1
|
Huber E, Singh T, Bunk M, Hebel M, Kick K, Weiß A, Kohls M, Köger M, Hergl M, Zapardiel Gonzalo JM, Bonifacio E, Ziegler AG. Discrimination and Precision of Continuous Glucose Monitoring in Staging Children With Presymptomatic Type 1 Diabetes. J Clin Endocrinol Metab 2025; 110:1624-1632. [PMID: 39413240 DOI: 10.1210/clinem/dgae691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/04/2024] [Accepted: 10/16/2024] [Indexed: 10/18/2024]
Abstract
CONTEXT Staging and monitoring of presymptomatic type 1 diabetes includes the assessment for dysglycemia. OBJECTIVE To assess the ability of continuous glucose monitoring (CGM) to differentiate between islet autoantibody-negative controls and early-stage type 1 diabetes and explore whether CGM classifiers predict progression to clinical diabetes. RESEARCH DESIGN AND METHODS Children and adolescents participating in public health screening for islet autoantibodies in Bavaria, Germany, were invited to undergo CGM with Dexcom G6. In total, 118 participated and valid data was obtained from 97 [57 female; median age 10 (range 3-17) years], including 46 with stage 1, 18 with stage 2, and 33 with no islet autoantibodies. RESULTS Mean glucose during CGM in islet autoantibody-negative controls was high (median, 115.3 mg/dL) and varied substantially (interquartile range, 106.8-124.4). Eleven (33%) of the controls had more than 10% of glucose values above 140 mg/dL (TA140). Using thresholds corresponding to 100% specificity in controls, differences between controls and stage 1 and stage 2 were obtained for glucose SD, TA140, TA160, and TA180. Elevations in any 2 of these parameters identified 12 (67%) with stage 2 and 9 (82%) of 11 participants who developed clinical diabetes within 1 year. However, there was marked variation within groups for all parameters and poor consistency observed in a second CGM performed in 18 participants. CONCLUSION This study demonstrated the potential of integrating CGM into staging and monitoring of early-stage type 1 diabetes. However, substantial improvement in the precision of CGM is required for its application in routine monitoring practices.
Collapse
Affiliation(s)
- Elisabeth Huber
- Institute of Diabetes Research, Helmholtz Munich, German Research Center for Environmental Health, Munich 80939, Germany
| | - Tarini Singh
- Institute of Diabetes Research, Helmholtz Munich, German Research Center for Environmental Health, Munich 80939, Germany
| | - Melanie Bunk
- Institute of Diabetes Research, Helmholtz Munich, German Research Center for Environmental Health, Munich 80939, Germany
| | - Mayscha Hebel
- Institute of Diabetes Research, Helmholtz Munich, German Research Center for Environmental Health, Munich 80939, Germany
| | - Kerstin Kick
- Forschergruppe Diabetes at Klinikum rechts der Isar, School of Medicine, Technical University Munich, Munich 80939, Germany
| | - Andreas Weiß
- Institute of Diabetes Research, Helmholtz Munich, German Research Center for Environmental Health, Munich 80939, Germany
| | - Mirjam Kohls
- Institute of Diabetes Research, Helmholtz Munich, German Research Center for Environmental Health, Munich 80939, Germany
| | - Melanie Köger
- Institute of Diabetes Research, Helmholtz Munich, German Research Center for Environmental Health, Munich 80939, Germany
| | - Maja Hergl
- Institute of Diabetes Research, Helmholtz Munich, German Research Center for Environmental Health, Munich 80939, Germany
| | - Jose Maria Zapardiel Gonzalo
- Institute of Diabetes Research, Helmholtz Munich, German Research Center for Environmental Health, Munich 80939, Germany
| | - Ezio Bonifacio
- Faculty of Medicine, Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden 01307, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Munich at University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Dresden 01307, Germany
| | - Anette-G Ziegler
- Institute of Diabetes Research, Helmholtz Munich, German Research Center for Environmental Health, Munich 80939, Germany
- Forschergruppe Diabetes at Klinikum rechts der Isar, School of Medicine, Technical University Munich, Munich 80939, Germany
| |
Collapse
|
2
|
Desouter AK, Keymeulen B, Van de Velde U, Van Dalem A, Lapauw B, De Block C, Gillard P, Seret N, Balti EV, Van Vooren ER, Staels W, Van Aken S, den Brinker M, Depoorter S, Marlier J, Kahya H, Gorus FK. Repeated OGTT Versus Continuous Glucose Monitoring for Predicting Development of Stage 3 Type 1 Diabetes: A Longitudinal Analysis. Diabetes Care 2025; 48:528-536. [PMID: 39903487 PMCID: PMC11932814 DOI: 10.2337/dc24-2376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/31/2024] [Indexed: 02/06/2025]
Abstract
OBJECTIVE Evidence for using continuous glucose monitoring (CGM) as an alternative to oral glucose tolerance tests (OGTTs) in presymptomatic type 1 diabetes is primarily cross-sectional. We used longitudinal data to compare the diagnostic performance of repeated CGM, HbA1c, and OGTT metrics to predict progression to stage 3 type 1 diabetes. RESEARCH DESIGN AND METHODS Thirty-four multiple autoantibody-positive first-degree relatives (FDRs) (BMI SD score [SDS] <2) were followed in a multicenter study with semiannual 5-day CGM recordings, HbA1c, and OGTT for a median of 3.5 (interquartile range [IQR] 2.0-7.5) years. Longitudinal patterns were compared based on progression status. Prediction of rapid (<3 years) and overall progression to stage 3 was assessed using receiver operating characteristic (ROC) areas under the curve (AUCs), Kaplan-Meier method, baseline Cox proportional hazards models (concordance), and extended Cox proportional hazards models with time-varying covariates in multiple record data (n = 197 OGTTs and concomitant CGM recordings), adjusted for intraindividual correlations (corrected Akaike information criterion [AICc]). RESULTS After a median of 40 (IQR 20-91) months, 17 of 34 FDRs (baseline median age 16.6 years) developed stage 3 type 1 diabetes. CGM metrics increased close to onset, paralleling changes in OGTT, both with substantial intra- and interindividual variability. Cross-sectionally, the best OGTT and CGM metrics similarly predicted rapid (ROC AUC = 0.86-0.92) and overall progression (concordance = 0.73-0.78). In longitudinal models, OGTT-derived AUC glucose (AICc = 71) outperformed the best CGM metric (AICc = 75) and HbA1c (AICc = 80) (all P < 0.001). HbA1c complemented repeated CGM metrics (AICc = 68), though OGTT-based multivariable models remained superior (AICc = 59). CONCLUSIONS In longitudinal models, repeated CGM and HbA1c were nearly as effective as OGTT in predicting stage 3 type 1 diabetes and may be more convenient for long-term clinical monitoring.
