1
|
Redler J, Nelson AE, Heske CM. Mechanisms of resistance to NAMPT inhibitors in cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2025; 8:18. [PMID: 40342733 PMCID: PMC12059476 DOI: 10.20517/cdr.2024.216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/21/2025] [Accepted: 04/11/2025] [Indexed: 05/11/2025]
Abstract
A common barrier to the development of effective anticancer agents is the development of drug resistance. This obstacle remains a challenge to successful clinical translation, particularly for targeted agents. Nicotinamide phosphoribosyltransferase (NAMPT) inhibitors represent a clinically applicable drug class that exploits the increased dependence of cancer cells on nicotinamide adenine dinucleotide (NAD+), a coenzyme essential to metabolism and other cellular functions. NAMPT catalyzes the rate-limiting step in the NAD+ salvage pathway of mammalian cells and is overexpressed in numerous types of cancers. Preclinical research has demonstrated that pharmacological targeting of NAMPT may be an effective strategy against certain cancers, and while several early-phase clinical trials testing NAMPT inhibitors in refractory cancers have been completed, drug resistance is a concern. Preclinical work in a variety of cancer models has demonstrated the emergence of resistance to multiple NAMPT inhibitors through several recurrent mechanisms. This review represents the first article summarizing the current state of knowledge regarding the mechanisms of acquired drug resistance to NAMPT inhibitors with a particular focus on upregulation of the compensatory NAD+ production enzymes nicotinate phosphoribosyltransferase (NAPRT) and quinolinate phosphoribosyltransferase (QPRT), acquired mutations in NAMPT, metabolic reprogramming, and altered expression of the ATP-binding cassette (ABC) efflux transporter ABCB1. An understanding of how these mechanisms interact with the biology of each given cancer cell type to predispose to the acquisition of NAMPT inhibitor resistance will be necessary to develop strategies to optimize the use of these agents moving forward.
Collapse
Affiliation(s)
| | | | - Christine M. Heske
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Kahraman A, Ureyen I, Aykal G, Toptas T, Gokkaya M, Alcı A, Yalcin N, Cakir Kole M, Kandemir S, Goksu M. Utility of serum NAMPT concentrations in clinical management of HPV-infected patients. J Investig Med 2025:10815589251336745. [PMID: 40219833 DOI: 10.1177/10815589251336745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2025]
Abstract
The expression of nicotinamide-phosphoribosyl transferase (NAMPT) was demonstrated to increase in various dysplastic and malignant conditions, usually consistent with the severity of the disease. This study was conducted to assess the utility of extracellular NAMPT (eNAMPT) in the management of cervical dysplasia in human papillomavirus (HPV) infected women. Circulating eNAMPT concentrations in high-risk HPV-infected women who were diagnosed with high-grade squamous intraepithelial lesion (HSIL) or invasive cancer (cervical intraepithelial neoplasia 2+ (CIN2+) lesions) and who were revealed to have no cervical dysplasia or low-grade squamous intraepithelial lesion (LSIL) were evaluated and compared. One hundred fifty nine high-risk HPV-infected patients for cervical biopsies under colposcopy guidance between February 2022 and February 2023 were included in this case-control study. Study group composed of consecutively enrolled 84 women with histological diagnosis of HSIL or cervical cancer (CIN2+ lesions) and control group composed of consecutively enrolled 75 women with LSIL or normal cervical biopsies. Circulating eNAMPT concentrations of cases with CIN2+ lesions and cases with LSIL or normal cervical biopsies were compared. No significant difference was found between median peripheral venous blood eNAMPT concentration of cases with histologic diagnosis of CIN2+ lesions and cases with LSIL or normal cervical biopsies (9.4 ng/mL (0.19-192) vs 8.9 ng/mL (0.19-176.9); p = 0.07, respectively). Multivariate linear regression analysis revealed no independent predictor of circulating eNAMPT concentrations among possible predictor variables. In conclusion, circulating eNAMPT concentrations of cases with CIN2+ lesions and cases with LSIL or normal cervical biopsies were found to be similar. Further research that evaluates cervical fluid eNAMPT concentrations might define novel noninvasive tools in cervical dysplasia management.
Collapse
Affiliation(s)
- Alper Kahraman
- Department of Gynecological Oncology, Antalya Training and Research Hospital, Antalya, Turkey
| | - Isın Ureyen
- Department of Gynecological Oncology, Antalya Training and Research Hospital, Antalya, Turkey
| | - Guzin Aykal
- Department of Biochemistry, Antalya Training and Research Hospital, Antalya, Turkey
| | - Tayfun Toptas
- Department of Gynecological Oncology, Antalya Training and Research Hospital, Antalya, Turkey
| | - Mustafa Gokkaya
- Department of Gynecological Oncology, Antalya Training and Research Hospital, Antalya, Turkey
| | - Aysun Alcı
- Department of Gynecological Oncology, Antalya Training and Research Hospital, Antalya, Turkey
| | - Necim Yalcin
- Department of Gynecological Oncology, Antalya Training and Research Hospital, Antalya, Turkey
| | - Merve Cakir Kole
- Department of Gynecological Oncology, Antalya Training and Research Hospital, Antalya, Turkey
| | - Selim Kandemir
- Department of Gynecological Oncology, Antalya Training and Research Hospital, Antalya, Turkey
| | - Mehmet Goksu
- Department of Gynecological Oncology, Antalya Training and Research Hospital, Antalya, Turkey
| |
Collapse
|
3
|
Zhang H, Xia M, Li H, Zeng X, Jia H, Zhang W, Zhou J. Implication of Immunobiological Function of Melanocytes in Dermatology. Clin Rev Allergy Immunol 2025; 68:30. [PMID: 40097884 DOI: 10.1007/s12016-025-09040-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2025] [Indexed: 03/19/2025]
Abstract
Melanocytes are essential for regulating pigmentation and providing photoprotection in human skin. Originating from neural crest cells, these cells migrate to the basal layer of the epidermis and hair follicles during embryogenesis. Melanosomes, the specialized, membrane-bound organelles are essential for melanin synthesis. Beyond their role in pigmentation, melanocytes exhibit complex immune functions, expressing a variety of immune-related markers and receptors, such as pattern recognition receptors (PRRs), major histocompatibility complex class II (MHC-II) molecules, CD40, intercellular adhesion molecule 1 (ICAM-1), and programmed death-ligand 1 (PD-L1). These receptors allow melanocytes to detect environmental signals and engage in the innate immune response. Furthermore, melanocytes release various immunomodulatory substances, including proinflammatory cytokines, chemokines, and damage-associated molecular patterns (DAMPs), contributing to immune regulation. The immune functions of melanocytes are significantly influenced by external factors such as ultraviolet radiation (UVR), the microbiome, and oxidative stress. In different skin diseases, these immune functions may vary. For example, vitiligo, a common hypopigmentary disorder, is primarily driven by an autoimmune response targeting melanocytes, giving rise to depigmentation and the appearance of white patches. In contrast, melanoma, a form of skin cancer that arises from melanocytes, is closely linked to UV exposure. This review highlights the diverse immunobiological functions of melanocytes and their implications in dermatology.
Collapse
Affiliation(s)
- Hejuan Zhang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, 210042, China
| | - Maomei Xia
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Hongyang Li
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, 210042, China
| | - Xuesi Zeng
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, 210042, China
| | - Hong Jia
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, 210042, China
| | - Wei Zhang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, 210042, China.
| | - Jia Zhou
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
4
|
Moro M, Balestrero FC, Colombo G, Torretta S, Clemente N, Ciccone V, Del Grosso E, Donnini S, Travelli C, Condorelli F, Sangaletti S, Genazzani AA, Grolla AA. Extracellular nicotinamide phosphoribosyltransferase (eNAMPT) drives abnormal pericyte-rich vasculature in triple-negative breast cancer. Angiogenesis 2024; 28:4. [PMID: 39636369 DOI: 10.1007/s10456-024-09956-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/11/2024] [Indexed: 12/07/2024]
Abstract
Tumour angiogenesis supports malignant cells with oxygen and nutrients to promote invasion and metastasis. A number of cytokines released in situ participate in the recruitment of endothelial cells and pericytes to trigger the formation of novel blood vessels, which are often abnormal, leaky, and disorganized. Nicotinamide phosphoribosyltransferase is a key intracellular enzyme involved in NAD metabolism and is up regulated in many cancers to meet bioenergetic demands. Yet, the same protein is also secreted extracellularly (eNAMPT), where it acts as a pro-inflammatory cytokine. High plasma eNAMPT levels have been reported in breast cancer patients and correlate with aggressiveness and prognosis. We now report that in a triple-negative breast cancer model, enriching the tumour microenvironment with eNAMPT leads to abundant angiogenesis and increased metastatization. Atypically, the eNAMPT-mediated pro-angiogenic effect is mainly directed to NG2+ pericytes. Indeed, eNAMPT acts as chemoattractant for pericytes and coordinates vessel-like tube formation, in synergism with the classical factor PDGF-BB. Stimulation of pericytes by eNAMPT leads to a pro-inflammatory activation, characterized by the overexpression of key chemokines (CXCL8, CXCL1, CCL2) and VCAM1, via NF-κB signalling. All these effects were ablated by the use of C269, an anti-eNAMPT neutralizing antibody, suggesting that this might represent a novel anti-angiogenic pharmacological approach for triple-negative breast cancer.
Collapse
Affiliation(s)
- Marianna Moro
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | | | - Giorgia Colombo
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
- Division of Hematology/Oncology Department of Medicine, Weill Cornell Medicine, Cornell University, New York, USA
| | - Simone Torretta
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Nausicaa Clemente
- Department of Health Science, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, Novara, Italy
| | - Valerio Ciccone
- Department of Life Science, Università di Siena, Siena, Italy
| | - Erika Del Grosso
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Sandra Donnini
- Department of Life Science, Università di Siena, Siena, Italy
| | - Cristina Travelli
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
- Department of Drug Sciences, Università degli Studi di Pavia, Pavia, Italy
| | - Fabrizio Condorelli
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Sabina Sangaletti
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Armando A Genazzani
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy.
- Department of Drug Science and Technology, Università di Torino, Turin, Italy.
| | - Ambra A Grolla
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| |
Collapse
|
5
|
Xiang Y, Shen L, Xue Y, Wang Z, Zhou R, Cao Y, Zhu Z, Xu P, Yu X, Fang P, Shang W. Efficacy and safety of diacerein monotherapy in adults with obesity: A randomized, double-blind, placebo-controlled trial. Diabetes Obes Metab 2024; 26:5293-5303. [PMID: 39192530 DOI: 10.1111/dom.15881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024]
Abstract
AIM To assess the efficacy and safety of diacerein monotherapy in adults with obesity. METHODS Forty-two adults with obesity participated in the study and were randomly assigned to receive diacerein or placebo in addition to lifestyle modification for 14 weeks, in a double-blinded fashion. Differences in changes in body weight, body composition, metabolic variables, fatty liver-related indicators, cardiovascular system variables, lifestyle score and metabolic factors were compared. RESULTS Post-treatment weight loss percentage from baseline was -6.56% (-8.71%, -4.41%) in the diacerein group and -0.59% (-2.74%, 1.56%) in the placebo group. Compared with the placebo group, the diacerein group showed significant improvements in body composition, metabolic variables and indicators related to fatty liver. In addition, after 14 weeks of treatment, diacerein led to a significant reduction in serum visfatin concentration versus the placebo group. The reductions in total body fat mass and visceral fat area mediated the weight loss induced by diacerein. No significant differences were found between the groups in the number of adverse events and safety variables. CONCLUSIONS For adults with obesity, diacerein led to a clinically meaningful weight loss and provided multiple metabolic benefits with acceptable safety. These results support that diacerein is a promising candidate medicine to be developed for obesity management.
Collapse
Affiliation(s)
- Yingying Xiang
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lixuan Shen
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yingying Xue
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ziwei Wang
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ruonan Zhou
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yue Cao
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ziwei Zhu
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Pingyuan Xu
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xizhong Yu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Penghua Fang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenbin Shang
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
6
|
Zhou Y, Pang N, Li W, Li Q, Luo J, Gu Y, Hu Q, Ding YJ, Sun Y, Pan J, Gao M, Xiao Y, Ma S, Hao Y, Xing H, Fang EF, Ling W, Zhang Z, Yang L. Inhibition of ethanol-induced eNAMPT secretion attenuates liver ferroptosis through BAT-Liver communication. Redox Biol 2024; 75:103274. [PMID: 39059204 PMCID: PMC11327441 DOI: 10.1016/j.redox.2024.103274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND & AIMS Extracellular nicotinamide phosphoribosyltransferase (eNAMPT) has long been recognized as an adipokine. However, the exact role of eNAMPT in alcoholic liver disease (ALD) and its relevance to brown adipose tissue (BAT) remain largely unknown. This study aimed to evaluate the impact of eNAMPT on liver function and the underlying mechanisms involved in BAT-Liver communication. METHODS Serum eNAMPT levels were detected in the serum of both ALD patients and mice. Chronic and binge ethanol feeding was used to induce alcoholic liver injury in mice. An eNAMPT antibody, a coculture model of brown adipocytes and hepatocytes, and BAT-specific Nampt knockdown mice were used to investigate the role of eNAMPT in ALD. RESULTS Serum eNAMPT levels are elevated in ALD patients and are significantly positively correlated with the liver injury index. In ALD mice, neutralizing eNAMPT reduced the elevated levels of circulating eNAMPT induced by ethanol and attenuated liver injury. In vitro experiments revealed that eNAMPT induced hepatocyte ferroptosis through the TLR4-dependent mitochondrial ROS-induced ferritinophagy pathway. Furthermore, ethanol stimulated eNAMPT secretion from brown adipocytes but not from other adipocytes. In the coculture model, ethanol-induced release of eNAMPT from brown adipocytes promoted hepatocyte ferroptosis. In BAT-specific Nampt-knockdown mice, ethanol-induced eNAMPT secretion was significantly reduced, and alcoholic liver injury were attenuated. These effects can be reversed by intraperitoneal injection of eNAMPT. CONCLUSION Inhibition of ethanol-induced eNAMPT secretion from BAT attenuates liver injury and ferroptosis. Our study reveals a previously uncharacterized critical role of eNAMPT-mediated BAT-Liver communication in ALD and highlights its potential as a therapeutic target.
