1
|
Mandalà C, Palazzi F, Bencresciuto GF, Migliori CA, Morabito C, Morone C, Nari L, Monaco S, Bardi L. Orchard Microclimate Control as a Way to Prevent Kiwifruit Decline Syndrome Onset. PLANTS (BASEL, SWITZERLAND) 2025; 14:1049. [PMID: 40219117 PMCID: PMC11991025 DOI: 10.3390/plants14071049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/21/2025] [Accepted: 03/26/2025] [Indexed: 04/14/2025]
Abstract
A syndrome called "Kiwifruit Decline Syndrome" (KiDS) affects kiwifruit in several Mediterranean areas, causing growth arrest and wilt that rapidly progress to desiccation, scarce root growth, absence of fibrous roots, brown soft-rotting areas, and cortical detachment from the central cylinder. The origin is considered multifactorial, and a correlation with hydraulic conductance impairment caused by a high vapor pressure deficit (VPD) and temperature was detected. In this work, over-tree micro-sprinkler irrigation and shading nets were tested to protect leaves from overheating and locally decrease VPD. Leaf gas exchanges, leaf temperature, stem water potential, stem growth, root starch content, root xylem vessel diameter, density, and vulnerability to cavitation were assessed. A positive effect of over-tree irrigation associated with shading was observed: lower leaf temperature, higher stem water potential, stomatal conductance, and photosynthesis were detected; moreover, root starch content was higher in the summer. Narrow xylem vessel diameters were observed, indicating a long-term adaptation to rising VPD for lower vulnerability to cavitation, in all plants, but higher diameter, lower density, and higher vulnerability index indicated lower plant water stress under over-tree irrigation associated with shading. These results indicate that microclimate control by proper agronomic management can protect kiwifruit from climate stress, decreasing the risk of KiDS onset.
Collapse
Affiliation(s)
- Claudio Mandalà
- CREA Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Research Centre for Engineering and Agro-Food Processing, 10135 Turin, Italy; (C.M.); (F.P.); (G.F.B.); (C.A.M.); (S.M.)
| | - Francesco Palazzi
- CREA Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Research Centre for Engineering and Agro-Food Processing, 10135 Turin, Italy; (C.M.); (F.P.); (G.F.B.); (C.A.M.); (S.M.)
| | - Grazia Federica Bencresciuto
- CREA Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Research Centre for Engineering and Agro-Food Processing, 10135 Turin, Italy; (C.M.); (F.P.); (G.F.B.); (C.A.M.); (S.M.)
| | - Carmela Anna Migliori
- CREA Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Research Centre for Engineering and Agro-Food Processing, 10135 Turin, Italy; (C.M.); (F.P.); (G.F.B.); (C.A.M.); (S.M.)
| | - Cristina Morabito
- Department of Agriculture, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Italy;
| | - Chiara Morone
- Phytosanitary and Scientific-Technical Services Department, Agricultural and Food Directorate, Piedmont Region, 10144 Turin, Italy;
| | - Luca Nari
- AGRION, The Foundation for Research, Innovation and Technological Development of Piedmont Agriculture, 12030 Manta, Italy;
| | - Stefano Monaco
- CREA Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Research Centre for Engineering and Agro-Food Processing, 10135 Turin, Italy; (C.M.); (F.P.); (G.F.B.); (C.A.M.); (S.M.)
| | - Laura Bardi
- CREA Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Research Centre for Engineering and Agro-Food Processing, 10135 Turin, Italy; (C.M.); (F.P.); (G.F.B.); (C.A.M.); (S.M.)