Collapse
Affiliation(s)
- Aster K. Desouter
- Diabetes Research Center, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Diabetes Clinic, Department of Diabetology and Endocrinology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Bart Keymeulen
- Diabetes Research Center, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Diabetes Clinic, Department of Diabetology and Endocrinology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Ursule Van de Velde
- Diabetes Research Center, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Diabetes Clinic, Department of Diabetology and Endocrinology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Annelien Van Dalem
- Diabetes Research Center, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Clinical Chemistry and Radioimmunology Laboratory, Department of Clinical Biology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Bruno Lapauw
- Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
| | - Christophe De Block
- Diabetes Unit, Department of Endocrinology, Diabetology and Metabolism, University of Antwerp–Antwerp University Hospital, Antwerp, Belgium
| | - Pieter Gillard
- Diabetes Center, Department of Endocrinology, University Hospital Leuven–KU Leuven, Leuven, Belgium
| | - Nicole Seret
- Pediatric Endocrinology, Department of Pediatrics, Clinique CHC Montlégia, Liège, Belgium
| | - Eric V. Balti
- Diabetes Research Center, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Diabetes Clinic, Department of Diabetology and Endocrinology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Elena R. Van Vooren
- Diabetes Research Center, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Willem Staels
- Genetics, Reproduction, and Development, Vrije Universiteit Brussel, Brussels, Belgium
- Division of Pediatric Endocrinology, Department of Pediatrics, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Sara Van Aken
- Pediatric Endocrinology, Department of Pediatrics, Ghent University Hospital, Ghent, Belgium
| | - Marieke den Brinker
- Pediatric Endocrinology, Department of Pediatrics, University of Antwerp–Antwerp University Hospital, Antwerp, Belgium
| | - Sylvia Depoorter
- Pediatric Endocrinology, Department of Pediatrics, AZ Sint-Jan, Bruges, Belgium
| | - Joke Marlier
- Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
| | - Hasan Kahya
- Diabetes Research Center, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Diabetes Clinic, Department of Diabetology and Endocrinology, Universitair Ziekenhuis Brussel, Brussels, Belgium
- Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
| | - Frans K. Gorus
- Diabetes Research Center, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Diabetes Clinic, Department of Diabetology and Endocrinology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| |
Collapse
|
3
|
Wentworth JM, Sing ABE, Naselli G, Huang D, Azidis-Yates E, Mandlebe B, Brown JD, McGorm K, Hall C, Redl L, Kludas R, Haldar A, Healy F, Gilbert A, Watson K, Chiang C, Couper JJ, Huynh T, Davis EA, Craig ME, Cameron FJ, Kay TW, Harrison LC, Colman PG. Islet Autoantibody Screening Throughout Australia Using In-Home Blood Spot Sampling: 2-Year Outcomes of Type1Screen. Diabetes Care 2025; 48:556-563. [PMID: 39879258 DOI: 10.2337/dc24-2443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/04/2025] [Indexed: 01/31/2025]
Abstract
OBJECTIVE Type1Screen offers islet autoantibody testing to Australians with a family history of type 1 diabetes (T1D) with the dual aims of preventing diabetic ketoacidosis (DKA) and enabling use of disease-modifying therapy. We describe screening and monitoring outcomes 2 years after implementing in-home capillary blood spot sampling. RESEARCH DESIGN AND METHODS Data from 2,064 participants who registered between July 2022 and June 2024 were analyzed: 1,507 and 557 chose blood spot and venipuncture screening respectively. We compared baseline characteristics and outcomes for 1,243 participants (967 blood spot and 276 venipuncture) whose samples were tested by June 2024. RESULTS One blood spot and five venous participants reported unsuccessful sample collections. The median (quartile 1, quartile 3) age of blood spot registrants was lower (12.1 [7.1, 27.1] vs. 17.2 [9, 38.4] years; P < 0.0001), and a higher proportion lived in regional Australia (39% vs. 29%; P = 0.0037). Among 72 participants (5.9%) with a positive screening test, 5 screened by blood spot and 2 by venipuncture had no autoantibodies on confirmatory testing. Blood spot screening identified the expected 2.1% prevalence of multiple autoantibodies and a 2.5% prevalence of a single autoantibody compared with 1.5% and 4.1%, respectively, for venipuncture screening. Clinical diabetes developed in 12 participants. All had screened positive and none had DKA. CONCLUSIONS Type1Screen has national reach. In-home blood spot screening is feasible, particularly for younger participants living regionally, and identifies the expected prevalence of preclinical T1D. The lower cost, increased convenience, and greater reach of blood spot screening could help meet increasing demand for early T1D diagnosis.
Collapse
Affiliation(s)
- John M Wentworth
- Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Parkville, Victoria, Australia
- Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
- Population Health and Immunity Division, Walter and Eliza Hall Institute, Parkville, Victoria, Australia
- St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Anna B E Sing
- Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
- Population Health and Immunity Division, Walter and Eliza Hall Institute, Parkville, Victoria, Australia
| | - Gaetano Naselli
- Population Health and Immunity Division, Walter and Eliza Hall Institute, Parkville, Victoria, Australia
| | - Dexing Huang
- Population Health and Immunity Division, Walter and Eliza Hall Institute, Parkville, Victoria, Australia
| | - Elizabeth Azidis-Yates
- Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Batsho Mandlebe
- Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - James D Brown
- Faculty of Health and Medical Sciences, Adelaide Medical School, and Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Kelly McGorm
- Faculty of Health and Medical Sciences, Adelaide Medical School, and Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
- Endocrinology and Diabetes Department, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - Candice Hall
- Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Parkville, Victoria, Australia
- St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Leanne Redl
- Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Renee Kludas
- Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Aniruddh Haldar
- Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Felicity Healy
- Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Abbey Gilbert
- Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Kelly Watson
- Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Cherie Chiang
- Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Parkville, Victoria, Australia
- Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Jennifer J Couper
- Faculty of Health and Medical Sciences, Adelaide Medical School, and Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
- Endocrinology and Diabetes Department, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - Tony Huynh
- Queensland Children's Hospital, South Brisbane, Queensland, Australia
- Children's Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Department of Chemical Pathology, Mater Pathology, South Brisbane, Queensland, Australia
| | | | - Maria E Craig
- Children's Hospital Westmead, Westmead, New South Wales, Australia
- Children's Hospital Westmead Clinical School, University of Sydney, Camperdown, Victoria, Australia
- Discipline of Paediatrics and Child Health, University of NSW, Kensington, New South Wales, Australia
| | | | - Thomas W Kay
- St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Leonard C Harrison
- Population Health and Immunity Division, Walter and Eliza Hall Institute, Parkville, Victoria, Australia
| | - Peter G Colman
- Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| |
Collapse
|
4
|
Lernmark Å, Agardh D, Akolkar B, Gesualdo P, Hagopian WA, Haller MJ, Hyöty H, Johnson SB, Elding Larsson H, Liu E, Lynch KF, McKinney EF, McIndoe R, Melin J, Norris JM, Rewers M, Rich SS, Toppari J, Triplett E, Vehik K, Virtanen SM, Ziegler AG, Schatz DA, Krischer J. Looking back at the TEDDY study: lessons and future directions. Nat Rev Endocrinol 2025; 21:154-165. [PMID: 39496810 PMCID: PMC11825287 DOI: 10.1038/s41574-024-01045-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/26/2024] [Indexed: 11/06/2024]
Abstract
The goal of the TEDDY (The Environmental Determinants of Diabetes in the Young) study is to elucidate factors leading to the initiation of islet autoimmunity (first primary outcome) and those related to progression to type 1 diabetes mellitus (T1DM; second primary outcome). This Review outlines the key findings so far, particularly related to the first primary outcome. The background, history and organization of the study are discussed. Recruitment and follow-up (from age 4 months to 15 years) of 8,667 children showed high retention and compliance. End points of the presence of autoantibodies against insulin, GAD65, IA-2 and ZnT8 revealed the HLA-associated early appearance of insulin autoantibodies (1-3 years of age) and the later appearance of GAD65 autoantibodies. Competing autoantibodies against tissue transglutaminase (marking coeliac disease autoimmunity) also appeared early (2-4 years). Genetic and environmental factors, including enterovirus infection and gastroenteritis, support mechanistic differences underlying one phenotype of autoimmunity against insulin and another against GAD65. Infant growth and both probiotics and high protein intake affect the two phenotypes differently, as do serious life events during pregnancy. As the end of the TEDDY sampling phase is approaching, major omics approaches are in progress to further dissect the mechanisms that might explain the two possible endotypes of T1DM.