Collapse
Affiliation(s)
- Yujia Zhou
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China; State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Nengzhi Pang
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenli Li
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Immunization Programs, Guangzhou Huadu District Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Qiuyan Li
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jing Luo
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yingying Gu
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qianrong Hu
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Women Health Care, Guangzhou Baiyun District Maternal and Child Health Hospital, Guangzhou, Guangdong, China
| | - Yi Jie Ding
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yan Sun
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jie Pan
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Mengqi Gao
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ying Xiao
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Sixi Ma
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yanxu Hao
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Huichun Xing
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing, China; Peking University Ditan Teaching Hospital, Beijing, China
| | - Evendro Fei Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway
| | - Wenhua Ling
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhenfeng Zhang
- Department of Radiology, Translational Medicine Center and Guangdong Provincial Education Department, Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Lili Yang
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
7
|
Pokharel MD, Fu P, Garcia-Flores A, Yegambaram M, Lu Q, Sun X, Unwalla H, Aggarwal S, Fineman JR, Wang T, Black SM. Inflammatory lung injury is associated with endothelial cell mitochondrial fission and requires the nitration of RhoA and cytoskeletal remodeling. Free Radic Biol Med 2024; 221:125-135. [PMID: 38734269 PMCID: PMC11179967 DOI: 10.1016/j.freeradbiomed.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/12/2024] [Accepted: 05/09/2024] [Indexed: 05/13/2024]
Abstract
Higher levels of extracellular nicotinamide phosphoribosyltransferase (eNAMPT), a TLR4 agonist, are associated with poor clinical outcomes in sepsis-induced acute lung injury (ALI). Little is known regarding the mechanisms by which eNAMPT is involved in ALI. Our recent work has identified a crucial role for mitochondrial dysfunction in ALI. Thus, this study aimed to determine if eNAMPT-mediated inflammatory injury is associated with the loss of mitochondrial function. Our data show that eNAMPT disrupted mitochondrial bioenergetics. This was associated with cytoskeleton remodeling and the loss of endothelial barrier integrity. These changes were associated with enhanced mitochondrial fission and blocked when Rho-kinase (ROCK) was inhibited. The increases in mitochondrial fission were also associated with the nitration-mediated activation of the small GTPase activator of ROCK, RhoA. Blocking RhoA nitration decreased eNAMPT-mediated mitochondrial fission and endothelial barrier dysfunction. The increase in fission was linked to a RhoA-ROCK mediated increase in Drp1 (dynamin-related protein 1) at serine(S)616. Another TLR4 agonist, lipopolysaccharide (LPS), also increased mitochondrial fission in a Drp1 and RhoA-ROCK-dependent manner. To validate our findings in vivo, we challenged C57BL/6 mice with eNAMPT in the presence and absence of the Drp1 inhibitor, Mdivi-1. Mdivi-1 treatment protected against eNAMPT-induced lung inflammation, edema, and lung injury. These studies demonstrate that mitochondrial fission-dependent disruption of mitochondrial function is essential in TLR4-mediated inflammatory lung injury and identify a key role for RhoA-ROCK signaling. Reducing mitochondrial fission could be a potential therapeutic strategy to improve ARDS outcomes.
Collapse
Affiliation(s)
- Marissa D Pokharel
- Department of Cellular & Molecular Medicine, Herbert Wertheim College of Medicine, Miami, FL, USA; Center for Translational Science, Florida International University, Port St. Lucie, FL, USA
| | - Panfeng Fu
- Center for Translational Science, Florida International University, Port St. Lucie, FL, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, University Park, FL, USA
| | | | - Manivannan Yegambaram
- Center for Translational Science, Florida International University, Port St. Lucie, FL, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, University Park, FL, USA
| | - Qing Lu
- Center for Translational Science, Florida International University, Port St. Lucie, FL, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, University Park, FL, USA
| | - Xutong Sun
- Center for Translational Science, Florida International University, Port St. Lucie, FL, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, University Park, FL, USA
| | - Hoshang Unwalla
- Department of Immunology and Nano-Medicine, Howard Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Saurabh Aggarwal
- Department of Cellular & Molecular Medicine, Herbert Wertheim College of Medicine, Miami, FL, USA
| | - Jeffrey R Fineman
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, 94143, USA; Department of Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Ting Wang
- Center for Translational Science, Florida International University, Port St. Lucie, FL, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, University Park, FL, USA
| | - Stephen M Black
- Department of Cellular & Molecular Medicine, Herbert Wertheim College of Medicine, Miami, FL, USA; Center for Translational Science, Florida International University, Port St. Lucie, FL, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, University Park, FL, USA.
| |
Collapse
|
8
|
Semerena E, Nencioni A, Masternak K. Extracellular nicotinamide phosphoribosyltransferase: role in disease pathophysiology and as a biomarker. Front Immunol 2023; 14:1268756. [PMID: 37915565 PMCID: PMC10616597 DOI: 10.3389/fimmu.2023.1268756] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/03/2023] [Indexed: 11/03/2023] Open
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) plays a central role in mammalian cell metabolism by contributing to nicotinamide adenine dinucleotide biosynthesis. However, NAMPT activity is not limited to the intracellular compartment, as once secreted, the protein accomplishes diverse functions in the extracellular space. Extracellular NAMPT (eNAMPT, also called visfatin or pre-B-cell colony enhancing factor) has been shown to possess adipocytokine, pro-inflammatory, and pro-angiogenic activities. Numerous studies have reported the association between elevated levels of circulating eNAMPT and various inflammatory and metabolic disorders such as obesity, diabetes, atherosclerosis, arthritis, inflammatory bowel disease, lung injury and cancer. In this review, we summarize the current state of knowledge on eNAMPT biology, proposed roles in disease pathogenesis, and its potential as a disease biomarker. We also briefly discuss the emerging therapeutic approaches for eNAMPT inhibition.
Collapse
Affiliation(s)
- Elise Semerena
- Light Chain Bioscience - Novimmune SA, Plan-les-Ouates, Switzerland
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
- Ospedale Policlinico San Martino IRCCS, Genoa, Italy
| | | |
Collapse
|
9
|
Travelli C, Colombo G, Aliotta M, Fagiani F, Fava N, De Sanctis R, Grolla AA, Garcia JGN, Clemente N, Portararo P, Costanza M, Condorelli F, Colombo MP, Sangaletti S, Genazzani AA. Extracellular nicotinamide phosphoribosyltransferase (eNAMPT) neutralization counteracts T cell immune evasion in breast cancer. J Immunother Cancer 2023; 11:e007010. [PMID: 37880182 PMCID: PMC10603332 DOI: 10.1136/jitc-2023-007010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Nicotinamide phosphoribosyltransferase (NAMPT) is a key intracellular enzyme that participates in nicotinamide adenine dinucleotide (NAD) homeostasis as well as a released cytokine (eNAMPT) that is elevated in inflammatory conditions and in cancer. In patients with breast cancer, circulating eNAMPT is elevated and its plasma levels correlate with prognosis and staging. In light of this, we investigated the contribution of eNAMPT in triple negative mammary carcinoma progression by investigating the effect of its neutralization via a specific neutralizing monoclonal antibody (C269). METHODS We used female BALB/c mice injected with 4T1 clone 5 cells and female C57BL6 injected with EO771 cells, evaluating tumoral size, spleen weight and number of metastases. We injected two times a week the anti-eNAMPT neutralizing antibody and we sacrificed the mice after 28 days. Harvested tumors were analyzed by histopathology, flow cytometry, western blot, immunohistochemistry, immunofluorescence and RNA sequencing to define tumor characteristics (isolating tumor infiltrating lymphocytes and tumoral cells) and to investigate the molecular mechanisms behind the observed phenotype. Moreover, we dissected the functional relationship between T cells and tumoral cells using three-dimensional (3D) co-cultures. RESULTS The neutralization of eNAMPT with C269 led to decreased tumor size and reduced number of lung metastases. RNA sequencing and functional assays showed that eNAMPT controlled T-cell response via the programmed death-ligand 1/programmed cell death protein 1 (PD-L1/PD-1) axis and its neutralization led to a restoration of antitumoral immune responses. In particular, eNAMPT neutralization was able to activate CD8+IFNγ+GrzB+ T cells, reducing the immunosuppressive phenotype of T regulatory cells. CONCLUSIONS These studies indicate for the first time eNAMPT as a novel immunotherapeutic target for triple negative breast cancer.
Collapse
Affiliation(s)
- Cristina Travelli
- Department of Drug Sciences, Università degli Studi di Pavia, Pavia, Italy
| | - Giorgia Colombo
- Department of Pharmaceutical Science, University of Eastern Piedmont, Novara, Italy
| | - Martina Aliotta
- Department of Drug Sciences, Università degli Studi di Pavia, Pavia, Italy
| | - Francesca Fagiani
- Department of Drug Sciences, Università degli Studi di Pavia, Pavia, Italy
| | - Natalia Fava
- Department of Drug Sciences, Università degli Studi di Pavia, Pavia, Italy
| | - Rita De Sanctis
- Department of Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Ambra A Grolla
- Department of Pharmaceutical Science, University of Eastern Piedmont, Novara, Italy
| | - Joe G N Garcia
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona, USA
| | - Nausicaa Clemente
- Dipartimento di Scienze della Salute, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, Novara, Italy
| | - Paola Portararo
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Massimo Costanza
- Department of Clinical Neuroscience, Istituto Nazionale Neurologico Carlo Besta, Milan, Italy
| | - Fabrizio Condorelli
- Department of Pharmaceutical Science, University of Eastern Piedmont, Novara, Italy
| | - Mario Paolo Colombo
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Sabina Sangaletti
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Armando A Genazzani
- Department of Pharmaceutical Science, University of Eastern Piedmont, Novara, Italy
| |
Collapse
|
10
|
Panizza E, Regalado BD, Wang F, Nakano I, Vacanti NM, Cerione RA, Antonyak MA. Proteomic analysis reveals microvesicles containing NAMPT as mediators of radioresistance in glioma. Life Sci Alliance 2023; 6:e202201680. [PMID: 37037593 PMCID: PMC10087103 DOI: 10.26508/lsa.202201680] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 03/29/2023] [Accepted: 03/29/2023] [Indexed: 04/12/2023] Open
Abstract
Tumor-initiating cells contained within the aggressive brain tumor glioma (glioma stem cells, GSCs) promote radioresistance and disease recurrence. However, mechanisms of resistance are not well understood. Herein, we show that the proteome-level regulation occurring upon radiation treatment of several patient-derived GSC lines predicts their resistance status, whereas glioma transcriptional subtypes do not. We identify a mechanism of radioresistance mediated by the transfer of the metabolic enzyme NAMPT to radiosensitive cells through microvesicles (NAMPT-high MVs) shed by resistant GSCs. NAMPT-high MVs rescue the proliferation of radiosensitive GSCs and fibroblasts upon irradiation, and upon treatment with a radiomimetic drug or low serum, and increase intracellular NAD(H) levels. Finally, we show that the presence of NAMPT within the MVs and its enzymatic activity in recipient cells are necessary to mediate these effects. Collectively, we demonstrate that the proteome of GSCs provides unique information as it predicts the ability of glioma to resist radiation treatment. Furthermore, we establish NAMPT transfer via MVs as a mechanism for rescuing the proliferation of radiosensitive cells upon irradiation.
Collapse
Affiliation(s)
- Elena Panizza
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
| | | | - Fangyu Wang
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
| | - Ichiro Nakano
- Department of Neurosurgery, Medical Institute Hokuto Hospital, Hokkaido, Japan
| | | | - Richard A Cerione
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Marc A Antonyak
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
11
|
Chen TH, Hsu HC, You JF, Lai CC, Tsou YK, Hsu CL, Fann CSJ, Chien RN, Chang ML. Extracellular Nicotinamide Phosphoribosyltransferase as a Surrogate Marker of Prominent Malignant Potential in Colonic Polyps: A 2-Year Prospective Study. Cancers (Basel) 2023; 15:1702. [PMID: 36980589 PMCID: PMC10046025 DOI: 10.3390/cancers15061702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND/AIMS The implications of extracellular nicotinamide phosphoribosyltransferase (eNAMPT), a cancer metabokine, in colonic polyps remain uncertain. METHODS A 2-year prospective cohort study of patients who underwent colonoscopy was conducted. Biochemical parameters and serum eNAMPT levels were analyzed at baseline and every 24 weeks postpolypectomy. NAMPT-associated single-nucleotide polymorphisms (SNPs), including rs61330082, rs2302559, rs10953502, and rs23058539, were assayed. RESULTS Of 532 patients, 80 (15%) had prominent malignant potential (PMP) in colonic polyps, including villous adenomas (n = 18, 3.3%), adenomas with high-grade dysplasia (n = 33, 6.2%), and adenocarcinomas (n = 29, 5.5%). Baseline associations were as follows: colonic polyp pathology (p < 0.001), total cholesterol (p = 0.019), and neutrophil-to-lymphocyte ratio (p = 0.023) with eNAMPT levels; and age (p < 0.001), polyp size (p < 0.001), and eNAMPT levels (p < 0.001) with polyp pathology. Higher baseline eNAMPT levels were noted in patients harboring polyps with PMP than in patients without PMP (p < 0.001), and baseline eNAMPT levels significantly predicted PMP (cutoff: >4.238 ng/mL, p < 0.001). Proportions of eNAMPT-positive glandular and stromal cells were higher in polyps with PMP than in polyps without PMP (64.55 ± 11.94 vs. 14.82 ± 11.45%, p = 0.025). eNAMPT levels decreased within 48 weeks postpolypectomy (p = 0.01) and remained stable afterward regardless of PMP until 96 weeks postpolypectomy. However, those with PMP had a higher degree of eNAMPT decline within 24 weeks (p = 0.046). All investigated SNPs were in linkage disequilibrium with each other but were not associated with eNAMPT levels. CONCLUSION With a link to inflammation and lipid metabolism, along with its decreasing trend after polypectomy, serum eNAMPT may serve as a surrogate marker of PMP in colonic polyps. In situ probing of the NAMPT-associated pathway holds promise in attenuating PMP, as much of the eNAMPT likely originates from colonic polyps.
