1
|
Pandey P, Lakhanpal S, Bishoyi AK, Jyothi SR, Mishra S, Verma M, Singh A, Alam MW, Rab SO, Saeed M, Khan F. Biosynthesis of silver nanoparticles from plant extracts: a comprehensive review focused on anticancer therapy. Front Pharmacol 2025; 16:1600347. [PMID: 40438589 PMCID: PMC12116548 DOI: 10.3389/fphar.2025.1600347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Accepted: 04/24/2025] [Indexed: 06/01/2025] Open
Abstract
Cancer is a deadly disease and is one of the primary causes of mortality worldwide. Cancer therapy presents significant challenges, such as chemotherapy resistance, high toxicity, recurrence, and metastasis. As a result, the development of novel therapeutic agents for cancer continues to be a top goal to expand the number of efficient treatments available. The advent of nanotechnology is an important turning point in several scientific disciplines. Owing to the increasing difficulty of this problem, researchers have begun to focus their attention on the possibility of employing plants or extracts from plants as a potential tumor treatment. More than 3,000 medicinal plant species have been documented worldwide for their utilization in cancer treatment. Nevertheless, crude plant extracts lack specificity, and their dosages are not clearly specified. To enhance the therapeutic efficacy of these natural substances, researchers have used them in conjunction with silver nanoparticles (AgNPs). Plants possess intricate phytochemical components including sugars, polyphenols, amino acids, flavonoids, terpenoids, alkaloids, and proteins, which can function as reducing and stabilizing agents. In recent years, the application of plant-derived AgNPs has increased significantly, particularly in cancer treatment. These green-synthesized AgNPs are regarded as outstanding tools for the detection of cancer and targeted drug delivery at the tumor site. By leveraging the distinctive characteristics of nanoparticles and the antioxidant and anticancer qualities of plants, these green-synthesized AgNPs selectively eradicate tumor cells while sparing normal healthy cells. This comprehensive review aimed to summarize the key aspects of plant extracts as anticancer agents, biosynthesis of AgNPs, and recent advancements in the antitumor efficacy of green-synthesized AgNPs.
Collapse
Affiliation(s)
- Pratibha Pandey
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
| | - Sorabh Lakhanpal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Ashok Kumar Bishoyi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot, Gujarat, India
| | - S. Renuka Jyothi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Swati Mishra
- Department of Pharmacology, IMS and SUM Hospital, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Meenakshi Verma
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab, India
| | - Ajay Singh
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, India
| | - Mir Waqas Alam
- Department of Physics, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Fahad Khan
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| |
Collapse
|
2
|
Liang W, Hou C, Zhu Z, Wang P, Wang X, Li Z, Xue J, Ran R. Cutaneous Pigment Cell Distributions and Skin Structure of Xenopus. Pigment Cell Melanoma Res 2025; 38:e70022. [PMID: 40329555 DOI: 10.1111/pcmr.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/05/2025] [Accepted: 04/18/2025] [Indexed: 05/08/2025]
Abstract
Pigment cells not only are intrinsic factors to determine animal patterns, but also play vital roles in numerous behavioral and physiological processes as well as health, such as melanomas originating from melanocytes. Model organisms are commonly used to study pigment cell development and the mechanisms underlying related diseases, with zebrafish and mice, and Xenopus being well-established examples. Xenopus tropicalis, a diploid amphibian model, offers advantages such as high fecundity and easily observable pigment cell development. Recent advancements in gene-editing techniques have increased its prominence in research on pigment cell biology and melanoma pathogenesis. Here, we compare the skin pigment cell distribution as well as the skin structure in X. tropicalis, zebrafish, mice, and humans and point out the potential value of using X. tropicalis to model human skin diseases, such as melanoma.
