1
|
Wang YJ, Chang CC, Wu YH, Huang L, Chen IL, Shih YC, Cheng H, Shen JW, Lu ME, Chiang HM, Lin BS. Activated melanocytes and senescent collagen fibers predict laser-treated melasma outcomes: An optical biopsy-based prospective cohort study. Photodiagnosis Photodyn Ther 2025:104648. [PMID: 40419099 DOI: 10.1016/j.pdpdt.2025.104648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 05/22/2025] [Accepted: 05/23/2025] [Indexed: 05/28/2025]
Abstract
BACKGROUND Melasma Area and Severity Index (MASI) score only assesses the pigmentation rather than photoaging. Picosecond alexandrite laser (PAL) with diffractive lens array (DLA) can improve photoaging and has been approved for melasma treatment. Prediction for post-laser outcome is limited. OBJECTIVE To in vivo compare the photoaging milieu altered by a PAL with DLA in melasma lesions and adjacent perilesions, and to delineate the predictive factors for outcomes. METHODS An optical biopsy with cellular resolution full-field optical coherence tomography (CRFF-OCT) was set up to evaluate the dynamic changes. Quantification was performed with the computer-aided detection (CADe) system. RESULTS The mean MASI score decreased significantly (p<0.001) in 12 of 15 patients but increased in the other three. An optical biopsy of 74,340 images showed the numbers of activated melanocytes and melanophages were significantly reduced post laser, and the basement membrane (BM) was repaired in melasma lesions, while basal lightening was noted in perilesions. The pre-treatment presence of activated melanocytes was associated with a high regional MASI score (p=0.013), while the senescent collagen fibers and activated melanocyte patterns were associated with less MASI score improvement (p=0.005). Senescent collagen fibers (p=0.002) and baseline BM damage(p=0.001) were strongly correlated to post-treatment melanophages. The baseline MASI score was not associated with activated melanocyte status or treatment outcomes. CONCLUSION Optical biopsy using CRFF-OCT revealed that patterns of activated melanocytes and senescent collagen fibers can serve as predictive markers for post-laser treatment outcomes. The photoaging characteristics of melasma were improved through the reduction of activated melanocytes and the repair of the BM.
Collapse
Affiliation(s)
- Yen-Jen Wang
- Department of Dermatology, MacKay Memorial Hospital, Taipei, Taiwan; Department of Cosmetic Applications and Management, MacKay Junior College of Medicine, Nursing, and Management, New Taipei City, Taiwan
| | - Chang-Cheng Chang
- Department of Cosmeceutics, China Medical University, Taichung, Taiwan; Institute of Imaging and Biomedical Photonics, National Yang Ming Chiao Tung University, Tainan, Taiwan; School of medicine, College of medicine, China medical university, China Medical University Hospital, Taichung, Taiwan; Aesthetic medical center, China Medical University Hospital, Taichung, Taiwan.
| | - Yu-Hung Wu
- Department of Dermatology, MacKay Memorial Hospital, Taipei, Taiwan; Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Ling Huang
- Apollo Medical Optics Ltd., Taipei, Taiwan
| | | | | | | | - Jia-Wei Shen
- Department of Cosmeceutics, China Medical University, Taichung, Taiwan
| | - Meng-En Lu
- Department of Cosmeceutics, China Medical University, Taichung, Taiwan
| | - Hsiu-Mei Chiang
- Department of Cosmeceutics, China Medical University, Taichung, Taiwan
| | - Bor-Shyh Lin
- Institute of Imaging and Biomedical Photonics, National Yang Ming Chiao Tung University, Tainan, Taiwan
| |
Collapse
|
2
|
Zhang MQ, Wang ZH, Song DQ, Zhang JP. Polymyxin B induces pigmentation by upregulating ATG2A-ERK/CREB-MITF-PMEL17 signaling axis. Life Sci 2025; 369:123553. [PMID: 40074142 DOI: 10.1016/j.lfs.2025.123553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/26/2025] [Accepted: 03/07/2025] [Indexed: 03/14/2025]
Abstract
Polymyxin B serves as the last line of defense in treating multidrug-resistant Gram-negative bacterial infections. However, its distinctive side effect of hyperpigmentation significantly impacts patients' psychological well-being and treatment adherence. Currently, the underlying mechanism of polymyxin B-induced pigmentation remains to be incompletely investigated. This study aims to explore the correlation between polymyxin B-induced pigmentation and autophagy in zebrafish and melanoma cells. Comparative analysis between polymyxin B and its analog polymyxin E reveals opposite effects of the two polymyxins on PMEL17 expression and autophagic flux. Polymyxin B increases PMEL17 expression, correlating with elevated LC3B-II/I level and inhibition of autolysosomal degradation activity, while polymyxin E exerts the contrary effects. RNA-seq analysis of autophagy genes identifies a significant upregulation of ATG2A expression induced by polymyxin B. Moreover, polymyxin B, dependent on ATG2A, promotes MITF overexpression through the LC3B-II/pERK/pCREB pathway, subsequently enhancing PMEL17 expression. This study elucidates the mechanism linking polymyxin B-induced pigmentation and autophagy, demonstrating that polymyxin B causes the accumulation of PMEL17 within autophagosomes and inhibits its autophagic degradation, suggesting that autophagosomes may transform into melanosomes. These findings further contribute to the theoretical basis for autophagy regulating melanin synthesis, highlighting the multifaceted functions of autophagic proteins beyond degradation within autolysosomes.
Collapse
Affiliation(s)
- Miao-Qing Zhang
- Key Laboratory of Biotechnology of Antibiotics, the National Health Commission (NHC), Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Zheng-Hao Wang
- Key Laboratory of Biotechnology of Antibiotics, the National Health Commission (NHC), Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Dan-Qing Song
- Key Laboratory of Biotechnology of Antibiotics, the National Health Commission (NHC), Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jing-Pu Zhang
- Key Laboratory of Biotechnology of Antibiotics, the National Health Commission (NHC), Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
3
|
Oh SW, Yu E, Park SH, Kwon K, Lee JH, Ha H, Kim G, Shin HS, Min S, Song M, Cho JY, Lee J. Ammonium chloride, an environmental pollutant, disrupts melanocyte biology through the regulation of melanosome and autophagy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 296:118214. [PMID: 40262244 DOI: 10.1016/j.ecoenv.2025.118214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 04/11/2025] [Accepted: 04/15/2025] [Indexed: 04/24/2025]
Abstract
Ammonium chloride is an indoor environmental pollutant released due to industrial emissions, concrete, indoor bacteria, or other sources. In this study, we characterized molecular mechanisms of ammonium chloride-induced cell damage in melanocyte cells, which are a critical effector for pigmentation. Specifically, we investigated the effects of ammonium chloride on pigmentation and its underlying mechanisms, including its involvement in melanogenesis and autophagy. Based on the experiments, we elucidated that ammonium chloride induced and increased melanogenesis by upregulating MITF via AKT-mediated melanogenic signaling pathways. Moreover, ammonium chloride did not exhibit lysosomotropic activity and inhibited autophagy by activating the AKT-mTOR signaling pathway, suggesting that the pigment-regulating mechanism of ammonium chloride was associated with autophagy in pigmented cells. The findings of this study offer new perspectives on the mechanisms involved in ammonium chloride-induced pigmentation and propose a potential approach to mitigate ammonium chloride-induced side effects like hyperpigmentation and hyperammonemia by employing a combined autophagy inducer.
Collapse
Affiliation(s)
- Sae Woong Oh
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City, Gyunggi Do 16419, South Korea
| | - Eunbi Yu
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City, Gyunggi Do 16419, South Korea
| | - See-Hyoung Park
- Department of Bio and Chemical Engineering, Hongik University, Sejong City 30016, South Korea
| | - Kitae Kwon
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City, Gyunggi Do 16419, South Korea
| | - Jung Hyun Lee
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City, Gyunggi Do 16419, South Korea
| | - Heejun Ha
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City, Gyunggi Do 16419, South Korea
| | - Gyeonghyeon Kim
- Department of MetaBioHealth, Sungkyunkwan University, Suwon City, Gyunggi Do 16419, South Korea
| | - Hee Seon Shin
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City, Gyunggi Do 16419, South Korea
| | - Seokhyeon Min
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City, Gyunggi Do 16419, South Korea
| | - Minkyung Song
- Integrative Research of T cells Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Department of Biopharmaceutical Convergence, Sungkyunkwan University, Gyunggi Do 16419, South Korea.
| | - Jae Youl Cho
- Molecular Immunology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City, Gyunggi Do 16419, South Korea.
| | - Jongsung Lee
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City, Gyunggi Do 16419, South Korea.
| |
Collapse
|
4
|
Abd-Elmagid WM, Amr KS, Ahmed HA, Ali D, Abdelhamed A. Autophagy and Premature Graying of Hair: The Role of LC3 as a Biomarker in a Case-Control Study. Dermatol Pract Concept 2025; 15:dpc.1502a4876. [PMID: 40401898 PMCID: PMC12090954 DOI: 10.5826/dpc.1502a4876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2024] [Indexed: 05/23/2025] Open
Abstract
INTRODUCTION Premature graying of hair (PGH) is a common disorder with a multifactorial etiology. Autophagy, which is self-cellular digestion, has been linked to melanin pigment formation; however, the role of autophagy in PGH has not been investigated well. OBJECTIVES The study aimed to evaluate the relationship between PGH and autophagy by measuring gene expression and serum microtubule-associated protein light chain 3 (LC3) concentration. METHODS A case-control study was conducted on 39 PGH patients and 21 controls. Patients clinically diagnosed with PGH and aged <30 years were included in the study. Blood samples were taken to detect LC3B protein by ELISA in the serum of both groups. White hairs from both groups were collected to detect LC3B gene expression by PCR. RESULTS There was a statistically significant difference between the two groups as regards expression levels of the LC3 gene by PCR (P<0.001), with the mean in the control group (0.71± 0.3) lower than in the PGH group (5.1 ± 1.4). Also, there was a positive significant correlation between LC3 concentration and LC3 gene expression in control (r=0.867, P< 0.001) and in PGH patients (r=0.954, P≤0.001). Multivariate logistic regression analysis for PGH predictors using age, sex (female), hemoglobin level, LC3 concentration, and LC3 gene expression revealed that the only predictor of PGH was LC3 gene expression. CONCLUSIONS Premature graying of hair may have a link with autophagy. LC3 gene expression was increased in PGH patients as compared to the control. LC3 gene expression may be an independent predictor of PGH development. Autophagy modulation may be a therapeutic target for PGH.
Collapse
Affiliation(s)
- Wafaa Mohamed Abd-Elmagid
- Dermatology, Venereology and Andrology Department, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Khalda S. Amr
- Medical Molecular Genetics Department, Human Genetics & Genome Research Division (HGGR), National Research Centre (NRC), Egypt
| | - Hoda A. Ahmed
- Medical Molecular Genetics Department, Human Genetics & Genome Research Division (HGGR), National Research Centre (NRC), Egypt
| | - Dina Ali
- Dermatology, Venereology and Andrology Department, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Amr Abdelhamed
- Dermatology, Venereology and Andrology Department, Faculty of Medicine, Sohag University, Sohag, Egypt
| |
Collapse
|
5
|
Yu E, Oh SW, Park SH, Kwon K, Han SB, Kang SH, Lee JH, Ha H, Yoon D, Jung E, Song M, Cho JY, Lee J. The Pigmentation of Blue Light Is Mediated by Both Melanogenesis Activation and Autophagy Inhibition through OPN3-TRPV1. J Invest Dermatol 2025; 145:908-918.e6. [PMID: 39241981 DOI: 10.1016/j.jid.2024.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 09/09/2024]
Abstract
Blue light, a high-energy radiation in the visible light spectrum, was recently reported to induce skin pigmentation. In this study, we investigated the involvement of TRPV1-mediated signaling along with OPN3 in blue light-induced melanogenesis as well as its signaling pathway. Operating downstream target of OPN3 in blue light-induced melanogenesis, blue light activated TRPV1 and upregulated its expression, resulting in calcium influx. Calcium ion induced the activation of calcium/calmodulin-dependent protein kinase II and MAPK. It also downregulated clusterin expression, leading to the nuclear translocation of PAX3, ultimately affecting melanin synthesis. In addition, blue light interfered with autophagy-mediated regulation of melanosomes by decreasing not only the interaction between clusterin and LC3B but the expression of activating transcription factor family. These findings demonstrate that the pigmenting effects of blue light are mediated by calcium/calmodulin-dependent protein kinase II- and MAPK-mediated signaling as well as clusterin-dependent inhibition of autophagy through OPN3-TRPV1-calcium influx, suggesting, to our knowledge, a previously unreported signaling pathway through which blue light regulates melanocyte biology. Furthermore, these results suggest that TRPV1 and clusterin could be potential therapeutic targets for blue light-induced pigmentation due to prolonged exposure to blue light.
Collapse
Affiliation(s)
- Eunbi Yu
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Korea
| | - Sae Woong Oh
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Korea
| | - See-Hyoung Park
- Department of Bio and Chemical Engineering, Hongik University, Sejong City, Korea
| | - Kitae Kwon
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Korea
| | - Su Bin Han
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Korea
| | - Su Hyun Kang
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Korea
| | - Jung Hyun Lee
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Korea
| | - Heejun Ha
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Korea
| | - Donghoon Yoon
- Myeloma Center, Department of Internal Medicine, The University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Eunsun Jung
- Biospectrum Life Science Institute, Seongnam, Korea
| | - Minkyung Song
- Integrative Research of T cells Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Korea; Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, Korea
| | - Jae Youl Cho
- Molecular Immunology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Korea.
| | - Jongsung Lee
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Korea.
| |
Collapse
|
6
|
Park NY, Jo DS, Park HJ, Bae JE, Kim YH, Kim JB, Lee HJ, Kim SH, Choi H, Lee HS, Yoshimori T, Lee DS, Lee JA, Kim P, Cho DH. Deciphering melanophagy: role of the PTK2-ITCH-MLANA-OPTN cascade on melanophagy in melanocytes. Autophagy 2025; 21:664-673. [PMID: 39477686 PMCID: PMC11849925 DOI: 10.1080/15548627.2024.2421695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 10/10/2024] [Accepted: 10/22/2024] [Indexed: 11/13/2024] Open
Abstract
Melanosomes play a pivotal role in skin color and photoprotection. In contrast to the well-elucidated pathway of melanosome biogenesis, the process of melanosome degradation, referred to as melanophagy, is largely unexplored. Previously, we discovered that 3,4,5-trimethoxycinnamate thymol ester (TCTE) effectively inhibits skin pigmentation by activating melanophagy. In this study, we discovered a new regulatory signaling cascade that controls melanophagy in TCTE-treated melanocytes. ITCH (itchy E3 ubiquitin protein ligase) facilitates ubiquitination of the melanosome membrane protein MLANA (melan-A) during TCTE-induced melanophagy. This ubiquitinated MLANA is then recognized by an autophagy receptor protein, OPTN (optineurin). Additionally, a phospho-kinase antibody array revealed that TCTE activates PTK2 (protein tyrosine kinase 2), which phosphorylates ITCH, enhancing the ubiquitination of MLANA. Furthermore, inhibition of either PTK2 or ITCH disrupts the ubiquitination of MLANA and the MLANA-OPTN interaction in TCTE-treated cells. Taken together, our findings highlight the critical role of the PTK2-ITCH-MLANA-OPTN cascade in orchestrating melanophagy progression.Abbreviations: α-MSH: alpha-melanocyte-stimulating hormone; dichlone: 2,3-dichloro-1,4-naphthoquinone; ITCH: itchy E3 ubiquitin protein ligase; MITF: melanocyte inducing transcription factor; MLANA: melan-A; NBR1: NBR1 autophagy cargo receptor; OPTN: optineurin; PINK1: PTEN induced kinase 1; PTK2: protein tyrosine kinase 2; SQSTM1/p62: sequestosome 1; TCTE: 3,4,5-trimethoxycinnamate thymol ester; TPC2: two pore segment channel 2; VDAC1: voltage dependent anion channel 1.