Collapse
Affiliation(s)
- Åke Lernmark
- Department of Clinical Sciences, Lund University CRC, Skåne University Hospital, Malmö, Sweden.
| | - Daniel Agardh
- Department of Clinical Sciences, Lund University CRC, Skåne University Hospital, Malmö, Sweden
| | - Beena Akolkar
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Patricia Gesualdo
- Barbara Davis Center for Diabetes, University of Colorado, Aurora, CO, USA
| | - William A Hagopian
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Michael J Haller
- Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Heikki Hyöty
- Department of Virology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Suzanne Bennett Johnson
- Department of Behavioral Sciences and Social Medicine, Florida State University College of Medicine, Tallahassee, FL, USA
| | - Helena Elding Larsson
- Department of Clinical Sciences, Lund University CRC, Skåne University Hospital, Malmö, Sweden
| | - Edwin Liu
- Digestive Health Institute, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kristian F Lynch
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Eoin F McKinney
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Richard McIndoe
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Jessica Melin
- Department of Clinical Sciences, Lund University CRC, Skåne University Hospital, Malmö, Sweden
| | - Jill M Norris
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Marian Rewers
- Barbara Davis Center for Diabetes, University of Colorado, Aurora, CO, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Jorma Toppari
- Department of Paediatrics, Turku University Hospital, Turku, Finland
- Institute of Biomedicine, Research Centre for Integrated Physiology and Pharmacology, University of Turku, Turku, Finland
| | - Eric Triplett
- University of Florida, Department of Microbiology and Cell Science, Gainesville, FL, USA
| | - Kendra Vehik
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Suvi M Virtanen
- Center for Child Health Research, Tampere University and University Hospital and Research, Tampere, Finland
| | - Anette-G Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, Munich, Germany
- Forschergruppe Diabetes e.V. at Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, Munich, Germany
- Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München and e.V., Munich, Germany
| | - Desmond A Schatz
- Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Jeffrey Krischer
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
5
|
Haller MJ, Bell KJ, Besser RE, Casteels K, Couper JJ, Craig ME, Elding Larsson H, Jacobsen L, Lange K, Oron T, Sims EK, Speake C, Tosur M, Ulivi F, Ziegler AG, Wherrett DK, Marcovecchio ML. ISPAD Clinical Practice Consensus Guidelines 2024: Screening, Staging, and Strategies to Preserve Beta-Cell Function in Children and Adolescents with Type 1 Diabetes. Horm Res Paediatr 2024; 97:529-545. [PMID: 39662065 PMCID: PMC11854978 DOI: 10.1159/000543035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 11/23/2024] [Indexed: 12/13/2024] Open
Abstract
The International Society for Pediatric and Adolescent Diabetes (ISPAD) guidelines represent a rich repository that serves as the only comprehensive set of clinical recommendations for children, adolescents, and young adults living with diabetes worldwide. This guideline serves as an update to the 2022 ISPAD consensus guideline on staging for type 1 diabetes (T1D). Key additions include an evidence-based summary of recommendations for screening for risk of T1D and monitoring those with early-stage T1D. In addition, a review of clinical trials designed to delay progression to Stage 3 T1D and efforts seeking to preserve beta-cell function in those with Stage 3 T1D are included. Lastly, opportunities and challenges associated with the recent US Food and Drug Administration (FDA) approval of teplizumab as an immunotherapy to delay progression are discussed. The International Society for Pediatric and Adolescent Diabetes (ISPAD) guidelines represent a rich repository that serves as the only comprehensive set of clinical recommendations for children, adolescents, and young adults living with diabetes worldwide. This guideline serves as an update to the 2022 ISPAD consensus guideline on staging for type 1 diabetes (T1D). Key additions include an evidence-based summary of recommendations for screening for risk of T1D and monitoring those with early-stage T1D. In addition, a review of clinical trials designed to delay progression to Stage 3 T1D and efforts seeking to preserve beta-cell function in those with Stage 3 T1D are included. Lastly, opportunities and challenges associated with the recent US Food and Drug Administration (FDA) approval of teplizumab as an immunotherapy to delay progression are discussed.