Collapse
Affiliation(s)
- Tsung-Hsing Chen
- Division of Hepatology, Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
| | - Hung-Chih Hsu
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
- Division of Hematology-Oncology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Jeng-Fu You
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
- Colorectal Section, Department of Surgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Cheng-Chou Lai
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
- Colorectal Section, Department of Surgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Yung-Kuan Tsou
- Division of Hepatology, Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
| | - Chia-Lin Hsu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Cathy S. J. Fann
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Rong-Nan Chien
- Division of Hepatology, Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
| | - Ming-Ling Chang
- Division of Hepatology, Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
| |
Collapse
|
12
|
Mlyczyńska E, Zaobidna E, Rytelewska E, Dobrzyń K, Kieżun M, Kopij G, Szymańska K, Kurowska P, Dall'Aglio C, Smolińska N, Kamiński T, Rak A. Expression and regulation of visfatin/NAMPT in the porcine corpus luteum during the estrous cycle and early pregnancy. Anim Reprod Sci 2023; 250:107212. [PMID: 36913896 DOI: 10.1016/j.anireprosci.2023.107212] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/23/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
Visfatin/NAMPT creates a hormonal link between energy metabolism and female reproduction. A recent study documented visfatin expression in the ovary and its action on follicular cells; however, the expression of visfatin in luteal cells is still unknown. The aim of this study, therefore, was to investigate the transcript and protein expression of visfatin as well as its immunolocalization in the corpus luteum (CL) and to examine the involvement of extracellular signal-regulated kinases (ERK1/2) in the regulation of visfatin level in response to LH, insulin, progesterone (P4), prostaglandin E2 (PGE2) and F2α (PGF2α). Corpora lutea were harvested from gilts on days 2-3, 10-12 and 14-16 of the estrous cycle and on days 10-11, 12-13, 15-16 and 27-28 of pregnancy. The current study demonstrated that visfatin expression depends on hormonal status related to the phase of the estrous cycle or early pregnancy. Visfatin was immunolocalized to the cytoplasm of small and large luteal cells. Moreover, visfatin protein abundance was increased by P4, and decreased by both prostaglandins, while LH and insulin have modulatory effects, depending on the phase of the cycle. Interestingly, LH, P4 and PGE2 effects were abolished in response to the inhibition of ERK1/2 kinase. Thus, this study demonstrated that expression of visfatin in the porcine CL is determined by the endocrine status related to the estrous cycle and early pregnancy and by the action of LH, insulin, P4 and prostaglandins via activation of the ERK1/2 pathway.
Collapse
Affiliation(s)
- Ewa Mlyczyńska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Poland
| | - Ewa Zaobidna
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Edyta Rytelewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Kamil Dobrzyń
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Marta Kieżun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Grzegorz Kopij
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Karolina Szymańska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Patrycja Kurowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Cecylia Dall'Aglio
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Nina Smolińska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Tadeusz Kamiński
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland.
| |
Collapse
|
13
|
Ni J, Zhang J, Liu J, Fan L, Lin X, Yu H, Sun G. Exosomal NAMPT from chronic lymphocytic leukemia cells orchestrate monocyte survival and phenotype under endoplasmic reticulum stress. Hematol Oncol 2023; 41:61-70. [PMID: 36321597 DOI: 10.1002/hon.3093] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 11/11/2022]
Abstract
Endoplasmic reticulum (ER) stress has been reported to be transmitted from tumor cells to immune cells via exosome and implicated in immune escape. However, the influence of ER stress on monocytes in chronic lymphocytic leukemia (CLL) cells is largely unknown. Here, we observed the expression of ER stress markers (GRP78, ATF6, PERK, IRE1a, and XBP1s) in CLL cells. The increasing mRNA expression of these ER stress response components was positively correlated with more aggressive disease. Exosome from ER stress inducer tunicamycin (TM)-primed CLL cells (ERS-exo) up-regulated the expression of ER stress marker on monocytes, indicating ER stress is transmissible in vitro via exosome. Treatment with ERS-exo promoted the survival of monocytes and induced phenotypic changes with a significantly larger percentage of CD14+ CD16+ monocytes. Finally, we identified exosome-mediated transfer of extracellular nicotinamide phosphoribosyltransferase (eNAMPT) from ER stressed CLL cells into monocytes as a novel mechanism through which ERS-exo regulated monocytes. Exosomal eNAMPT up-regulated nicotinamide adenine dinucleotide (NAD+ ) production which subsequently activated SIRT1-C/EBPβ signaling pathway in monocytes. Our results suggest the role of ER stress in mediating immunological dysfunction in CLL.
Collapse
Affiliation(s)
- Jing Ni
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ju Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Hefei, Anhui, China
| | - Jiatao Liu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Lulu Fan
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiao Lin
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hanqing Yu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Guoping Sun
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
14
|
Dai Y, Lin J, Ren J, Zhu B, Wu C, Yu L. NAD + metabolism in peripheral neuropathic pain. Neurochem Int 2022; 161:105435. [PMID: 36273706 DOI: 10.1016/j.neuint.2022.105435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 10/04/2022] [Accepted: 10/16/2022] [Indexed: 11/07/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an omnipresent metabolite that participates in redox reactions. Multiple NAD+-consuming enzymes are implicated in numerous biological processes, including transcription, signaling, and cell survival. Multiple pieces of evidence have demonstrated that NAD+-consuming enzymes, including poly(ADP-ribose) polymerases (PARPs), sirtuins (SIRTs), and sterile alpha and TIR motif-containing 1 (SARM1), play major roles in peripheral neuropathic pain of various etiologies. These NAD+ consumers primarily participate in peripheral neuropathic pain via mechanisms such as mitochondrial dysfunction, oxidative stress, and inflammation. Furthermore, NAD+ synthase and nicotinamide phosphoribosyltransferase (NAMPT) have recently been found to contribute to the regulation of pain. Here, we review the evidence indicating the involvement of NAD+ metabolism in the pathological mechanisms of peripheral neuropathic pain. Advanced understanding of the molecular and cellular mechanisms associated with NAD+ in peripheral neuropathic pain will facilitate the development of novel treatment options for diverse types of peripheral neuropathic pain.
Collapse
Affiliation(s)
- Yi Dai
- Department of Anesthesiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, PR China
| | - Jiaqi Lin
- Department of Anesthesiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, PR China
| | - Jinxuan Ren
- Department of Anesthesiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, PR China
| | - Bin Zhu
- Department of Anesthesiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, PR China
| | - Chengwei Wu
- Department of Anesthesiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, PR China
| | - Lina Yu
- Department of Anesthesiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, PR China.
| |
Collapse
|
15
|
Serum Visfatin/NAMPT as a Potential Risk Predictor for Malignancy of Adrenal Tumors. J Clin Med 2022; 11:jcm11195563. [PMID: 36233428 PMCID: PMC9572558 DOI: 10.3390/jcm11195563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/06/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Adrenocortical carcinomas (ACC) are rare endocrine malignancies, often with a poor prognosis. Visfatin/NAMPT regulates a variety of signaling pathway components, and its overexpression has been found in carcinogenesis. Our study aimed to assess the clinical usefulness of visfatin/NAMPT serum level in discriminating between ACC and benign adrenocortical tumors. Twenty-two patients with ACC and twenty-six patients with benign adrenocortical tumors were recruited. Fasting blood samples were collected from each patient, and visfatin serum levels were measured with the ELISA Kit. Clinical stage, tumor size, Ki67 proliferation index, hormonal secretion pattern, and follow-up were determined in ACC patients. Patients with ACC had significantly higher visfatin serum concentrations (7.81 ± 2.25 vs. 6.08 ± 1.32 ng/mL, p-value = 0.003). The most advanced clinical stage with metastases was associated with significantly elevated visfatin levels (p-value = 0.022). Based on ROC analysis, visfatin serum concentrations higher than 8.05 ng/mL could discriminate ACC with a sensitivity of 50.0% and specificity of 92.3%. Univariate Cox regression indicated that tumor size was significantly related to shorter survival, and the visfatin level was borderline significant in all patients (HR = 1.013, p-value = 0.002, HR = 1.321, p-value = 0.058). In the Kaplan-Meier method, patients with visfatin serum concentrations higher than 6.3 ng/mL presented significantly lower survival probability (p-value = 0.006). Serum visfatin/NAMPT could be a potential risk predictor for the malignancy of adrenal tumors. However, further studies are needed on this subject.
Collapse
|
16
|
Wei Y, Xiang H, Zhang W. Review of various NAMPT inhibitors for the treatment of cancer. Front Pharmacol 2022; 13:970553. [PMID: 36160449 PMCID: PMC9490061 DOI: 10.3389/fphar.2022.970553] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is a rate-limiting enzyme in the NAD salvage pathway of mammalian cells and is overexpressed in numerous types of cancers. These include breast cancer, ovarian cancer, prostate cancer, gastric cancer, colorectal cancer, glioma, and b-cell lymphoma. NAMPT is also known to impact the NAD and NADPH pool. Research has demonstrated that NAMPT can be inhibited. NAMPT inhibitors are diverse anticancer medicines with significant anti-tumor efficacy in ex vivo tumor models. A few notable NAMPT specific inhibitors which have been produced include FK866, CHS828, and OT-82. Despite encouraging preclinical evidence of the potential utility of NAMPT inhibitors in cancer models, early clinical trials have yielded only modest results, necessitating the adaptation of additional tactics to boost efficacy. This paper examines a number of cancer treatment methods which target NAMPT, including the usage of individual inhibitors, pharmacological combinations, dual inhibitors, and ADCs, all of which have demonstrated promising experimental or clinical results. We intend to contribute further ideas regarding the usage and development of NAMPT inhibitors in clinical therapy to advance the field of research on this intriguing target.
Collapse
Affiliation(s)
- Yichen Wei
- West China School of Pharmacy, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Haotian Xiang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Wenqiu Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Wenqiu Zhang,
| |
Collapse
|
17
|
NAD/NAMPT and mTOR Pathways in Melanoma: Drivers of Drug Resistance and Prospective Therapeutic Targets. Int J Mol Sci 2022; 23:ijms23179985. [PMID: 36077374 PMCID: PMC9456568 DOI: 10.3390/ijms23179985] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Malignant melanoma represents the most fatal skin cancer due to its aggressive behavior and high metastatic potential. The introduction of BRAF/MEK inhibitors and immune-checkpoint inhibitors (ICIs) in the clinic has dramatically improved patient survival over the last decade. However, many patients either display primary (i.e., innate) or develop secondary (i.e., acquired) resistance to systemic treatments. Therapeutic resistance relies on the rewiring of multiple processes, including cancer metabolism, epigenetics, gene expression, and interactions with the tumor microenvironment that are only partially understood. Therefore, reliable biomarkers of resistance or response, capable of facilitating the choice of the best treatment option for each patient, are currently missing. Recently, activation of nicotinamide adenine dinucleotide (NAD) metabolism and, in particular, of its rate-limiting enzyme nicotinamide phosphoribosyltransferase (NAMPT) have been identified as key drivers of targeted therapy resistance and melanoma progression. Another major player in this context is the mammalian target of rapamycin (mTOR) pathway, which plays key roles in the regulation of melanoma cell anabolic functions and energy metabolism at the switch between sensitivity and resistance to targeted therapy. In this review, we summarize known resistance mechanisms to ICIs and targeted therapy, focusing on metabolic adaptation as one main mechanism of drug resistance. In particular, we highlight the roles of NAD/NAMPT and mTOR signaling axes in this context and overview data in support of their inhibition as a promising strategy to overcome treatment resistance.
Collapse
|
18
|
Colombo G, Travelli C, Porta C, Genazzani AA. Extracellular nicotinamide phosphoribosyltransferase boosts IFNγ-induced macrophage polarization independently of TLR4. iScience 2022; 25:104147. [PMID: 35402885 PMCID: PMC8990213 DOI: 10.1016/j.isci.2022.104147] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/04/2022] [Accepted: 03/18/2022] [Indexed: 12/28/2022] Open
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT), alongside being a crucial enzyme in NAD synthesis, has been shown to be a secreted protein (eNAMPT), whose levels are increased in patients affected by immune-mediated disorders. Accordingly, preclinical studies have highlighted that eNAMPT participates in the pathogenesis of several inflammatory diseases. Herein, we analyzed the effects of eNAMPT on macrophage-driven inflammation. RNAseq analysis of peritoneal macrophages (PECs) demonstrates that eNAMPT triggers an M1-skewed transcriptional program, and this effect is not dependent on the enzymatic activity. Noteworthy, both in PECs and in human monocyte-derived macrophages, eNAMPT selectively boosts IFNγ-driven transcriptional activation via STAT1/3 phosphorylation. Importantly, the secretion of eNAMPT promotes the chemotactic recruitment of myeloid cells, therefore providing a potential positive feedback loop to foster inflammation. Last, we report that these events are independent of the activation of TLR4, the only eNAMPT receptor that has hitherto been recognized, prompting the knowledge that other receptors are involved.
Collapse
Affiliation(s)
- Giorgia Colombo
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, A. Avogadro, 28100 Novara, Italy
| | - Cristina Travelli
- Department of Drug Sciences, Università degli Studi di Pavia, 27100 Pavia, Italy
| | - Chiara Porta
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, A. Avogadro, 28100 Novara, Italy.,Center for Translational Research on Autoimmune & Allergic Diseases (CAAD), Università del Piemonte Orientale, 28100 Novara, Italy
| | - Armando A Genazzani
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, A. Avogadro, 28100 Novara, Italy
| |
Collapse
|
19
|
Gasparrini M, Mazzola F, Cuccioloni M, Sorci L, Audrito V, Zamporlini F, Fortunato C, Amici A, Cianci M, Deaglio S, Angeletti M, Raffaelli N. Molecular Insights Into The Interaction Between Human Nicotinamide Phosphoribosyltransferase and Toll-Like Receptor 4. J Biol Chem 2022; 298:101669. [PMID: 35120922 PMCID: PMC8892085 DOI: 10.1016/j.jbc.2022.101669] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 12/19/2022] Open
Abstract
The secreted form of the enzyme nicotinamide phosphoribosyltransferase (NAMPT), which catalyzes a key reaction in intracellular NAD biosynthesis, acts as a damage-associated molecular pattern triggering Toll-like receptor 4 (TLR4)-mediated inflammatory responses. However, the precise mechanism of interaction is unclear. Using an integrated approach combining bioinformatics and functional and structural analyses, we investigated the interaction between NAMPT and TLR4 at the molecular level. Starting from previous evidence that the bacterial ortholog of NAMPT cannot elicit the inflammatory response, despite a high degree of structural conservation, two positively charged areas unique to the human enzyme (the α1-α2 and β1-β2 loops) were identified as likely candidates for TLR4 binding. However, alanine substitution of the positively charged residues within these loops did not affect either the oligomeric state or the catalytic efficiency of the enzyme. The kinetics of the binding of wildtype and mutated NAMPT to biosensor-tethered TLR4 was analyzed. We found that mutations in the α1-α2 loop strongly decreased the association rate, increasing the KD value from 18 nM, as determined for the wildtype, to 1.3 μM. In addition, mutations in the β1-β2 loop or its deletion increased the dissociation rate, yielding KD values of 0.63 and 0.22 μM, respectively. Mutations also impaired the ability of NAMPT to trigger the NF-κB inflammatory signaling pathway in human cultured macrophages. Finally, the involvement of the two loops in receptor binding was supported by NAMPT-TLR4 docking simulations. This study paves the way for future development of compounds that selectively target eNAMPT/TLR4 signaling in inflammatory disorders.