Collapse
Affiliation(s)
- Na Yeon Park
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Doo Sin Jo
- ORGASIS Corp, Suwon, Gyeonggi-do, Republic of Korea
| | - Hyun Jun Park
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Ji-Eun Bae
- KNU G-LAMP Project Group, KNU Institute of Basic Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Yong Hwan Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Joon Bum Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Ha Jung Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
- ORGASIS Corp, Suwon, Gyeonggi-do, Republic of Korea
| | - Sung Hyun Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Hyunjung Choi
- R&D Unit, AmorePacific Corporation, Yongin, Gyeonggi-Do, Republic of Korea
| | - Hyun-Shik Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
- KNU G-LAMP Project Group, KNU Institute of Basic Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Tamotsu Yoshimori
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Dong-Seok Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
- Organelle Institute, KNU, Daegu, Republic of Korea
| | - Jin-A Lee
- Department of Biological Sciences and Biotechnology, College of Life Sciences and Nanotechnology, Hannam University, Daejeon, Republic of Korea
| | - Pansoo Kim
- ORGASIS Corp, Suwon, Gyeonggi-do, Republic of Korea
| | - Dong-Hyung Cho
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
- ORGASIS Corp, Suwon, Gyeonggi-do, Republic of Korea
- Organelle Institute, KNU, Daegu, Republic of Korea
| |
Collapse
|
7
|
Ahuja K, Raju S, Dahiya S, Motiani RK. ROS and calcium signaling are critical determinant of skin pigmentation. Cell Calcium 2025; 125:102987. [PMID: 39708588 PMCID: PMC7617625 DOI: 10.1016/j.ceca.2024.102987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Pigmentation is a protective phenomenon that shields skin cells from UV-induced DNA damage. Perturbations in pigmentation pathways predispose to skin cancers and lead to pigmentary disorders. These ailments impart psychological trauma and severely affect the patients' quality of life. Emerging literature suggests that reactive oxygen species (ROS) and calcium (Ca2+) signaling modules regulate physiological pigmentation. Further, pigmentary disorders are associated with dysregulated ROS homeostasis and changes in Ca2+ dynamics. Here, we systemically review the literature that demonstrates key role of ROS and Ca2+ signaling in pigmentation and pigmentary disorders. Further, we discuss recent studies, which have revealed that organelle-specific Ca2+ transport mechanisms are critical determinant of pigmentation. Importantly, we deliberate upon the possibility of clinical management of pigmentary disorders by therapeutically targeting ROS generation and cellular Ca2+ handling toolkit. Finally, we highlight the key outstanding questions in the field that demand critical and timely attention. Although an important role of ROS and Ca2+ signaling in regulating skin pigmentation has emerged, the underlying molecular mechanisms remain poorly understood. In future, it would be vital to investigate in detail the signaling cascades that connect perturbed ROS homeostasis and Ca2+ signaling to human pigmentary disorders.
Collapse
Affiliation(s)
- Kriti Ahuja
- Laboratory of Calciomics and Systemic Pathophysiology (LCSP), Regional Centre for Biotechnology (RCB), Faridabad-121001, Delhi-NCR, India
| | - Sharon Raju
- Laboratory of Calciomics and Systemic Pathophysiology (LCSP), Regional Centre for Biotechnology (RCB), Faridabad-121001, Delhi-NCR, India
| | - Sakshi Dahiya
- Laboratory of Calciomics and Systemic Pathophysiology (LCSP), Regional Centre for Biotechnology (RCB), Faridabad-121001, Delhi-NCR, India
| | - Rajender K Motiani
- Laboratory of Calciomics and Systemic Pathophysiology (LCSP), Regional Centre for Biotechnology (RCB), Faridabad-121001, Delhi-NCR, India.
| |
Collapse
|
8
|
Geyfman M, Chung R, Boissy R, Poloso N, Kadoya K, Maitra P, Mehta R. Lotus Sprout Extract Induces Selective Melanosomal Autophagy and Reduces Pigmentation. J Cosmet Dermatol 2025; 24:e16587. [PMID: 39305105 PMCID: PMC11743048 DOI: 10.1111/jocd.16587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 01/21/2025]
Abstract
BACKGROUND Hyperpigmentation disorders are caused by the excess production and irregular accumulation of melanin. Existing treatments often have limited efficacy and adverse effects, necessitating the development of new skin-brightening agents. Lotus sprout extract (LSE) was identified as a potential pigment-correcting agent. However, the active compounds responsible for driving mechanisms related to this activity remain unknown. AIMS This study aimed to investigate the effects of LSE and its active components, neferine and liensinine, on melanin accumulation and to understand how LSE reduces skin pigmentation. METHODS Melanin accumulation was analyzed in MNT-1 human melanoma cells and MelanoDerm human skin equivalents following neferine, liensinine, or LSE treatment. The effects of the compounds on different pathways regulating melanin levels were evaluated by gene expression, biochemical assays, and western blotting. Melanosome ultrastructure was monitored using transmission electron microscopy (TEM). RESULTS Neferine and liensinine reduced melanin accumulation in MNT-1 cells without downregulating melanogenesis-related genes or inhibiting tyrosinase activity. Instead, these compounds increased autophagic flux, suggesting that the reduction in pigmentation was due to increased melanin degradation. LSE also reduced melanin accumulation and activated autophagy in normal human melanocytes and MelanoDerm tissue. Autophagosomes induced by LSE treatment contained only melanosomes, and structural changes in melanosomes suggested that LSE may disrupt melanosome maturation. CONCLUSION This study revealed a novel mechanism for LSE, neferine, and liensinine in reducing pigmentation, potentially through the induction of autophagy and subsequent melanosome degradation. These findings suggest that LSE and its enriched bioactive compounds could be promising agents for treating hyperpigmentation.
Collapse
Affiliation(s)
| | - Robin Chung
- Allergan Aesthetics, An AbbVie CompanyIrvineCaliforniaUSA
| | | | - Neil Poloso
- Allergan Aesthetics, An AbbVie CompanyIrvineCaliforniaUSA
| | - Kuniko Kadoya
- Allergan Aesthetics, An AbbVie CompanyIrvineCaliforniaUSA
| | | | - Rahul Mehta
- Allergan Aesthetics, An AbbVie CompanyIrvineCaliforniaUSA
| |
Collapse
|
9
|
Jane WC, Chen SJ, Hseu JH, Chen XZ, Pandey S, Chang HW, Yang HL, Hseu YC, Yu YL. The in vitro and in vivo skin-whitening activity of Ectoine through enhanced autophagy in melanocytes and keratinocytes and zebrafish model. Biofactors 2025; 51:e70004. [PMID: 39907116 DOI: 10.1002/biof.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/17/2025] [Indexed: 02/06/2025]
Abstract
Ectoine, a natural bacterial osmolyte, suppressed UVA irradiated-α-melanocyte stimulating hormone (MSH) stimulated melanogenesis through antioxidant Nrf2 pathways in human keratinocytes; however, the underlying skin whitening mechanisms were not elucidated. The depigmenting efficiency of Ectoine (0-400 μM) through antimelanogenesis and melanin degradation by autophagy promotion was investigated in melanoma (B16F10) and melanin-feeding keratinocyte (HaCaT) cells and in vivo zebrafish model. MTT assay, Western blotting, GFP-LC3 puncta, AVO formation, melanin assay, immunofluorescence staining, TEM techniques, siLC3 transfection, and zebrafish model were utilized. Ectoine-induced autophagy in B16F10 and HaCaT cells was shown by enhanced LC3-II accumulation, autophagosome GFP-LC3 puncta, autolysosome AVOs formation, ATG4B downregulation, and Beclin-1/Bcl-2 dysregulation. The immunoprecipitation data revealed that Ectoine increased the association between LC3-II and p62 proteins in B16F10 and HaCaT cells. Importantly, antioxidant NAC pretreatment antagonized the Ectoine-induced ATG4B diminution in B16F10 and HaCaT cells. Ectoine inhibited melanogenesis by suppressing melanosome gp100, tyrosinase, TRP-1/-2, and/or melanin formation via autophagy in α-MSH-stimulated B16F10 and melanin-feeding HaCaT cells. TEM findings displayed that Ectoine increased melanosome-engulfing autophagosomes and autolysosomes in α-MSH-stimulated B16F10 and melanin-feeding HaCaT cells. Ectoine-inhibited melanogenesis in α-MSH-stimulated B16F10 cells and melanin-feeding HaCaT cells was reversed by pretreatment with the autophagy inhibitor 3-MA or LC3 silencing. In vivo study demonstrated that Ectoine (5 mM) suppressed endogenous body pigmentation by antimelanogenesis and melanin degradation through autophagy induction in a zebrafish model. The in vitro and in vivo study demonstrated that Ectoine inhibits melanogenesis and enhances melanin degradation by triggering autophagy. Ectoine could be utilized as a whitening ingredient in cosmetic formulations.
Collapse
Affiliation(s)
- Wei-Chen Jane
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung, Taiwan
| | - Siang-Jyun Chen
- Institute of Nutrition, College of Health Care, China Medical University, Taichung, Taiwan
| | - Jhih-Hsuan Hseu
- Department of Dermatology, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Xuan-Zao Chen
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung, Taiwan
| | - Sudhir Pandey
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsin-Ling Yang
- Institute of Nutrition, College of Health Care, China Medical University, Taichung, Taiwan
| | - You-Cheng Hseu
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
- Research Center of Chinese Herbal Medicine, China Medical University, Taichung, Taiwan
| | - Yung-Luen Yu
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
10
|
Yoon JH, Kim DO, Lee S, Lee BH, Kim ES, Son YK, Kopalli SR, Lee JH, Ju Y, Lee J, Cho JY. Anti-apoptotic, anti-inflammatory, and anti-melanogenic effects of the ethanol extract of Picrasma quassioides (D. Don) Benn. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118374. [PMID: 38789093 DOI: 10.1016/j.jep.2024.118374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Picrasma quassioides (D. Don) Benn is a vascular plant belonging to the genus Picrasma of Simaroubaceae family and grows in Korea, China, India, Taiwan, and Japan. Picrasma quassioides extract has been reported to have anti-inflammatory, anti-bacterial, and anti-cancer properties. Moreover, this plant has been also traditionally used to alleviate symptoms of eczema, atopic dermatitis, psoriasis, scabies, and boils in skin. AIM OF THE STUDY The Pq-EE has been reported in Chinese pharmacopoeia for its pharmacological effects on skin. However, the detailed mechanism on alleviating skin conditions is not understood. Hence, we investigated the skin improvement potential of Pq-EE against skin damage. MATERIALS AND METHODS We used the human keratinocyte cell line (HaCaT) and mouse melanoma cell line (B16F10) to study the effects of Pq-EE on the epidermis. Additionally, in vitro antioxidant assays were performed using a solution that included either metal ions or free radicals. RESULTS In colorimetric antioxidant assays, Pq-EE inhibited free radicals in a dose-dependent manner. The Pq-EE did not affect cell viability and promoted cell survival under UVB exposure conditions in the MTT assay. The Pq-EE downregulated the mRNA levels of apoptotic factors. Moreover, MMP1 and inflammatory cytokine iNOS mRNA levels decreased with Pq-EE treatment. With regard to protein levels, caspases and cleaved caspases were more powerfully inhibited by Pq-EE than UVB-irritated conditions. p53 and Bax also decreased with Pq-EE treatment. The melanin contents and secretion were decreased at nontoxic concentrations of Pq-EE. The pigmentation pathway genes also were inhibited by treatment with Pq-EE. CONCLUSIONS In summary, we suggest the cell protective potential of Pq-EE against UVB and ROS, indicating its use in UV-protective cosmeceutical materials.