Collapse
Affiliation(s)
- Weizheng Liang
- Hebei Key Laboratory of Systems Biology and Gene Regulation, Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | | | | | - Peng Wang
- Hebei North University, Zhangjiakou, China
| | - Xiran Wang
- Department of Bioinformatics, School of Health Care, Changchun Vocational College of Health, Changchun, China
| | - Zhongwu Li
- Department of Pathology, Peking University Cancer Hospital, Beijing, China
| | - Jun Xue
- Department of Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Rensen Ran
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University, Beijing, China
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
3
|
Wawrzyniak P, Hartman ML. Dual role of interferon-gamma in the response of melanoma patients to immunotherapy with immune checkpoint inhibitors. Mol Cancer 2025; 24:89. [PMID: 40108693 PMCID: PMC11924818 DOI: 10.1186/s12943-025-02294-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/05/2025] [Indexed: 03/22/2025] Open
Abstract
Interferon-gamma (IFN-γ) is a cytokine produced mainly by immune cells and can affect cancer cells by modulating the activity of multiple signaling pathways, including the canonical Janus-activated kinase/signal transducer and activator of transcription (JAK/STAT) cascade. In melanoma, IFN-γ can exert both anticancer effects associated with cell-cycle arrest and cell death induction and protumorigenic activity related to immune evasion leading to melanoma progression. Notably, IFN-γ plays a crucial role in the response of melanoma patients to immunotherapy with immune checkpoint inhibitors (ICIs), which are currently used in the clinic. As these agents target programmed death-1 (PD-1) and its ligand (PD-L1), cytotoxic T-lymphocyte-associated protein-4 (CTLA-4) and lymphocyte-activation gene 3 (LAG-3), they are designed to restore the antimelanoma immune response. In this respect, IFN-γ produced by cells in the tumor microenvironment in response to ICIs has a beneficial influence on both immune and melanoma cells by increasing antigen presentation, recruiting additional T-cells to the tumor site, and inducing direct antiproliferative effects and apoptosis in melanoma cells. Therefore, IFN-γ itself and IFN-γ-related gene signatures during the response to ICIs can constitute biomarkers or predictors of the clinical outcome of melanoma patients treated with ICIs. However, owing to its multifaceted roles, IFN-γ can also contribute to developing mechanisms associated with the acquisition of resistance to ICIs. These mechanisms can be associated with either decreased IFN-γ levels in the tumor microenvironment or diminished responsiveness to IFN-γ due to changes in the melanoma phenotypes associated with affected activity of other signaling pathways or genetic alterations e.g., in JAK, which restricts the ability of melanoma cells to respond to IFN-γ. In this respect, the influence of IFN-γ on melanoma-specific regulators of the dynamic plasticity of the cell phenotype, including microphthalmia-associated transcription factor (MITF) and nerve growth factor receptor (NGFR)/CD271 can affect the clinical efficacy of ICIs. This review comprehensively discusses the role of IFN-γ in the response of melanoma patients to ICIs with respect to its positive influence and role in IFN-γ-related mechanisms of resistance to ICIs as well as the potential use of predictive markers on the basis of IFN-γ levels and signatures of IFN-γ-dependent genes.
Collapse
Affiliation(s)
- Piotr Wawrzyniak
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland
| | - Mariusz L Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland.
| |
Collapse
|
4
|
McGrail K, González‐Sánchez E, Granado‐Martínez P, Orsenigo R, Ding Y, Ferrer B, Hernández‐Losa J, Ortega I, Martín‐Caballero J, Muñoz‐Couselo E, García‐Patos V, Recio JA. Loss of Lkb1 cooperates with Braf V600E and ultraviolet radiation, increasing melanoma multiplicity and neural-like dedifferentiation. Mol Oncol 2025; 19:329-343. [PMID: 39115053 PMCID: PMC11792986 DOI: 10.1002/1878-0261.13715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/04/2024] [Accepted: 07/26/2024] [Indexed: 02/05/2025] Open
Abstract
The mechanisms that work alongside BRAFV600E oncogene in melanoma development, in addition to ultraviolet (UV) radiation (UVR), are of great interest. Analysis of human melanoma tumors [data from The Cancer Genome Atlas (TCGA)] revealed that 50% or more of the samples expressed no or low amounts of serine/threonine protein kinase STK11 (also known as LKB1) protein. Here, we report that, in a mouse model, concomitant neonatal BrafV600E activation and Lkb1 tumor suppressor ablation in melanocytes led to full melanoma development. A single postnatal dose of UVB radiation had no effect on melanoma onset in Lkb1-depleted mice compared with BrafV600E-irradiated mice, but increased tumor multiplicity. In concordance with these findings and previous reports, Lkb1-null irradiated mice exhibited deficient DNA damage repair (DDR). Histologically, tumors lacking Lkb1 were enriched in neural-like tumor morphology. Genetic profiling and gene set enrichment analyses of tumor sample mutated genes indicated that loss of Lkb1 promoted the selection of altered genes associated with neural differentiation processes. Thus, these results suggest that the loss of Lkb1 cooperates with BrafV600E and UVR, impairing the DDR and increasing melanoma multiplicity and neural-like dedifferentiation.