Collapse
Affiliation(s)
- Massimiliano Gasparrini
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Francesca Mazzola
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | | | - Leonardo Sorci
- Department of Materials, Environmental Sciences and Urban Planning, Division of Bioinformatics and Biochemistry, Polytechnic University of Marche, Ancona, Italy
| | | | - Federica Zamporlini
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Carlo Fortunato
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Adolfo Amici
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Michele Cianci
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Silvia Deaglio
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Mauro Angeletti
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Nadia Raffaelli
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy.
| |
Collapse
|
20
|
Wu Y, Pu C, Fu Y, Dong G, Huang M, Sheng C. NAMPT-targeting PROTAC promotes antitumor immunity via suppressing myeloid-derived suppressor cell expansion. Acta Pharm Sin B 2021; 12:2859-2868. [PMID: 35755293 PMCID: PMC9214341 DOI: 10.1016/j.apsb.2021.12.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/18/2021] [Accepted: 11/29/2021] [Indexed: 12/16/2022] Open
Abstract
Nicotinamide phosphoribosyl transferase (NAMPT) is considered as a promising target for cancer therapy given its critical engagement in cancer metabolism and inflammation. However, therapeutic benefit of NAMPT enzymatic inhibitors appears very limited, likely due to the failure to intervene non-enzymatic functions of NAMPT. Herein, we show that NAMPT dampens antitumor immunity by promoting the expansion of tumor infiltrating myeloid derived suppressive cells (MDSCs) via a mechanism independent of its enzymatic activity. Using proteolysis-targeting chimera (PROTAC) technology, PROTAC A7 is identified as a potent and selective degrader of NAMPT, which degrades intracellular NAMPT (iNAMPT) via the ubiquitin–proteasome system, and in turn decreases the secretion of extracellular NAMPT (eNAMPT), the major player of the non-enzymatic activity of NAMPT. In vivo, PROTAC A7 efficiently degrades NAMPT, inhibits tumor infiltrating MDSCs, and boosts antitumor efficacy. Of note, the anticancer activity of PROTAC A7 is superior to NAMPT enzymatic inhibitors that fail to achieve the same impact on MDSCs. Together, our findings uncover the new role of enzymatically-independent function of NAMPT in remodeling the immunosuppressive tumor microenvironment, and reports the first NAMPT PROTAC A7 that is able to block the pro-tumor function of both iNAMPT and eNAMPT, pointing out a new direction for the development of NAMPT-targeted therapies.
Collapse
|
21
|
Yang C, Wang Z, Li L, Zhang Z, Jin X, Wu P, Sun S, Pan J, Su K, Jia F, Zhang L, Wang H, Yu X, Shao X, Wang K, Qiu F, Yan J, Huang J. Aged neutrophils form mitochondria-dependent vital NETs to promote breast cancer lung metastasis. J Immunother Cancer 2021; 9:jitc-2021-002875. [PMID: 34716206 PMCID: PMC8559246 DOI: 10.1136/jitc-2021-002875] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2021] [Indexed: 12/12/2022] Open
Abstract
Background Neutrophils-linked premetastatic niche plays a key role in tumor metastasis, but not much is known about the heterogeneity and diverse role of neutrophils in niche formation. Our study focuses on the existence and biological function of a rarely delved subset of neutrophils, named as tumor-associated aged neutrophils (Naged, CXCR4+CD62Llow), involved in premetastatic niche formation during breast cancer metastasis. Methods We explored the distributions of Naged in 206 patients and mice models (4T1 and MMTV-PyMT) by flow cytometry. The ability of Naged to form neutrophil extracellular traps (NETs) and promote tumor metastasis in patients and mice was determined by polychromatic immunohistochemistry, scanning electron microscopy and real-time video detection. Furthermore, the differences among tumor-associated Naged, Non-Naged and inflammation-associated aged neutrophils were compared by transcriptome, the biological characteristics of Naged were comprehensively analyzed from the perspectives of morphology, the metabolic capacity and mitochondrial function were investigated by Seahorse, co-immunoprecipitation (Co-IP), chromatin immunoprecipitation (ChIP) and transmission electron microscopy (TEM). Finally, 120 patients’ sample were applied to confirm the acceleration of Naged formation through secreted NAMPT, and the importance of blocking this pathway in mice was evaluated. Results We find that Naged accumulate in the lung premetastatic niche at early stage of breast tumorigenesis in multiple mice models and also exist in peripheral blood and metastatic lung of patients with breast cancer. Naged exhibit distinct cell marker and morphological feature of oversegmented nuclei. Further transcriptome reveals that Naged are completely different from those of Non-Aged or inflammation-associated aged neutrophils and illustrates that the key transcription factor SIRT1 in Naged is the core to maintain their lifespan via mitophagy for their function. The responsible mechanism is that SIRT1 can induce the opening of mitochondrial permeability transition pore channels to release mitochondrial DNA and lead to the mitochondria-dependent vital NETs formation, rather than traditional Cit-Histone H3 dependent fatal-NETs. Further mechanically investigation found tumor derived NAMPT could induce Naged formation. Additionally, therapeutic interventions of Naged and its formation-linked pathways could effectively decrease breast cancer lung metastasis. Conclusions Naged exerts a vital role in breast cancer lung metastasis, and strategies targeting SIRT1-Naged-NETs axis show promise for translational application.
Collapse
Affiliation(s)
- Chenghui Yang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Cancer Center, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Department of Breast Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.,Department of Breast Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Zhen Wang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Cancer Center, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Department of Breast Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Lili Li
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Cancer Center, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Department of Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Zhigang Zhang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Department of Gynecology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaoyan Jin
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Department of Surgical Oncology, Zhejiang Taizhou Municipal Hospital, Taizhou, Zhejiang, People's Republic of China
| | - Pin Wu
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Department of Thoracic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Shanshan Sun
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Cancer Center, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Department of Breast Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Jun Pan
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Cancer Center, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Department of Breast Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Ke Su
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Cancer Center, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Department of Breast Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Fang Jia
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Cancer Center, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Department of Breast Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Leyi Zhang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Cancer Center, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Department of Breast Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Haijun Wang
- Department of Pathology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Xiuyan Yu
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Department of Breast Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Xuan Shao
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Department of Breast Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Ke Wang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Department of Breast Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Fuming Qiu
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Department of Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Jun Yan
- Department of Medicine and Department of Microbiology and Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | - Jian Huang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China .,Cancer Center, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Department of Breast Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
22
|
Novel Biomolecules in the Pathogenesis of Gestational Diabetes Mellitus. Int J Mol Sci 2021; 22:ijms222111578. [PMID: 34769010 PMCID: PMC8584125 DOI: 10.3390/ijms222111578] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/16/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is one of the most common metabolic diseases in pregnant women. Its early diagnosis seems to have a significant impact on the developing fetus, the course of delivery, and the neonatal period. It may also affect the later stages of child development and subsequent complications in the mother. Therefore, the crux of the matter is to find a biopredictor capable of singling out women at risk of developing GDM as early as the very start of pregnancy. Apart from the well-known molecules with a proven and clear-cut role in the pathogenesis of GDM, e.g., adiponectin and leptin, a potential role of newer biomolecules is also emphasized. Less popular and less known factors with different mechanisms of action include: galectins, growth differentiation factor-15, chemerin, omentin-1, osteocalcin, resistin, visfatin, vaspin, irisin, apelin, fatty acid-binding protein 4 (FABP4), fibroblast growth factor 21, and lipocalin-2. The aim of this review is to present the potential and significance of these 13 less known biomolecules in the pathogenesis of GDM. It seems that high levels of FABP4, low levels of irisin, and high levels of under-carboxylated osteocalcin in the serum of pregnant women can be used as predictive markers in the diagnosis of GDM. Hopefully, future clinical trials will be able to determine which biomolecules have the most potential to predict GDM.
Collapse
|
23
|
Audrito V, Messana VG, Brandimarte L, Deaglio S. The Extracellular NADome Modulates Immune Responses. Front Immunol 2021; 12:704779. [PMID: 34421911 PMCID: PMC8371318 DOI: 10.3389/fimmu.2021.704779] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/21/2021] [Indexed: 12/30/2022] Open
Abstract
The term NADome refers to the intricate network of intracellular and extracellular enzymes that regulate the synthesis or degradation of nicotinamide adenine dinucleotide (NAD) and to the receptors that engage it. Traditionally, NAD was linked to intracellular energy production through shuffling electrons between oxidized and reduced forms. However, recent data indicate that NAD, along with its biosynthetic and degrading enzymes, has a life outside of cells, possibly linked to immuno-modulating non-enzymatic activities. Extracellular NAD can engage puriginergic receptors triggering an inflammatory response, similar - to a certain extent - to what described for adenosine triphosphate (ATP). Likewise, NAD biosynthetic and degrading enzymes have been amply reported in the extracellular space, where they possess both enzymatic and non-enzymatic functions. Modulation of these enzymes has been described in several acute and chronic conditions, including obesity, cancer, inflammatory bowel diseases and sepsis. In this review, the role of the extracellular NADome will be discussed, focusing on its proposed role in immunomodulation, together with the different strategies for its targeting and their potential therapeutic impact.
Collapse
Affiliation(s)
- Valentina Audrito
- Laboratory of Cancer Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Vincenzo Gianluca Messana
- Laboratory of Cancer Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Lorenzo Brandimarte
- Laboratory of Cancer Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Silvia Deaglio
- Laboratory of Cancer Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
24
|
Boo YC. Mechanistic Basis and Clinical Evidence for the Applications of Nicotinamide (Niacinamide) to Control Skin Aging and Pigmentation. Antioxidants (Basel) 2021; 10:1315. [PMID: 34439563 PMCID: PMC8389214 DOI: 10.3390/antiox10081315] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/19/2022] Open
Abstract
Vitamin B3 (nicotinic acid, niacin) deficiency causes the systemic disease pellagra, which leads to dermatitis, diarrhea, dementia, and possibly death depending on its severity and duration. Vitamin B3 is used in the synthesis of the NAD+ family of coenzymes, contributing to cellular energy metabolism and defense systems. Although nicotinamide (niacinamide) is primarily used as a nutritional supplement for vitamin B3, its pharmaceutical and cosmeceutical uses have been extensively explored. In this review, we discuss the biological activities and cosmeceutical properties of nicotinamide in consideration of its metabolic pathways. Supplementation of nicotinamide restores cellular NAD+ pool and mitochondrial energetics, attenuates oxidative stress and inflammatory response, enhances extracellular matrix and skin barrier, and inhibits the pigmentation process in the skin. Topical treatment of nicotinamide, alone or in combination with other active ingredients, reduces the progression of skin aging and hyperpigmentation in clinical trials. Topically applied nicotinamide is well tolerated by the skin. Currently, there is no convincing evidence that nicotinamide has specific molecular targets for controlling skin aging and pigmentation. This substance is presumed to contribute to maintaining skin homeostasis by regulating the redox status of cells along with various metabolites produced from it. Thus, it is suggested that nicotinamide will be useful as a cosmeceutical ingredient to attenuate skin aging and hyperpigmentation, especially in the elderly or patients with reduced NAD+ pool in the skin due to internal or external stressors.
Collapse
Affiliation(s)
- Yong Chool Boo
- Department of Molecular Medicine, School of Medicine, BK21 Plus KNU Biomedical Convergence Program, Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
25
|
Enhanced NAMPT-Mediated NAD Salvage Pathway Contributes to Psoriasis Pathogenesis by Amplifying Epithelial Auto-Inflammatory Circuits. Int J Mol Sci 2021; 22:ijms22136860. [PMID: 34202251 PMCID: PMC8267663 DOI: 10.3390/ijms22136860] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/21/2021] [Indexed: 01/06/2023] Open
Abstract
Dysregulated cross-talk between immune cells and epithelial compartments is responsible for the onset and amplification of pathogenic auto-inflammatory circuits occurring in psoriasis. NAMPT-mediated NAD salvage pathway has been recently described as an immunometabolic route having inflammatory function in several disorders, including arthritis and inflammatory bowel diseases. To date, the role of NAD salvage pathway has not been explored in the skin of patients affected by psoriasis. Here, we show that NAD content is enhanced in lesional skin of psoriatic patients and is associated to high NAMPT transcriptional levels. The latter are drastically reduced in psoriatic skin following treatment with the anti-IL-17A biologics secukinumab. We provide evidence that NAMPT-mediated NAD+ metabolism fuels the immune responses executed by resident skin cells in psoriatic skin. In particular, intracellular NAMPT, strongly induced by Th1/Th17-cytokines, acts on keratinocytes by inducing hyper-proliferation and impairing their terminal differentiation. Furthermore, NAMPT-mediated NAD+ boosting synergizes with psoriasis-related cytokines in the upregulation of inflammatory chemokines important for neutrophil and Th1/Th17 cell recruitment. In addition, extracellular NAMPT, abundantly released by keratinocytes and dermal fibroblasts, acts in a paracrine manner on endothelial cells by inducing their proliferation and migration, as well as the expression of ICAM-1 membrane molecule and chemokines important for leukocyte recruitment into inflamed skin. In conclusion, our results showed that NAMPT-mediated NAD salvage pathway contributes to psoriasis pathogenic processes by amplifying epithelial auto-inflammatory responses in psoriasis.