Collapse
Affiliation(s)
- Ji Hye Yoon
- Department of Interdisciplinary Program in Biocosmetics, Sungkyunkwan University, Suwon, 16419, South Korea.
| | - Dong-Ock Kim
- Department of Interdisciplinary Program in Biocosmetics, Sungkyunkwan University, Suwon, 16419, South Korea.
| | - Seungki Lee
- National Institute of Biological Resources, Environmental Research Complex, Incheon, 22689, South Korea.
| | - Byong-Hee Lee
- National Institute of Biological Resources, Environmental Research Complex, Incheon, 22689, South Korea.
| | - Eun Sil Kim
- National Institute of Biological Resources, Environmental Research Complex, Incheon, 22689, South Korea.
| | - Youn Kyoung Son
- National Institute of Biological Resources, Environmental Research Complex, Incheon, 22689, South Korea.
| | - Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul, 05006, South Korea.
| | - Ji Heun Lee
- PharmacoBio Inc, Jungwon-gu, Seongnam, 13219, South Korea.
| | - Youngwoon Ju
- PharmacoBio Inc, Jungwon-gu, Seongnam, 13219, South Korea.
| | - Jongsung Lee
- Department of Interdisciplinary Program in Biocosmetics, Sungkyunkwan University, Suwon, 16419, South Korea; Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, South Korea.
| | - Jae Youl Cho
- Department of Interdisciplinary Program in Biocosmetics, Sungkyunkwan University, Suwon, 16419, South Korea; Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, South Korea.
| |
Collapse
|
11
|
Tang QQ, Wang ZD, An XH, Zhou XY, Zhang RZ, Zhan X, Zhang W, Zhou J. Apigenin Ameliorates H 2O 2-Induced Oxidative Damage in Melanocytes through Nuclear Factor-E2-Related Factor 2 (Nrf2) and Phosphatidylinositol 3-Kinase (PI3K)/Protein Kinase B (Akt)/Mammalian Target of Rapamycin (mTOR) Pathways and Reducing the Generation of Reactive Oxygen Species (ROS) in Zebrafish. Pharmaceuticals (Basel) 2024; 17:1302. [PMID: 39458943 PMCID: PMC11510047 DOI: 10.3390/ph17101302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Apigenin is one of the natural flavonoids found mainly in natural plants, as well as some fruits and vegetables, with celery in particular being the most abundant. Apigenin has antioxidant, anti-tumor, anti-inflammatory, and anticancer effects. In this research, we attempted to further investigate the effects of apigenin on the mechanism of repairing oxidative cell damage. The present study hopes to provide a potential candidate for abnormal skin pigmentation disorders. Methods: We used 0.4 mM H2O2 to treat B16F10 cells for 12 h to establish a model of oxidative stress in melanocytes, and then we gave apigenin (0.1~5 μM) to B16F10 cells for 48 h, and detected the expression levels of melanin synthesis-related proteins, dendritic regulation-related proteins, antioxidant signaling pathway- and Nrf2 signaling pathway-related proteins, autophagy, and autophagy-regulated pathways by immunoblotting using Western blotting. The expression levels of PI3K/Akt/mTOR proteins were measured by β-galactosidase staining and Western blotting for cellular decay, JC-1 staining for mitochondrial membrane potential, and Western blotting for mitochondrial fusion- and mitochondrial autophagy-related proteins. Results: Apigenin exerts antioxidant effects by activating the Nrf2 pathway, and apigenin up-regulates the expression of melanin synthesis-related proteins Tyr, TRP1, TRP2, and gp100, which are reduced in melanocytes under oxidative stress. By inhibiting the expression of senescence-related proteins p53 and p21, and delaying cellular senescence, we detected the mitochondrial membrane potential using JC-1, and found that apigenin improved the reduction in mitochondrial membrane potential in melanocytes under oxidative stress, and maintained the normal function of mitochondria. In addition, we further detected the key regulatory proteins of mitochondrial fusion and division, MFF, p-DRP1 (S637), and p-DRP1 (S616), and found that apigenin inhibited the down-regulation of fusion-associated protein, p-DRP1 (S637), and the up-regulation of division-associated proteins, MFF and p-DRP1 (S616), due to oxidative stress in melanocytes, and promoted the mitochondrial fusion and ameliorated the imbalance between mitochondrial division and fusion. We further detected the expression of fusion-related proteins OPA1 and Mitofusion-1, and found that apigenin restored the expression of the above fusion proteins under oxidative stress, which further indicated that apigenin promoted mitochondrial fusion, improved the imbalance between mitochondrial division and fusion, and delayed the loss of mitochondrial membrane potential. Apigenin promotes the expression of melanocyte autophagy-related proteins and the key mitochondrial autophagy proteins BNIP3L/Nix under oxidative stress, and activates the PINK1/Parkin signaling pathway by up-regulating the expression of autophagy-related proteins, as well as the expression of PINK1 and Parkin proteins, to promote melanocyte autophagy and mitochondrial autophagy. Conclusions: Apigenin exerts anti-melanocyte premature aging and detachment effects by promoting melanin synthesis, autophagy, and mitochondrial autophagy in melanocytes, and inhibiting oxidative cell damage and senescence.
Collapse
Affiliation(s)
- Qing-Qing Tang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (Q.-Q.T.); (X.-Y.Z.); (R.-Z.Z.); (X.Z.)
| | - Zu-Ding Wang
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 750021, China; (Z.-D.W.); (X.-H.A.)
| | - Xiao-Hong An
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 750021, China; (Z.-D.W.); (X.-H.A.)
| | - Xin-Yuan Zhou
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (Q.-Q.T.); (X.-Y.Z.); (R.-Z.Z.); (X.Z.)
| | - Rong-Zhan Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (Q.-Q.T.); (X.-Y.Z.); (R.-Z.Z.); (X.Z.)
| | - Xiao Zhan
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (Q.-Q.T.); (X.-Y.Z.); (R.-Z.Z.); (X.Z.)
| | - Wei Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Jia Zhou
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (Q.-Q.T.); (X.-Y.Z.); (R.-Z.Z.); (X.Z.)
| |
Collapse
|
12
|
Wan J, Zhang S, Li G, Huang S, Li J, Zhang Z, Liu J. Ceramide Ehux-C22 Targets the miR-199a-3p/mTOR Signaling Pathway to Regulate Melanosomal Autophagy in Mouse B16 Cells. Int J Mol Sci 2024; 25:8061. [PMID: 39125630 PMCID: PMC11312279 DOI: 10.3390/ijms25158061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Melanosomes are specialized membrane-bound organelles where melanin is synthesized and stored. The levels of melanin can be effectively reduced by inhibiting melanin synthesis or promoting melanosome degradation via autophagy. Ceramide, a key component in the metabolism of sphingolipids, is crucial for preserving the skin barrier, keeping it hydrated, and warding off the signs of aging. Our preliminary study indicated that a long-chain C22-ceramide compound (Ehux-C22) isolated from the marine microalga Emiliania huxleyi, reduced melanin levels via melanosomal autophagy in B16 cells. Recently, microRNAs (miRNAs) were shown to act as melanogenesis-regulating molecules in melanocytes. However, whether the ceramide Ehux-C22 can induce melanosome autophagy at the post-transcriptional level, and which potential autophagy-dependent mechanisms are involved, remains unknown. Here, miR-199a-3p was screened and identified as a novel upregulated miRNA in Ehux-C22-treated B16 cells. An in vitro high melanin expression model in cultured mouse melanoma cells (B16 cells) was established by using 0.2 μM alpha-melanocyte-stimulating hormone(α-MSH) and used for subsequent analyses. miR-199a-3p overexpression significantly enhanced melanin degradation, as indicated by a reduction in the melanin level and an increase in melanosome autophagy. Further investigation demonstrated that in B16 cells, Ehux-C22 activated miR-199a-3p and inhibited mammalian target of rapamycin(mTOR) level, thus activating the mTOR-ULK1 signaling pathway by promoting the expression of unc-51-like autophagy activating kinase 1 (ULK1), B-cell lymphoma-2 (Bcl-2), Beclin-1, autophagy-related gene 5 (ATG5), and microtubule-associated protein light chain 3 (LC3-II) and degrading p62. Therefore, the roles of Ehux-C22-regulated miR-199a-3p and the mTOR pathway in melanosomal autophagy were elucidated. This research may provide novel perspectives on the post-translational regulation of melanin metabolism, which involves the coordinated control of melanosomes.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhengxiao Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Jingwen Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| |
Collapse
|
13
|
Lee KW, Ryu KJ, Kim M, Lim S, Kim J, Kim JY, Hwangbo C, Yoo J, Cho YY, Kim KD. RCHY1 and OPTN are required for melanophagy, selective autophagy of melanosomes. Proc Natl Acad Sci U S A 2024; 121:e2318039121. [PMID: 38536750 PMCID: PMC10998605 DOI: 10.1073/pnas.2318039121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/28/2024] [Indexed: 04/05/2024] Open
Abstract
Melanosomes are specific organelles dedicated to melanin synthesis and accumulation in melanocytes. Autophagy is suggestively involved in melanosome degradation, although the potential underlying molecular mechanisms remain elusive. In selective autophagy, autophagy receptors and E3-ligases are the key factors conferring cargo selectivity. In B16F10 cells, β-mangostin efficiently induced melanosome degradation without affecting other organelles such as mitochondria, peroxisomes, and the endoplasmic reticulum. Among various autophagy receptors, optineurin (OPTN) contributes TANK-binding kinase 1 (TBK1)-dependently to melanosome degradation and its knockdown inhibited β-mangostin-mediated melanosome degradation. OPTN translocation to melanosomes was dependent on its ubiquitin-binding domain. Moreover, OPTN-mediated TBK1 activation and subsequent TBK1-mediated S187 OPTN phosphorylation were essential for melanosome degradation. β-mangostin increased K63-linked melanosome ubiquitination. Finally, the E3-ligase RCHY1 knockdown inhibited the melanosome ubiquitination required for OPTN- and TBK1-phosphorylation as well as melanosome degradation. This study suggests that melanophagy, melanosome-selective autophagy, contributes to melanosome degradation, and OPTN and RCHY1 are an essential autophagy receptor and a E3-ligase, respectively, conferring cargo selectivity in melanophagy.
Collapse
Affiliation(s)
- Ki Won Lee
- Anti-aging Bio Cell factory Regional Leading Research Center, Gyeongsang National University, Jinju52828, South Korea
- Division of Applied Life Science (Brain Korea 21 Four), Gyeongsang National University, Jinju 52828, South Korea
| | - Ki-jun Ryu
- Research Institute of Life Sciences, Gyeongsang National University, Jinju52828, South Korea
| | - Minju Kim
- Division of Applied Life Science (Brain Korea 21 Four), Gyeongsang National University, Jinju 52828, South Korea
| | - Seyeon Lim
- Division of Applied Life Science (Brain Korea 21 Four), Gyeongsang National University, Jinju 52828, South Korea
| | - Jisu Kim
- Division of Applied Life Science (Brain Korea 21 Four), Gyeongsang National University, Jinju 52828, South Korea
| | - Jeong Yoon Kim
- Department of Pharmaceutical Engineering, Gyeongsang National University, Jinju52725, South Korea
| | - Cheol Hwangbo
- Division of Applied Life Science (Brain Korea 21 Four), Gyeongsang National University, Jinju 52828, South Korea
- Division of Life Science, Gyeongsang National University, Jinju52828, South Korea
| | - Jiyun Yoo
- Division of Applied Life Science (Brain Korea 21 Four), Gyeongsang National University, Jinju 52828, South Korea
- Division of Life Science, Gyeongsang National University, Jinju52828, South Korea
| | - Yong-Yeon Cho
- College of Pharmacy, The Catholic University of Korea, Wonmi-Gu, Bucheon-si, Gyeonggi-Do14662, South Korea
| | - Kwang Dong Kim
- Anti-aging Bio Cell factory Regional Leading Research Center, Gyeongsang National University, Jinju52828, South Korea
- Division of Applied Life Science (Brain Korea 21 Four), Gyeongsang National University, Jinju 52828, South Korea
- Division of Life Science, Gyeongsang National University, Jinju52828, South Korea
- Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju52828, South Korea
| |
Collapse
|
14
|
Paus R, Sevilla A, Grichnik JM. Human Hair Graying Revisited: Principles, Misconceptions, and Key Research Frontiers. J Invest Dermatol 2024; 144:474-491. [PMID: 38099887 DOI: 10.1016/j.jid.2023.09.276] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/09/2023] [Accepted: 09/12/2023] [Indexed: 02/25/2024]
Abstract
Hair graying holds psychosocial importance and serves as an excellent model for studying human pigmentation and aging in an accessible miniorgan. Current evidence suggests that graying results from an interindividually varying mixture of cumulative oxidative and DNA damage, excessive mTORC1 activity, melanocyte senescence, and inadequate production of pigmentation-promoting factors in the hair matrix. Various regulators modulate this process, including genetic factors (DNA repair defects and IRF4 sequence variation, peripheral clock genes, P-cadherin signaling, neuromediators, HGF, KIT ligand secretion, and autophagic flux. This leads to reduced MITF- and tyrosinase-controlled melanogenesis, defective melanosome transfer to precortical matrix keratinocytes, and eventual depletion of hair follicle (HF) pigmentary unit (HFPU) melanocytes and their local progenitors. Graying becomes irreversible only when bulge melanocyte stem cells are also depleted, occurring later in this process. Distinct pigmentary microenvironments are created as the HF cycles: early anagen is the most conducive phase for melanocytic reintegration and activation, and only during anagen can the phenotype of hair graying and repigmentation manifest, whereas the HFPU disassembles during catagen. The temporary reversibility of graying is highlighted by several drugs and hormones that induce repigmentation, indicating potential target pathways. We advise caution in directly applying mouse model concepts, define major open questions, and discuss future human antigraying strategies.
Collapse
Affiliation(s)
- Ralf Paus
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA; CUTANEON - Skin & Hair Innovations, Hamburg, Germany; Monasterium Laboratory, Münster, Germany.
| | - Alec Sevilla
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA; Department of Internal Medicine, Lakeland Regional Health, Lakeland, Florida, USA
| | - James M Grichnik
- Department of Dermatology & Cutaneous Surgery, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
15
|
Papaccio F, Caputo S, Iorio A, De Simone P, Ottaviani M, Del Brocco A, Frascione P, Bellei B. Persistent β-Hexachlorocyclohexane Exposure Impacts Cellular Metabolism with a Specific Signature in Normal Human Melanocytes. Cells 2024; 13:374. [PMID: 38474338 PMCID: PMC10930995 DOI: 10.3390/cells13050374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/27/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Cutaneous melanoma arises from skin melanocytes and has a high risk of metastatic spread. Despite better prevention, earlier detection, and the development of innovative therapies, melanoma incidence and mortality increase annually. Major clinical risk factors for melanoma include fair skin, an increased number of nevi, the presence of dysplastic nevi, and a family history of melanoma. However, several external inducers seem to be associated with melanoma susceptibility such as environmental exposure, primarily unprotected sun experience, alcohol consumption, and heavy metals. In recent years, epidemiological studies have highlighted a potential risk of β-hexachlorocyclohexane (β-HCH), the most studied organochlorine pesticide, causing cancer induction including melanoma. METHODS We evaluated in vitro the impact of this pollutant on epidermal and dermal cells, attempting to describe mechanisms that could render cutaneous cells more prone to oncogenic transformation. RESULTS We demonstrated that β-HCH impacts melanocyte biology with a highly cell-type specific signature that involves perturbation of AKT/mTOR and Wnt/β-catenin signaling, and AMPK activation, resulting in lowering energy reserve, cell proliferation, and pigment production. CONCLUSIONS In conclusion, long-term exposure to persistent organic pollutants damages melanocyte metabolism in its function of melanin production with a consequent reduction of melanogenesis indicating a potential augmented skin cancer risk.