Collapse
Affiliation(s)
- Michael J. Haller
- Division of Endocrinology, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Kirstine J. Bell
- Charles Perkins Centre and Faculty Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Rachel E.J. Besser
- Centre for Human Genetics, NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Kristina Casteels
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Jenny J. Couper
- Women’s and Children’s Hospital, North Adelaide, SA, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Maria E. Craig
- The Children’s Hospital at Westmead, Sydney, NSW, Australia
- Discipline of Pediatrics and Child Health, University of Sydney, Sydney, NSW, Australia
- School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW, Australia
| | - Helena Elding Larsson
- Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Department of Pediatrics, Skåne University Hospital, Malmö/Lund, Sweden
| | - Laura Jacobsen
- Division of Endocrinology, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Karin Lange
- Department of Medical Psychology, Hannover Medical School, Hannover, Germany
| | - Tal Oron
- The Institute for Endocrinology and Diabetes, Schneider Children’s Medical Center of Israel, Petah-Tikva, Israel
| | - Emily K. Sims
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Cate Speake
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Mustafa Tosur
- The Division of Diabetes and Endocrinology, Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX, USA
- Children’s Nutrition Research Center, USDA/ARS, Houston, TX, USA
| | | | - Anette-G. Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, and Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Diane K. Wherrett
- Division of Endocrinology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - M. Loredana Marcovecchio
- Department of Paediatrics, University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
6
|
Swaby R, Scudder C, Randell T, Marcovecchio ML, Gillespie K, Liu YF, Todd JA, Dunseath G, Luzio S, Dayan C, Besser REJ. A study to determine a capillary alternative to the gold standard oral glucose tolerance test - Protocol. Wellcome Open Res 2024; 9:601. [PMID: 39925650 PMCID: PMC11803194 DOI: 10.12688/wellcomeopenres.23028.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2024] [Indexed: 02/11/2025] Open
Abstract
Type 1 diabetes (T1D) is a chronic condition caused by the immune destruction of the pancreatic beta cells. T1D has recognised asymptomatic pre-clinical stages, providing an opportunity for early diagnosis, education and treatment which may delay the onset of symptoms. The oral glucose tolerance test (OGTT) is the gold standard method to stage and monitor early-stage T1D, which can be poorly tolerated and may contribute to marked loss to follow-up. Our study aims to test the accuracy, feasibility, and acceptability of a capillary alternative ('GTT@home' test kit) to the gold standard OGTT. We will invite 45 children and young people (CYP) across the spectrum of glycaemia with or without diabetes, from established research platforms or clinical care, to have a standard 2-hour OGTT, with capillary samples collected alongside their venous samples, at 0 and 120 minutes. A subgroup (n=20) will also have 60-minute capillary and venous samples collected. We will also invite 45 CYP from established research platforms, who are known to have two or more islet autoantibodies and are not on insulin, to undergo a capillary OGTT at home, using the GTT@home kit. We will assess the agreement of capillary and venous glucose and measure diagnostic accuracy by calculating the sensitivity and specificity of capillary measures at established diagnostic thresholds (fasting [5.6 mmol/L, 7.0 mmol/L], 60 minutes post glucose load [11.1 mmol/L] and 120 minutes post glucose load [7.8 mmol/L and 11.1 mmol/L]), using venous glucose as the gold standard. These studies will inform our understanding of whether the GTT@home device can be used in CYP in routine clinical care.
Collapse
Affiliation(s)
- Rabbi Swaby
- Diabetes and Inflammation Laboratory, Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, England, UK
| | - Claire Scudder
- Diabetes and Inflammation Laboratory, Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, England, UK
| | - Tabitha Randell
- Nottingham Children's Hospital, Nottingham University Hospitals NHS Trust, Nottingham, England, UK
| | | | - Kathleen Gillespie
- Diabetes and Metabolism Unit, University of Bristol Translational Health Sciences, Bristol, England, UK
| | - Yuk-Fun Liu
- School of Life Course Sciences, King's College London, London, UK
- Diabetes Department, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - John A Todd
- Diabetes and Inflammation Laboratory, Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, England, UK
| | | | - Steve Luzio
- College of Medicine, Swansea University, Swansea, UK
| | - Colin Dayan
- Diabetes and Inflammation Laboratory, Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, England, UK
- Clinical Diabetes and Metabolism, Cardiff University School of Medicine, Cardiff, Wales, UK
| | - Rachel E J Besser
- Diabetes and Inflammation Laboratory, Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, England, UK
- University of Oxford Department of Paediatrics, Oxford, England, UK
| |
Collapse
|
7
|
Haynes A, Tully A, Smith GJ, Penno MA, Craig ME, Wentworth JM, Huynh T, Colman PG, Soldatos G, Anderson AJ, McGorm KJ, Oakey H, Couper JJ, Davis EA. Early Dysglycemia Is Detectable Using Continuous Glucose Monitoring in Very Young Children at Risk of Type 1 Diabetes. Diabetes Care 2024; 47:1750-1756. [PMID: 39159241 PMCID: PMC11417303 DOI: 10.2337/dc24-0540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/28/2024] [Indexed: 08/21/2024]
Abstract
OBJECTIVE Continuous glucose monitoring (CGM) can detect early dysglycemia in older children and adults with presymptomatic type 1 diabetes (T1D) and predict risk of progression to clinical onset. However, CGM data for very young children at greatest risk of disease progression are lacking. This study aimed to investigate the use of CGM data measured in children being longitudinally observed in the Australian Environmental Determinants of Islet Autoimmunity (ENDIA) study from birth to age 10 years. RESEARCH DESIGN AND METHODS Between January 2021 and June 2023, 31 ENDIA children with persistent multiple islet autoimmunity (PM Ab+) and 24 age-matched control children underwent CGM assessment alongside standard clinical monitoring. The CGM metrics of glucose SD (SDSGL), coefficient of variation (CEV), mean sensor glucose (SGL), and percentage of time >7.8 mmol/L (>140 mg/dL) were determined and examined for between-group differences. RESULTS The mean (SD) ages of PM Ab+ and Ab- children were 4.4 (1.8) and 4.7 (1.9) years, respectively. Eighty-six percent of eligible PM Ab+ children consented to CGM wear, achieving a median (quartile 1 [Q1], Q3) sensor wear period of 12.5 (9.0, 15.0) days. PM Ab+ children had higher median (Q1, Q3) SDSGL (1.1 [0.9, 1.3] vs. 0.9 [0.8, 1.0] mmol/L; P < 0.001) and CEV (17.3% [16.0, 20.9] vs. 14.7% [12.9, 16.6]; P < 0.001). Percentage of time >7.8 mmol/L was greater in PM Ab+ children (median [Q1, Q3] 8.0% [4.4, 13.0] compared with 3.3% [1.4, 5.3] in Ab- children; P = 0.005). Mean SGL did not differ significantly between groups (P = 0.10). CONCLUSIONS CGM is feasible and well tolerated in very young children at risk of T1D. Very young PM Ab+ children have increased SDSGL, CEV, and percentage of time >7.8 mmol/L, consistent with prior studies involving older participants.