Collapse
Affiliation(s)
- Kimberley McGrail
- Biomedical Research in Melanoma‐Animal Models and Cancer LaboratoryVall d'Hebron Research Institute VHIR, Vall d'Hebron Hospital‐UABBarcelonaSpain
| | - Elena González‐Sánchez
- Biomedical Research in Melanoma‐Animal Models and Cancer LaboratoryVall d'Hebron Research Institute VHIR, Vall d'Hebron Hospital‐UABBarcelonaSpain
- Present address:
Miltenyi Biotec S.L.MadridSpain
| | - Paula Granado‐Martínez
- Biomedical Research in Melanoma‐Animal Models and Cancer LaboratoryVall d'Hebron Research Institute VHIR, Vall d'Hebron Hospital‐UABBarcelonaSpain
| | - Roberto Orsenigo
- Biomedical Research in Melanoma‐Animal Models and Cancer LaboratoryVall d'Hebron Research Institute VHIR, Vall d'Hebron Hospital‐UABBarcelonaSpain
| | - Yuxin Ding
- Biomedical Research in Melanoma‐Animal Models and Cancer LaboratoryVall d'Hebron Research Institute VHIR, Vall d'Hebron Hospital‐UABBarcelonaSpain
| | - Berta Ferrer
- Anatomy Pathology DepartmentVall d'Hebron Hospital‐UABBarcelonaSpain
| | | | - Iván Ortega
- Animal Laboratory UnitBiomedical Research Park of Barcelona‐PRBBSpain
- Present address:
University of BarcelonaBellvitgeSpain
| | - Juan Martín‐Caballero
- Animal Laboratory UnitBiomedical Research Park of Barcelona‐PRBBSpain
- Present address:
Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
| | - Eva Muñoz‐Couselo
- Clinical Oncology Program, Vall d'Hebron Institute of Oncology (VHIO)Vall d'Hebron Hospital‐UABBarcelonaSpain
| | | | - Juan A. Recio
- Biomedical Research in Melanoma‐Animal Models and Cancer LaboratoryVall d'Hebron Research Institute VHIR, Vall d'Hebron Hospital‐UABBarcelonaSpain
| |
Collapse
|
5
|
Sattarahmady N, Kayani Z, Heli H, Faghani-Eskandarkolaei P, Haghighi H. Photosensitizing Activity of Nanoparticles of Poly (2-amino phenol)/Gold for Intensified Doxorubicin Therapeutic Effect on Melanoma Cancer Cells under Synergism Effect of 808-nm Light. J Biomed Phys Eng 2024; 14:547-560. [PMID: 39726887 PMCID: PMC11668927 DOI: 10.31661/jbpe.v0i0.2312-1693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/23/2024] [Indexed: 12/28/2024]
Abstract
Background Photothermal therapy (PTT) is one of the effective and non-invasive strategies which hold great promise for improving the treatment of cancer cells. PTT is based on activating a photosensitizer by infrared light irradiation and producing heat and reactive species and apoptosis in the tumor area. Objective The aim of this study was to investigate the effect of photothermal/chemotherapy on melanoma cancer cells using poly (2-amino phenol)/gold (P2AO/AuNPs) and doxorubicin (DOX). Material and Methods In this experimental study, nanoparticles of P2AO/AuNPs were synthesized, and their mixture with DOX was applied as a photosensitizer for photothermal/chemotherapy of a C540 (B16-F10) melanoma cell line. Results P2AO/AuNPs generated heat and cytotoxic responsive oxygen species (ROS) upon 808-nm light irradiation with simultaneous intensifying DOX therapeutic effect under domination of synergism effects between light irradiation, P2AO/AuNPs, and doxorubicin. Cell treatment with both P2AO/AuNPs and DOX resulted in a considerable increase in necroptotic cells to 61% with a significant decrease in the living cells (39%). Conclusion P2AO/AuNPs provided a platform for light absorption and intensifying DOX therapeutic effect. This study approved the applicability of a new photothermal/chemotherapy by domination of synergistic effects attained by combination of laser light, P2AO, AuNPs, and DOX.
Collapse
Affiliation(s)
- Naghmeh Sattarahmady
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Kayani
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Research Center for the Physics of Matter and Radiation, Namur Research Institute for Life Sciences, University of Namur, Belgium
| | - Hossein Heli
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parsa Faghani-Eskandarkolaei
- Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hanieh Haghighi
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Gowda VV, Vijayanarasimha D, Srihari SM, Kumar RV, Srinath BS. Cartilaginous Transdifferentiation in Melanoma: A Diagnostic Challenge. Indian J Surg Oncol 2024; 15:474-477. [PMID: 39239432 PMCID: PMC11372010 DOI: 10.1007/s13193-024-01930-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 03/18/2024] [Indexed: 09/07/2024] Open
Abstract
Malignant melanoma is a formidable tumor originating from melanocytes of neural crest origin, found in various anatomical locations, primarily in the skin, followed by the eyes and mucosal membranes. This tumor stands out due to its remarkable phenotypic diversity. Transdifferentiation, the process of differentiation into cell lineages other than the one from which the tumor originated, and phenotypic plasticity, characterized by changes in behavior, morphology, and physiology in response to different environmental conditions, can make melanoma a diagnostic conundrum for unwary pathologists. In this case report, we present a challenging case of melanoma with cartilaginous transdifferentiation to shed light on its clinical, pathological, and molecular aspects.