Collapse
Affiliation(s)
- Federica Papaccio
- Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (F.P.); (S.C.); (M.O.)
| | - Silvia Caputo
- Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (F.P.); (S.C.); (M.O.)
| | - Alessandra Iorio
- Oncologic and Preventative Dermatology, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (A.I.); (P.D.S.); (P.F.)
| | - Paola De Simone
- Oncologic and Preventative Dermatology, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (A.I.); (P.D.S.); (P.F.)
| | - Monica Ottaviani
- Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (F.P.); (S.C.); (M.O.)
| | - Antonella Del Brocco
- Laboratory Clinimed, Clinical and Microbiological Analyses Laboratory, 03023 Ceccano, Italy;
| | - Pasquale Frascione
- Oncologic and Preventative Dermatology, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (A.I.); (P.D.S.); (P.F.)
| | - Barbara Bellei
- Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (F.P.); (S.C.); (M.O.)
| |
Collapse
|
16
|
Ahn GR, Park HJ, Koh YG, Kim KR, Kim YJ, Lee JO, Seok J, Yoo KH, Lee KB, Kim BJ. The effect of low-intensity cold atmospheric plasma jet on photoaging-induced hyperpigmentation in mouse model. J Cosmet Dermatol 2023; 22:2799-2809. [PMID: 37205626 DOI: 10.1111/jocd.15778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/07/2023] [Accepted: 04/03/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Cold atmospheric plasma (CAP) produces reactive oxygen/nitrogen species (RONS) in the target and can induce cytoprotective effects by activating hormesis-related pathways when its intensity is in the low range. OBJECTIVES The aim of this study is to evaluate the effect of low-intensified CAP (LICAP) on skin with photoaging-induced hyperpigmentation in an animal model. METHODS Changes in cell viability and RONS production following LICAP treatment were measured. For the in vivo study, 30 hairless mice underwent antecedent photoaging induction followed by the allocated therapy (i.e., LICAP, topical ascorbic acid (AA), or both). During the first 4 weeks of the treatment period (8 weeks), ultraviolet (UV)-B irradiation was concurrently administered. Visual inspection and measurement of the melanin index (MI) were performed to assess the change in skin pigmentation at Weeks 0, 2, 4, 6, and 8. RESULTS RONS production increased linearly until the saturation point. Cell viability was not significantly affected by LICAP treatment. At Week 8, MI was significantly decreased in every treatment group compared with the values at Week 0 and Week 4. The treatment effect of the concurrent therapy group was superior to that of the LICAP and AA groups. CONCLUSION LICAP appears to be a novel modality for photoprotection and pigment reduction in photodamaged skin. LICAP treatment and topical AA application seem to exert a synergistic effect.
Collapse
Affiliation(s)
- Ga Ram Ahn
- Department of Medicine, Graduate School, Chung-Ang University, Seoul, Korea
- Department of Dermatology, Chung-Ang University Hospital, Seoul, Korea
| | - Hyung Joon Park
- Department of Interdisciplinary Bio/Micro System Technology, College of Engineering, Korea University, Seoul, Korea
| | - Young Gue Koh
- Department of Dermatology, Chung-Ang University Hospital, Seoul, Korea
| | - Ka Ram Kim
- Department of Dermatology, Chung-Ang University Hospital, Seoul, Korea
| | - Yu Jin Kim
- Department of Medicine, Graduate School, Chung-Ang University, Seoul, Korea
| | - Jung Ok Lee
- Department of Medicine, Graduate School, Chung-Ang University, Seoul, Korea
| | - Joon Seok
- Department of Dermatology, Chung-Ang University Hospital, Seoul, Korea
| | - Kwang Ho Yoo
- Department of Dermatology, Chung-Ang University Gwangmyeong Hospital, Gwangmyeong-Si, Gyeonggi-do, Korea
| | - Kyu Back Lee
- Department of Interdisciplinary Bio/Micro System Technology, College of Engineering, Korea University, Seoul, Korea
- School of Biomedical Engineering, Korea University, Seoul, Korea
| | - Beom Joon Kim
- Department of Medicine, Graduate School, Chung-Ang University, Seoul, Korea
- Department of Dermatology, Chung-Ang University Hospital, Seoul, Korea
| |
Collapse
|
17
|
Bento-Lopes L, Cabaço LC, Charneca J, Neto MV, Seabra MC, Barral DC. Melanin's Journey from Melanocytes to Keratinocytes: Uncovering the Molecular Mechanisms of Melanin Transfer and Processing. Int J Mol Sci 2023; 24:11289. [PMID: 37511054 PMCID: PMC10379423 DOI: 10.3390/ijms241411289] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/23/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Skin pigmentation ensures efficient photoprotection and relies on the pigment melanin, which is produced by epidermal melanocytes and transferred to surrounding keratinocytes. While the molecular mechanisms of melanin synthesis and transport in melanocytes are now well characterized, much less is known about melanin transfer and processing within keratinocytes. Over the past few decades, distinct models have been proposed to explain how melanin transfer occurs at the cellular and molecular levels. However, this remains a debated topic, as up to four different models have been proposed, with evidence presented supporting each. Here, we review the current knowledge on the regulation of melanin exocytosis, internalization, processing, and polarization. Regarding the different transfer models, we discuss how these might co-exist to regulate skin pigmentation under different conditions, i.e., constitutive and facultative skin pigmentation or physiological and pathological conditions. Moreover, we discuss recent evidence that sheds light on the regulation of melanin exocytosis by melanocytes and internalization by keratinocytes, as well as how melanin is stored within these cells in a compartment that we propose be named the melanokerasome. Finally, we review the state of the art on the molecular mechanisms that lead to melanokerasome positioning above the nuclei of keratinocytes, forming supranuclear caps that shield the nuclear DNA from UV radiation. Thus, we provide a comprehensive overview of the current knowledge on the molecular mechanisms regulating skin pigmentation, from melanin exocytosis by melanocytes and internalization by keratinocytes to processing and polarization within keratinocytes. A better knowledge of these molecular mechanisms will clarify long-lasting questions in the field that are crucial for the understanding of skin pigmentation and can shed light on fundamental aspects of organelle biology. Ultimately, this knowledge can lead to novel therapeutic strategies to treat hypo- or hyper-pigmentation disorders, which have a high socio-economic burden on patients and healthcare systems worldwide, as well as cosmetic applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Duarte C. Barral
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; (L.B.-L.); (L.C.C.); (J.C.); (M.V.N.); (M.C.S.)
| |
Collapse
|
18
|
Kawaguchi K, Watanabe M, Furukawa S, Koga K, Kanamori H, Ikemoto MJ, Takashima S, Maeda M, Oh-Hashi K, Hirata Y, Furuta K, Takemori H. Intermittent inhibition of FYVE finger-containing phosphoinositide kinase induces melanosome degradation in B16F10 melanoma cells. Mol Biol Rep 2023:10.1007/s11033-023-08536-9. [PMID: 37248430 DOI: 10.1007/s11033-023-08536-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/17/2023] [Indexed: 05/31/2023]
Abstract
BACKGROUND Melanosomes are lysosome-related organelles that contain melanogenic factors and synthesize melanin as they mature. FYVE finger-containing phosphoinositide kinase (PIKfyve) regulates late endosome and lysosome morphology, vesicle trafficking, and autophagy. In melanocytes, PIKfyve inhibition has been reported to induce hypopigmentation due to impairments in the metabolism of early-stage melanosomes. METHODS AND RESULTS Here, we report a new type of melanosome metabolism: post-PIKfyve inhibition, which was found during the characterization of the endosome/lysosome fluoroprobe GIF-2250. In B16F10 mouse melanoma cells, GIF-2250 highlighted vesicles positive for lysosomal-associated membrane protein 1 (lysosome marker) and other endosome/lysosome markers (CD63 and Rab7/9). When cells were continuously treated with PIKfyve inhibitors, intracellular vacuoles formed, while GIF-2250 fluorescence signals diminished and were diffusely distributed in the vacuoles. After removal of the PIKfyve inhibitors, the GIF-2250 signal intensity was restored, and some GIF-2250-positive vesicles wrapped the melanosomes, which spun at high speed. In addition, intermittent PIKfyve inhibition caused melanin diffusion in the vacuoles and possible leakage into the cytoplasmic compartments, and melanosome degradation was detected by a transmission electron microscope. Melanosome degradation was accompanied by decreased levels of melanin synthesis enzymes and increased levels of the autophagosome maker LC3BII, which is also associated with early melanosomes. However, the protein levels of p62, which is degraded during autophagy, were increased, suggesting an impairment in autophagy flux during intermittent PIKfyve inhibition. Moreover, the autophagy inhibitor 3-methyladenine does not affect these protein levels, suggesting that the melanosome degradation by the intermittent inhibition of PIKfyve is not mediated by canonical autophagy. CONCLUSIONS In conclusion, disturbance of PIKfyve activity induces melanosome degradation in a canonical autophagy-independent manner.
Collapse
Affiliation(s)
- Kyoka Kawaguchi
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Miyu Watanabe
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Saho Furukawa
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Kenichi Koga
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Hiromitsu Kanamori
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Mitsushi J Ikemoto
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, 305-8566, Ibaraki, Japan
- Graduate School of Science, Toho University, 2-2-1 Miyama, Funabashi, 274-8510, Chiba, Japan
- Advanced Research Initiative for Human High Performance (ARIHHP), Faculty of Health and Sports Sciences, University of Tsukuba, Tsukuba, 305-8574, Japan
| | - Shigeo Takashima
- Institute for Glycocore Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- The United Graduate School of Drug Discovery and Medical Information Sciences of Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Miwa Maeda
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Kentaro Oh-Hashi
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- The United Graduate School of Drug Discovery and Medical Information Sciences of Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Yoko Hirata
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- The United Graduate School of Drug Discovery and Medical Information Sciences of Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Kyoji Furuta
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- The United Graduate School of Drug Discovery and Medical Information Sciences of Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Hiroshi Takemori
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
- The United Graduate School of Drug Discovery and Medical Information Sciences of Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
| |
Collapse
|
19
|
Goncalves K, De Los Santos Gomez P, Costello L, Smith L, Mead H, Simpson A, Przyborski S. Investigation into the effect of skin tone modulators and exogenous stress on skin pigmentation utilizing a novel bioengineered skin equivalent. Bioeng Transl Med 2023; 8:e10415. [PMID: 36925688 PMCID: PMC10013773 DOI: 10.1002/btm2.10415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/08/2022] [Accepted: 08/30/2022] [Indexed: 11/11/2022] Open
Abstract
Human skin equivalents (HSEs) are a popular technology due to limitations in animal testing, particularly as they recapitulate aspects of structure and function of human skin. Many HSEs contain two basic cell types to model dermal and epidermal compartments, however this limits their application, particularly when investigating the effect of exogenous stressors on skin health. We describe the development of a novel platform technology that accurately replicates skin pigmentation in vitro. Through incorporation of melanocytes, specialized pigment producing cells, into the basal layer of the epidermis we are able to re-create skin pigmentation in vitro. We observe apical distribution of melanin within keratinocytes and formation of supranuclear caps (SPNCs), only when the epidermal compartment is co-cultured with a dermal compartment, leading to the conclusion that fibroblast support is essential for correct pigment organization. We also evaluate the commonly observed phenomenon that pigmentation darkens with time in vitro, which we further explore through mechanical exfoliation to remove a build-up of melanin deposits in the stratum corneum. Finally, we demonstrate the application of a pigmented HSE to investigate drug modulation of skin tone and protection from UV-induced damage, highlighting the importance of such a model in the wider context of skin biology.
Collapse
Affiliation(s)
| | | | | | - Lucy Smith
- Department of BiosciencesDurham UniversityDurhamUK
| | - Hugh Mead
- Department of BiosciencesDurham UniversityDurhamUK
| | - Amy Simpson
- Department of BiosciencesDurham UniversityDurhamUK
| | - Stefan Przyborski
- Department of BiosciencesDurham UniversityDurhamUK
- Reprocell Europe LtdGlasgowUK
| |
Collapse
|
20
|
Waku T, Nakada S, Masuda H, Sumi H, Wada A, Hirose S, Aketa I, Kobayashi A. The CNC-family transcription factor Nrf3 coordinates the melanogenesis cascade through macropinocytosis and autophagy regulation. Cell Rep 2023; 42:111906. [PMID: 36640303 DOI: 10.1016/j.celrep.2022.111906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 10/06/2022] [Accepted: 12/09/2022] [Indexed: 12/31/2022] Open
Abstract
Melanin is a pigment produced from the amino acid L-tyrosine in melanosomes. The CNC-family transcription factor Nrf3 is expressed in the basal layer of the epidermis, where melanocytes reside, but its melanogenic function is unclear. Here, we show that Nrf3 regulates macropinocytosis and autophagy to coordinate melanogenesis cascade. In response to an exogenous inducer of melanin production, forskolin, Nrf3 upregulates the core melanogenic gene circuit, which includes Mitf, Tyr, Tyrp1, Pmel, and Oca2. Furthermore, Nrf3 induces the gene expression of Cln3, an autophagosome-related factor, for melanin precursor uptake by macropinocytosis. Ulk2 and Gabarapl2 are also identified as Nrf3-target autophagosome-related genes for melanosome formation. In parallel, Nrf3 prompts autolysosomal melanosome degradation for melanocyte survival. An endogenous melanogenic inducer αMSH also activates Nrf3-mediated melanin production, whereas it is suppressed by an HIV-1 protease inhibitor, nelfinavir. These findings indicate the significant role of Nrf3 in the melanogenesis and the anti-melanogenic potential of nelfinavir.
Collapse
Affiliation(s)
- Tsuyoshi Waku
- Laboratory for Genetic Code, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan.
| | - Sota Nakada
- Laboratory for Genetic Code, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| | - Haruka Masuda
- Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| | - Haruna Sumi
- Laboratory for Genetic Code, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| | - Ayaka Wada
- Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| | - Shuuhei Hirose
- Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| | - Iori Aketa
- Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| | - Akira Kobayashi
- Laboratory for Genetic Code, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan; Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan.
| |
Collapse
|
21
|
Yap PG, Gan CY, Naharudin I, Wong TW. Effect of Chicken Egg White-Derived Peptide and Hydrolysates on Abnormal Skin Pigmentation during Wound Recovery. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010092. [PMID: 36615286 PMCID: PMC9822140 DOI: 10.3390/molecules28010092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Abnormal skin pigmentation commonly occurs during the wound healing process due to the overproduction of melanin. Chicken egg white (CEW) has long been used to improve skin health. Previous published works had found CEW proteins house bioactive peptides that inhibit tyrosinase, the key enzyme of melanogenesis. The current study aimed to evaluate the anti-pigmentation potential and mechanism of the CEW-derived peptide (GYSLGNWVCAAK) and hydrolysates (CEWHmono and CEWHdi), using a cell-based model. All of these peptide and hydrolysates inhibited intracellular tyrosinase activity and melanin level up to 45.39 ± 1.31 and 70.01 ± 1.00%, respectively. GYSLGNWVCAAK and CEWHdi reduced intracellular cAMP levels by 13.38 ± 3.65 and 14.55 ± 2.82%, respectively; however, CEWHmono did not affect cAMP level. Moreover, the hydrolysates downregulated the mRNA expression of melanogenesis-related genes, such as Mitf, Tyr, Trp-1 and Trp-2, but GYSLGNWVCAAK only suppressed Tyr gene expression. Downregulation of the genes may lower the catalytic activities and/or affect the structural stability of TYR, TRP-1 and TRP-2; thus, impeding melanogenesis to cause an anti-pigmentation effect in the cell. Outcomes from the current study could serve as the starting point to understand the underlying complex, multifaceted melanogenesis regulatory mechanism at the cellular level.