Collapse
Affiliation(s)
- Aveni Haynes
- Children’s Diabetes Centre, Telethon Kids Institute, University of Western Australia, Nedlands, Western Australia, Australia
- Paediatrics, UWA Medical School, University of Western Australia, Nedlands, Western Australia, Australia
| | - Alexandra Tully
- Children’s Diabetes Centre, Telethon Kids Institute, University of Western Australia, Nedlands, Western Australia, Australia
| | - Grant J. Smith
- Children’s Diabetes Centre, Telethon Kids Institute, University of Western Australia, Nedlands, Western Australia, Australia
| | - Megan A.S. Penno
- Faculty of Health and Medical Sciences and Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Maria E. Craig
- Faculty of Medicine, School of Women’s and Children’s Health, University of New South Wales, Sydney, New South Wales, Australia
- Institute of Endocrinology and Diabetes, Children’s Hospital at Westmead, Sydney, New South Wales, Australia
| | - John M. Wentworth
- Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Tony Huynh
- Department of Endocrinology and Diabetes, Queensland Children’s Hospital, South Brisbane, Queensland, Australia
- Faculty of Medicine, Children’s Health Research Centre, University of Queensland, South Brisbane, Queensland, Australia
| | - Peter G. Colman
- Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Georgia Soldatos
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Diabetes and Vascular Medicine Unit, Monash Health, Melbourne, Victoria, Australia
| | - Amanda J. Anderson
- Faculty of Health and Medical Sciences and Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Kelly J. McGorm
- Faculty of Health and Medical Sciences and Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Helena Oakey
- Faculty of Health and Medical Sciences and Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Jennifer J. Couper
- Department of Diabetes and Endocrinology, Women’s and Children’s Hospital, Adelaide, South Australia, Australia
| | - Elizabeth A. Davis
- Children’s Diabetes Centre, Telethon Kids Institute, University of Western Australia, Nedlands, Western Australia, Australia
- Department of Diabetes and Endocrinology, Perth Children’s Hospital, Nedlands, Western Australia, Australia
- School of Paediatrics, University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
8
|
Quinn LM, Dias RP, Bidder C, Bhowmik S, Bumke K, Ganapathi J, Gorman S, Hind E, Karandikar S, Kumar K, Lipscomb N, McGovern S, Puthi VR, Randell T, Watts G, Narendran P. Presentation and characteristics of children with screen-detected type 1 diabetes: learnings from the ELSA general population pediatric screening study. BMJ Open Diabetes Res Care 2024; 12:e004480. [PMID: 39327068 PMCID: PMC11429353 DOI: 10.1136/bmjdrc-2024-004480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
INTRODUCTION We describe the identification and management of general population screen-detected type 1 diabetes (T1D) and share learnings for best practice. RESEARCH DESIGN AND METHODS Children diagnosed with T1D through a general population screening initiative, the EarLy Surveillance for Autoimmune diabetes (ELSA) study, were reviewed and described.Parents provided written, informed consent for inclusion in the case series. RESULTS 14 children with insulin requiring (stage 3) T1D are described. These cases offer unique insights into the features of screen-detected T1D. T1D is identified sooner through screening programs, characterized by absent/short symptom duration, median presenting glycated hemoglobin 6.6% (49 mmol/mol) and insulin requirements<0.5 units/kg/day. ELSA identified four children at stage 3 and another 4 progressed within 4 months of ELSA completion, including two single seropositive children. Six children developed stage 3 T1D prior to ELSA completion, including two children (14%, n=2/14) with diabetic ketoacidosis prior to confirmed antibody status. CONCLUSIONS There are three main learnings from this case series. First, T1D identified through screening is at an earlier stage of its natural history and requires personalized insulin regimens with lower total daily insulin doses. Second, single autoantibody seropositivity can rapidly progress to stage 3. Finally, insulin requirement can manifest at any stage of the T1D screening pathway, and therefore early education around symptom recognition is essential for families participating in screening programs.
Collapse
Affiliation(s)
- Lauren M Quinn
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Renuka P Dias
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- Department of Paediatric Endocrinology, Birmingham Women’s and Children’s Hospitals NHS Foundation Trust, Birmingham, UK
| | - Christopher Bidder
- Department of Child health, Swansea Bay University Health Board, Morriston Hospital, Swansea, UK
| | | | - Kerstin Bumke
- Paediatric Department, University Hospital Wishaw, Wishaw, UK
| | | | - Shaun Gorman
- Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Edward Hind
- North Hampshire Hospital, Basingstoke, Hampshire, UK
| | | | - Kiran Kumar
- Burton Hospitals NHS Foundation Trust, Derby, UK
| | - Nicholas Lipscomb
- Department of Paediatrics, South West Acute Hospital, Enniskillen, UK
| | | | - Vijith R Puthi
- Department of Paediatrics, Peterborough City Hospital, Peterborough, UK
| | | | | | - Parth Narendran
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- Department of Diabetes, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
9
|
Phillip M, Achenbach P, Addala A, Albanese-O'Neill A, Battelino T, Bell KJ, Besser REJ, Bonifacio E, Colhoun HM, Couper JJ, Craig ME, Danne T, de Beaufort C, Dovc K, Driscoll KA, Dutta S, Ebekozien O, Larsson HE, Feiten DJ, Frohnert BI, Gabbay RA, Gallagher MP, Greenbaum CJ, Griffin KJ, Hagopian W, Haller MJ, Hendrieckx C, Hendriks E, Holt RIG, Hughes L, Ismail HM, Jacobsen LM, Johnson SB, Kolb LE, Kordonouri O, Lange K, Lash RW, Lernmark Å, Libman I, Lundgren M, Maahs DM, Marcovecchio ML, Mathieu C, Miller KM, O'Donnell HK, Oron T, Patil SP, Pop-Busui R, Rewers MJ, Rich SS, Schatz DA, Schulman-Rosenbaum R, Simmons KM, Sims EK, Skyler JS, Smith LB, Speake C, Steck AK, Thomas NPB, Tonyushkina KN, Veijola R, Wentworth JM, Wherrett DK, Wood JR, Ziegler AG, DiMeglio LA. Consensus guidance for monitoring individuals with islet autoantibody-positive pre-stage 3 type 1 diabetes. Diabetologia 2024; 67:1731-1759. [PMID: 38910151 PMCID: PMC11410955 DOI: 10.1007/s00125-024-06205-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Given the proven benefits of screening to reduce diabetic ketoacidosis (DKA) likelihood at the time of stage 3 type 1 diabetes diagnosis, and emerging availability of therapy to delay disease progression, type 1 diabetes screening programmes are being increasingly emphasised. Once broadly implemented, screening initiatives will identify significant numbers of islet autoantibody-positive (IAb+) children and adults who are at risk of (confirmed single IAb+) or living with (multiple IAb+) early-stage (stage 1 and stage 2) type 1 diabetes. These individuals will need monitoring for disease progression; much of this care will happen in non-specialised settings. To inform this monitoring, JDRF in conjunction with international experts and societies developed consensus guidance. Broad advice from this guidance includes the following: (1) partnerships should be fostered between endocrinologists and primary-care providers to care for people who are IAb+; (2) when people who are IAb+ are initially identified there is a need for confirmation using a second sample; (3) single IAb+ individuals are at lower risk of progression than multiple IAb+ individuals; (4) individuals with early-stage type 1 diabetes should have periodic medical monitoring, including regular assessments of glucose levels, regular education about symptoms of diabetes and DKA, and psychosocial support; (5) interested people with stage 2 type 1 diabetes should be offered trial participation or approved therapies; and (6) all health professionals involved in monitoring and care of individuals with type 1 diabetes have a responsibility to provide education. The guidance also emphasises significant unmet needs for further research on early-stage type 1 diabetes to increase the rigour of future recommendations and inform clinical care.