Collapse
|
26
|
Shokrollahi B, Shang JH, Saadati N, Ahmad HI, Yang CY. Reproductive roles of novel adipokines apelin, visfatin, and irisin in farm animals. Theriogenology 2021; 172:178-186. [PMID: 34175524 DOI: 10.1016/j.theriogenology.2021.06.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 12/31/2022]
Abstract
The adipose tissue has a substantial impact on reproduction in mammals, specifically in females. As an energy depository organ, it is precisely associated with the reproductive success of mammals. Adipose tissue secretes many single molecules that are called 'adipokines' which mainly act as endocrine hormones. Adipokines homeostasis is fundamental to energy regulation, metabolic and cardiovascular diseases. The endocrine function of adipokines is influential for the long-term control of energy metabolism and performs an important function in metabolic state and fertility modulation. During the last years, new roles for adipokines have been appearing in the field of fertility. The adipokines have functions in reproduction at levels of the hypothalamus, the pituitary, and the gonads in humans, rodents, and other animals. Normal levels of adipokines are indispensable to protect the integrity of the hypothalamus-hypophysis-gonadal axis, regular ovulatory processes, and successful embryo implantation. Leptin and adiponectin are the most studied adipokines, but also the novel adipokines; apelin, visfatin, and irisin are important adipokines having several functions within the reproductive tract. Due to the known and unknown effects of these novel adipokines in the reproduction of farm animals, in this review, we will highlight the reproductive functions of apelin, visfatin, and irisin and summarize the known reproductive effects in farm animals to introduce the gaps for future studies in farm animals.
Collapse
Affiliation(s)
- Borhan Shokrollahi
- Department of Animal Science, Faculty of Agriculture, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran.
| | - Jiang-Hua Shang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, China
| | - Nazila Saadati
- Department of Plant Biotechnology, Faculty of Agriculture, Kurdistan University, Sanandaj, Kurdistan province, Iran
| | - Hafiz Ishfaq Ahmad
- Department of Animal Breeding and Genetics, University of Veterinary and Animal Sciences, Ravi Campus, Pattoki, Pakistan
| | - Chun-Yan Yang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, China
| |
Collapse
|
27
|
Metabolic Interplay between the Immune System and Melanoma Cells: Therapeutic Implications. Biomedicines 2021; 9:biomedicines9060607. [PMID: 34073463 PMCID: PMC8227307 DOI: 10.3390/biomedicines9060607] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
Malignant melanoma represents the most fatal skin cancer due to its aggressive biological behavior and high metastatic potential. Treatment strategies for advanced disease have dramatically changed over the last years due to the introduction of BRAF/MEK inhibitors and immunotherapy. However, many patients either display primary (i.e., innate) or eventually develop secondary (i.e., acquired) resistance to systemic treatments. Treatment resistance depends on multiple mechanisms driven by a set of rewiring processes, which involve cancer metabolism, epigenetic, gene expression, and interactions within the tumor microenvironment. Prognostic and predictive biomarkers are needed to guide patients’ selection and treatment decisions. Indeed, there are no recognized clinical or biological characteristics that identify which patients will benefit more from available treatments, but several biomarkers have been studied with promising preliminary results. In this review, we will summarize novel tumor metabolic pathways and tumor-host metabolic crosstalk mechanisms leading to melanoma progression and drug resistance, with an overview on their translational potential as novel therapeutic targets.
Collapse
|
28
|
Ghanem MS, Monacelli F, Nencioni A. Advances in NAD-Lowering Agents for Cancer Treatment. Nutrients 2021; 13:1665. [PMID: 34068917 PMCID: PMC8156468 DOI: 10.3390/nu13051665] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/04/2021] [Accepted: 05/08/2021] [Indexed: 12/13/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) is an essential redox cofactor, but it also acts as a substrate for NAD-consuming enzymes, regulating cellular events such as DNA repair and gene expression. Since such processes are fundamental to support cancer cell survival and proliferation, sustained NAD production is a hallmark of many types of neoplasms. Depleting intratumor NAD levels, mainly through interference with the NAD-biosynthetic machinery, has emerged as a promising anti-cancer strategy. NAD can be generated from tryptophan or nicotinic acid. In addition, the "salvage pathway" of NAD production, which uses nicotinamide, a byproduct of NAD degradation, as a substrate, is also widely active in mammalian cells and appears to be highly exploited by a subset of human cancers. In fact, research has mainly focused on inhibiting the key enzyme of the latter NAD production route, nicotinamide phosphoribosyltransferase (NAMPT), leading to the identification of numerous inhibitors, including FK866 and CHS-828. Unfortunately, the clinical activity of these agents proved limited, suggesting that the approaches for targeting NAD production in tumors need to be refined. In this contribution, we highlight the recent advancements in this field, including an overview of the NAD-lowering compounds that have been reported so far and the related in vitro and in vivo studies. We also describe the key NAD-producing pathways and their regulation in cancer cells. Finally, we summarize the approaches that have been explored to optimize the therapeutic response to NAMPT inhibitors in cancer.
Collapse
Affiliation(s)
- Moustafa S. Ghanem
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (M.S.G.); (F.M.)
| | - Fiammetta Monacelli
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (M.S.G.); (F.M.)
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (M.S.G.); (F.M.)
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132 Genova, Italy
| |
Collapse
|
29
|
Olszańska J, Pietraszek-Gremplewicz K, Nowak D. Melanoma Progression under Obesity: Focus on Adipokines. Cancers (Basel) 2021; 13:cancers13092281. [PMID: 34068679 PMCID: PMC8126042 DOI: 10.3390/cancers13092281] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/01/2021] [Accepted: 05/05/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Obesity is a rapidly growing public health problem and the reason for numerous diseases in the human body, including cancer. This article reviews the current knowledge of the effect of molecules secreted by adipose tissue-adipokines on melanoma progression. We also discuss the role of these factors as markers of incidence, metastasis, and melanoma patient survival. Understanding the functions of adipokines will lead to knowledge of whether and how obesity promotes melanoma growth. Abstract Obesity is a growing problem in the world and is one of the risk factors of various cancers. Among these cancers is melanoma, which accounts for the majority of skin tumor deaths. Current studies are looking for a correlation between obesity and melanoma. They suspect that a potential cause of its development is connected to the biology of adipokines, active molecules secreted by adipose tissue. Under physiological conditions, adipokines control many processes, including lipid and glucose homeostasis, insulin sensitivity, angiogenesis, and inflammations. However, when there is an increased amount of fat in the body, their secretion is dysregulated. This article reviews the current knowledge of the effect of adipokines on melanoma growth. This work focuses on the molecular pathways by which adipose tissue secreted molecules modify the angiogenesis, migration, invasion, proliferation, and death of melanoma cells. We also discuss the role of these factors as markers of incidence, metastasis, and melanoma patient survival. Understanding the functions of adipokines will lead to knowledge of whether and how obesity promotes melanoma growth. Further studies may contribute to the innovations of therapies and the use of adipokines as predictive and/or prognostic biomarkers.
Collapse
|
30
|
Li Y, Yu C, Deng W. Roles and mechanisms of adipokines in drug resistance of tumor cells. Eur J Pharmacol 2021; 899:174019. [PMID: 33722588 DOI: 10.1016/j.ejphar.2021.174019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 02/06/2021] [Accepted: 03/10/2021] [Indexed: 02/06/2023]
Abstract
The drug resistance of cancer cells has become one of the biggest obstacles of effective anticancer treatments. Adipocytes produce plenty of cytokines (also known as adipokines), which remarkably affect the drug resistance exhibited by cancer cells. Different adipokines (leptin, visfatin, resistin, adiponectin, Interleukin 6, and tumor necrosis factor α) can induce drug resistance in different cancer cells by various functional mechanisms. This phenomenon is of great interest in pharmacological anti-cancer studies since it indicates that in the cancers with adipocyte-rich microenvironment, all adipokines join together to assist cancer cells to survive by facilitating drug resistance. Studies on adipokines contribute to the development of novel pharmacological strategies for cancer therapy if their roles and molecular targets are better understood. The review will elucidate the roles and the underlying mechanisms of adipokines in drug resistance, which may be of great significance for revealing new strategies for cancer treatment.
Collapse
Affiliation(s)
- Yan Li
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Diseases and Microenvironment of Ministry of Education of China, Tianjin Medical University, Tianjin, China
| | - Chunyan Yu
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Diseases and Microenvironment of Ministry of Education of China, Tianjin Medical University, Tianjin, China
| | - Weimin Deng
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Diseases and Microenvironment of Ministry of Education of China, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
31
|
Role of NAD + in regulating cellular and metabolic signaling pathways. Mol Metab 2021; 49:101195. [PMID: 33609766 PMCID: PMC7973386 DOI: 10.1016/j.molmet.2021.101195] [Citation(s) in RCA: 178] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/02/2021] [Accepted: 02/15/2021] [Indexed: 12/15/2022] Open
Abstract
Background Nicotinamide adenine dinucleotide (NAD+), a critical coenzyme present in every living cell, is involved in a myriad of metabolic processes associated with cellular bioenergetics. For this reason, NAD+ is often studied in the context of aging, cancer, and neurodegenerative and metabolic disorders. Scope of review Cellular NAD+ depletion is associated with compromised adaptive cellular stress responses, impaired neuronal plasticity, impaired DNA repair, and cellular senescence. Increasing evidence has shown the efficacy of boosting NAD+ levels using NAD+ precursors in various diseases. This review provides a comprehensive understanding into the role of NAD+ in aging and other pathologies and discusses potential therapeutic targets. Major conclusions An alteration in the NAD+/NADH ratio or the NAD+ pool size can lead to derailment of the biological system and contribute to various neurodegenerative disorders, aging, and tumorigenesis. Due to the varied distribution of NAD+/NADH in different locations within cells, the direct role of impaired NAD+-dependent processes in humans remains unestablished. In this regard, longitudinal studies are needed to quantify NAD+ and its related metabolites. Future research should focus on measuring the fluxes through pathways associated with NAD+ synthesis and degradation. NAD+ regulates energy metabolism, DNA damage repair, gene expression, and stress response. NAD+ deterioration contributes to the progression of multiple metabolic disorders, cancers, and neurodegenerative diseases. Nicotinamide mononucleotide and nicotinamide riboside raise NAD+ levels in different tissues in preclinical models. Imaging studies on genetic models can illustrate the pathways of NAD+metabolism and their downstream functional effects. Human clinical trials to determine benefits of restoration of NAD+ by using NAD precursors are in progress.
Collapse
|
32
|
OXER1 and RACK1-associated pathway: a promising drug target for breast cancer progression. Oncogenesis 2020; 9:105. [PMID: 33311444 PMCID: PMC7732991 DOI: 10.1038/s41389-020-00291-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/06/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023] Open
Abstract
Recent data indicate that receptor for activated C kinase 1 (RACK1) is a putative prognostic marker and drug target in breast cancer (BC). High RACK1 expression is negatively associated with overall survival, as it seems to promote BC progression. In tumors, RACK1 expression is controlled by a complex balance between glucocorticoids and androgens. Given the fact that androgens and androgenic derivatives can inhibit BC cell proliferation and migration, the role of androgen signaling in regulating RACK1 transcription in mammary tumors is of pivotal interest. Here, we provide evidence that nandrolone (19-nortosterone) inhibits BC cell proliferation and migration by antagonizing the PI3K/Akt/NF-κB signaling pathway, which eventually results in RACK1 downregulation. We also show that nandrolone impairs the PI3K/Akt/NF-κB signaling pathway and decreases RACK1 expression via binding to the membrane-bound receptor, oxoeicosanoid receptor 1 (OXER1). High levels of OXER1 are observed in several BC cell lines and correlate with RACK1 expression and poor prognosis. Our data provide evidence on the role played by the OXER1-dependent intracellular pathway in BC progression and shed light on the mechanisms underlying membrane-dependent androgen effects on RACK1 regulation. Besides the mechanistic relevance, the results of the study are of interest from a translational prospective. In fact, they identify a new and actionable pathway to be used for the design of innovative and rational therapeutic strategies in the context of the personalized treatment of BC. In addition, they draw attention on nandrolone-based compounds that lack hormonal activity as potential anti-tumor agents.
Collapse
|
33
|
Kovács D, Fazekas F, Oláh A, Törőcsik D. Adipokines in the Skin and in Dermatological Diseases. Int J Mol Sci 2020; 21:ijms21239048. [PMID: 33260746 PMCID: PMC7730960 DOI: 10.3390/ijms21239048] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022] Open
Abstract
Adipokines are the primary mediators of adipose tissue-induced and regulated systemic inflammatory diseases; however, recent findings revealed that serum levels of various adipokines correlate also with the onset and the severity of dermatological diseases. Importantly, further data confirmed that the skin serves not only as a target for adipokine signaling, but may serve as a source too. In this review, we aim to provide a complex overview on how adipokines may integrate into the (patho) physiological conditions of the skin by introducing the cell types, such as keratinocytes, fibroblasts, and sebocytes, which are known to produce adipokines as well as the signals that target them. Moreover, we discuss data from in vivo and in vitro murine and human studies as well as genetic data on how adipokines may contribute to various aspects of the homeostasis of the skin, e.g., melanogenesis, hair growth, or wound healing, just as to the pathogenesis of dermatological diseases such as psoriasis, atopic dermatitis, acne, rosacea, and melanoma.
Collapse
Affiliation(s)
- Dóra Kovács
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., 4032 Debrecen, Hungary; (D.K.); (F.F.)
| | - Fruzsina Fazekas
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., 4032 Debrecen, Hungary; (D.K.); (F.F.)
| | - Attila Oláh
- Department of Physiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., 4032 Debrecen, Hungary;
| | - Dániel Törőcsik
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., 4032 Debrecen, Hungary; (D.K.); (F.F.)