Collapse
Affiliation(s)
- Pei-Gee Yap
- Analytical Biochemistry Research Centre (ABrC), Universiti Sains Malaysia, University Innovation Incubator Building, SAINS@USM Campus, Lebuh Bukit Jambul, Bayan Lepas 11900, Penang, Malaysia
| | - Chee-Yuen Gan
- Analytical Biochemistry Research Centre (ABrC), Universiti Sains Malaysia, University Innovation Incubator Building, SAINS@USM Campus, Lebuh Bukit Jambul, Bayan Lepas 11900, Penang, Malaysia
- Correspondence: ; Tel.: +604-653-4206
| | - Idanawati Naharudin
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, Puncak Alam 42300, Selangor, Malaysia
- Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam 42300, Selangor, Malaysia
| | - Tin-Wui Wong
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, Puncak Alam 42300, Selangor, Malaysia
- Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam 42300, Selangor, Malaysia
| |
Collapse
|
22
|
Ma J, Teng Y, Huang Y, Tao X, Fan Y. Autophagy plays an essential role in ultraviolet radiation-driven skin photoaging. Front Pharmacol 2022; 13:864331. [PMID: 36278173 PMCID: PMC9582953 DOI: 10.3389/fphar.2022.864331] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 09/05/2022] [Indexed: 11/23/2022] Open
Abstract
Photoaging is characterized by a chronic inflammatory response to UV light. One of the most prominent features of cutaneous photoaging is wrinkling, which is due primarily to a loss of collagen fibers and deposits of abnormal degenerative elastotic material within the dermis (actinic elastosis). These changes are thought to be mediated by inflammation, with subsequent upregulation of extracellular matrix-degrading proteases and down-regulation of collagen synthesis. Autophagy is a vital homeostatic cellular process of either clearing surplus or damaged cell components notably lipids and proteins or recycling the content of the cells’ cytoplasm to promote cell survival and adaptive responses during starvation and other oxidative and/or genotoxic stress conditions. Autophagy may also become a means of supplying nutrients to maintain a high cellular proliferation rate when needed. It has been suggested that loss of autophagy leads to both photodamage and the initiation of photoaging in UV exposed skin. Moreover, UV radiation of sunlight is capable of regulating a number of autophagy-linked genes. This review will focus on the protective effect of autophagy in the skin cells damaged by UV radiation. We hope to draw attention to the significance of autophagy regulation in the prevention and treatment of skin photoaging.
Collapse
|
23
|
Shining Light on Autophagy in Skin Pigmentation and Pigmentary Disorders. Cells 2022; 11:cells11192999. [PMID: 36230960 PMCID: PMC9563738 DOI: 10.3390/cells11192999] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/13/2022] [Accepted: 09/23/2022] [Indexed: 01/18/2023] Open
Abstract
Autophagy is a vital process for cell survival and it preserves homeostasis by recycling or disassembling unnecessary or dysfunctional cellular constituents. Autophagy ameliorates skin integrity, regulating epidermal differentiation and constitutive pigmentation. It induces melanogenesis and contributes to skin color through melanosome turnover. Autophagy activity is involved in skin phenotypic plasticity and cell function maintenance and, if altered, it concurs to the onset and/or progression of hypopigmentary and hyperpigmentary disorders. Overexpression of autophagy exerts a protective role against the intrinsic metabolic stress occurring in vitiligo skin, while its dysfunction has been linked to the tuberous sclerosis complex hypopigmentation. Again, autophagy impairment reduces melanosome degradation by concurring to pigment accumulation characterizing senile lentigo and melasma. Here we provide an updated review that describes recent findings on the crucial role of autophagy in skin pigmentation, thus revealing the complex interplay among melanocyte biology, skin environment and autophagy. Hence, targeting this process may also represent a promising strategy for treating pigmentary disorders.
Collapse
|
24
|
A systematic exploration reveals the potential of spermidine for hypopigmentation treatment through the stabilization of melanogenesis-associated proteins. Sci Rep 2022; 12:14478. [PMID: 36008447 PMCID: PMC9411574 DOI: 10.1038/s41598-022-18629-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/16/2022] [Indexed: 11/08/2022] Open
Abstract
Spermidine (SPD), a polyamine naturally present in living organisms, is known to prolong the lifespan of animals. In this study, the role of SPD in melanogenesis was investigated, showing potential as a pigmenting agent. SPD treatment increased melanin production in melanocytes in a dose dependent manner. Computational analysis with RNA-sequencing data revealed the alteration of protein degradation by SPD treatment without changes in the expressions of melanogenesis-related genes. Indeed, SPD treatment significantly increased the stabilities of tyrosinase-related protein (TRP)-1 and -2 while inhibiting ubiquitination, which was confirmed by treatment of proteasome inhibitor MG132. Inhibition of protein synthesis by cycloheximide (CHX) showed that SPD treatment increased the resistance of TRP-1 and TRP-2 to protein degradation. To identify the proteins involved in SPD transportation in melanocytes, the expression of several solute carrier (SLC) membrane transporters was assessed and, among 27 transporter genes, SLC3A2, SLC7A1, SLC18B1, and SLC22A18 were highly expressed, implying they are putative SPD transporters in melanocytes. Furthermore, SLC7A1 and SLC22A18 were downregulated by SPD treatment, indicating their active involvement in polyamine homeostasis. Finally, we applied SPD to a human skin equivalent and observed elevated melanin production. Our results identify SPD as a potential natural product to alleviate hypopigmentation.
Collapse
|
25
|
Skin-Aging Pigmentation: Who Is the Real Enemy? Cells 2022; 11:cells11162541. [PMID: 36010618 PMCID: PMC9406699 DOI: 10.3390/cells11162541] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 12/21/2022] Open
Abstract
Skin aging is induced and sustained by chronological aging and photoaging. Aging skin pigmentation such as mottled pigmentation (senile lentigo) and melasma are typical signs of photoaging. The skin, like other human organs, undergoes cellular senescence, and senescent cells in the skin increase with age. The crosstalk between melanocytes as pigmentary cells and other adjacent types of aged skin cells such as senescent fibroblasts play a role in skin-aging pigmentation. In this review, we provide an overview of cellular senescence during the skin-aging process. The discussion also includes cellular senescence related to skin-aging pigmentation and the therapeutic potential of regulating the senescence process.
Collapse
|
26
|
Abstract
Melasma is a multifactorial dyschromia that results from exposure to external factors (such as solar radiation) and hormonal factors (such as sex hormones and pregnancy), as well as skin inflammation (such as contact dermatitis and esthetic procedures), in genetically predisposed individuals. Beyond hyperfunctional melanocytes, skin with melasma exhibits a series of structural and functional alterations in the epidermis, basement membrane, and upper dermis that interact to elicit and sustain a focal hypermelanogenic phenotype. Evolution in the knowledge of the genetic basis of melasma and the cutaneous response to solar radiation, as well as the roles of endocrine factors, antioxidant system, endothelium proliferation, fibroblast senescence, mast cell degranulation, autophagy deficits of the melanocyte, and the paracrine regulation of melanogenesis, will lead to the development of new treatments and preventive strategies. This review presents current knowledge on these aspects of the pathogenesis of melasma and discusses the effects of specific treatments and future research on these issues.
Collapse
|
27
|
Effects of Air Pollution on Cellular Senescence and Skin Aging. Cells 2022; 11:cells11142220. [PMID: 35883663 PMCID: PMC9320051 DOI: 10.3390/cells11142220] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/02/2022] [Accepted: 07/11/2022] [Indexed: 12/13/2022] Open
Abstract
The human skin is exposed daily to different environmental factors such as air pollutants and ultraviolet (UV) light. Air pollution is considered a harmful environmental risk to human skin and is known to promote aging and inflammation of this tissue, leading to the onset of skin disorders and to the appearance of wrinkles and pigmentation issues. Besides this, components of air pollution can interact synergistically with ultraviolet light and increase the impact of damage to the skin. However, little is known about the modulation of air pollution on cellular senescence in skin cells and how this can contribute to skin aging. In this review, we are summarizing the current state of knowledge about air pollution components, their involvement in the processes of cellular senescence and skin aging, as well as the current therapeutic and cosmetic interventions proposed to prevent or mitigate the effects of air pollution in the skin.
Collapse
|
28
|
Lee KW, Kim M, Lee SH, Kim KD. The Function of Autophagy as a Regulator of Melanin Homeostasis. Cells 2022; 11:cells11132085. [PMID: 35805169 PMCID: PMC9265842 DOI: 10.3390/cells11132085] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 12/18/2022] Open
Abstract
Melanosomes are melanocyte-specific organelles that protect cells from ultraviolet (UV)-induced deoxyribonucleic acid damage through the production and accumulation of melanin and are transferred from melanocytes to keratinocytes. The relatively well-known process by which melanin is synthesized from melanocytes is known as melanogenesis. The relationship between melanogenesis and autophagy is attracting the attention of researchers because proteins associated with autophagy, such as WD repeat domain phosphoinositide-interacting protein 1, microtubule-associated protein 1 light chain 3, autophagy-related (ATG)7, ATG4, beclin-1, and UV-radiation resistance-associated gene, contribute to the melanogenesis signaling pathway. Additionally, there are reports that some compounds used as whitening cosmetics materials induce skin depigmentation through autophagy. Thus, the possibility that autophagy is involved in the removal of melanin has been suggested. To date, however, there is a lack of data on melanosome autophagy and its underlying mechanism. This review highlights the importance of autophagy in melanin homeostasis by providing an overview of melanogenesis, autophagy, the autophagy machinery involved in melanogenesis, and natural compounds that induce autophagy-mediated depigmentation.
Collapse
Affiliation(s)
- Ki Won Lee
- PMBBRC, Gyeongsang National University, Jinju 52828, Korea;
| | - Minju Kim
- Division of Applied Life Science, Gyeongsang National University, Jinju 52828, Korea; (M.K.); (S.H.L.)
| | - Si Hyeon Lee
- Division of Applied Life Science, Gyeongsang National University, Jinju 52828, Korea; (M.K.); (S.H.L.)
| | - Kwang Dong Kim
- PMBBRC, Gyeongsang National University, Jinju 52828, Korea;
- Division of Applied Life Science, Gyeongsang National University, Jinju 52828, Korea; (M.K.); (S.H.L.)
- Correspondence: ; Tel.: +82-55-772-1365; Fax: +82-55-772-1359
| |
Collapse
|
29
|
Amorphigenin from Amorpha fruticosa L. Root Extract Induces Autophagy-Mediated Melanosome Degradation in mTOR-Independent- and AMPK-Dependent Manner. Curr Issues Mol Biol 2022; 44:2856-2867. [PMID: 35877420 PMCID: PMC9318381 DOI: 10.3390/cimb44070196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 11/17/2022] Open
Abstract
In this study, we investigated the depigmentation effect of Amorpha fruticosa L. root extract (RE), an herbal medicine. A. fruticosa RE significantly induced depigmentation in α-MSH-treated B16F10 cells at noncytotoxic concentrations. Further, the RE decreased the protein levels of the melanosomal proteins Tyr and Pmel without decreasing their transcript levels. We found that MG132, a proteasome complex inhibitor, was unable to rescue the protein levels, but PepA/E-64D (a lysosomal enzyme inhibitor), 3-MA (a representative autophagy inhibitor), and ATG5 knockdown effectively rescued the protein levels and inhibited the depigmentation effect following RE treatment. Among rotenoids, amorphigenin composed in the RE was identified as a functional chemical that could induce depigmentation; whereas rapamycin, an mTOR inhibitor and a nonselective autophagy inducer, could not induce depigmentation, and amorphigenin effectively induced depigmentation through the degradation of melanosomal proteins. Amorphigenin activated AMPK without affecting mTOR, and knockdown of AMPK offset the whitening effect through degradation of melanosome proteins by amorphigenin. Results from this study suggested that amorphigenin can induce degradation of the melanosome through an AMPK-dependent autophagy process, and has the potential to be used as a depigmentation agent for the treatment of hyperpigmentation.
Collapse
|
30
|
Pourzand C, Albieri-Borges A, Raczek NN. Shedding a New Light on Skin Aging, Iron- and Redox-Homeostasis and Emerging Natural Antioxidants. Antioxidants (Basel) 2022; 11:471. [PMID: 35326121 PMCID: PMC8944509 DOI: 10.3390/antiox11030471] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 12/10/2022] Open
Abstract
Reactive oxygen species (ROS) are necessary for normal cell signaling and the antimicrobial defense of the skin. However excess production of ROS can disrupt the cellular redox balance and overwhelm the cellular antioxidant (AO) capacity, leading to oxidative stress. In the skin, oxidative stress plays a key role in driving both extrinsic and intrinsic aging. Sunlight exposure has also been a major contributor to extrinsic photoaging of the skin as its oxidising components disrupt both redox- and iron-homeostasis, promoting oxidative damage to skin cells and tissue constituents. Upon oxidative insults, the interplay between excess accumulation of ROS and redox-active labile iron (LI) and its detrimental consequences to the skin are often overlooked. In this review we have revisited the oxidative mechanisms underlying skin damage and aging by focussing on the concerted action of ROS and redox-active LI in the initiation and progression of intrinsic and extrinsic skin aging processes. Based on these, we propose to redefine the selection criteria for skin antiaging and photoprotective ingredients to include natural antioxidants (AOs) exhibiting robust redox-balancing and/or iron-chelating properties. This would promote the concept of natural-based or bio-inspired bifunctional anti-aging and photoprotective ingredients for skincare and sunscreen formulations with both AO and iron-chelating properties.
Collapse
Affiliation(s)
- Charareh Pourzand
- Medicines Design, Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK
- Medicines Development, Centre for Therapeutic Innovation, University of Bath, Bath BA2 7AY, UK
| | - Andrea Albieri-Borges
- Research and Development, ASEA LLC., Pleasant Grove, UT 84062, USA; (A.A.-B.); (N.N.R.)
| | - Nico N. Raczek
- Research and Development, ASEA LLC., Pleasant Grove, UT 84062, USA; (A.A.-B.); (N.N.R.)
| |
Collapse
|
31
|
Implications of Oxidative Stress in the Pathogenesis and Treatment of Hyperpigmentation Disorders. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7881717. [PMID: 35087618 PMCID: PMC8789419 DOI: 10.1155/2022/7881717] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/19/2021] [Accepted: 12/31/2021] [Indexed: 01/19/2023]
Abstract
Oxidative stress represents an imbalance between the generation of reactive oxygen and nitrogen species and the ability of antioxidant systems to decompose those products. Oxidative stress is implicated in the pathogenesis of hyperpigmentation, hypopigmentation, melanoma, and other skin diseases. Regulatory networks involving oxidative stress and related pathways are widely represented in hypopigmentation diseases, particularly vitiligo. However, there is no complete review into the role of oxidative stress in the pathogenesis of hyperpigmentation disorders, especially regarding associations involving oxidative stress and cellular signaling pathways. Here, we review oxidative and antioxidant systems, oxidative stress-induced signal transduction mechanisms, and effects of antioxidant drugs used in preclinical and clinical settings in hyperpigmentation disorders.