Collapse
Affiliation(s)
- Moshe Phillip
- Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Peter Achenbach
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
- Forschergruppe Diabetes, Technical University Munich, Klinikum Rechts Der Isar, Munich, Germany
| | - Ananta Addala
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Tadej Battelino
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Endocrinology, Diabetes and Metabolism, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Kirstine J Bell
- Charles Perkins Centre and Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Rachel E J Besser
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre Human Genetics, Nuffield Department of Medicine Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Ezio Bonifacio
- Center for Regenerative Therapies Dresden, Faculty of Medicine, Technical University of Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden, Helmholtz Centre Munich at the University Clinic Carl Gustav Carus of TU Dresden and Faculty of Medicine, Dresden, Germany
| | - Helen M Colhoun
- The Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Department of Public Health, NHS Fife, Kirkcaldy, UK
| | - Jennifer J Couper
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Division of Paediatrics, Women's and Children's Hospital, Adelaide, SA, Australia
| | - Maria E Craig
- Charles Perkins Centre and Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Discipline of Paediatrics & Child Health, School of Clinical Medicine, UNSW Medicine & Health, Sydney, NSW, Australia
| | | | - Carine de Beaufort
- International Society for Pediatric and Adolescent Diabetes (ISPAD), Berlin, Germany
- Diabetes & Endocrine Care Clinique Pédiatrique (DECCP), Clinique Pédiatrique/Centre Hospitalier (CH) de Luxembourg, Luxembourg City, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-Belval, Luxembourg
| | - Klemen Dovc
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Endocrinology, Diabetes and Metabolism, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Kimberly A Driscoll
- Department of Pediatrics, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
- Department of Pediatrics, University of Florida Diabetes Institute, Gainesville, FL, USA
| | | | | | - Helena Elding Larsson
- Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
- Department of Pediatrics, Skåne University Hospital, Malmö and Lund, Sweden
| | | | - Brigitte I Frohnert
- Department of Pediatrics, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | | | - Carla J Greenbaum
- Center for Interventional Immunology and Diabetes Program, Benaroya Research Institute, Seattle, WA, USA
| | - Kurt J Griffin
- Sanford Research, Sioux Falls, SD, USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| | - William Hagopian
- Pacific Northwest Diabetes Research Institute, University of Washington, Seattle, WA, USA
| | - Michael J Haller
- Department of Pediatrics, University of Florida Diabetes Institute, Gainesville, FL, USA
- Division of Endocrinology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Christel Hendrieckx
- School of Psychology, Deakin University, Geelong, VIC, Australia
- The Australian Centre for Behavioural Research in Diabetes, Diabetes Victoria, Carlton, VIC, Australia
- Institute for Health Transformation, Deakin University, Geelong, VIC, Australia
| | - Emile Hendriks
- Department of Paediatrics, University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| | - Richard I G Holt
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- National Institute for Health and Care Research Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | | | - Heba M Ismail
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Laura M Jacobsen
- Division of Endocrinology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Suzanne B Johnson
- Department of Behavioral Sciences and Social Medicine, Florida State University College of Medicine, Tallahassee, FL, USA
| | - Leslie E Kolb
- Association of Diabetes Care & Education Specialists, Chicago, IL, USA
| | | | - Karin Lange
- Medical Psychology, Hannover Medical School, Hannover, Germany
| | | | - Åke Lernmark
- Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
| | - Ingrid Libman
- Division of Pediatric Endocrinology and Diabetes, University of Pittsburgh, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Markus Lundgren
- Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
- Department of Pediatrics, Kristianstad Hospital, Kristianstad, Sweden
| | - David M Maahs
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - M Loredana Marcovecchio
- Department of Pediatrics, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Chantal Mathieu
- Department of Endocrinology, UZ Gasthuisberg, KU Leuven, Leuven, Belgium
| | | | - Holly K O'Donnell
- Department of Pediatrics, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Tal Oron
- Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shivajirao P Patil
- Department of Family Medicine, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Rodica Pop-Busui
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Marian J Rewers
- Department of Pediatrics, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Desmond A Schatz
- Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Rifka Schulman-Rosenbaum
- Division of Endocrinology, Long Island Jewish Medical Center, Northwell Health, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, NY, USA
| | - Kimber M Simmons
- Department of Pediatrics, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Emily K Sims
- Division of Pediatric Endocrinology and Diabetology, Herman B Wells Center for Pediatric Research, Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jay S Skyler
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Laura B Smith
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Cate Speake
- Center for Interventional Immunology and Diabetes Program, Benaroya Research Institute, Seattle, WA, USA
| | - Andrea K Steck
- Department of Pediatrics, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Ksenia N Tonyushkina
- Division of Endocrinology and Diabetes, Baystate Children's Hospital and University of Massachusetts Chan Medical School - Baystate, Springfield, MA, USA
| | - Riitta Veijola
- Research Unit of Clinical Medicine, Department of Pediatrics, Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - John M Wentworth
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Diane K Wherrett
- Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Jamie R Wood
- Department of Pediatric Endocrinology, Rainbow Babies and Children's Hospital, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Anette-Gabriele Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
- Forschergruppe Diabetes, Technical University Munich, Klinikum Rechts Der Isar, Munich, Germany
| | - Linda A DiMeglio
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
10
|
Phillip M, Achenbach P, Addala A, Albanese-O’Neill A, Battelino T, Bell KJ, Besser RE, Bonifacio E, Colhoun HM, Couper JJ, Craig ME, Danne T, de Beaufort C, Dovc K, Driscoll KA, Dutta S, Ebekozien O, Elding Larsson H, Feiten DJ, Frohnert BI, Gabbay RA, Gallagher MP, Greenbaum CJ, Griffin KJ, Hagopian W, Haller MJ, Hendrieckx C, Hendriks E, Holt RI, Hughes L, Ismail HM, Jacobsen LM, Johnson SB, Kolb LE, Kordonouri O, Lange K, Lash RW, Lernmark Å, Libman I, Lundgren M, Maahs DM, Marcovecchio ML, Mathieu C, Miller KM, O’Donnell HK, Oron T, Patil SP, Pop-Busui R, Rewers MJ, Rich SS, Schatz DA, Schulman-Rosenbaum R, Simmons KM, Sims EK, Skyler JS, Smith LB, Speake C, Steck AK, Thomas NP, Tonyushkina KN, Veijola R, Wentworth JM, Wherrett DK, Wood JR, Ziegler AG, DiMeglio LA. Consensus Guidance for Monitoring Individuals With Islet Autoantibody-Positive Pre-Stage 3 Type 1 Diabetes. Diabetes Care 2024; 47:1276-1298. [PMID: 38912694 PMCID: PMC11381572 DOI: 10.2337/dci24-0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 06/25/2024]
Abstract
Given the proven benefits of screening to reduce diabetic ketoacidosis (DKA) likelihood at the time of stage 3 type 1 diabetes diagnosis, and emerging availability of therapy to delay disease progression, type 1 diabetes screening programs are being increasingly emphasized. Once broadly implemented, screening initiatives will identify significant numbers of islet autoantibody-positive (IAb+) children and adults who are at risk for (confirmed single IAb+) or living with (multiple IAb+) early-stage (stage 1 and stage 2) type 1 diabetes. These individuals will need monitoring for disease progression; much of this care will happen in nonspecialized settings. To inform this monitoring, JDRF, in conjunction with international experts and societies, developed consensus guidance. Broad advice from this guidance includes the following: 1) partnerships should be fostered between endocrinologists and primary care providers to care for people who are IAb+; 2) when people who are IAb+ are initially identified, there is a need for confirmation using a second sample; 3) single IAb+ individuals are at lower risk of progression than multiple IAb+ individuals; 4) individuals with early-stage type 1 diabetes should have periodic medical monitoring, including regular assessments of glucose levels, regular education about symptoms of diabetes and DKA, and psychosocial support; 5) interested people with stage 2 type 1 diabetes should be offered trial participation or approved therapies; and 6) all health professionals involved in monitoring and care of individuals with type 1 diabetes have a responsibility to provide education. The guidance also emphasizes significant unmet needs for further research on early-stage type 1 diabetes to increase the rigor of future recommendations and inform clinical care.