- Correspondence: ; Tel.: +36-52-255-602
| |
Collapse
|
34
|
Galli U, Colombo G, Travelli C, Tron GC, Genazzani AA, Grolla AA. Recent Advances in NAMPT Inhibitors: A Novel Immunotherapic Strategy. Front Pharmacol 2020; 11:656. [PMID: 32477131 PMCID: PMC7235340 DOI: 10.3389/fphar.2020.00656] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/22/2020] [Indexed: 12/14/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) is a cofactor of many enzymatic reactions as well as being a substrate for a number of NAD-consuming enzymes (e.g., PARPS, sirtuins, etc). NAD can be synthesized de novo starting from tryptophan, nicotinamide, nicotinic acid, or nicotinamide riboside from the diet. On the other hand, the nicotinamide that is liberated by NAD-consuming enzymes can be salvaged to re-form NAD. In this former instance, nicotinamide phosphoribosyltransferase (NAMPT) is the bottleneck enzyme. In the many cells in which the salvage pathway is predominant, NAMPT, therefore, represents an important controller of intracellular NAD concentrations, and as a consequence of energy metabolism. It is, therefore, not surprising that NAMPT is over expressed by tumoral cells, which take advantage from this to sustain growth rate and tumor progression. This has led to the initiation of numerous medicinal chemistry programs to develop NAMPT inhibitors in the context of oncology. More recently, however, it has been shown that NAMPT inhibitors do not solely target the tumor but also have an effect on the immune system. To add complexity, this enzyme can also be secreted by cells, and in the extracellular space it acts as a cytokine mainly through the activation of Toll like Receptor 4 (TLR4), although it has not been clarified yet if this is the only receptor responsible for its actions. While specific small molecules have been developed only against the intracellular form of NAMPT, growing evidences sustain the possibility to target the extracellular form. In this contribution, the most recent evidences on the medicinal chemistry of NAMPT will be reviewed, together with the key elements that sustain the hypothesis of NAMPT targeting and the drawbacks so far encountered.
Collapse
Affiliation(s)
- Ubaldina Galli
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Giorgia Colombo
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Cristina Travelli
- Department of Pharmaceutical Sciences, University of Pavia, Pavia, Italy
| | - Gian Cesare Tron
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Armando A Genazzani
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Ambra A Grolla
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
35
|
Colombo G, Clemente N, Zito A, Bracci C, Colombo FS, Sangaletti S, Jachetti E, Ribaldone DG, Caviglia GP, Pastorelli L, De Andrea M, Naviglio S, Lucafò M, Stocco G, Grolla AA, Campolo M, Casili G, Cuzzocrea S, Esposito E, Malavasi F, Genazzani AA, Porta C, Travelli C. Neutralization of extracellular NAMPT (nicotinamide phosphoribosyltransferase) ameliorates experimental murine colitis. J Mol Med (Berl) 2020; 98:595-612. [PMID: 32338310 DOI: 10.1007/s00109-020-01892-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 12/24/2022]
Abstract
Extracellular nicotinamide phosphoribosyltransferase (eNAMPT) is increased in inflammatory bowel disease (IBD) patients, and its serum levels correlate with a worse prognosis. In the present manuscript, we show that eNAMPT serum levels are increased in IBD patients that fail to respond to anti-TNFα therapy (infliximab or adalimumab) and that its levels drop in patients that are responsive to these therapies, with values comparable with healthy subjects. Furthermore, eNAMPT administration in dinitrobenzene sulfonic acid (DNBS)-treated mice exacerbates the symptoms of colitis, suggesting a causative role of this protein in IBD. To determine the druggability of this cytokine, we developed a novel monoclonal antibody (C269) that neutralizes in vitro the cytokine-like action of eNAMPT and that reduces its serum levels in rodents. Of note, this newly generated antibody is able to significantly reduce acute and chronic colitis in both DNBS- and dextran sulfate sodium (DSS)-induced colitis. Importantly, C269 ameliorates the symptoms by reducing pro-inflammatory cytokines. Specifically, in the lamina propria, a reduced number of inflammatory monocytes, neutrophils, Th1, and cytotoxic T lymphocytes are found upon C269 treatment. Our data demonstrate that eNAMPT participates in IBD and, more importantly, that eNAMPT-neutralizing antibodies are endowed with a therapeutic potential in IBD. KEY MESSAGES: What are the new findings? Higher serum eNAMPT levels in IBD patients might decrease response to anti-TNF therapy. The cytokine-like activity of eNAMPT may be neutralized with a monoclonal antibody. Neutralization of eNAMPT ameliorates acute and chronic experimental colitis. Neutralization of eNAMPT limits the expression of IBD inflammatory signature. Neutralization of eNAMPT impairs immune cell infiltration in lamina propria.
Collapse
Affiliation(s)
- Giorgia Colombo
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, A. Avogadro, 28100, Novara, Italy
| | - Nausicaa Clemente
- Center for Translational Research on Autoimmune & Allergic Diseases (CAAD), Università del Piemonte Orientale, 28100, Novara, Italy
| | - Andrea Zito
- Lab of Immunogenetics, Department of Medical Sciences, University of Turin, 10100, Turin, Italy
| | - Cristiano Bracci
- Lab of Immunogenetics, Department of Medical Sciences, University of Turin, 10100, Turin, Italy
| | - Federico Simone Colombo
- Flow Cytometry and Cell Sorting Unit, Humanitas Clinical and Research Center - IRCCS, 20089, Rozzano, MI, Italy
| | - Sabina Sangaletti
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Elena Jachetti
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | | | - Gian Paolo Caviglia
- Division of Gastroenterology, Department of Medical Sciences, University of Turin, 10100, Turin, Italy
| | - Luca Pastorelli
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Gastroenterology Unit, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Marco De Andrea
- Center for Translational Research on Autoimmune & Allergic Diseases (CAAD), Università del Piemonte Orientale, 28100, Novara, Italy
- Viral Pathogenesis Unit, Department of Public Health and Pediatric Sciences, Turin Medical School, 10126, Turin, Italy
| | - Samuele Naviglio
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, 34137, Trieste, Italy
| | - Marianna Lucafò
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34137, Trieste, Italy
| | - Gabriele Stocco
- Department of Life Sciences, University of Trieste, 34137, Trieste, Italy
| | - Ambra A Grolla
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, A. Avogadro, 28100, Novara, Italy
| | - Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina (ME), Messina, ME, Italy
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina (ME), Messina, ME, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina (ME), Messina, ME, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina (ME), Messina, ME, Italy
| | - Fabio Malavasi
- Lab of Immunogenetics, Department of Medical Sciences, University of Turin, 10100, Turin, Italy
| | - Armando A Genazzani
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, A. Avogadro, 28100, Novara, Italy
| | - Chiara Porta
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, A. Avogadro, 28100, Novara, Italy.
- Center for Translational Research on Autoimmune & Allergic Diseases (CAAD), Università del Piemonte Orientale, 28100, Novara, Italy.
| | - Cristina Travelli
- Department of Pharmaceutical Sciences, Università degli Studi di Pavia, 27100, Pavia, Italy.
| |
Collapse
|
36
|
Audrito V, Messana VG, Deaglio S. NAMPT and NAPRT: Two Metabolic Enzymes With Key Roles in Inflammation. Front Oncol 2020; 10:358. [PMID: 32266141 PMCID: PMC7096376 DOI: 10.3389/fonc.2020.00358] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/02/2020] [Indexed: 12/13/2022] Open
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) and nicotinate phosphoribosyltransferase (NAPRT) are two intracellular enzymes that catalyze the first step in the biosynthesis of NAD from nicotinamide and nicotinic acid, respectively. By fine tuning intracellular NAD levels, they are involved in the regulation/reprogramming of cellular metabolism and in the control of the activity of NAD-dependent enzymes, including sirtuins, PARPs, and NADases. However, during evolution they both acquired novel functions as extracellular endogenous mediators of inflammation. It is well-known that cellular stress and/or damage induce release in the extracellular milieu of endogenous molecules, called alarmins or damage-associated molecular patterns (DAMPs), which modulate immune functions through binding pattern recognition receptors (PRRs), such as Toll-like receptors (TLRs), and activate inflammatory responses. Increasing evidence suggests that extracellular (e)NAMPT and eNAPRT are novel soluble factors with cytokine/adipokine/DAMP-like actions. Elevated eNAMPT were reported in several metabolic and inflammatory disorders, including obesity, diabetes, and cancer, while eNAPRT is emerging as a biomarker of sepsis and septic shock. This review will discuss available data concerning the dual role of this unique family of enzymes.
Collapse
Affiliation(s)
- Valentina Audrito
- Laboratory of Tumor Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Vincenzo Gianluca Messana
- Laboratory of Tumor Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Silvia Deaglio
- Laboratory of Tumor Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
37
|
Lv R, Yu J, Sun Q. Anti-angiogenic role of microRNA-23b in melanoma by disturbing NF-κB signaling pathway via targeted inhibition of NAMPT. Future Oncol 2020; 16:541-458. [PMID: 32107941 DOI: 10.2217/fon-2019-0699] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aim: Melanoma is the major cause of death in patients inflicting skin cancer. We identify miR-23b plays an anti-angiogenic role in melanoma. Materials & methods: We collected tumor tissues from melanoma patients. Experiments in vivo and in vitro were designed to evaluate the role of miR-23b in melanoma. Results & conclusion: miR-23b was found to be downregulated in melanoma tissues, and associated with poor patient survival. Elevating miR-23b inhibited cell viability and colony formation, reduced pro-angiogenetic ability, and accelerated apoptosis in SK-MEL-28 cells. miR-23b targeted NAMPT. Disturbing NF-κB signaling pathway with ammonium pyrrolidinedithiocarbamate (an inhibitor of NF-kB signaling pathway) impeded acquired pro-angiogenetic ability of nicotinamide phosphoribosyl transferase-overexpressed SK-MEL-28 cells. MiR-23b is a prognostic factor in melanoma. This study provides an enhanced understanding of microRNA-based targets for melanoma treatment.
Collapse
Affiliation(s)
- Renrong Lv
- Department of Burn & Plastic Surgery, Provincial Hospital Affiliated to Shandong University, Ji'nan 250021, Shandong Province, PR China
| | - Jing Yu
- Department of Burn & Plastic Surgery, Zhangqiu People's Hospital, Ji'nan 250200, Shandong Province, PR China
| | - Qian Sun
- Department of Obstetrics, Ji'nan Maternity & Child Health Care Hospital, Ji'nan 250001, Shandong Province, PR China
| |
Collapse
|
38
|
Torretta S, Colombo G, Travelli C, Boumya S, Lim D, Genazzani AA, Grolla AA. The Cytokine Nicotinamide Phosphoribosyltransferase (eNAMPT; PBEF; Visfatin) Acts as a Natural Antagonist of C-C Chemokine Receptor Type 5 (CCR5). Cells 2020; 9:cells9020496. [PMID: 32098202 PMCID: PMC7072806 DOI: 10.3390/cells9020496] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/15/2020] [Accepted: 02/21/2020] [Indexed: 12/23/2022] Open
Abstract
(1) Background: Extracellular nicotinamide phosphoribosyltrasferase (eNAMPT) is released by various cell types with pro-tumoral and pro-inflammatory properties. In cancer, eNAMPT regulates tumor growth through the activation of intracellular pathways, suggesting that it acts through a putative receptor, although its nature is still elusive. It has been shown, using surface plasma resonance, that eNAMPT binds to the C-C chemokine receptor type 5 (CCR5), although the physiological meaning of this finding is unknown. The aim of the present work was to characterize the pharmacodynamics of eNAMPT on CCR5. (2) Methods: HeLa CCR5-overexpressing stable cell line and B16 melanoma cells were used. We focused on some phenotypic effects of CCR5 activation, such as calcium release and migration, to evaluate eNAMPT actions on this receptor. (3) Results: eNAMPT did not induce ERK activation or cytosolic Ca2+-rises alone. Furthermore, eNAMPT prevents CCR5 internalization mediated by Rantes. eNAMPT pretreatment inhibits CCR5-mediated PKC activation and Rantes-dependent calcium signaling. The effect of eNAMPT on CCR5 was specific, as the responses to ATP and carbachol were unaffected. This was strengthened by the observation that eNAMPT inhibited Rantes-induced Ca2+-rises and Rantes-induced migration in a melanoma cell line. (4) Conclusions: Our work shows that eNAMPT binds to CCR5 and acts as a natural antagonist of this receptor.
Collapse
Affiliation(s)
- Simone Torretta
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (S.T.); (G.C.); (S.B.); (D.L.); (A.A.G.)
| | - Giorgia Colombo
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (S.T.); (G.C.); (S.B.); (D.L.); (A.A.G.)
| | - Cristina Travelli
- Department of Pharmaceutical Sciences, Università di Pavia, 27100 Pavia, Italy;
| | - Sara Boumya
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (S.T.); (G.C.); (S.B.); (D.L.); (A.A.G.)
| | - Dmitry Lim
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (S.T.); (G.C.); (S.B.); (D.L.); (A.A.G.)
| | - Armando A. Genazzani
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (S.T.); (G.C.); (S.B.); (D.L.); (A.A.G.)
| | - Ambra A. Grolla
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (S.T.); (G.C.); (S.B.); (D.L.); (A.A.G.)
- Correspondence: ; Tel.: +39-0321-375822; Fax: +39-0321-375821
| |
Collapse
|
39
|
Grolla AA, Miggiano R, Di Marino D, Bianchi M, Gori A, Orsomando G, Gaudino F, Galli U, Del Grosso E, Mazzola F, Angeletti C, Guarneri M, Torretta S, Calabrò M, Boumya S, Fan X, Colombo G, Travelli C, Rocchio F, Aronica E, Wohlschlegel JA, Deaglio S, Rizzi M, Genazzani AA, Garavaglia S. A nicotinamide phosphoribosyltransferase-GAPDH interaction sustains the stress-induced NMN/NAD + salvage pathway in the nucleus. J Biol Chem 2020; 295:3635-3651. [PMID: 31988240 DOI: 10.1074/jbc.ra119.010571] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 01/16/2020] [Indexed: 12/26/2022] Open
Abstract
All cells require sustained intracellular energy flux, which is driven by redox chemistry at the subcellular level. NAD+, its phosphorylated variant NAD(P)+, and its reduced forms NAD(P)/NAD(P)H are all redox cofactors with key roles in energy metabolism and are substrates for several NAD-consuming enzymes (e.g. poly(ADP-ribose) polymerases, sirtuins, and others). The nicotinamide salvage pathway, constituted by nicotinamide mononucleotide adenylyltransferase (NMNAT) and nicotinamide phosphoribosyltransferase (NAMPT), mainly replenishes NAD+ in eukaryotes. However, unlike NMNAT1, NAMPT is not known to be a nuclear protein, prompting the question of how the nuclear NAD+ pool is maintained and how it is replenished upon NAD+ consumption. In the present work, using human and murine cells; immunoprecipitation, pulldown, and surface plasmon resonance assays; and immunofluorescence, small-angle X-ray scattering, and MS-based analyses, we report that GAPDH and NAMPT form a stable complex that is essential for nuclear translocation of NAMPT. This translocation furnishes NMN to replenish NAD+ to compensate for the activation of NAD-consuming enzymes by stressful stimuli induced by exposure to H2O2 or S-nitrosoglutathione and DNA damage inducers. These results indicate that by forming a complex with GAPDH, NAMPT can translocate to the nucleus and thereby sustain the stress-induced NMN/NAD+ salvage pathway.