Collapse
|
32
|
Rajabi F, Abdollahimajd F, Jabalameli N, Nassiri Kashani M, Firooz A. The Immunogenetics of Alopecia areata. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1367:19-59. [DOI: 10.1007/978-3-030-92616-8_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
33
|
WANG B, AN X, QU L, WANG F. Review on oral plant extracts in Skin Whitening. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.83922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Bo WANG
- Shanghai Jiyan Bio-pharmaceutical Co., China; Yunnan Botanee Bio-technology Group Co., China
| | - Xiaohong AN
- Shanghai Jiyan Bio-pharmaceutical Co., China; Yunnan Botanee Bio-technology Group Co., China
| | - Liping QU
- Shanghai Jiyan Bio-pharmaceutical Co., China; Yunnan Botanee Bio-technology Group Co., China; Botaneen Research Institute, China
| | - Feifei WANG
- Shanghai Jiyan Bio-pharmaceutical Co., China; Yunnan Botanee Bio-technology Group Co., China; Botaneen Research Institute, China
| |
Collapse
|
34
|
Kim J, Choi H. The mucin protein MUCL1 regulates melanogenesis and melanoma genes in a manner dependent on threonine content. Br J Dermatol 2021; 186:532-543. [PMID: 34545566 PMCID: PMC9299140 DOI: 10.1111/bjd.20761] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2021] [Indexed: 11/30/2022]
Abstract
Background The regulation of melanogenesis has been investigated as a long‐held aim for pharmaceutical manipulations with denotations for malignancy of melanoma. Mucins have a protective function in epithelial organs; however, in the most outer organ, the skin, the role of mucins has not been studied enough. Objectives Our initial hypothesis developed from the identification of correlations between pigmentation and expressions of skin mucins, particularly those existing in skin tissue. We aimed to investigate the action of mucins in human melanocytic cells. Materials and methods The expression of mucin proteins in human skin was investigated using microarray data from the Human Protein Atlas consortium (HPA) and the Genotype‐Tissue Expression consortium (GTEx) database. Mucin expression was measured at RNA and protein levels in melanoma cells. The findings were further validated and confirmed by analysis of independent experiments. Results We found that the several mucin proteins showed expression in human skin cells and among these, mucin‐like protein 1 (MUCL1) showed the highest expression and also clear negative correlation with melanogenesis in epidermal melanocytes. We confirmed the correlations between melanogenesis and MUCL1 by revealing negative correlations in melanocytes with different melanin production, resulting from increased composition of threonine, mucin‐conforming amino acid, and increased autophagy‐related forkhead‐box O signalling. Furthermore, threonine itself affects melanogenesis and metastatic activity in melanoma cells. Conclusions We identified a significant association between MUCL1 and threonine with melanogenesis and metastasis‐related genes in melanoma cells. Our results define a novel mechanism of mucin regulation, suggesting diagnostic and preventive roles of MUCL1 in cutaneous melanoma. Whatis already known about this topic? Despite considerable advances in radioactive therapeutics or chemotherapeutic approaches for the treatment of abnormal melanogenesis, there are still many caveats to delivery, effectiveness and safety, thus leaving a necessity for more immediate pharmaceutical targets. Mucins have protective and chemical barrier functions in epithelial organs; however, in the skin, mucin has scarce expression and is known only as a diagnostic aid in skin disorders such as mucinosis.
Whatdoes this study add? We provide detailed analysis demonstrating the potential of mucin‐like protein 1 (MUCL1), which showed negative correlations in melanocytes with different melanin production, resulting from increased composition of threonine and increased autophagy‐related forkhead‐box O signalling in epidermal melanocytes and melanoma cells. We established that through an alternative pathway for MUCL1 biosynthesis, threonine supplementation recovers MUCL1 levels in melanoma. Changes, brought on by the essential amino acid threonine, resulted in substantial modulations in melanogenesis and reduced metastasis‐related genes.
Whatis the translational message? This study demonstrates for the first time that the mucin protein of skin cells is compounded by distorted mucin homeostasis, with major effects on melanogenesis and metastasis‐related genes in melanoma. We anticipate that these novel findings will be of keen interest to the community of scientists and medical practitioners examining skin dysfunction.
Linked Comment: C. Casalou and D.J. Tobin. Br J Dermatol 2022; 186:388–389. Plain language summary available online
Collapse
Affiliation(s)
- J Kim
- Amorepacific R&D Center, 1920 Yonggu-daero, Giheung-gu, Gyeonggi-do, 17074, Korea
| | - H Choi
- Amorepacific R&D Center, 1920 Yonggu-daero, Giheung-gu, Gyeonggi-do, 17074, Korea
| |
Collapse
|
35
|
Wang XY, Guan XH, Yu ZP, Wu J, Huang QM, Deng KY, Xin HB. Human amniotic stem cells-derived exosmal miR-181a-5p and miR-199a inhibit melanogenesis and promote melanosome degradation in skin hyperpigmentation, respectively. Stem Cell Res Ther 2021; 12:501. [PMID: 34507619 PMCID: PMC8431893 DOI: 10.1186/s13287-021-02570-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/22/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Hyperpigmentation of skin is caused by an imbalance between the melanosome/melanin synthesis in melanocytes and the melanosome/melanin degradation in keratinocytes. Although studies showed that stem cells play a role in hypopigmentation, the underlying mechanisms are far not elucidated. Human amniotic stem cells (hASCs) including human amniotic mesenchymal stem cells (hAMSCs) and human amniotic epithelial stem cells (hAESCs) were considered to be a promising cell source for stem cells-based therapy of many diseases clinically due to their pluripotent potential, no tumorigenesis and immunogenicity, no ethical issues, and potent paracrine effects. Here, we reported that both hASCs and their conditional medium (CM) had a potent anti-hyperpigmentation in skin in vivo and in vitro. METHODS hAESCs and hAMSCs were identified by RT-PCR, flow cytometric analysis and immunofluorescence. Effects of hASCs and hASC-CM on pigmentation were evaluated in B16F10 cells stimulated with α-melanocyte-stimulating hormone (α-MSH), and mouse ears or human skin substitutes treated with ultraviolet radiation B (UVB). Expressions of the key proteins related with melanogenesis and autophagic flux were detected by western blot in B16F10 cells for further exploring the effects and the underlying mechanisms of hAESC-CM and hAMSC-CM on melanogenesis and melanosome degradation. The hAMSCs exosomes-derived miRNAs were determined by sequencing. RT-PCR, western blot, melanin content analysis and luciferase activity assay were used to determine the hypopigmentation of miR-181a-5p and miR-199a. RESULTS In our study, we observed that both hASCs and their CM significantly alleviated the α-MSH in B16F10 cells or UVB-induced hyperpigmentation in mouse ears or human skin substitutes by suppressing melanin synthesis and promoting melanosome degradation in vivo and in vitro. Furthermore, we demonstrated that miR-181a-5p and miR-199a derived from hASCs exosomes remarkably inhibited melanogenesis by suppressing MITF (microphthalmia-associated transcription factor) which is a master regulator for governing melanogenesis and promoting melanosome degradation through activating autophagy, respectively. CONCLUSIONS Our studies provided strong evidence that the conditional medium and exosomes derived from hAMSCs inhibit skin hyperpigmentation by suppressing melanogenesis and promoting melanosome degradation, indicating that the hASCs exosomes or their released microRNAs might be as reagents for cell-free therapy in hyperpigmented disorders clinically.
Collapse
Affiliation(s)
- Xiao-Yu Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, Jiangxi, China
- College of Life Science, Nanchang University, 999 Xuefu Road, Honggutan District, Nanchang, 330031, Jiangxi, China
| | - Xiao-Hui Guan
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Zhen-Ping Yu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, Jiangxi, China
- College of Life Science, Nanchang University, 999 Xuefu Road, Honggutan District, Nanchang, 330031, Jiangxi, China
| | - Jie Wu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, Jiangxi, China
- College of Life Science, Nanchang University, 999 Xuefu Road, Honggutan District, Nanchang, 330031, Jiangxi, China
| | - Qi-Ming Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, Jiangxi, China
- College of Life Science, Nanchang University, 999 Xuefu Road, Honggutan District, Nanchang, 330031, Jiangxi, China
| | - Ke-Yu Deng
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, Jiangxi, China.
- College of Life Science, Nanchang University, 999 Xuefu Road, Honggutan District, Nanchang, 330031, Jiangxi, China.
| | - Hong-Bo Xin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, Jiangxi, China.
- College of Life Science, Nanchang University, 999 Xuefu Road, Honggutan District, Nanchang, 330031, Jiangxi, China.
| |
Collapse
|
36
|
Chen SJ, Hseu YC, Gowrisankar YV, Chung YT, Zhang YZ, Way TD, Yang HL. The anti-melanogenic effects of 3-O-ethyl ascorbic acid via Nrf2-mediated α-MSH inhibition in UVA-irradiated keratinocytes and autophagy induction in melanocytes. Free Radic Biol Med 2021; 173:151-169. [PMID: 34314818 DOI: 10.1016/j.freeradbiomed.2021.07.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/07/2021] [Accepted: 07/23/2021] [Indexed: 02/07/2023]
Abstract
3-O-ethyl ascorbic acid (EAA) is an ether-derivative of ascorbic acid, known to inhibit tyrosinase activity, and is widely used in skincare formulations. Nevertheless, the molecular mechanisms underlying the EAA's effects are poorly understood. Here, the anti-melanogenic activity of EAA was demonstrated through Nrf2-mediated α-MSH inhibition in UVA-irradiated keratinocytes (HaCaT) and autophagy induction and inhibition of α-MSH-stimulated melanogenesis in melanocytes (B16F10). EAA pretreatment increased the HaCaT cell viability but suppressed ROS-mediated p53/POMC/α-MSH pathways in UVA-irradiated cells. Further, the conditioned medium from EAA-pretreated and UVA-irradiated HaCaT cells suppressed the MITF-CREB-tyrosinase pathways leading to the inhibition of melanin synthesis in B16F10 cells. EAA treatment increased nuclear Nrf2 translocation via the p38, PKC, and ROS pathways leading to HO-1, γ-GCLC, and NQO-1 antioxidant expression in HaCaT cells. However, Nrf2 silencing reduced the EAA-mediated anti-melanogenic activity, evidenced by impaired antioxidant gene expression and uncontrolled ROS (H202) generation following UVA irradiation. In B16F10 cells, EAA-induced autophagy was shown by enhanced LC3-II levels, AVO formation, Beclin-1 upregulation, and activation of p62/SQSTM1. Further, EAA-induced anti-melanogenic activity was substantially decreased in autophagy inhibitor (3-MA) pretreated or LC3 knockdown B16F10 cells. Notably, transmission electron microscopy data showed increased melanosome-engulfing autophagosomes in EAA-treated B16F10 cells. Moreover, EAA also down-regulated MC1R, TRP-1/-2, tyrosinase expressions, and melanin synthesis by suppressing the cAMP-CREB-mediated MITF expression in B16F10 cells stimulated with α-MSH. In vivo studies on the zebrafish model further confirmed that EAA inhibited tyrosinase expression/activity and endogenous pigmentation. In conclusion, 3-O-ethyl ascorbic acid is an effective skin-whitening agent and could be used as a topical agent for cosmetic purposes.
Collapse
Affiliation(s)
- Siang-Jyun Chen
- Institute of Nutrition, College of Health Care, China Medical University, Taichung, 406040, Taiwan
| | - You-Cheng Hseu
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung, 406040, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung, 413005, Taiwan; Chinese Medicine Research Center, China Medical University, Taichung, 406040, Taiwan; Research Center of Chinese Herbal Medicine, China Medical University, Taichung, 406040, Taiwan.
| | | | - Yi-Ting Chung
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung, 406040, Taiwan
| | - Yan-Zhen Zhang
- Department of Life Sciences, China Medical University, Taichung, 406040, Taiwan
| | - Tzong-Der Way
- Department of Life Sciences, China Medical University, Taichung, 406040, Taiwan
| | - Hsin-Ling Yang
- Institute of Nutrition, College of Health Care, China Medical University, Taichung, 406040, Taiwan.
| |
Collapse
|
37
|
Kim JY, Lee EJ, Ahn Y, Park S, Bae YJ, Kim TG, Oh SH. Cathepsin L, a Target of Hypoxia-Inducible Factor-1-α, Is Involved in Melanosome Degradation in Melanocytes. Int J Mol Sci 2021; 22:8596. [PMID: 34445307 PMCID: PMC8395286 DOI: 10.3390/ijms22168596] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/31/2021] [Accepted: 08/09/2021] [Indexed: 01/07/2023] Open
Abstract
Hypoxic conditions induce the activation of hypoxia-inducible factor-1α (HIF-1α) to restore the supply of oxygen to tissues and cells. Activated HIF-1α translocates into the nucleus and binds to hypoxia response elements to promote the transcription of target genes. Cathepsin L (CTSL) is a lysosomal protease that degrades cellular proteins via the endolysosomal pathway. In this study, we attempted to determine if CTSL is a hypoxia responsive target gene of HIF-1α, and decipher its role in melanocytes in association with the autophagic pathway. The results of our luciferase reporter assay showed that the expression of CTSL is transcriptionally activated through the binding of HIF1-α at its promoter. Under autophagy-inducing starvation conditions, HIF-1α and CTSL expression is highly upregulated in melan-a cells. The mature form of CTSL is closely involved in melanosome degradation through lysosomal activity upon autophagosome-lysosome fusion. The inhibition of conversion of pro-CTSL to mature CTSL leads to the accumulation of gp100 and tyrosinase in addition to microtubule-associated protein 1 light chain 3 (LC3) II, due to decreased lysosomal activity in the autophagic pathway. In conclusion, we have identified that CTSL, a novel target of HIF-1α, participates in melanosome degradation in melanocytes through lysosomal activity during autophagosome-lysosome fusion.
Collapse
Affiliation(s)
- Ji Young Kim
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea; (J.Y.K.); (E.J.L.); (Y.A.); (S.P.); (Y.J.B.); (T.G.K.)
| | - Eun Jung Lee
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea; (J.Y.K.); (E.J.L.); (Y.A.); (S.P.); (Y.J.B.); (T.G.K.)
- Graduate School of Medical Science, Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Yuri Ahn
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea; (J.Y.K.); (E.J.L.); (Y.A.); (S.P.); (Y.J.B.); (T.G.K.)
| | - Sujin Park
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea; (J.Y.K.); (E.J.L.); (Y.A.); (S.P.); (Y.J.B.); (T.G.K.)
| | - Yu Jeong Bae
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea; (J.Y.K.); (E.J.L.); (Y.A.); (S.P.); (Y.J.B.); (T.G.K.)
| | - Tae Gyun Kim
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea; (J.Y.K.); (E.J.L.); (Y.A.); (S.P.); (Y.J.B.); (T.G.K.)
| | - Sang Ho Oh
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea; (J.Y.K.); (E.J.L.); (Y.A.); (S.P.); (Y.J.B.); (T.G.K.)