Collapse
Affiliation(s)
- Moshe Phillip
- Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Peter Achenbach
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
- Forschergruppe Diabetes, Technical University Munich, Klinikum Rechts Der Isar, Munich, Germany
| | - Ananta Addala
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA
| | | | - Tadej Battelino
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Endocrinology, Diabetes and Metabolism, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Kirstine J. Bell
- Charles Perkins Centre and Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Rachel E.J. Besser
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre Human Genetics, Nuffield Department of Medicine Oxford National Institute for Health and Care Research Biomedical Research Centre, University of Oxford, Oxford, U.K
- Department of Paediatrics, University of Oxford, Oxford, U.K
| | - Ezio Bonifacio
- Center for Regenerative Therapies Dresden, Faculty of Medicine, Technical University of Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden, Helmholtz Centre Munich at the University Clinic Carl Gustav Carus of Technical University of Dresden, and Faculty of Medicine, Technical University of Dresden, Dresden, Germany
| | - Helen M. Colhoun
- The Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, U.K
- Department of Public Health, NHS Fife, Kirkcaldy, U.K
| | - Jennifer J. Couper
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Division of Paediatrics, Women’s and Children’s Hospital, Adelaide, South Australia, Australia
| | - Maria E. Craig
- Charles Perkins Centre and Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Discipline of Paediatrics & Child Health, School of Clinical Medicine, UNSW Medicine & Health, Sydney, New South Wales, Australia
| | | | - Carine de Beaufort
- International Society for Pediatric and Adolescent Diabetes (ISPAD), Berlin, Germany
- Diabetes & Endocrine Care Clinique Pédiatrique (DECCP), Clinique Pédiatrique/Centre Hospitalier (CH) de Luxembourg, Luxembourg City, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-Belval, Luxembourg
| | - Klemen Dovc
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Endocrinology, Diabetes and Metabolism, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Kimberly A. Driscoll
- Department of Pediatrics, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL
- Department of Pediatrics, University of Florida Diabetes Institute, Gainesville, FL
| | | | | | - Helena Elding Larsson
- Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
- Department of Pediatrics, Skåne University Hospital, Malmö and Lund, Sweden
| | | | - Brigitte I. Frohnert
- Department of Pediatrics, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO
| | | | | | - Carla J. Greenbaum
- Center for Interventional Immunology and Diabetes Program, Benaroya Research Institute, Seattle, WA
| | - Kurt J. Griffin
- Sanford Research, Sioux Falls, SD
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD
| | - William Hagopian
- Pacific Northwest Diabetes Research Institute, University of Washington, Seattle, WA
| | - Michael J. Haller
- Department of Pediatrics, University of Florida Diabetes Institute, Gainesville, FL
- Division of Endocrinology, University of Florida College of Medicine, Gainesville, FL
| | - Christel Hendrieckx
- School of Psychology, Deakin University, Geelong, Victoria, Australia
- The Australian Centre for Behavioural Research in Diabetes, Diabetes Victoria, Carlton, Victoria, Australia
- Institute for Health Transformation, Deakin University, Geelong, Victoria, Australia
| | - Emile Hendriks
- Department of Paediatrics, University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Cambridge, U.K
| | - Richard I.G. Holt
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, U.K
- National Institute for Health and Care Research Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, U.K
| | | | - Heba M. Ismail
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Laura M. Jacobsen
- Division of Endocrinology, University of Florida College of Medicine, Gainesville, FL
| | - Suzanne B. Johnson
- Department of Behavioral Sciences and Social Medicine, Florida State University College of Medicine, Tallahassee, FL
| | - Leslie E. Kolb
- Association of Diabetes Care & Education Specialists, Chicago, IL
| | | | - Karin Lange
- Medical Psychology, Hannover Medical School, Hannover, Germany
| | | | - Åke Lernmark
- Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
| | - Ingrid Libman
- Division of Pediatric Endocrinology and Diabetes, University of Pittsburgh, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, PA
| | - Markus Lundgren
- Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
- Department of Pediatrics, Kristianstad Hospital, Kristianstad, Sweden
| | - David M. Maahs
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | | | - Chantal Mathieu
- Department of Endocrinology, UZ Gasthuisberg, KU Leuven, Leuven, Belgium
| | | | - Holly K. O’Donnell
- Department of Pediatrics, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Tal Oron
- Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shivajirao P. Patil
- Department of Family Medicine, Brody School of Medicine, East Carolina University, Greenville, NC
| | - Rodica Pop-Busui
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI
| | - Marian J. Rewers
- Department of Pediatrics, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA
| | | | - Rifka Schulman-Rosenbaum
- Division of Endocrinology, Long Island Jewish Medical Center, Northwell Health, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, NY
| | - Kimber M. Simmons
- Department of Pediatrics, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Emily K. Sims
- Division of Pediatric Endocrinology and Diabetology, Herman B Wells Center for Pediatric Research, Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
| | - Jay S. Skyler
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
| | - Laura B. Smith
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Cate Speake
- Center for Interventional Immunology and Diabetes Program, Benaroya Research Institute, Seattle, WA
| | - Andrea K. Steck
- Department of Pediatrics, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Nicholas P.B. Thomas
- National Institute of Health and Care Research Clinical Research Network Thames Valley and South Midlands, Oxford, U.K
| | - Ksenia N. Tonyushkina
- Division of Endocrinology and Diabetes, Baystate Children’s Hospital and University of Massachusetts Chan Medical School–Baystate, Springfield, MA
| | - Riitta Veijola
- Research Unit of Clinical Medicine, Department of Pediatrics, Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - John M. Wentworth
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Diane K. Wherrett
- Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Jamie R. Wood
- Department of Pediatric Endocrinology, Rainbow Babies and Children's Hospital, University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Anette-Gabriele Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
- Forschergruppe Diabetes, Technical University Munich, Klinikum Rechts Der Isar, Munich, Germany
| | - Linda A. DiMeglio
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
11
|
Joshi K, Harris M, Cotterill A, Wentworth JM, Couper JJ, Haynes A, Davis EA, Lomax KE, Huynh T. Continuous glucose monitoring has an increasing role in pre-symptomatic type 1 diabetes: advantages, limitations, and comparisons with laboratory-based testing. Clin Chem Lab Med 2024; 62:41-49. [PMID: 37349976 DOI: 10.1515/cclm-2023-0234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/06/2023] [Indexed: 06/24/2023]
Abstract
Type 1 diabetes (T1D) is well-recognised as a continuum heralded by the development of islet autoantibodies, progression to islet autoimmunity causing beta cell destruction, culminating in insulin deficiency and clinical disease. Abnormalities of glucose homeostasis are known to exist well before the onset of typical symptoms. Laboratory-based tests such as the oral glucose tolerance test (OGTT) and glycated haemoglobin (HbA1c) have been used to stage T1D and assess the risk of progression to clinical T1D. Continuous glucose monitoring (CGM) can detect early glycaemic abnormalities and can therefore be used to monitor for metabolic deterioration in pre-symptomatic, islet autoantibody positive, at-risk individuals. Early identification of these children can not only reduce the risk of presentation with diabetic ketoacidosis (DKA), but also determine eligibility for prevention trials, which aim to prevent or delay progression to clinical T1D. Here, we describe the current state with regard to the use of the OGTT, HbA1c, fructosamine and glycated albumin in pre-symptomatic T1D. Using illustrative cases, we present our clinical experience with the use of CGM, and advocate for an increased role of this diabetes technology, for monitoring metabolic deterioration and disease progression in children with pre-symptomatic T1D.