| |
Collapse
|
2
|
Guo JJ, Gong XW, Hao GY. Leaf Transpirational Cooling and Thermal Tolerance Vary Along the Spectrum of Iso-Anisohydric Stomatal Regulation in Sand-Fixing Shrubs. PLANT, CELL & ENVIRONMENT 2025; 48:2053-2066. [PMID: 39552528 DOI: 10.1111/pce.15279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/19/2024]
Abstract
Transpirational cooling is crucial for plant thermal regulation to avoid overheating; however, during prolonged and/or acute heat stress it often necessitates stomatal closure to reduce the risk of hydraulic failure due to dehydration. The intricate interplay between thermal regulation, water transport and use may govern plant performance in water-limited and simultaneously heat-stressed environments, yet this remains inadequately understood. Here, in a common garden, we evaluated the functional associations among physiological characteristics related to leaf thermoregulation, heat tolerance, xylem water transport, and stomatal regulation in eight shrub species commonly used for fixing active sand dunes in northern China. Our study showed that traits associated with heat adaptation and xylem hydraulics were closely related to stomatal regulation. More isohydric shrub species with higher water transport efficiency possessed stronger transpirational cooling capacity; whereas the more anisohydric species demonstrated greater tolerance to overheating. Moreover, leaf heat tolerance was strongly coordinated with drought tolerance reflected by leaf turgor loss point. These results underscore the importance of stomatal regulation in shaping plant thermal adaptive strategies and provide valuable insights into the coupling of water and heat-related physiological processes in plants adapted to sandy land environments prone to combined drought and heat stresses.
Collapse
Grants
- The study was supported by National Key R&D Program of China (2023YFF1304201), the National Natural Science Foundation of China (32471827, 32220103010, 32192431, and 31722013), the Major Program of Institute of Applied Ecology, Chinese Academy of Sciences (IAEMP202201), the Liaoning Provincial Science and Technology Major Project (2023JH1/10400001), the China Postdoctoral Science Foundation (2023M733674), the Project of Doctoral Research Startup Fund of Liaoning Province (2023-BS-021), the Youth Startup Fund of Institute of Applied Ecology, Chinese Academy of Sciences, and the Fund of CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences (KLFES-2025).
Collapse
Affiliation(s)
- Jing-Jing Guo
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Daqinggou Ecological Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Key Laboratory of Territorial Ecosystem Carbon Neutrality, Liaoning Province, Shenyang, China
| | - Xue-Wei Gong
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Daqinggou Ecological Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Key Laboratory of Territorial Ecosystem Carbon Neutrality, Liaoning Province, Shenyang, China
| | - Guang-You Hao
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Daqinggou Ecological Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Key Laboratory of Territorial Ecosystem Carbon Neutrality, Liaoning Province, Shenyang, China
| |
Collapse
|
3
|
Middleby KB, Cheesman AW, Hopkinson R, Baker L, Ramirez Garavito S, Breed MF, Cernusak LA. Ecotypic Variation in Leaf Thermoregulation and Heat Tolerance but Not Thermal Safety Margins in Tropical Trees. PLANT, CELL & ENVIRONMENT 2025; 48:649-663. [PMID: 39318061 PMCID: PMC11615421 DOI: 10.1111/pce.15141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/31/2024] [Accepted: 08/22/2024] [Indexed: 09/26/2024]
Abstract
To avoid reaching lethal temperatures during periods of heat stress, plants may acclimate either their biochemical thermal tolerance or leaf morphological and physiological characteristics to reduce leaf temperature (Tleaf). While plants from warmer environments may have a greater capacity to regulate Tleaf, the extent of intraspecific variation and contribution of provenance is relatively unexplored. We tested whether upland and lowland provenances of four tropical tree species grown in a common garden differed in their thermal safety margins by measuring leaf thermal traits, midday leaf-to-air temperature differences (∆Tleaf) and critical leaf temperatures defined by chlorophyll fluorescence (Tcrit). Provenance variation was species- and trait-specific. Higher ∆Tleaf and Tcrit were observed in the lowland provenance for Terminalia microcarpa, and in the upland provenance for Castanospermum australe, with no provenance effects in the other two species. Within-species covariation of Tcrit and ∆Tleaf led to a convergence of thermal safety margins across provenances. While future studies should expand the number of provenances and species investigated, our findings suggest that lowland and upland provenances may not differ substantially in their vulnerability to heat stress, as determined by thermal safety margins, despite differences in operating temperatures and Tcrit.