- Graduate School of Medical Science, Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
38
|
Chen Q, Zhou D, Abdel-Malek Z, Zhang F, Goff PS, Sviderskaya EV, Wakamatsu K, Ito S, Gross SS, Zippin JH. Measurement of Melanin Metabolism in Live Cells by [U- 13C]-L-Tyrosine Fate Tracing Using Liquid Chromatography-Mass Spectrometry. J Invest Dermatol 2021; 141:1810-1818.e6. [PMID: 33549605 PMCID: PMC8830938 DOI: 10.1016/j.jid.2021.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/17/2020] [Accepted: 01/20/2021] [Indexed: 01/07/2023]
Abstract
Melanin synthesis occurs within a specialized organelle called the melanosome. Traditional methods for measuring melanin levels rely on the detection of chemical degradation products of melanin by high-performance liquid chromatography. Although these methods are robust, they are unable to distinguish between melanin synthesis and degradation and are best suited to measure melanin changes over long periods of time. We developed a method that actively measures both eumelanin and pheomelanin synthesis by fate tracing [U-13C] L-tyrosine using liquid chromatography-mass spectrometry. Using this method, we confirmed the previous reports of the differences in melanin synthesis between melanocytes derived from individuals with different skin colors and MC1R genotype and uncovered new information regarding the differential de novo synthesis of eumelanin and pheomelanin, also called mixed melanogenesis. We also revealed that distinct mechanisms that alter melanosomal pH differentially induce new eumelanin and pheomelanin synthesis. Finally, we revealed that the synthesis of L-3,4-dihydroxyphenylalanine, an important metabolite of L-tyrosine, is differentially controlled by multiple factors. Because L-tyrosine fate tracing is compatible with untargeted liquid chromatography-mass spectrometry‒based metabolomics, this approach enables the broad measurement of cellular metabolism in combination with melanin metabolism, and we anticipate that this approach will shed new light on multiple mechanisms of melanogenesis.
Collapse
Affiliation(s)
- Qiuying Chen
- Department of Pharmacology, Joan and Sanford I. Weill Medical College of Cornell University, New York, New York, USA
| | - Dalee Zhou
- Department of Dermatology, Joan and Sanford I. Weill Medical College of Cornell University, New York, New York, USA
| | - Zalfa Abdel-Malek
- Department of Dermatology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Fengli Zhang
- Department of Pharmacology, Joan and Sanford I. Weill Medical College of Cornell University, New York, New York, USA
| | - Philip S Goff
- Cell Biology Research Centre, Molecular and Clinical Sciences Research Institute, St George's University of London, London, United Kingdom
| | - Elena V Sviderskaya
- Cell Biology Research Centre, Molecular and Clinical Sciences Research Institute, St George's University of London, London, United Kingdom
| | - Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Japan
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Japan
| | - Steven S Gross
- Department of Pharmacology, Joan and Sanford I. Weill Medical College of Cornell University, New York, New York, USA
| | - Jonathan H Zippin
- Department of Pharmacology, Joan and Sanford I. Weill Medical College of Cornell University, New York, New York, USA; Department of Dermatology, Joan and Sanford I. Weill Medical College of Cornell University, New York, New York, USA.
| |
Collapse
|
39
|
Jiang S, Liao ZK, Jia HY, Liu XM, Wan J, Lei TC. The regional distribution of melanosomes in the epidermis affords a localized intensive photoprotection for basal keratinocyte stem cells. J Dermatol Sci 2021; 103:130-134. [PMID: 34238637 DOI: 10.1016/j.jdermsci.2021.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/10/2021] [Accepted: 06/27/2021] [Indexed: 01/06/2023]
Abstract
Human skin is a highly efficient self-renewing barrier that is critical to withstanding environmental insults. Undifferentiated keratinocyte stem cells reside in the basal layer of the epidermis and in hair follicles that continuously give rise to progenies ensuring epidermal turnover and renewal. Ultraviolet (UV) radiation is a proven cause of skin keratinocyte cancers, which preferentially occur at sun-exposed areas of the skin. Fortunately, melanocytes produce melanin that is packaged in specific organelles (termed melanosomes) that are then delivered to nearby keratinocytes, endowing the recipient cells with photoprotection. It has long been thought that melanosome transfer takes place stochastically from melanocytes to keratinocytes via an as-yet-unrecognized manner. However, recent studies have indicated that melanosomes are distributed regionally in the basal layer of the skin, affording localized intensive photoprotection for progenitor keratinocytes and stem cells that reside in the microenvironment of the basal epidermis. In this review, we summarize current knowledge about molecular and cellular mechanisms that are responsible for the selective transfer and exclusive degradation of melanosomes in the epidermis, emphasizing implications for skin carcinogenesis.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhi-Kai Liao
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hai-Yan Jia
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiao-Ming Liu
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jing Wan
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tie-Chi Lei
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
40
|
Kang HY, Lee JW, Papaccio F, Bellei B, Picardo M. Alterations of the pigmentation system in the aging process. Pigment Cell Melanoma Res 2021; 34:800-813. [PMID: 34048137 DOI: 10.1111/pcmr.12994] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 01/10/2023]
Abstract
Human skin aging is a natural phenomenon that results from continuous exposure to intrinsic (time, genetic factors, hormones) as well as extrinsic factors (UV exposure, pollution, tobacco). In areas that are frequently exposed to the sun, photoaging blends with the process of intrinsic aging, resulting in an increased senescent cells number and consequently accelerating the aging process. The severity of photodamage depends on constitutional factors, including skin phototype (skin color, tanning capacity), intensity, and duration of sunlight/UV exposure. Aging affects nearly every aspect of cutaneous biology, including pigmentation. Clinically, the phenotype of age pigmented skin has a mottled, uneven color, primarily due to age spots, with or without hypopigmentation. Uneven pigmentation might be attributed to the hyperactivation of melanocytes, altered distribution of pigment, and turnover. In addition to direct damage to pigment-producing cells, photodamage alters the physiological crosstalk between keratinocytes, fibroblasts, endothelial cells, and melanocytes responsible for natural pigmentation homeostasis. Interestingly, age-independent diffuse expression of senescence-associated markers in the dermal and epidermal compartment is also associated with vitiligo, suggesting that premature senescence plays an important role in the pathology.
Collapse
Affiliation(s)
- Hee Young Kang
- Department of Dermatology, Ajou University School of Medicine, Suwon, Korea
| | - Jin Wook Lee
- Department of Medical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea.,Department of Dermatology, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Federica Papaccio
- Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Barbara Bellei
- Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Mauro Picardo
- Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| |
Collapse
|
41
|
Benito-Martinez S, Salavessa L, Raposo G, Marks MS, Delevoye C. Melanin transfer and fate within keratinocytes in human skin pigmentation. Integr Comp Biol 2021; 61:1546-1555. [PMID: 34021340 DOI: 10.1093/icb/icab094] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Human skin and hair pigmentation play important roles in social behavior but also in photoprotection from the harmful effects of ultraviolet light. The main pigments in mammalian skin, the melanins, are synthesized within specialized organelles called melanosomes in melanocytes, which sit at the basal layer of the epidermis and the hair bulb. The melanins are then transferred from melanocytes to keratinocytes, where they accumulate perinuclearly in membrane-bound organelles as a "cap" above the nucleus. The mechanism of transfer, the nature of the pigmented organelles within keratinocytes, and the mechanism governing their intracellular positioning are all debated and poorly understood, but likely play an important role in the photoprotective properties of melanin in the skin. Here, we detail our current understanding of these processes and present a guideline for future experimentation in this area.
Collapse
Affiliation(s)
- Silvia Benito-Martinez
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, 75005 Paris, France
| | - Laura Salavessa
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, 75005 Paris, France
| | - Graça Raposo
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, 75005 Paris, France
| | - Michael S Marks
- Department of Pathology & Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pathology & Laboratory Medicine and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Cédric Delevoye
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, 75005 Paris, France
| |
Collapse
|
42
|
Hseu YC, Vudhya Gowrisankar Y, Wang LW, Zhang YZ, Chen XZ, Huang PJ, Yen HR, Yang HL. The in vitro and in vivo depigmenting activity of pterostilbene through induction of autophagy in melanocytes and inhibition of UVA-irradiated α-MSH in keratinocytes via Nrf2-mediated antioxidant pathways. Redox Biol 2021; 44:102007. [PMID: 34049220 PMCID: PMC8167190 DOI: 10.1016/j.redox.2021.102007] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/26/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022] Open
Abstract
Pterostilbene (Pt) is a natural polyphenol found in blueberries and several grape varieties. Pt's pharmacological importance was well documented. Nevertheless, the depigmenting effects are not demonstrated. We evaluated the Pt's depigmenting effects through autophagy induction in B16F10 cells and inhibition of UVA (3 J/cm2)-irradiated α-MSH in keratinocyte HaCaT cells via Nrf2-mediated antioxidant pathways. Pt (2.5–5μM) attenuated ROS production and downregulated the POMC/α-MSH pathway in HaCaT cells. The conditioned medium-derived from UVA-irradiated HaCaT pretreated with Pt suppressed melanogenesis in B16F10 through MITF-CREB-tyrosinase pathway downregulation. Interestingly, Pt-induced HaCaT autophagy was revealed by enhanced LC3-II accumulation, p62/SQSTM1 activation, and AVO formation. Pt significantly decreased melanosome gp100 but increased LC3-II levels in HaCaT cells exposed to B16F10-derived melanin. Pt activated and facilitated the Nrf2 antioxidant pathway in HaCaT cells leading to increased HO-1, γ-GCLC, and NQO-1 antioxidant protein expression. ERK, AMPK, and ROS pathways mediate the Nrf2 activation. However, Nrf2 knockdown suppressed Pt's antioxidant ability leading to uncontrolled ROS and α-MSH levels after UVA-irradiation suggested the essentiality of the Nrf2 pathway. Moreover, in α-MSH-stimulated B16F10 cells, Pt (10–30 μM) downregulated the MC1R, MITF, tyrosinase, TRP-1/-2, and melanin expression. Further, Pt showed potent anti-melanogenic effects through autophagy induction mechanism in B16F10 cells, verified by increased LC3-II/p62 levels, AVO formation, and Beclin-1/Bcl-2 ratio, decreased ATG4B levels and PI3K/AKT/mTOR pathway. Transmission electron microscopy provided direct evidence by showing autophagosomes engulfing melanosomes following Pt treatment in α-MSH-stimulated B16F10 cells. Moreover, Pt-induced anti-melanogenic activity through the downregulation of CREB-MITF pathway-mediated TRP-1/-2, tyrosinase expressions, melanosome formation, and melanin synthesis was substantially reversed due to 3-MA (autophagy inhibitor) pretreatment or LC3 silencing in B16F10 cells. In vivo results also confirmed that Pt-inhibited tyrosinase expression/activity and endogenous pigmentation in the zebrafish model. Therefore, pterostilbene is a potent skin-whitening and antioxidant agent and could be used in skin-whitening formulations as a topical applicant. Pt inhibits ROS-mediated POMC/α-MSH pathway in UVA-irradiated HaCaT cells. Pt activates Nrf2-mediated HO-1, γ-GCLC, and NQO-1 expression in HaCaT cells. Pt-induces autophagy in B16F10 cells leading to melanogenesis inhibition. Pt-mediates anti-melanogenic mechanisms in α-MSH-stimulated B16F10 cells. Pt-inhibits tyrosinase expression and endogenous pigmentation in zebrafish model.
Collapse
Affiliation(s)
- You-Cheng Hseu
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung 40402, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan; Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan; Research Center of Chinese Herbal Medicine, China Medical University, Taichung 40402, Taiwan.
| | | | - Li-Wei Wang
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung 40402, Taiwan.
| | - Yan-Zhen Zhang
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung 40402, Taiwan.
| | - Xuan-Zao Chen
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung 40402, Taiwan.
| | - Pei-Jane Huang
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan.
| | - Hung-Rong Yen
- Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan; Research Center of Chinese Herbal Medicine, China Medical University, Taichung 40402, Taiwan; Department of Medical Research, China Medical University Hospital, Taichung 40402, Taiwan; School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan.
| | - Hsin-Ling Yang
- Institute of Nutrition, College of Health Care, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|
43
|
Yun CY, Choi N, Lee JU, Lee EJ, Kim JY, Choi WJ, Oh SH, Sung JH. Marliolide Derivative Induces Melanosome Degradation via Nrf2/p62-Mediated Autophagy. Int J Mol Sci 2021; 22:3995. [PMID: 33924406 PMCID: PMC8070456 DOI: 10.3390/ijms22083995] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/05/2021] [Accepted: 04/10/2021] [Indexed: 12/14/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2), which is linked to autophagy regulation and melanogenesis regulation, is activated by marliolide. In this study, we investigated the effect of a marliolide derivative on melanosome degradation through the autophagy pathway. The effect of the marliolide derivative on melanosome degradation was investigated in α-melanocyte stimulating hormone (α-MSH)-treated melanocytes, melanosome-incorporated keratinocyte, and ultraviolet (UV)B-exposed HRM-2 mice (melanin-possessing hairless mice). The marliolide derivative, 5-methyl-3-tetradecylidene-dihydro-furan-2-one (DMF02), decreased melanin pigmentation by melanosome degradation in α-MSH-treated melanocytes and melanosome-incorporated keratinocytes, evidenced by premelanosome protein (PMEL) expression, but did not affect melanogenesis-associated proteins. The UVB-induced hyperpigmentation in HRM-2 mice was also reduced by a topical application of DMF02. DMF02 activated Nrf2 and induced autophagy in vivo, evidenced by decreased PMEL in microtubule-associated proteins 1A/1B light chain 3B (LC3)-II-expressed areas. DMF02 also induced melanosome degradation via autophagy in vitro, and DMF02-induced melanosome degradation was recovered by chloroquine (CQ), which is a lysosomal inhibitor. In addition, Nrf2 silencing by siRNA attenuated the DMF02-induced melanosome degradation via the suppression of p62. DMF02 induced melanosome degradation in melanocytes and keratinocytes by regulating autophagy via Nrf2-p62 activation. Therefore, Nrf2 activator could be a promising therapeutic agent for reducing hyperpigmentation.
Collapse
Affiliation(s)
| | - Nahyun Choi
- STEMORE Co. Ltd., Incheon 21983, Korea; (C.-Y.Y.); (N.C.)
| | - Jae Un Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Gyeonggi-do, Korea; (J.U.L.); (W.J.C.)
| | - Eun Jung Lee
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea; (E.J.L.); (J.Y.K.)
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Ji Young Kim
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea; (E.J.L.); (J.Y.K.)
| | - Won Jun Choi
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Gyeonggi-do, Korea; (J.U.L.); (W.J.C.)
| | - Sang Ho Oh
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea; (E.J.L.); (J.Y.K.)
| | - Jong-Hyuk Sung
- STEMORE Co. Ltd., Incheon 21983, Korea; (C.-Y.Y.); (N.C.)
- Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Korea
| |
Collapse
|
44
|
Espósito ACC, de Souza NP, Miot LDB, Miot HA. Deficit in autophagy: A possible mechanism involved in melanocyte hyperfunction in melasma. Indian J Dermatol Venereol Leprol 2021; 0:1-3. [PMID: 33871200 DOI: 10.25259/ijdvl_927_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/01/2020] [Indexed: 11/04/2022]
|
45
|
Castellano-Pellicena I, Morrison CG, Bell M, O’Connor C, Tobin DJ. Melanin Distribution in Human Skin: Influence of Cytoskeletal, Polarity, and Centrosome-Related Machinery of Stratum basale Keratinocytes. Int J Mol Sci 2021; 22:ijms22063143. [PMID: 33808676 PMCID: PMC8003549 DOI: 10.3390/ijms22063143] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/13/2021] [Accepted: 03/14/2021] [Indexed: 12/12/2022] Open
Abstract
Melanin granules cluster within supra-nuclear caps in basal keratinocytes (KCs) of the human epidermis, where they protect KC genomic DNA against ultraviolet radiation (UVR) damage. While much is known about melanogenesis in melanocytes (MCs) and a moderate amount about melanin transfer from MC to KC, we know little about the fate of melanin once inside KCs. We recently reported that melanin fate in progenitor KCs is regulated by rare asymmetric organelle movement during mitosis. Here, we explore the role of actin, microtubules, and centrosome-associated machinery in distributing melanin within KCs. Short-term cultures of human skin explants were treated with cytochalasin-B and nocodazole to target actin filaments and microtubules, respectively. Treatment effects on melanin distribution were assessed by the Warthin-Starry stain, on centrosome-associated proteins by immunofluorescence microscopy, and on co-localisation with melanin granules by brightfield microscopy. Cytochalasin-B treatment disassembled supra-nuclear melanin caps, while nocodazole treatment moved melanin from the apical to basal KC domain. Centrosome and centriolar satellite-associated proteins showed a high degree of co-localisation with melanin. Thus, once melanin granules are transferred to KCs, their preferred apical distribution appears to be facilitated by coordinated movement of centrosomes and centriolar satellites. This mechanism may control melanin's strategic position within UVR-exposed KCs.
Collapse
Affiliation(s)
- Irene Castellano-Pellicena
- The Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland;
| | - Ciaran G. Morrison
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, H91 W2TY Galway, Ireland;
| | - Mike Bell
- Walgreens Boots Alliance, Nottingham NG90 1BS, UK; (M.B.); (C.O.)
| | - Clare O’Connor
- Walgreens Boots Alliance, Nottingham NG90 1BS, UK; (M.B.); (C.O.)
| | - Desmond J. Tobin
- The Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland;
- The Conway Institute of Biomolecular and Biomedical Research, University College Dublin, D04 V1W8 Dublin, Ireland
- Correspondence: ; Tel.: +353-(0)-1-716-6262
| |
Collapse
|
46
|
Yang HL, Lin CP, Vudhya Gowrisankar Y, Huang PJ, Chang WL, Shrestha S, Hseu YC. The anti-melanogenic effects of ellagic acid through induction of autophagy in melanocytes and suppression of UVA-activated α-MSH pathways via Nrf2 activation in keratinocytes. Biochem Pharmacol 2021; 185:114454. [PMID: 33545118 DOI: 10.1016/j.bcp.2021.114454] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022]
Abstract
Ellagic acid (EA) is a natural phenol antioxidant in different fruits, vegetables, and nuts. As a copper iron chelator from the tyrosinase enzyme's active site, EA was reported to inhibit melanogenesis in melanocytes. Here, we demonstrated the anti-melanogenic mechanisms of EA through autophagy induction in melanoma B16F10 cells and the role of Nrf2 and UVA (3 J/cm2)-activated α-melanocyte stimulating hormone (α-MSH) pathways in keratinocyte HaCaT cells. In vitro data showed that EA suppressed the tyrosinase activity and melanogenesis by suppressing cAMP-mediated CREB and MITF signaling mechanisms in α-MSH-stimulated B16F10 cells. ERK, JNK, and AKT pathways were involved in this EA-regulated MITF downregulation. Notably, EA induced autophagy in B16F10 cells was evidenced from increased LC3-II accumulation, p62/SQSTM1 activation, ATG4B downregulation, acidic vesicular organelle (AVO) formation, PI3K/AKT/mTOR inhibition, and Beclin-1/Bcl-2 dysregulation. Interestingly, 3-MA (an autophagy inhibitor) pretreatment or LC3 silencing (siRNA transfection) of B16F10 cells significantly reduced EA-induced anti-melanogenic activity. Besides this, in UVA-irradiated keratinocyte HaCaT cells, EA suppressed ROS production and α-MSH generation. Moreover, EA mediated the activation and nuclear translocation of Nrf2, leading to antioxidant γ-GCLC, HO-1, and NQO-1 protein expression in HaCaT cells. However, Nrf2 knockdown has significantly impaired this effect, and there was an uncontrolled ROS generation following UVA irradiation. JNK, PKC, and ROS pathways were involved in the activation of Nrf2 in HaCaT cells. In vivo experiments using the zebrafish model confirmed that EA inhibited tyrosinase activity and endogenous pigmentation. In conclusion, ellagic acid is an effective skin-whitening agent and might be used as a topical applicant.
Collapse
Affiliation(s)
- Hsin-Ling Yang
- Institute of Nutrition, College of Healthcare, China Medical University, Taichung 40402, Taiwan
| | - Chia-Pei Lin
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung 40402, Taiwan
| | | | - Pei-Jane Huang
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan
| | - Wan-Lin Chang
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung 40402, Taiwan
| | - Sirjana Shrestha
- Institute of Nutrition, College of Healthcare, China Medical University, Taichung 40402, Taiwan
| | - You-Cheng Hseu
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung 40402, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan; Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan; Research Center of Chinese Herbal Medicine, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|
47
|
Isogawa K, Asano M, Hayazaki M, Koga K, Watanabe M, Suzuki K, Kobayashi T, Kawaguchi K, Ishizuka A, Kato S, Ito H, Hamamoto A, Koyama H, Furuta K, Takemori H. Thioxothiazolidin derivative, 4-OST, inhibits melanogenesis by enhancing the specific recruitment of tyrosinase-containing vesicles to lysosome. J Cell Biochem 2021; 122:667-678. [PMID: 33480093 DOI: 10.1002/jcb.29895] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 12/15/2022]
Abstract
Tyrosinase catalyzes the rate-limiting step in melanin synthesis. Melanin is synthesized from l-tyrosin in the melanosomes, where tyrosinase and other melanogenic factors are recruited via the vesicle transport system. Genetic and biochemical approaches have revealed a correlation between impairments in the vesicle transport system and albinism. However, the specificity of the individual transport systems for the corresponding melanogenic factors has not been well elucidated yet. Here, we report that the thioxothiazolidin derivative, 4-OST (4-[(5E)-5-[(4-fluorophenyl)methylidene]-4-oxo-2-sulfanylidene-1,3-thiazolidin-3-yl]-4-azatricyclo [5.2.1.02 ,6]dec-8-ene-3,5-dione: CAS RN. 477766-87-3) strongly inhibited melanogenesis in mouse melanoma B16F10 cells. 4-OST reduces tyrosinase protein levels without affecting its messenger RNA levels or enzymatic activity. Although a reduction in tyrosinase protein level was observed in the presence of a protein synthesis inhibitor, the reduction may be coupled with protein synthesis. Similarly, GIF-2202 (a derivative of 4-OST) lowers tyrosinase protein levels without affecting the levels of another melanogenic enzyme, tyrosinase-related protein 1 (TYRP1) level. The reduction in tyrosinase protein level is associated with an increase in the levels of the lysosomal proteinase cathepsin S. Chloroquine, a lysosome inhibitor, restored the tyrosinase protein level downregulated by GIF-2202, although no effects of other inhibitors (against proteasome, autophagy, or exocytosis) were observed. In addition, GIF-2202 segregated the immunofluorescence signals of tyrosinase from those of TYRP1. Chloroquine treatment resulted in co-localization of tyrosinase and cathepsin S signals near the perinuclear region, suggesting that 4-OST and GIF-2202 may alter the destination of the tyrosinase vesicle from the melanosome to the lysosome. 4-OST and GIF-2202 can be new tools for studying the tyrosinase-specific vesicle transport system.
Collapse
Affiliation(s)
- Kenta Isogawa
- Department of Chemistry and Biomolecular Science, Gifu University, Gifu, Japan
| | - Masataka Asano
- Department of Chemistry and Biomolecular Science, Gifu University, Gifu, Japan
| | - Masumi Hayazaki
- Department of Chemistry and Biomolecular Science, Gifu University, Gifu, Japan
| | - Kenichi Koga
- Department of Chemistry and Biomolecular Science, Gifu University, Gifu, Japan
| | - Miyu Watanabe
- Department of Chemistry and Biomolecular Science, Gifu University, Gifu, Japan
| | - Keiichi Suzuki
- Department of Chemistry and Biomolecular Science, Gifu University, Gifu, Japan
| | - Takahiro Kobayashi
- Department of Chemistry and Biomolecular Science, Gifu University, Gifu, Japan
| | - Kyoka Kawaguchi
- Department of Chemistry and Biomolecular Science, Gifu University, Gifu, Japan
| | - Akane Ishizuka
- Department of Chemistry and Biomolecular Science, Gifu University, Gifu, Japan
| | - Shinya Kato
- Department of Chemistry and Biomolecular Science, Gifu University, Gifu, Japan
| | - Hironari Ito
- Department of Chemistry and Biomolecular Science, Gifu University, Gifu, Japan
| | - Akie Hamamoto
- Department of Chemistry and Biomolecular Science, Gifu University, Gifu, Japan
| | - Hiroko Koyama
- Department of Chemistry and Biomolecular Science, Gifu University, Gifu, Japan
| | - Kyoji Furuta
- Department of Chemistry and Biomolecular Science, Gifu University, Gifu, Japan
| | - Hiroshi Takemori
- Department of Chemistry and Biomolecular Science, Gifu University, Gifu, Japan
| |
Collapse
|
48
|
Koike S, Yamasaki K. Melanogenesis Connection with Innate Immunity and Toll-Like Receptors. Int J Mol Sci 2020; 21:ijms21249769. [PMID: 33371432 PMCID: PMC7767451 DOI: 10.3390/ijms21249769] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 01/04/2023] Open
Abstract
The epidermis is located in the outermost layer of the living body and is the place where external stimuli such as ultraviolet rays and microorganisms first come into contact. Melanocytes and melanin play a wide range of roles such as adsorption of metals, thermoregulation, and protection from foreign enemies by camouflage. Pigmentary disorders are observed in diseases associated with immunodeficiency such as Griscelli syndrome, indicating molecular sharing between immune systems and the machineries of pigment formation. Melanocytes express functional toll-like receptors (TLRs), and innate immune stimulation via TLRs affects melanin synthesis and melanosome transport to modulate skin pigmentation. TLR2 enhances melanogenetic gene expression to augment melanogenesis. In contrast, TLR3 increases melanosome transport to transfer to keratinocytes through Rab27A, the responsible molecule of Griscelli syndrome. TLR4 and TLR9 enhance tyrosinase expression and melanogenesis through p38 MAPK (mitogen-activated protein kinase) and NFκB signaling pathway, respectively. TLR7 suppresses microphthalmia-associated transcription factor (MITF), and MITF reduction leads to melanocyte apoptosis. Accumulating knowledge of the TLRs function of melanocytes has enlightened the link between melanogenesis and innate immune system.
Collapse
Affiliation(s)
- Saaya Koike
- Shiseido Global Innovation Center, Kanagawa 220-0011, Japan;
| | - Kenshi Yamasaki
- Department of Dermatology, Tohoku University Graduate School of Medicine, Miyagi 980-8574, Japan
- Correspondence: ; Tel.: +81-(22)-717-7271
| |
Collapse
|
49
|
Anti-Melanogenic Effects of Ethanol Extracts of the Leaves and Roots of Patrinia villosa (Thunb.) Juss through Their Inhibition of CREB and Induction of ERK and Autophagy. Molecules 2020; 25:molecules25225375. [PMID: 33212959 PMCID: PMC7698407 DOI: 10.3390/molecules25225375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 11/16/2022] Open
Abstract
Patrinia villosa (Thunb.) Juss is a traditional herb commonly used in East Asia including Korea, Japan, and China. It has been administered to reduce and treat inflammation in Donguibogam, Korea. The mechanism for its anti-inflammatory effects has already been reported. In this study, we confirmed the efficacy of Patrinia villosa (Thunb.) Juss ethanol extract (Pv-EE) for inducing autophagy and investigate its anti-melanogenic properties. Melanin secretion and content were investigated using cells from the melanoma cell line B16F10. Pv-EE inhibited melanin in melanogenesis induced by α-melanocyte-stimulating hormone (α-MSH). The mechanism of inhibition of Pv-EE was confirmed by suppressing the mRNA of microphthalmia-associated transcription factor (MITF), decreasing the phosphorylation level of CREB, and increasing the phosphorylation of ERK. Finally, it was confirmed that Pv-EE induces autophagy through the autophagy markers LC3B and p62, and that the anti-melanogenic effect of Pv-EE is inhibited by the autophagy inhibitor 3-methyl adenine (3-MA). These results suggest that Pv-EE may be used as a skin protectant due to its anti-melanin properties including autophagy.
Collapse
|
50
|
Tian X, Cui Z, Liu S, Zhou J, Cui R. Melanosome transport and regulation in development and disease. Pharmacol Ther 2020; 219:107707. [PMID: 33075361 DOI: 10.1016/j.pharmthera.2020.107707] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023]
Abstract
Melanosomes are specialized membrane-bound organelles that synthesize and organize melanin, ultimately providing color to the skin, hair, and eyes. Disorders in melanogenesis and melanosome transport are linked to pigmentary diseases, such as Hermansky-Pudlak syndrome, Chediak-Higashi syndrome, and Griscelli syndrome. Clinical cases of these pigmentary diseases shed light on the molecular mechanisms that control melanosome-related pathways. However, only an improved understanding of melanogenesis and melanosome transport will further the development of diagnostic and therapeutic approaches. Herein, we review the current literature surrounding melanosomes with particular emphasis on melanosome membrane transport and cytoskeleton-mediated melanosome transport. We also provide perspectives on melanosome regulatory mechanisms which include hormonal action, inflammation, autophagy, and organelle interactions.
Collapse
Affiliation(s)
- Xiaoyu Tian
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Ziyong Cui
- Harvard College, Cambridge, MA 02138, United States of America
| | - Song Liu
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Jun Zhou
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China; State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Rutao Cui
- Skin Disease Research Institute, The 2nd Hospital, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|