Collapse
Affiliation(s)
- Veeksha V. Gowda
- Department of Oncopathology, Sri Shankara Cancer Hospital and Research Centre, ‘Nandagokula’, 301 A Block, Laksh Royal Manor, Bharat Nagar, 2nd Phase, Off Magadi Main Road, Bangalore, 560091 India
| | - Divya Vijayanarasimha
- Department of Oncopathology, Sri Shankara Cancer Hospital and Research Centre, ‘Nandagokula’, 301 A Block, Laksh Royal Manor, Bharat Nagar, 2nd Phase, Off Magadi Main Road, Bangalore, 560091 India
| | - Sulakshana M. Srihari
- Department of Oncopathology, Sri Shankara Cancer Hospital and Research Centre, ‘Nandagokula’, 301 A Block, Laksh Royal Manor, Bharat Nagar, 2nd Phase, Off Magadi Main Road, Bangalore, 560091 India
| | - Rekha V. Kumar
- Department of Oncopathology, Sri Shankara Cancer Hospital and Research Centre, ‘Nandagokula’, 301 A Block, Laksh Royal Manor, Bharat Nagar, 2nd Phase, Off Magadi Main Road, Bangalore, 560091 India
| | - B. S. Srinath
- Department of Surgical Oncology, Sri Shankara Cancer Hospital and Research Centre, Bangalore, India
| |
Collapse
|
7
|
Talib WH, Abed I, Raad D, Alomari RK, Jamal A, Jabbar R, Alhasan EOA, Alshaeri HK, Alasmari MM, Law D. Targeting Cancer Hallmarks Using Selected Food Bioactive Compounds: Potentials for Preventive and Therapeutic Strategies. Foods 2024; 13:2687. [PMID: 39272454 PMCID: PMC11395675 DOI: 10.3390/foods13172687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Cancer continues to be a prominent issue in healthcare systems, resulting in approximately 9.9 million fatalities in 2020. It is the second most common cause of death after cardiovascular diseases. Although there are difficulties in treating cancer at both the genetic and phenotypic levels, many cancer patients seek supplementary and alternative medicines to cope with their illness, relieve symptoms, and reduce the side effects of cytotoxic drug therapy. Consequently, there is an increasing emphasis on studying natural products that have the potential to prevent or treat cancer. Cancer cells depend on multiple hallmarks to secure survival. These hallmarks include sustained proliferation, apoptosis inactivation, stimulation of angiogenesis, immune evasion, and altered metabolism. Several natural products from food were reported to target multiple cancer hallmarks and can be used as adjuvant interventions to augment conventional therapies. This review summarizes the main active ingredients in food that have anticancer activities with a comprehensive discussion of the mechanisms of action. Thymoquinone, allicin, resveratrol, parthenolide, Epigallocatechin gallate, and piperine are promising anticancer bioactive ingredients in food. Natural products discussed in this review provide a solid ground for researchers to provide effective anticancer functional food.
Collapse
Affiliation(s)
- Wamidh H Talib
- Faculty of Allied Medical Sciences, Applied Science Private University, Amman 11931, Jordan
- Faculty of Health and Life Sciences, Inti International University, Nilai 71800, Negeri Sembilan, Malaysia
| | - Ilia Abed
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Daniah Raad
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Raghad K Alomari
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Ayah Jamal
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Rand Jabbar
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Eman Omar Amin Alhasan
- Faculty of Allied Medical Sciences, Applied Science Private University, Amman 11931, Jordan
| | - Heba K Alshaeri
- Department of Pharmacology, Faculty of Medicine, King Abdul-Aziz University, Rabigh 25724, Saudi Arabia
| | - Moudi M Alasmari
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Jeddah 21423, Saudi Arabia
- King Abdullah International Medical Research Centre (KAIMRC), Jeddah 22233, Saudi Arabia
| | - Douglas Law
- Faculty of Health and Life Sciences, Inti International University, Nilai 71800, Negeri Sembilan, Malaysia
| |
Collapse
|
8
|
Handler JS, Li Z, Dveirin RK, Fang W, Goodarzi H, Fertig EJ, Kalhor R. Identifying a gene signature of metastatic potential by linking pre-metastatic state to ultimate metastatic fate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.14.607813. [PMID: 39185156 PMCID: PMC11343111 DOI: 10.1101/2024.08.14.607813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Identifying the key molecular pathways that enable metastasis by analyzing the eventual metastatic tumor is challenging because the state of the founder subclone likely changes following metastatic colonization. To address this challenge, we labeled primary mouse pancreatic ductal adenocarcinoma (PDAC) subclones with DNA barcodes to characterize their pre-metastatic state using ATAC-seq and RNA-seq and determine their relative in vivo metastatic potential prospectively. We identified a gene signature separating metastasis-high and metastasis-low subclones orthogonal to the normal-to-PDAC and classical-to-basal axes. The metastasis-high subclones feature activation of IL-1 pathway genes and high NF-κB and Zeb/Snail family activity and the metastasis-low subclones feature activation of neuroendocrine, motility, and Wnt pathway genes and high CDX2 and HOXA13 activity. In a functional screen, we validated novel mediators of PDAC metastasis in the IL-1 pathway, including the NF-κB targets Fos and Il23a, and beyond the IL-1 pathway including Myo1b and Tmem40. We scored human PDAC tumors for our signature of metastatic potential from mouse and found that metastases have higher scores than primary tumors. Moreover, primary tumors with higher scores are associated with worse prognosis. We also found that our metastatic potential signature is enriched in other human carcinomas, suggesting that it is conserved across epithelial malignancies. This work establishes a strategy for linking cancer cell state to future behavior, reveals novel functional regulators of PDAC metastasis, and establishes a method for scoring human carcinomas based on metastatic potential.