Collapse
Affiliation(s)
- Kali B. Middleby
- College of Science and EngineeringJames Cook UniversityCairnsQueenslandAustralia
| | | | | | - Leesa Baker
- College of Science and EngineeringJames Cook UniversityCairnsQueenslandAustralia
| | | | - Martin F. Breed
- College of Science and EngineeringFlinders UniversityBedford ParkSouth AustraliaAustralia
| | - Lucas A. Cernusak
- College of Science and EngineeringJames Cook UniversityCairnsQueenslandAustralia
| |
Collapse
|
4
|
Du B, Franzisky BL, Muhammad W, Alfarraj S, Geilfus C, Rennenberg H. How to Cope With Stress in the Desert-The Date Palm Approach. PLANT, CELL & ENVIRONMENT 2025; 48:768-780. [PMID: 39351860 PMCID: PMC11615422 DOI: 10.1111/pce.15188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 12/06/2024]
Abstract
Increasing desertification constitutes a global environmental problem, mainly driven by climate change and inappropriate land-use that limits agriculture, forestry and human colonization. The selection of suitable plant species to mitigate desertification is particularly challenging, as it usually requires simultaneous counteraction against a whole set of unfavourable environmental conditions, including heat, drought, high tropospheric ozone and salinity. It therefore seems useful to identify the survival strategies of plants native in desert environments. Date palm constitutes a plant species native in desert environments and cultivated worldwide in arid regions that have been studied intensively for stress defence during the last decade. The present review summarizes the current state of biochemical stress defence mechanisms including avoidance, osmotic and metabolic adjustments and reactive oxygen species scavenging, addresses whole-plant regulations and trade-off between stress compensation/defence and growth of date palms. The review advances our knowledge about how this typical desert species copes with both individual and multiple environmental stresses at the cellular to the whole-plant level, and identifies areas of future research required to fully understand the strategies of this plant species to survive in the desert, thereby contributing to efforts for the mitigation of climate change and desertification.
Collapse
Affiliation(s)
- Baoguo Du
- College of Life Science and Biotechnology, Ecological Security and Protection Key Laboratory of Sichuan ProvinceMianyang Normal UniversityMianyangChina
- Chair of Tree Physiology, Institute of Forest SciencesUniversity of FreiburgFreiburgGermany
| | | | - Waqas Muhammad
- Department of Soil Science and Plant NutritionHochschule Geisenheim UniversityGeisenheimGermany
| | - Saleh Alfarraj
- Department of ZoologyKing Saud UniversityRiyadhSaudi Arabia
| | | | - Heinz Rennenberg
- Chair of Tree Physiology, Institute of Forest SciencesUniversity of FreiburgFreiburgGermany
- Department of ZoologyKing Saud UniversityRiyadhSaudi Arabia
- Center of Molecular Ecophysiology (CMEP), College of Resources and EnvironmentSouthwest UniversityChongqingChina
| |
Collapse
|
5
|
Garthwaite IJ, Lepp C, Maldonado ZSR, Blasini D, Grady KC, Gehring CA, Hultine KR, Whitham TG, Allan GJ, Best RJ. Plasticity in Hydraulic Architecture: Riparian Trees Respond to Increased Temperatures With Genotype-Specific Adjustments to Leaf Traits. Ecol Evol 2024; 14:e70683. [PMID: 39669505 PMCID: PMC11637695 DOI: 10.1002/ece3.70683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/14/2024] Open
Abstract
Climate means and variability are shifting rapidly, leading to mismatches between climate and locally adapted plant traits. Phenotypic plasticity, the ability of a plant to respond to environmental conditions within a lifetime, may provide a buffer for plants to persist under increasing temperature and water stress. We used two reciprocal common gardens across a steep temperature gradient to investigate plasticity in six populations of Fremont cottonwood, an important foundation tree species in arid riparian ecosystems. We investigated two components of leaf hydraulic architecture: Leaf venation and stomatal morphology, both of which regulate leaf water potential and photosynthesis. These traits will likely affect plant performance under climate stressors, but it is unclear whether they are controlled by genetic or environmental factors and whether they respond to the environment in parallel or independent directions. We found that: (1) Populations had divergent responses to a hotter growing environment, increasing or decreasing vein density. (2) Populations showed surprisingly independent responses of venation vs. stomatal traits. (3) As a result of these different responses, plasticity in hydraulic architecture traits was not predictable from historic climate conditions at population source locations and often varied substantially within populations. (4) Hydraulic architecture was clearly linked to growth, with higher vein and stomatal density predicting greater tree growth in the hottest growing environment. However, higher plasticity in these traits did not increase average growth across multiple environments. Thus, P. fremontii populations and genotypes vary in their capacity to adjust their leaf hydraulic architecture and support growth in contrasting environments, but this plasticity is not clearly predictable or beneficial. Identifying genotypes suitable for future conditions will depend on the relative importance of multiple traits and on both evolutionary and ecological responses to changing temperature and water availability.