Collapse
Affiliation(s)
- Ambra A Grolla
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Riccardo Miggiano
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Daniele Di Marino
- Department of Life and Environmental Sciences, New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Michele Bianchi
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Alessandro Gori
- Istituto di Chimica del Riconoscimento Molecolare (ICRM-CNR), via Mario Bianco 9, 20131 Milano, Italy
| | - Giuseppe Orsomando
- Department of Clinical Sciences (DISCO), Section of Biochemistry, Polytechnic University of Marche, Via Ranieri 67, 60128 Ancona, Italy
| | - Federica Gaudino
- Department of Medical Sciences, University of Turin, Via Nizza 52, 10126 Turin, Italy
| | - Ubaldina Galli
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Erika Del Grosso
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Francesca Mazzola
- Department of Clinical Sciences (DISCO), Section of Biochemistry, Polytechnic University of Marche, Via Ranieri 67, 60128 Ancona, Italy
| | - Carlo Angeletti
- Department of Clinical Sciences (DISCO), Section of Biochemistry, Polytechnic University of Marche, Via Ranieri 67, 60128 Ancona, Italy
| | - Martina Guarneri
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Simone Torretta
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Marta Calabrò
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Sara Boumya
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Xiaorui Fan
- Department of Biological Chemistry, UCLA, Los Angeles, California 90095
| | - Giorgia Colombo
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Cristina Travelli
- Department of Pharmaceutical Sciences, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy
| | - Francesca Rocchio
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Eleonora Aronica
- Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, 1001 NK Amsterdam, The Netherlands
| | | | - Silvia Deaglio
- Department of Medical Sciences, University of Turin, Via Nizza 52, 10126 Turin, Italy; Italian Institute for Genomic Medicine, Via Nizza 52, 10126 Turin, Italy
| | - Menico Rizzi
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Armando A Genazzani
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy.
| | - Silvia Garavaglia
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy.
| |
Collapse
|
40
|
Heske CM. Beyond Energy Metabolism: Exploiting the Additional Roles of NAMPT for Cancer Therapy. Front Oncol 2020; 9:1514. [PMID: 32010616 PMCID: PMC6978772 DOI: 10.3389/fonc.2019.01514] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022] Open
Abstract
Tumor cells have increased requirements for NAD+. Thus, many cancers exhibit an increased reliance on NAD+ production pathways. This dependence may be exploited therapeutically through pharmacological targeting of NAMPT, the rate-limiting enzyme in the NAD+ salvage pathway. Despite promising preclinical data using NAMPT inhibitors in cancer models, early NAMPT inhibitors showed limited efficacy in several early phase clinical trials, necessitating the identification of strategies, such as drug combinations, to enhance their efficacy. While the effect of NAMPT inhibitors on impairment of energy metabolism in cancer cells has been well-described, more recent insights have uncovered a number of additional targetable cellular processes that are impacted by inhibition of NAMPT. These include sirtuin function, DNA repair machinery, redox homeostasis, molecular signaling, cellular stemness, and immune processes. This review highlights the recent findings describing the effects of NAMPT inhibitors on the non-metabolic functions of malignant cells, with a focus on how this information can be leveraged clinically. Combining NAMPT inhibitors with other therapies that target NAD+-dependent processes or selecting tumors with specific vulnerabilities that can be co-targeted with NAMPT inhibitors may represent opportunities to exploit the multiple functions of this enzyme for greater therapeutic benefit.
Collapse
Affiliation(s)
- Christine M Heske
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
41
|
Neutrophil Maturation and Survival Is Controlled by IFN-Dependent Regulation of NAMPT Signaling. Int J Mol Sci 2019; 20:ijms20225584. [PMID: 31717318 PMCID: PMC6888478 DOI: 10.3390/ijms20225584] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/01/2019] [Accepted: 11/06/2019] [Indexed: 12/16/2022] Open
Abstract
Granulocyte-colony stimulating factor (G-CSF)/nicotinamide phosphoribosyltransferase (NAMPT) signaling has been shown to be crucial for the modulation of neutrophil development and functionality. As this signaling pathway is significantly suppressed by type I interferons (IFNs), we aimed to study how the regulation of neutrophil differentiation and phenotype is altered in IFN-deficient mice during granulopoiesis. The composition of bone marrow granulocyte progenitors and their Nampt expression were assessed in bone marrow of type I IFN receptor knockout (Ifnar1-/-) mice and compared to wild-type animals. The impact of NAMPT inhibition on the proliferation, survival, and differentiation of murine bone marrow progenitors, as well as of murine 32D and human HL-60 neutrophil-like cell lines, was estimated. The progressive increase of Nampt expression during neutrophil progenitor maturation could be observed, and it was more prominent in IFN-deficient animals. Altered composition of bone marrow progenitors in these mice correlated with the dysregulation of apoptosis and altered differentiation of these cells. We observed that NAMPT is vitally important for survival of early progenitors, while at later stages it delays the differentiation of neutrophils, with moderate effect on their survival. This study shows that IFN-deficiency leads to the elevated NAMPT expression in the bone marrow, which in turn modulates neutrophil development and differentiation, even in the absence of tumor-derived stimuli.
Collapse
|
42
|
Estienne A, Bongrani A, Reverchon M, Ramé C, Ducluzeau PH, Froment P, Dupont J. Involvement of Novel Adipokines, Chemerin, Visfatin, Resistin and Apelin in Reproductive Functions in Normal and Pathological Conditions in Humans and Animal Models. Int J Mol Sci 2019; 20:ijms20184431. [PMID: 31505789 PMCID: PMC6769682 DOI: 10.3390/ijms20184431] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/06/2019] [Accepted: 09/06/2019] [Indexed: 12/23/2022] Open
Abstract
It is well known that adipokines are endocrine factors that are mainly secreted by white adipose tissue. Their central role in energy metabolism is currently accepted. More recently, their involvement in fertility regulation and the development of some reproductive disorders has been suggested. Data concerning the role of leptin and adiponectin, the two most studied adipokines, in the control of the reproductive axis are consistent. In recent years, interest has grown about some novel adipokines, chemerin, visfatin, resistin and apelin, which have been found to be strongly associated with obesity and insulin-resistance. Here, we will review their expression and role in male and female reproduction in humans and animal models. According to accumulating evidence, they could regulate the secretion of GnRH (Gonadotropin-Releasing Hormone), gonadotropins and steroids. Furthermore, their expression and that of their receptors (if known), has been demonstrated in the human and animal hypothalamo-pituitary-gonadal axis. Like leptin and adiponectin, these novel adipokines could thus represent metabolic sensors that are able to regulate reproductive functions according to energy balance changes. Therefore, after investigating their role in normal fertility, we will also discuss their possible involvement in some reproductive troubles known to be associated with features of metabolic syndrome, such as polycystic ovary syndrome, gestational diabetes mellitus, preeclampsia and intra-uterine growth retardation in women, and sperm abnormalities and testicular pathologies in men.
Collapse
Affiliation(s)
- Anthony Estienne
- INRA UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours F-37041 Tours, France
- IFCE, F-37380 Nouzilly, France
| | - Alice Bongrani
- INRA UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours F-37041 Tours, France
- IFCE, F-37380 Nouzilly, France
| | - Maxime Reverchon
- SYSAAF-Syndicat des Sélectionneurs Avicoles et Aquacoles Français, Centre INRA Val de Loire, F-37380 Nouzilly, France
| | - Christelle Ramé
- INRA UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours F-37041 Tours, France
- IFCE, F-37380 Nouzilly, France
| | - Pierre-Henri Ducluzeau
- INRA UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours F-37041 Tours, France
- IFCE, F-37380 Nouzilly, France
- Internal Medicine Department, Unit of Endocrinology, CHRU Tours, F-37044 Tours, France
| | - Pascal Froment
- INRA UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours F-37041 Tours, France
- IFCE, F-37380 Nouzilly, France
| | - Joëlle Dupont
- INRA UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
- Université François Rabelais de Tours F-37041 Tours, France.
- IFCE, F-37380 Nouzilly, France.
| |
Collapse
|
43
|
Huppke P, Wegener E, Gilley J, Angeletti C, Kurth I, Drenth JPH, Stadelmann C, Barrantes-Freer A, Brück W, Thiele H, Nürnberg P, Gärtner J, Orsomando G, Coleman MP. Homozygous NMNAT2 mutation in sisters with polyneuropathy and erythromelalgia. Exp Neurol 2019; 320:112958. [PMID: 31132363 DOI: 10.1016/j.expneurol.2019.112958] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/14/2019] [Accepted: 05/16/2019] [Indexed: 12/16/2022]
Abstract
We identified a homozygous missense mutation in the gene encoding NAD synthesizing enzyme NMNAT2 in two siblings with childhood onset polyneuropathy with erythromelalgia. No additional homozygotes for this rare allele, which leads to amino acid substitution T94M, were present among the unaffected relatives tested or in the 60,000 exomes of the ExAC database. For axons to survive, axonal NMNAT2 activity has to be maintained above a threshold level but the T94M mutation confers a partial loss of function both in the ability of NMNAT2 to support axon survival and in its enzymatic properties. Electrophysiological tests and histological analysis of sural nerve biopsies in the patients were consistent with loss of distal sensory and motor axons. Thus, it is likely that NMNAT2 mutation causes this pain and axon loss phenotype making this the first disorder associated with mutation of a key regulator of Wallerian-like axon degeneration in humans. This supports indications from numerous animal studies that the Wallerian degeneration pathway is important in human disease and raises important questions about which other human phenotypes could be linked to this gene.
Collapse
Affiliation(s)
- Peter Huppke
- Department of Pediatrics and Pediatric Neurology, University Medical Center Göttingen, Georg August University Göttingen, Germany.
| | - Eike Wegener
- Department of Pediatrics and Pediatric Neurology, University Medical Center Göttingen, Georg August University Göttingen, Germany.
| | - Jonathan Gilley
- John van Geest Centre for Brain Repair, University of Cambridge, ED Adrian Building, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK; Babraham Institute, Babraham Research Campus, Babraham, Cambridge CB22 3AT, UK.
| | - Carlo Angeletti
- Department of Clinical Sciences (DISCO), Section of Biochemistry, Polytechnic University of Marche, Via Ranieri 67, 60131 Ancona, Italy.
| | - Ingo Kurth
- Institute of Human Genetics, Medical Faculty, RWTH, 52074 Aachen, Germany.
| | - Joost P H Drenth
- Department of Gastroenterology & Hepatology, Radboud UMC, P.O. Box 9101, 6500 HB Nijmegen, the Netherlands.
| | - Christine Stadelmann
- Institute of Neuropathology, University Medical Center, Georg August University Göttingen, Germany.
| | - Alonso Barrantes-Freer
- Institute of Neuropathology, University Medical Center, Georg August University Göttingen, Germany; Department of Neuropathology, University Medical Center Leipzig, Leipzig, Germany.
| | - Wolfgang Brück
- Institute of Neuropathology, University Medical Center, Georg August University Göttingen, Germany.
| | - Holger Thiele
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany.
| | - Peter Nürnberg
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany.
| | - Jutta Gärtner
- Department of Pediatrics and Pediatric Neurology, University Medical Center Göttingen, Georg August University Göttingen, Germany.
| | - Giuseppe Orsomando
- Department of Clinical Sciences (DISCO), Section of Biochemistry, Polytechnic University of Marche, Via Ranieri 67, 60131 Ancona, Italy.
| | - Michael P Coleman
- John van Geest Centre for Brain Repair, University of Cambridge, ED Adrian Building, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK; Babraham Institute, Babraham Research Campus, Babraham, Cambridge CB22 3AT, UK.
| |
Collapse
|
44
|
Audrito V, Managò A, Gaudino F, Deaglio S. Targeting metabolic reprogramming in metastatic melanoma: The key role of nicotinamide phosphoribosyltransferase (NAMPT). Semin Cell Dev Biol 2019; 98:192-201. [PMID: 31059816 DOI: 10.1016/j.semcdb.2019.05.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/02/2019] [Accepted: 05/02/2019] [Indexed: 12/13/2022]
Abstract
Cancer cells rewire their metabolism to support proliferation, growth and survival. In metastatic melanoma the BRAF oncogenic pathway is a master regulator of this process, highlighting the importance of metabolic reprogramming in the pathogenesis of this tumor and offering potential therapeutic approaches. Metabolic adaptation of melanoma cells generally requires increased amounts of NAD+, an essential redox cofactor in cellular metabolism and a signaling molecule. Nicotinamide phosphoribosyltransferase (NAMPT) is the most important NAD+ biosynthetic enzyme in mammalian cells and a direct target of the BRAF oncogenic signaling pathway. These findings suggest that NAMPT is an attractive new therapeutic target, particularly in combination strategies with BRAF or MEK inhibitors. Here we review current knowledge on how oncogenic signaling reprograms metabolism in BRAF-mutated melanoma, and discuss how NAMPT/NAD+ axis contributes to these processes. Lastly, we present evidence supporting a role of NAMPT as a novel therapeutic target in metastatic melanoma.