Collapse
Affiliation(s)
- Jesse S Handler
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zijie Li
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Rachel K Dveirin
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Weixiang Fang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hani Goodarzi
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
- Arc Institute, Palo Alto 94305, USA
| | - Elana J Fertig
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Convergence Institute, Johns Hopkins Data Science and AI Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Reza Kalhor
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Molecular Biology and Genetics, Department of Neuroscience, Department of Medicine, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
9
|
Lasser S, Ozbay Kurt FG, Fritz L, Gutzeit N, De La Torre C, Altevogt P, Utikal J, Umansky V. Generation of Myeloid-Derived Suppressor Cells Mediated by MicroRNA-125a-5p in Melanoma. Int J Mol Sci 2024; 25:6693. [PMID: 38928399 PMCID: PMC11203613 DOI: 10.3390/ijms25126693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
The ability of tumor-derived extracellular vesicles (EVs) to modulate the function of myeloid cells is widely recognized. Hence, a comprehensive understanding of the distinct components associated with EVs and the signals that they deliver to myeloid cells could provide potential approaches to impede the immunosuppression by myeloid-derived suppressor cells (MDSCs). We investigated melanoma EV-associated microRNAs (miRs) using the RET transgenic melanoma mouse model and simulated their transfer to normal myeloid cells by transfecting immature mouse myeloid cells and human monocytes. We observed elevated levels of miR-125a-5p, -125b-5p, and let-7e-5p in mouse melanoma-infiltrating MDSCs. In addition, miR-125a-5p levels in the tumor microenvironment correlated with mouse melanoma progression. The delivery of miR-125a-5p, alone or in combination with let-7e-5p and miR-99b-5p from the same genomic cluster, to normal myeloid cells resulted in their conversion to MDSC-like cells. Our findings indicate that miR-125a-5p could modulate myeloid cell activation in the melanoma microenvironment via a NF-κB-dependent mechanism.
Collapse
Affiliation(s)
- Samantha Lasser
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, 68167 Mannheim, Germany; (S.L.); (F.G.O.K.); (L.F.); (N.G.); (P.A.); (J.U.)
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- DFKZ-Hector Cancer Institute, University Medical Center Mannheim, 68167 Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Feyza Gul Ozbay Kurt
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, 68167 Mannheim, Germany; (S.L.); (F.G.O.K.); (L.F.); (N.G.); (P.A.); (J.U.)
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- DFKZ-Hector Cancer Institute, University Medical Center Mannheim, 68167 Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Lennart Fritz
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, 68167 Mannheim, Germany; (S.L.); (F.G.O.K.); (L.F.); (N.G.); (P.A.); (J.U.)
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- DFKZ-Hector Cancer Institute, University Medical Center Mannheim, 68167 Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Nina Gutzeit
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, 68167 Mannheim, Germany; (S.L.); (F.G.O.K.); (L.F.); (N.G.); (P.A.); (J.U.)
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- DFKZ-Hector Cancer Institute, University Medical Center Mannheim, 68167 Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Carolina De La Torre
- NGS Core Facility, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany;
| | - Peter Altevogt
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, 68167 Mannheim, Germany; (S.L.); (F.G.O.K.); (L.F.); (N.G.); (P.A.); (J.U.)
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- DFKZ-Hector Cancer Institute, University Medical Center Mannheim, 68167 Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Jochen Utikal
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, 68167 Mannheim, Germany; (S.L.); (F.G.O.K.); (L.F.); (N.G.); (P.A.); (J.U.)
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- DFKZ-Hector Cancer Institute, University Medical Center Mannheim, 68167 Mannheim, Germany
| | - Viktor Umansky
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, 68167 Mannheim, Germany; (S.L.); (F.G.O.K.); (L.F.); (N.G.); (P.A.); (J.U.)