Collapse
Affiliation(s)
- Iris J. Garthwaite
- School of Earth and SustainabilityNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Catherine Lepp
- School of Earth and SustainabilityNorthern Arizona UniversityFlagstaffArizonaUSA
| | | | - Davis Blasini
- School of Life SciencesArizona State UniversityTempeArizonaUSA
| | - Kevin C. Grady
- School of ForestryNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Catherine A. Gehring
- Department of Biological ScienceNorthern Arizona UniversityFlagstaffArizonaUSA
- Center for Adaptable Western LandscapesNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Kevin R. Hultine
- Department of Research, Conservation and CollectionsDesert Botanical GardenPhoenixArizonaUSA
| | - Thomas G. Whitham
- Department of Biological ScienceNorthern Arizona UniversityFlagstaffArizonaUSA
- Center for Adaptable Western LandscapesNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Gerard J. Allan
- Department of Biological ScienceNorthern Arizona UniversityFlagstaffArizonaUSA
- Center for Adaptable Western LandscapesNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Rebecca J. Best
- School of Earth and SustainabilityNorthern Arizona UniversityFlagstaffArizonaUSA
| |
Collapse
|
6
|
Islam T, Hamid M, Khuroo AA, Nawchoo IA. Functional trait diversity and aboveground biomass of herbaceous vegetation in temperate forests of Kashmir Himalaya. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 196:60. [PMID: 38110625 DOI: 10.1007/s10661-023-12215-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/30/2023] [Indexed: 12/20/2023]
Abstract
Studying functional trait diversity can provide crucial clues about the adaptive survival strategies of regional plant species pool. Despite large-scale trait datasets available worldwide, the plant trait data from many biodiversity hotpot regions, like the Himalaya is still scarce. In this study, we aimed to investigate the plant functional traits and aboveground biomass of understory herbaceous vegetation in temperate forests of Overa-Aru wildlife sanctuary of Kashmir Himalaya. We also investigate how these functional traits correlate and what is the magnitude of trait-biomass relationship across the herbaceous species pool. For this, we conducted field sampling and measured leaf functional traits and aboveground biomass of 38 plant species in the study region during peak growing season (July-August) in the year 2021. The results revealed a significant interspecific trait variability among the species studied. We observed a high variability in leaf size and type spectra of the species, with nanophyll and simple leaf lamina, respectively, the most common types among the species studied. The correlation analysis revealed that plant height was positively correlated with aboveground biomass. The variation partitioning analysis revealed that the plant height explained the maximum fraction of variation in aboveground biomass, while least by specific leaf area. Overall, the findings from the present study provide useful insights in understanding trait-trait relationship and trait-environment interaction at the regional scale and can also help in recognizing adaptive functional traits of plant species that determine plant survival under the changing climate in this Himalayan region.
Collapse
Affiliation(s)
- Tajamul Islam
- Centre for Biodiversity & Taxonomy, Department of Botany, University of Kashmir, Srinagar, 190 006, Jammu and Kashmir, India.
- Plant Reproductive Biology, Genetic Diversity and Phytochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, 190 006, Jammu and Kashmir, India.
