 2021; 187:1057-1070. [PMID: 34734279 PMCID: PMC8566202 DOI: 10.1093/plphys/kiab392] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/25/2021] [Indexed: 05/08/2023]
Abstract
Abiotic stresses increasingly threaten existing ecological and agricultural systems across the globe. Plant roots perceive these stresses in the soil and adapt their architecture accordingly. This review provides insights into recent discoveries showing the importance of root system architecture (RSA) and plasticity for the survival and development of plants under heat, cold, drought, salt, and flooding stress. In addition, we review the molecular regulation and hormonal pathways involved in controlling RSA plasticity, main root growth, branching and lateral root growth, root hair development, and formation of adventitious roots. Several stresses affect root anatomy by causing aerenchyma formation, lignin and suberin deposition, and Casparian strip modulation. Roots can also actively grow toward favorable soil conditions and avoid environments detrimental to their development. Recent advances in understanding the cellular mechanisms behind these different root tropisms are discussed. Understanding root plasticity will be instrumental for the development of crops that are resilient in the face of abiotic stress.
Collapse
Affiliation(s)
- Rumyana Karlova
- Laboratory of Plant Physiology, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Damian Boer
- Laboratory of Plant Physiology, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Scott Hayes
- Laboratory of Plant Physiology, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Christa Testerink
- Laboratory of Plant Physiology, Wageningen University, 6700 AA Wageningen, The Netherlands
- Author for communication:
| |
Collapse
|
41
|
Bancal MO. Plant-plant communication in variety mixtures plays on disease susceptibility and immunity. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6084-6086. [PMID: 34592757 PMCID: PMC8483780 DOI: 10.1093/jxb/erab377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This article comments on: Pélissier R, Buendia L, Brousse A, Temple C, Ballini E, Fort F, Violle C, Morel JB. 2021. Plant neighbour-modulated susceptibility to pathogens in intraspecific mixtures. Journal of Experimental Botany 72, 6570–6580.
Collapse
Affiliation(s)
- Marie-Odile Bancal
- AgroParisTech, University Paris-Saclay, France
- INRAE, ECOSYS, UMR 1402, F-78350 Thiverval-Grignon, France
| |
Collapse
|
42
|
Chen BJW, Huang L, During HJ, Wang X, Wei J, Anten NPR. No neighbour-induced increase in root growth of soybean and sunflower in mesh-divider experiments after controlling for nutrient concentration and soil volume. AOB PLANTS 2021; 13:plab020. [PMID: 33995993 PMCID: PMC8112762 DOI: 10.1093/aobpla/plab020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/12/2021] [Indexed: 05/11/2023]
Abstract
Root competition is a key factor determining plant performance, community structure and ecosystem productivity. To adequately estimate the extent of root proliferation of plants in response to neighbours independently of nutrient availability, one should use a set-up that can simultaneously control for both nutrient concentration and soil volume at plant individual level. With a mesh-divider design, which was suggested as a promising solution for this problem, we conducted two intraspecific root competition experiments: one with soybean (Glycine max) and the other with sunflower (Helianthus annuus). We found no response of root growth or biomass allocation to intraspecific neighbours, i.e. an 'ideal free distribution' (IFD) norm, in soybean; and even a reduced growth as a negative response in sunflower. These responses are all inconsistent with the hypothesis that plants should produce more roots even at the expense of reduced fitness in response to neighbours, i.e. root over-proliferation. Our results suggest that neighbour-induced root over-proliferation is not a ubiquitous feature in plants. By integrating the findings with results from other soybean studies, we conclude that for some species this response could be a genotype-dependent response as a result of natural or artificial selection, or a context-dependent response so that plants can switch from root over-proliferation to IFD depending on the environment of competition. We also critically discuss whether the mesh-divider design is an ideal solution for root competition experiments.
Collapse
Affiliation(s)
- Bin J W Chen
- College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, China
| | - Li Huang
- College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, China
| | - Heinjo J During
- Section of Ecology and Biodiversity, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| | - Xinyu Wang
- College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, China
| | - Jiahe Wei
- College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, China
| | - Niels P R Anten
- Centre for Crop Systems Analysis, Wageningen University, P.O. Box 430, 6700AK Wageningen, The Netherlands
| |
Collapse
|
43
|
Bennett T. Plant-plant interactions. PLANT, CELL & ENVIRONMENT 2021; 44:995-996. [PMID: 33576104 DOI: 10.1111/pce.14030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Affiliation(s)
- Tom Bennett
- Faculty of Biological Sciences, School of Biology, University of Leeds, Leeds, UK
| |
Collapse
|