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- DFKZ-Hector Cancer Institute, University Medical Center Mannheim, 68167 Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| |
Collapse
|
10
|
Slominski RM, Kim TK, Janjetovic Z, Brożyna AA, Podgorska E, Dixon KM, Mason RS, Tuckey RC, Sharma R, Crossman DK, Elmets C, Raman C, Jetten AM, Indra AK, Slominski AT. Malignant Melanoma: An Overview, New Perspectives, and Vitamin D Signaling. Cancers (Basel) 2024; 16:2262. [PMID: 38927967 PMCID: PMC11201527 DOI: 10.3390/cancers16122262] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/09/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Melanoma, originating through malignant transformation of melanin-producing melanocytes, is a formidable malignancy, characterized by local invasiveness, recurrence, early metastasis, resistance to therapy, and a high mortality rate. This review discusses etiologic and risk factors for melanoma, diagnostic and prognostic tools, including recent advances in molecular biology, omics, and bioinformatics, and provides an overview of its therapy. Since the incidence of melanoma is rising and mortality remains unacceptably high, we discuss its inherent properties, including melanogenesis, that make this disease resilient to treatment and propose to use AI to solve the above complex and multidimensional problems. We provide an overview on vitamin D and its anticancerogenic properties, and report recent advances in this field that can provide solutions for the prevention and/or therapy of melanoma. Experimental papers and clinicopathological studies on the role of vitamin D status and signaling pathways initiated by its active metabolites in melanoma prognosis and therapy are reviewed. We conclude that vitamin D signaling, defined by specific nuclear receptors and selective activation by specific vitamin D hydroxyderivatives, can provide a benefit for new or existing therapeutic approaches. We propose to target vitamin D signaling with the use of computational biology and AI tools to provide a solution to the melanoma problem.
Collapse
Affiliation(s)
- Radomir M. Slominski
- Department of Rheumatology and Clinical Immunology, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Tae-Kang Kim
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Zorica Janjetovic
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Anna A. Brożyna
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland;
| | - Ewa Podgorska
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Katie M. Dixon
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia; (K.M.D.); (R.S.M.)
| | - Rebecca S. Mason
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia; (K.M.D.); (R.S.M.)
| | - Robert C. Tuckey
- School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia;
| | - Rahul Sharma
- Department of Biomedical Informatics and Data Science, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - David K. Crossman
- Department of Genetics and Bioinformatics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Craig Elmets
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Chander Raman
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Anton M. Jetten
- Cell Biology Section, NIEHS—National Institutes of Health, Research Triangle Park, NC 27709, USA;
| | - Arup K. Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Andrzej T. Slominski
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Pathology and Laboratory Medicine Service, Veteran Administration Medical Center, Birmingham, AL 35233, USA
| |
Collapse
|
11
|
Antonaci M, Kerr A, Lawrence M, Lorenzini F, Narwade N, Paka C, Wulf AM. Neural crest development and disorders: from patient to model system and back again - the NEUcrest conference. Biol Open 2024; 13:bio060530. [PMID: 38874999 PMCID: PMC11190565 DOI: 10.1242/bio.060530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024] Open
Abstract
The neural crest (NC) is an embryonic multipotent and transitory population of cells that appears during late gastrulation/early neurulation in the developing embryos of vertebrate organisms. Often called "the fourth germ layer", the NC is characterised by incredible mobility, which allows the NC cells to migrate throughout the whole embryo, giving rise to an astonishing number of different derivatives in the adult organism, such as craniofacial skeleton, adrenal gland, enteric nervous system and melanocytes. Because of these properties, neurocristopathies (NCPs), which is the term used to classify genetic diseases associated with NC developmental defects, are often syndromic and, taken all together, are the most common type of genetic disease. The NEUcrest consortium is an EU funded innovative training network (ITN) that aims to study the NC and NCPs. In March 2024, the early stage researchers (ESRs) in the NEUcrest consortium organised an in-person conference for well-established and early career researchers to discuss new advances in the NC and NCPs field, starting from the induction of the NC, and then moving on to migration and differentiation processes they undergo. The conference focused heavily on NCPs associated with each of these steps. The conference also included events, such as a round table to discuss the future of the NC research, plus a talk by a person living with an NCP. This 3-day conference aimed to bring together the past, present and future of this field to try and unravel the mysteries of this unique cell population.