| | - Maroof Hamid
- Centre for Biodiversity & Taxonomy, Department of Botany, University of Kashmir, Srinagar, 190 006, Jammu and Kashmir, India
| | - Anzar Ahmad Khuroo
- Centre for Biodiversity & Taxonomy, Department of Botany, University of Kashmir, Srinagar, 190 006, Jammu and Kashmir, India
| | - Irshad A Nawchoo
- Plant Reproductive Biology, Genetic Diversity and Phytochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, 190 006, Jammu and Kashmir, India
| |
Collapse
|
7
|
Moran ME, Aparecido LMT, Koepke DF, Cooper HF, Doughty CE, Gehring CA, Throop HL, Whitham TG, Allan GJ, Hultine KR. Limits of thermal and hydrological tolerance in a foundation tree species (Populus fremontii) in the desert southwestern United States. THE NEW PHYTOLOGIST 2023; 240:2298-2311. [PMID: 37680030 DOI: 10.1111/nph.19247] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/05/2023] [Indexed: 09/09/2023]
Abstract
Populus fremontii is among the most dominant, and ecologically important riparian tree species in the western United States and can thrive in hyper-arid riparian corridors. Yet, P. fremontii forests have rapidly declined over the last decade, particularly in places where temperatures sometimes exceed 50°C. We evaluated high temperature tolerance of leaf metabolism, leaf thermoregulation, and leaf hydraulic function in eight P. fremontii populations spanning a 5.3°C mean annual temperature gradient in a well-watered common garden, and at source locations throughout the lower Colorado River Basin. Two major results emerged. First, despite having an exceptionally high Tcrit (the temperature at which Photosystem II is disrupted) relative to other tree taxa, recent heat waves exceeded Tcrit , requiring evaporative leaf cooling to maintain leaf-to-air thermal safety margins. Second, in midsummer, genotypes from the warmest locations maintained lower midday leaf temperatures, a higher midday stomatal conductance, and maintained turgor pressure at lower water potentials than genotypes from more temperate locations. Taken together, results suggest that under well-watered conditions, P. fremontii can regulate leaf temperature below Tcrit along the warm edge of its distribution. Nevertheless, reduced Colorado River flows threaten to lower water tables below levels needed for evaporative cooling during episodic heat waves.
Collapse
Affiliation(s)
- Madeline E Moran
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Luiza M T Aparecido
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ, 85287, USA
| | - Dan F Koepke
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, AZ, 85008, USA
| | - Hillary F Cooper
- Department of Biological Sciences and Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Christopher E Doughty
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Catherine A Gehring
- Department of Biological Sciences and Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Heather L Throop
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ, 85287, USA
| | - Thomas G Whitham
- Department of Biological Sciences and Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Gerard J Allan
- Department of Biological Sciences and Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Kevin R Hultine
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, AZ, 85008, USA
| |
Collapse
|
8
|
Blonder BW, Aparecido LMT, Hultine KR, Lombardozzi D, Michaletz ST, Posch BC, Slot M, Winter K. Plant water use theory should incorporate hypotheses about extreme environments, population ecology, and community ecology. THE NEW PHYTOLOGIST 2023; 238:2271-2283. [PMID: 36751903 DOI: 10.1111/nph.18800] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/30/2023] [Indexed: 05/19/2023]
Abstract
Plant water use theory has largely been developed within a plant-performance paradigm that conceptualizes water use in terms of value for carbon gain and that sits within a neoclassical economic framework. This theory works very well in many contexts but does not consider other values of water to plants that could impact their fitness. Here, we survey a range of alternative hypotheses for drivers of water use and stomatal regulation. These hypotheses are organized around relevance to extreme environments, population ecology, and community ecology. Most of these hypotheses are not yet empirically tested and some are controversial (e.g. requiring more agency and behavior than is commonly believed possible for plants). Some hypotheses, especially those focused around using water to avoid thermal stress, using water to promote reproduction instead of growth, and using water to hoard it, may be useful to incorporate into theory or to implement in Earth System Models.