Collapse
Affiliation(s)
- Valentina Audrito
- Department of Medical Sciences, University of Turin, Turin, Italy; Italian Institute for Genomic Medicine, Turin, Italy.
| | - Antonella Managò
- Department of Medical Sciences, University of Turin, Turin, Italy; Italian Institute for Genomic Medicine, Turin, Italy
| | - Federica Gaudino
- Department of Medical Sciences, University of Turin, Turin, Italy; Italian Institute for Genomic Medicine, Turin, Italy
| | - Silvia Deaglio
- Department of Medical Sciences, University of Turin, Turin, Italy; Italian Institute for Genomic Medicine, Turin, Italy.
| |
Collapse
|
45
|
Tam I, Dzierżęga-Lęcznar A, Stępień K. Differential expression of inflammatory cytokines and chemokines in lipopolysaccharide-stimulated melanocytes from lightly and darkly pigmented skin. Exp Dermatol 2019; 28:551-560. [PMID: 30801846 DOI: 10.1111/exd.13908] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/11/2019] [Indexed: 01/02/2023]
Abstract
Increasing evidence suggests that human epidermal melanocytes play an important role in the skin immune system; however, a role of their pigmentation in immune and inflammatory responses is poorly examined. In the study, the expression of Toll-like receptor 4 (TLR4) and inflammatory cytokines and chemokines by cultured normal melanocytes derived from lightly and darkly pigmented skin was investigated after cell stimulation with lipopolysaccharide (LPS). The basal TLR4 mRNA level in heavily pigmented cells was higher as compared to their lightly pigmented counterparts. Melanocyte exposure to LPS upregulated the expression of TLR4 mRNA and enhanced the DNA-binding activity of NF-κB p50 and p65. We found substantial differences in the LPS-stimulated expression of numerous genes encoding inflammatory cytokines and chemokines between the cells with various melanin contents. In lightly pigmented melanocytes, the most significantly upregulated genes were nicotinamide phosphoribosyltransferase (NAMPT/visfatin), the chemokines CCL2 and CCL20, and IL6, while the genes for CXCL12, IL-16 and the chemokine receptor CCR4 were the most significantly upregulated in heavily pigmented cells. Moreover, the lightly pigmented melanocytes secreted much more NAMPT, CCL2 and IL-6. The results of our study suggest modulatory effect of melanogenesis on the immune properties of normal epidermal melanocytes.
Collapse
Affiliation(s)
- Irena Tam
- Department of Instrumental Analysis, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia in Katowice, Sosnowiec, Poland
| | - Anna Dzierżęga-Lęcznar
- Department of Instrumental Analysis, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia in Katowice, Sosnowiec, Poland
| | - Krystyna Stępień
- Department of Instrumental Analysis, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia in Katowice, Sosnowiec, Poland
| |
Collapse
|
46
|
Yaku K, Okabe K, Hikosaka K, Nakagawa T. NAD Metabolism in Cancer Therapeutics. Front Oncol 2018; 8:622. [PMID: 30631755 PMCID: PMC6315198 DOI: 10.3389/fonc.2018.00622] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 11/30/2018] [Indexed: 12/15/2022] Open
Abstract
Cancer cells have a unique energy metabolism for sustaining rapid proliferation. The preference for anaerobic glycolysis under normal oxygen conditions is a unique trait of cancer metabolism and is designated as the Warburg effect. Enhanced glycolysis also supports the generation of nucleotides, amino acids, lipids, and folic acid as the building blocks for cancer cell division. Nicotinamide adenine dinucleotide (NAD) is a co-enzyme that mediates redox reactions in a number of metabolic pathways, including glycolysis. Increased NAD levels enhance glycolysis and fuel cancer cells. In fact, nicotinamide phosphoribosyltransferase (Nampt), a rate-limiting enzyme for NAD synthesis in mammalian cells, is frequently amplified in several cancer cells. In addition, Nampt-specific inhibitors significantly deplete NAD levels and subsequently suppress cancer cell proliferation through inhibition of energy production pathways, such as glycolysis, tricarboxylic acid (TCA) cycle, and oxidative phosphorylation. NAD also serves as a substrate for poly(ADP-ribose) polymerase (PARP), sirtuin, and NAD gylycohydrolase (CD38 and CD157); thus, NAD regulates DNA repair, gene expression, and stress response through these enzymes. Thus, NAD metabolism is implicated in cancer pathogenesis beyond energy metabolism and considered a promising therapeutic target for cancer treatment. In this review, we present recent findings with respect to NAD metabolism and cancer pathogenesis. We also discuss the current and future perspectives regarding the therapeutics that target NAD metabolic pathways.
Collapse
Affiliation(s)
- Keisuke Yaku
- Department of Metabolism and Nutrition, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan
| | - Keisuke Okabe
- Department of Metabolism and Nutrition, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan.,First Department of Internal Medicine, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan
| | - Keisuke Hikosaka
- Department of Metabolism and Nutrition, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan
| | - Takashi Nakagawa
- Department of Metabolism and Nutrition, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan.,Institute of Natural Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|
47
|
Sociali G, Grozio A, Caffa I, Schuster S, Becherini P, Damonte P, Sturla L, Fresia C, Passalacqua M, Mazzola F, Raffaelli N, Garten A, Kiess W, Cea M, Nencioni A, Bruzzone S. SIRT6 deacetylase activity regulates NAMPT activity and NAD(P)(H) pools in cancer cells. FASEB J 2018; 33:3704-3717. [PMID: 30514106 DOI: 10.1096/fj.201800321r] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme in the NAD+ salvage pathway from nicotinamide. By controlling the biosynthesis of NAD+, NAMPT regulates the activity of NAD+-converting enzymes, such as CD38, poly-ADP-ribose polymerases, and sirtuins (SIRTs). SIRT6 is involved in the regulation of a wide number of metabolic processes. In this study, we investigated the ability of SIRT6 to regulate intracellular NAMPT activity and NAD(P)(H) levels. BxPC-3 cells and MCF-7 cells were engineered to overexpress a catalytically active or a catalytically inactive SIRT6 form or were engineered to silence endogenous SIRT6 expression. In SIRT6-overexpressing cells, NAD(H) levels were up-regulated, as a consequence of NAMPT activation. By immunopurification and incubation with recombinant SIRT6, NAMPT was found to be a direct substrate of SIRT6 deacetylation, with a mechanism that up-regulates NAMPT enzymatic activity. Extracellular NAMPT release was enhanced in SIRT6-silenced cells. Also glucose-6-phosphate dehydrogenase activity and NADPH levels were increased in SIRT6-overexpressing cells. Accordingly, increased SIRT6 levels reduced cancer cell susceptibility to H2O2-induced oxidative stress and to doxorubicin. Our data demonstrate that SIRT6 affects intracellular NAMPT activity, boosts NAD(P)(H) levels, and protects against oxidative stress. The use of SIRT6 inhibitors, together with agents inducing oxidative stress, may represent a promising treatment strategy in cancer.-Sociali, G., Grozio, A., Caffa, I., Schuster, S., Becherini, P., Damonte, P., Sturla, L., Fresia, C., Passalacqua, M., Mazzola, F., Raffaelli, N., Garten, A., Kiess, W., Cea, M., Nencioni, A., Bruzzone, S. SIRT6 deacetylase activity regulates NAMPT activity and NAD(P)(H) pools in cancer cells.
Collapse
Affiliation(s)
- Giovanna Sociali
- Section of Biochemistry, Department of Experimental Medicine, Center for Excellence in Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Alessia Grozio
- Section of Biochemistry, Department of Experimental Medicine, Center for Excellence in Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Irene Caffa
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Susanne Schuster
- Center for Pediatric Research Leipzig (CPL), University Hospital for Children and Adolescents, University of Leipzig, Leipzig, Germany
| | - Pamela Becherini
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Patrizia Damonte
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Laura Sturla
- Section of Biochemistry, Department of Experimental Medicine, Center for Excellence in Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Chiara Fresia
- Section of Biochemistry, Department of Experimental Medicine, Center for Excellence in Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Mario Passalacqua
- Section of Biochemistry, Department of Experimental Medicine, Center for Excellence in Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Francesca Mazzola
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Nadia Raffaelli
- Department of Agricultural, Food, and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Antje Garten
- Center for Pediatric Research Leipzig (CPL), University Hospital for Children and Adolescents, University of Leipzig, Leipzig, Germany.,Institute for Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Wieland Kiess
- Center for Pediatric Research Leipzig (CPL), University Hospital for Children and Adolescents, University of Leipzig, Leipzig, Germany
| | - Michele Cea
- Department of Internal Medicine, University of Genoa, Genoa, Italy.,Scientific Institute for Research and Healthcare (IRCCS), San Martino University Hospital-National Institute for Cancer Research (IST), Genoa, Italy
| | - Alessio Nencioni
- Department of Internal Medicine, University of Genoa, Genoa, Italy.,Scientific Institute for Research and Healthcare (IRCCS), San Martino University Hospital-National Institute for Cancer Research (IST), Genoa, Italy
| | - Santina Bruzzone
- Section of Biochemistry, Department of Experimental Medicine, Center for Excellence in Biomedical Research (CEBR), University of Genoa, Genoa, Italy.,Institute of Protein Biochemistry, National Research Council, Naples, Italy
| |
Collapse
|
48
|
Zhang LJ, Li XQ, Wang CD, Zhuang L, Gong Q, Li SJ, Liu X, Dong H, Wang XC. The Correlation of Visfatin and Its Gene Polymorphism with Non-Small Cell Lung Cancer. Cancer Biother Radiopharm 2018; 33:460-465. [PMID: 30256660 DOI: 10.1089/cbr.2018.2526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Objective: To investigate the protein expression of visfatin and its gene polymorphism in non-small cell lung cancer (NSCLC) patients. Methods: The plasma level of visfatin was detected by enzyme-linked immunosorbent assay, and the genotypes rs59744560, rs9770242, and rs61330082 in the visfatin gene were detected by gene sequencing. Result: This study revealed that plasma levels of visfatin in NSCLC patients were significantly higher than the levels in healthy people (p < 0.01). The high level of plasma visfatin was found to be significantly correlated with TNM stage (p < 0.05). No mutations were detected in rs59744560 and rs9770242 loci. Three genotypes (CC, CT, and TT) were detected in rs61330082 locus, and the differences in the frequency distribution of these genotypes were significant in the two groups (p < 0.05). Central obesity and the CC genotype were independent risk factors in the pathogenesis of NSCLC (p < 0.05). Conclusion: The plasma visfatin level in NSCLC patients significantly increased, and high plasma visfatin levels were correlated with tumor stage. Gene polymorphism was found in the visfatin gene rs61330082 locus. The CC genotype might increase the risk for patients suffering from NSCLC, while the CT genotype, TT genotype, and T allele may reduce the risk of NSCLC. The rs61330082 locus can be used as genetic markers of high-risk populations.
Collapse
Affiliation(s)
- Li-Juan Zhang
- Department of Palliative Medicine, Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, Kunming, China
| | - Xue-Qin Li
- Department of Palliative Medicine, Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, Kunming, China
| | - Cun-De Wang
- Department of Palliative Medicine, Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, Kunming, China
| | - Li Zhuang
- Department of Palliative Medicine, Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, Kunming, China
| | - Quan Gong
- Department of Palliative Medicine, Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, Kunming, China
| | - Shi-Juan Li
- Department of Palliative Medicine, Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, Kunming, China
| | - Xin Liu
- Department of Tumor Research Institute, Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, Kunming, China
| | - Hui Dong
- Department of Palliative Medicine, Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, Kunming, China
| | - Xi-Cai Wang
- Department of Tumor Research Institute, Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, Kunming, China
| |
Collapse
|
49
|
Travelli C, Colombo G, Mola S, Genazzani AA, Porta C. NAMPT: A pleiotropic modulator of monocytes and macrophages. Pharmacol Res 2018; 135:25-36. [PMID: 30031171 DOI: 10.1016/j.phrs.2018.06.022] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 06/20/2018] [Indexed: 12/11/2022]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is the bottleneck enzyme of the NAD salvage pathway and thereby is a controller of intracellular NAD concentrations. It has been long known that the same enzyme can be secreted by a number of cell types and acts as a cytokine, although its receptor is at present unknown. Investigational compounds have been developed that target the enzymatic activity as well as the extracellular action (i.e. neutralizing antibodies). The present contribution reviews the evidence that links intracellular and extracellular NAMPT to myeloid biology, for example governing monocyte/macrophage differentiation, polarization and migration. Furthermore, it reviews the evidence that links this protein to some disorders in which myeloid cells have a prominent role (acute infarct, inflammatory bowel disease, acute lung injury and rheumatoid arthritis) and the data showing that inhibition of the enzymatic activity or the neutralization of the cytokine is beneficial in preclinical animal models.
Collapse
Affiliation(s)
- Cristina Travelli
- Department of Pharmacological Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Giorgia Colombo
- Department of Pharmacological Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Silvia Mola
- Department of Pharmacological Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Armando A Genazzani
- Department of Pharmacological Sciences, Università del Piemonte Orientale, Novara, Italy.
| | - Chiara Porta
- Department of Pharmacological Sciences, Università del Piemonte Orientale, Novara, Italy
| |
Collapse
|
50
|
Extracellular nicotinamide phosphoribosyltransferase (eNAMPT) is a novel marker for patients with BRAF-mutated metastatic melanoma. Oncotarget 2018; 9:18997-19005. [PMID: 29721178 PMCID: PMC5922372 DOI: 10.18632/oncotarget.24871] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 02/28/2018] [Indexed: 01/09/2023] Open
Abstract
Metastatic melanoma carrying BRAF mutations represent a still unmet medical need as success of BRAF inhibitors is limited by development of resistance. Nicotinamide phosphoribosyltransferase (NAMPT) is a key enzyme in NAD biosynthesis. An extracellular form (eNAMPT) possesses cytokine-like functions and is up-regulated in inflammatory disorders, including cancer. Here we show that eNAMPT is actively released in culture supernatants of melanoma cell lines. Furthermore, cells that become resistant to BRAF inhibitors (BiR) show a significant increase of eNAMPT levels. Plasma from mice xenografted with BiR cell lines contain higher eNAMPT levels compared to tumor-free animals. Consistently, eNAMPT levels are elevated in 113 patients with BRAF-mutated metastatic melanoma compared to 50 with localized disease or to 38 healthy donors, showing a direct correlation with markers of tumor burden, such as LDH, or aggressive disease (such as PD-L1). eNAMPT concentrations decrease in response to therapy with BRAF/MEK inhibitors, but increase again at progression, as inferred from the serial analysis of 50 patients. Lastly, high eNAMPT levels correlate with a significantly shorter overall survival. Our findings suggest that eNAMPT is a novel marker of tumor burden and response to therapy in patients with metastatic melanoma carrying BRAF mutations.
Collapse
|