Collapse
Affiliation(s)
- Marco Antonaci
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR7 7TJ, UK
| | - Amy Kerr
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR7 7TJ, UK
| | - Merin Lawrence
- School of Biological and Chemical Sciences, University of Galway, Biomedical Sciences Building, Second Floor North, Newcastle Road, Galway, H91 W2TY, Ireland
| | - Francesca Lorenzini
- Experimental Cancer Biology Laboratory, CIBIO, University of Trento, Trento, Italy
| | - Nitin Narwade
- Cell plasticity in development and disease Unit, Instituto de Neurociencias, CSIC-UMH, Sant Joan de Alicante, 03550 Alicante, Spain
| | - Chloé Paka
- STEMCELL Technologies UK Ltd, Cambridge, UK
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - Anna Magdalena Wulf
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| |
Collapse
|
12
|
Mihajlović E, Biancalana L, Jelača S, Chiaverini L, Dojčinović B, Dunđerović D, Zacchini S, Mijatović S, Maksimović-Ivanić D, Marchetti F. FETPY: a Diiron(I) Thio-Carbyne Complex with Prominent Anticancer Activity In Vitro and In Vivo. J Med Chem 2024; 67:7553-7568. [PMID: 38639401 DOI: 10.1021/acs.jmedchem.4c00377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
FETPY, an organo-diiron(I) complex, showed strong cytotoxicity across a panel of human and mouse cancer cell lines, combined with an outstanding selectivity compared to nonmalignant cells. Enhanced iron uptake in aggressive, low-differentiated cell lines, caused membrane lipid peroxidation, which resulted in ferroptosis in human ovarian cancer cells. FETPY induced significant morphological changes in murine B16-F1 and B16-F10 melanoma cells, leading to senescence and/or trans-differentiation into Schwann-like cells, thus significantly reducing their tumorigenic potential. Additionally, FETPY substantially suppressed tumor growth in low- and high-grade syngeneic melanoma models when administered in a therapeutic regimen. FETPY is featured by satisfactory water solubility (millimolar range), an amphiphilic character (Log Pow = -0.17), and excellent stability in a biological medium (DMEM). These important requisites for drug development are rarely met in iron complexes investigated so far as possible anticancer agents. Overall, FETPY holds promise as a safe and potent targeted antitumor agent.
Collapse
Affiliation(s)
- Ekatarina Mihajlović
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Belgrade 11108, Serbia
| | - Lorenzo Biancalana
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, Pisa I-56124, Italy
| | - Sanja Jelača
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Belgrade 11108, Serbia
| | - Lorenzo Chiaverini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, Pisa I-56124, Italy
| | - Biljana Dojčinović
- Institute of Chemistry, Technology and Metallurgy University of Belgrade, Njegoševa 12, Belgrade 11000, Serbia
| | - Duško Dunđerović
- Institute of Pathology, School of Medicine University of Belgrade, dr Subotića 1, Belgrade 11000, Serbia
| | - Stefano Zacchini
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Via P. Gobetti 85, Bologna I-40129, Italy
| | - Sanja Mijatović
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Belgrade 11108, Serbia
| | - Danijela Maksimović-Ivanić
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Belgrade 11108, Serbia
| | - Fabio Marchetti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, Pisa I-56124, Italy
| |
Collapse
|
13
|
Vishwa R, BharathwajChetty B, Girisa S, Aswani BS, Alqahtani MS, Abbas M, Hegde M, Kunnumakkara AB. Lipid metabolism and its implications in tumor cell plasticity and drug resistance: what we learned thus far? Cancer Metastasis Rev 2024; 43:293-319. [PMID: 38438800 DOI: 10.1007/s10555-024-10170-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/19/2024] [Indexed: 03/06/2024]
Abstract
Metabolic reprogramming, a hallmark of cancer, allows cancer cells to adapt to their specific energy needs. The Warburg effect benefits cancer cells in both hypoxic and normoxic conditions and is a well-studied reprogramming of metabolism in cancer. Interestingly, the alteration of other metabolic pathways, especially lipid metabolism has also grabbed the attention of scientists worldwide. Lipids, primarily consisting of fatty acids, phospholipids and cholesterol, play essential roles as structural component of cell membrane, signalling molecule and energy reserves. This reprogramming primarily involves aberrations in the uptake, synthesis and breakdown of lipids, thereby contributing to the survival, proliferation, invasion, migration and metastasis of cancer cells. The development of resistance to the existing treatment modalities poses a major challenge in the field of cancer therapy. Also, the plasticity of tumor cells was reported to be a contributing factor for the development of resistance. A number of studies implicated that dysregulated lipid metabolism contributes to tumor cell plasticity and associated drug resistance. Therefore, it is important to understand the intricate reprogramming of lipid metabolism in cancer cells. In this review, we mainly focused on the implication of disturbed lipid metabolic events on inducing tumor cell plasticity-mediated drug resistance. In addition, we also discussed the concept of lipid peroxidation and its crucial role in phenotypic switching and resistance to ferroptosis in cancer cells. Elucidating the relationship between lipid metabolism, tumor cell plasticity and emergence of resistance will open new opportunities to develop innovative strategies and combinatorial approaches for the treatment of cancer.