Collapse
Affiliation(s)
- Benjamin Wong Blonder
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Luiza Maria Teophilo Aparecido
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ, 85287, USA
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, AZ, 85008, USA
| | - Kevin R Hultine
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, AZ, 85008, USA
| | - Danica Lombardozzi
- Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, CO, 80305, USA
| | - Sean T Michaletz
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Bradley C Posch
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, CA, 94720, USA
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, AZ, 85008, USA
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Martijn Slot
- Smithsonian Tropical Research Institute, Balboa, Ancón, 0843-03092, Panama
| | - Klaus Winter
- Smithsonian Tropical Research Institute, Balboa, Ancón, 0843-03092, Panama
| |
Collapse
|
9
|
Aspinwall MJ, Blackman CJ, Maier C, Tjoelker MG, Rymer PD, Creek D, Chieppa J, Griffin-Nolan RJ, Tissue DT. Aridity drives clinal patterns in leaf traits and responsiveness to precipitation in a broadly distributed Australian tree species. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2023; 4:70-85. [PMID: 37288162 PMCID: PMC10243541 DOI: 10.1002/pei3.10102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/08/2023] [Accepted: 02/16/2023] [Indexed: 06/09/2023]
Abstract
Aridity shapes species distributions and plant growth and function worldwide. Yet, plant traits often show complex relationships with aridity, challenging our understanding of aridity as a driver of evolutionary adaptation. We grew nine genotypes of Eucalyptus camaldulensis subsp. camaldulensis sourced from an aridity gradient together in the field for ~650 days under low and high precipitation treatments. Eucalyptus camaldulesis is considered a phreatophyte (deep-rooted species that utilizes groundwater), so we hypothesized that genotypes from more arid environments would show lower aboveground productivity, higher leaf gas-exchange rates, and greater tolerance/avoidance of dry surface soils (indicated by lower responsiveness) than genotypes from less arid environments. Aridity predicted genotype responses to precipitation, with more arid genotypes showing lower responsiveness to reduced precipitation and dry surface conditions than less arid genotypes. Under low precipitation, genotype net photosynthesis and stomatal conductance increased with home-climate aridity. Across treatments, genotype intrinsic water-use efficiency and osmotic potential declined with increasing aridity while photosynthetic capacity (Rubisco carboxylation and RuBP regeneration) increased with aridity. The observed clinal patterns indicate that E. camaldulensis genotypes from extremely arid environments possess a unique strategy defined by lower responsiveness to dry surface soils, low water-use efficiency, and high photosynthetic capacity. This strategy could be underpinned by deep rooting and could be adaptive under arid conditions where heat avoidance is critical and water demand is high.
Collapse
Affiliation(s)
- Michael J Aspinwall
- Hawkesbury Institute for the Environment Western Sydney University Penrith New South Wales Australia
- College of Forestry and Wildlife Sciences Auburn University Auburn Alabama USA
- Formation Environmental LLC Sacramento California USA
| | - Chris J Blackman
- Hawkesbury Institute for the Environment Western Sydney University Penrith New South Wales Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture School of Natural Sciences, University of Tasmania Hobart Australia
| | - Chelsea Maier
- Hawkesbury Institute for the Environment Western Sydney University Penrith New South Wales Australia
| | - Mark G Tjoelker
- Hawkesbury Institute for the Environment Western Sydney University Penrith New South Wales Australia
| | - Paul D Rymer
- Hawkesbury Institute for the Environment Western Sydney University Penrith New South Wales Australia
| | - Danielle Creek
- Hawkesbury Institute for the Environment Western Sydney University Penrith New South Wales Australia
- Faculty of Environmental Sciences and Natural Resource Management Norwegian University of Life Sciences (NMBU) Ås Norway
| | - Jeff Chieppa
- College of Forestry and Wildlife Sciences Auburn University Auburn Alabama USA
| | | | - David T Tissue
- Hawkesbury Institute for the Environment Western Sydney University Penrith New South Wales Australia
- Global Centre for Land Based Innovation Western Sydney University Richmond New South Wales Australia
| |
Collapse
|
10
|
Palmquist EC, Ogle K, Whitham TG, Allan GJ, Shafroth PB, Butterfield BJ. Provenance, genotype, and flooding influence growth and resource acquisition characteristics in a clonal, riparian shrub. AMERICAN JOURNAL OF BOTANY 2023; 110:e16115. [PMID: 36462152 DOI: 10.1002/ajb2.16115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
PREMISE Riparian plants can exhibit intraspecific phenotypic variability across the landscape related to temperature and flooding gradients. Phenotypes that vary across a climate gradient are often partly genetically determined and may differ in their response to inundation. Changes to inundation patterns across a climate gradient could thus result in site-specific inundation responses. Phenotypic variability is more often studied in riparian trees, yet riparian shrubs are key elements of riparian systems and may differ from trees in phenotypic variability and environmental responses. METHODS We tested whether individuals of a clonal, riparian shrub, Pluchea sericea, collected from provenances spanning a temperature gradient differed in their phenotypes and responses to inundation and to what degree any differences were related to genotype. Plants were subjected to different inundation depths and a subset genotyped. Variables related to growth and resource acquisition were measured and analyzed using hierarchical, multivariate Bayesian linear regressions. RESULTS Individuals from different provenances differed in their phenotypes, but not in their response to inundation. Phenotypes were not related to provenance temperature but were partially governed by genotype. Growth was more strongly influenced by inundation, while resource acquisition was more strongly controlled by genotype. CONCLUSIONS Growth and resource acquisition responses in a clonal, riparian shrub are affected by changes to inundation and plant demographics in unique ways. Shrubs appear to differ from trees in their responses to environmental change. Understanding environmental effects on shrubs separately from those of trees will be a key part of evaluating impacts of environmental change on riparian ecosystems.