Collapse
Affiliation(s)
- Ravichandran Vishwa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Babu Santha Aswani
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India.
| |
Collapse
|
14
|
Hong A, Cao M, Li D, Wang Y, Zhang G, Fang F, Zhao L, Wang Q, Lin T, Wang Y. Lnc-PKNOX1-1 inhibits tumor progression in cutaneous malignant melanoma by regulating NF-κB/IL-8 axis. Carcinogenesis 2023; 44:871-883. [PMID: 37843471 PMCID: PMC10818096 DOI: 10.1093/carcin/bgad073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/28/2023] [Accepted: 10/15/2023] [Indexed: 10/17/2023] Open
Abstract
Cutaneous malignant melanoma is one of the most lethal cutaneous malignancies. Accumulating evidence has demonstrated the potential influence of long non-coding RNAs (lncRNAs) in biological behaviors of melanoma. Herein, we reported a novel lncRNA, lnc-PKNOX1-1 and systematically studied its functions and possible molecular mechanisms in melanoma. Reverse transcription-quantitative PCR assay showed that lnc-PKNOX1-1 was significantly decreased in melanoma cells and tissues. Low lnc-PKNOX1-1 expression was significantly correlated with invasive pathological type and Breslow thickness of melanoma. In vitro and in vivo experiments showed lnc-PKNOX1-1 dramatically inhibited melanoma cell proliferation, migration and invasion. Mechanically, protein microarray analysis suggested that interleukin-8 (IL-8) was negatively regulated by lnc-PKNOX1-1 in melanoma, which was confirmed by western blot and ELISA. Western blot analysis also showed that lnc-PKNOX1-1 could promote p65 phosphorylation at Ser536 in melanoma. Subsequent rescue assays proved IL-8 overexpression could partly reverse the tumor-suppressing function of lnc-PKNOX1-1 overexpression in melanoma cells, indicating that lnc-PKNOX1-1 suppressed the development of melanoma by regulating IL-8. Taken together, our study demonstrated the tumor-suppressing ability of lnc-PKNOX1-1 in melanoma, suggesting its potential as a novel diagnostic biomarker and therapeutic target for melanoma.
Collapse
Affiliation(s)
- Anlan Hong
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Meng Cao
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Dongqing Li
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Yixin Wang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Guoqiang Zhang
- Department of Dermatology, the First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Fang Fang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Liang Zhao
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Qiang Wang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Tong Lin
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Yan Wang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| |
Collapse
|
15
|
Hartman ML, Koziej P, Kluszczyńska K, Czyz M. Pro-Apoptotic Activity of MCL-1 Inhibitor in Trametinib-Resistant Melanoma Cells Depends on Their Phenotypes and Is Modulated by Reversible Alterations Induced by Trametinib Withdrawal. Cancers (Basel) 2023; 15:4799. [PMID: 37835493 PMCID: PMC10571954 DOI: 10.3390/cancers15194799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Although BRAFV600/MEK inhibitors improved the treatment of melanoma patients, resistance is acquired almost inevitably. METHODS Trametinib withdrawal/rechallenge and MCL-1 inhibition in trametinib-resistance models displaying distinct p-ERK1/2 levels were investigated. RESULTS Trametinib withdrawal/rechallenge caused reversible changes in ERK1/2 activity impacting the balance between pro-survival and pro-apoptotic proteins. Reversible alterations were found in MCL-1 levels and MCL-1 inhibitors, BIM and NOXA. Taking advantage of melanoma cell dependency on MCL-1 for survival, we used S63845. While it was designed to inhibit MCL-1 activity, we showed that it also significantly reduced NOXA levels. S63845-induced apoptosis was detected as the enhancement of Annexin V-positivity, caspase-3/7 activation and histone H2AX phosphorylation. Percentages of Annexin V-positive cells were increased most efficiently in trametinib-resistant melanoma cells displaying the p-ERK1/2low/MCL-1low/BIMhigh/NOXAlow phenotype with EC50 values at concentrations as low as 0.1 μM. Higher ERK1/2 activity associated with increased MCL-1 level and reduced BIM level limited pro-apoptotic activity of S63845 further influenced by a NOXA level. CONCLUSIONS Our study supports the notion that the efficiency of an agent designed to target a single protein can largely depend on the phenotype of cancer cells. Thus, it is important to define appropriate phenotype determinants to stratify the patients for the novel therapy.
Collapse
Affiliation(s)
| | | | | | - Małgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, 92-215 Lodz, Poland; (M.L.H.); (P.K.); (K.K.)
| |
Collapse
|