Collapse
Affiliation(s)
- Emily C Palmquist
- U.S. Geological Survey, Southwest Biological Science Center, Grand Canyon Monitoring and Research Center, 2255 N Gemini Dr, Flagstaff, AZ, 86001, USA
- Department of Biological Sciences, Northern Arizona University, Box 5640, Flagstaff, AZ, 86011, USA
| | - Kiona Ogle
- School of Informatics, Computing and Cyber Systems, Northern Arizona University, Box 5693, Flagstaff, AZ, 86011, USA
| | - Thomas G Whitham
- Department of Biological Sciences, Northern Arizona University, Box 5640, Flagstaff, AZ, 86011, USA
- Center for Adaptable Western Landscapes (CAWL), Northern Arizona University, Box 5640, Flagstaff, AZ, 86011, USA
| | - Gerard J Allan
- Department of Biological Sciences, Northern Arizona University, Box 5640, Flagstaff, AZ, 86011, USA
- Center for Adaptable Western Landscapes (CAWL), Northern Arizona University, Box 5640, Flagstaff, AZ, 86011, USA
| | - Patrick B Shafroth
- U.S. Geological Survey, Fort Collins Science Center, 2150 Centre Ave., Bldg C, Fort Collins, CO, 80526, USA
| | - Bradley J Butterfield
- Department of Biological Sciences, Northern Arizona University, Box 5640, Flagstaff, AZ, 86011, USA
| |
Collapse
|
11
|
Leaf Economic and Hydraulic Traits Signal Disparate Climate Adaptation Patterns in Two Co-Occurring Woodland Eucalypts. PLANTS 2022; 11:plants11141846. [PMID: 35890479 PMCID: PMC9320154 DOI: 10.3390/plants11141846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/06/2022] [Accepted: 07/09/2022] [Indexed: 11/23/2022]
Abstract
With climate change impacting trees worldwide, enhancing adaptation capacity has become an important goal of provenance translocation strategies for forestry, ecological renovation, and biodiversity conservation. Given that not every species can be studied in detail, it is important to understand the extent to which climate adaptation patterns can be generalised across species, in terms of the selective agents and traits involved. We here compare patterns of genetic-based population (co)variation in leaf economic and hydraulic traits, climate–trait associations, and genomic differentiation of two widespread tree species (Eucalyptus pauciflora and E. ovata). We studied 2-year-old trees growing in a common-garden trial established with progeny from populations of both species, pair-sampled from 22 localities across their overlapping native distribution in Tasmania, Australia. Despite originating from the same climatic gradients, the species differed in their levels of population variance and trait covariance, patterns of population variation within each species were uncorrelated, and the species had different climate–trait associations. Further, the pattern of genomic differentiation among populations was uncorrelated between species, and population differentiation in leaf traits was mostly uncorrelated with genomic differentiation. We discuss hypotheses to explain this decoupling of patterns and propose that the choice of seed provenances for climate-based plantings needs to account for multiple dimensions of climate change unless species-specific information is available.
Collapse
|
12
|
Guo JS, Bush SE, Hultine KR. Temporal variation in stomatal sensitivity to vapor pressure deficit in western riparian forests. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jessica S. Guo
- Arizona Experiment Station, College of Agriculture and Life Sciences University of Arizona Tucson, AZ 85721 USA
| | - Susan E. Bush
- Department of Biological Sciences University of Utah Salt Lake City, UT 84112 USA
| | - Kevin R. Hultine
- Department of Research, Conservation, and Collections, Desert Botanical Garden Phoenix, AZ 85008 USA
| |
Collapse
|