Collapse
Affiliation(s)
- Kriti Joshi
- Department of Endocrinology and Diabetes, Queensland Children's Hospital, South Brisbane, QLD, Australia
- Children's Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Mark Harris
- Department of Endocrinology and Diabetes, Queensland Children's Hospital, South Brisbane, QLD, Australia
| | - Andrew Cotterill
- Department of Endocrinology and Diabetes, Queensland Children's Hospital, South Brisbane, QLD, Australia
| | - John M Wentworth
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
- Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Jennifer J Couper
- Department of Endocrinology and Diabetes, Women's and Children's Hospital, North Adelaide, SA, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Aveni Haynes
- Children's Diabetes Centre, Telethon Kids Institute, The University of Western Australia Perth, Crawley, WA, Australia
| | - Elizabeth A Davis
- Children's Diabetes Centre, Telethon Kids Institute, The University of Western Australia Perth, Crawley, WA, Australia
- Department of Endocrinology and Diabetes, Perth Children's Hospital, Nedlands, WA, Australia
- Centre for Child Health Research, University of Western Australia, Perth, WA, Australia
| | - Kate E Lomax
- Children's Diabetes Centre, Telethon Kids Institute, The University of Western Australia Perth, Crawley, WA, Australia
- Department of Endocrinology and Diabetes, Perth Children's Hospital, Nedlands, WA, Australia
| | - Tony Huynh
- Department of Endocrinology and Diabetes, Queensland Children's Hospital, South Brisbane, QLD, Australia
- Children's Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Department of Chemical Pathology, Mater Pathology, South Brisbane, QLD, Australia
| |
Collapse
|
12
|
Melin J, Lynch KF, Lundgren M, Aronsson CA, Larsson HE, Johnson SB. Factors assessed in the first year of a longitudinal study predict subsequent study visit compliance: the TEDDY study. Eur J Med Res 2023; 28:592. [PMID: 38102669 PMCID: PMC10724932 DOI: 10.1186/s40001-023-01563-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Compliance with a study protocol is central to meeting its research goals. In longitudinal research studies, data loss due to missed visits limit statistical power and introduce bias. The Environmental Determinants of Diabetes in the Young (TEDDY) study is a longitudinal multinational (US, Finland, Germany, and Sweden) investigation of children at risk for type 1 diabetes (T1D) that seeks to identify the environmental triggers of islet autoimmunity and T1D. The purpose of the current study was to identify sociodemographic variables and maternal characteristics assessed in the first year of TEDDY that were associated with study visit compliance in the subsequent 3 years. METHODS Sociodemographic variables, maternal life-style behaviors, post-partum depression, maternal reactions to the child's T1D risk, and study-related variables were collected at child-age 6 months and 15 months. Multiple linear regression was used to examine the association of these variables to study visit compliance in the subsequent 3 years. RESULTS Study visit compliance was highest in Sweden (p > 0.001), in children who were their mother's first child (p > 0.001), and whose mothers were older (p > 0.001) and more satisfied with the TEDDY study (p > 0.001). Father participation was also associated with better study visit compliance (p > 0.001). In contrast, children whose mothers smoked (p > 0.001), suffered from post-partum depression (p = 0.034), and were more anxious about their child's T1D risk (p = 0.002), completed fewer visits. Father's study satisfaction was also associated with study visit compliance (p = 0.029); however, it was not significant in models that included maternal study satisfaction. CONCLUSIONS Sociodemographic variables, maternal characteristics-including study satisfaction-and fathers' participation in the first year of a longitudinal study were associated with subsequent study visit compliance in a sample of children genetically at-risk for T1D followed for 4 years. This information can inform future strategies designed to improve study visit compliance in longitudinal pediatric studies. TRIAL REGISTRATION NCT00279318, 06/09/2004.
Collapse
Affiliation(s)
- Jessica Melin
- Department of Clinical Science, Lund University, CRC Hus 60 Pl 11, Box 50332, 202 13, Malmö, Sweden.
| | - Kristian F Lynch
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Markus Lundgren
- Department of Clinical Science, Lund University, CRC Hus 60 Pl 11, Box 50332, 202 13, Malmö, Sweden
- Department of Pediatrics, Kristianstad Hospital, Kristianstad, Sweden
| | - Carin Andrén Aronsson
- Department of Clinical Science, Lund University, CRC Hus 60 Pl 11, Box 50332, 202 13, Malmö, Sweden
| | - Helena Elding Larsson
- Department of Clinical Science, Lund University, CRC Hus 60 Pl 11, Box 50332, 202 13, Malmö, Sweden
- Department of Pediatrics, Skåne University Hospital, Malmö, Sweden
| | - Suzanne Bennett Johnson
- Department of Behavioral Sciences and Social Medicine, Florida State University College of Medicine, Tallahassee, FL, USA
| |
Collapse
|
13
|
Quinn LM, Narendran P, Randell MJ, Bhavra K, Boardman F, Greenfield SM, Litchfield I. General population screening for paediatric type 1 diabetes-A qualitative study of UK professional stakeholders. Diabet Med 2023; 40:e15131. [PMID: 37151184 DOI: 10.1111/dme.15131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/09/2023]
Abstract
AIMS Identifying children at risk of type 1 diabetes allows education for symptom recognition and monitoring to reduce the risk of diabetic ketoacidosis at presentation. We aimed to explore stakeholder views towards paediatric general population screening for type 1 diabetes in the United Kingdom (UK). METHODS Qualitative interviews were undertaken with 25 stakeholders, including diabetes specialists, policymakers and community stakeholders who could be involved in a future type 1 diabetes screening programme in the UK. A thematic framework analysis was performed using the National Screening Committee's evaluative criteria as the overarching framework. RESULTS Diabetic ketoacidosis prevention was felt to be a priority and proposed benefits of screening included education, monitoring and helping the family to better prepare for a future with type 1 diabetes. However, diabetes specialists were cautious about general population screening because of lack of evidence for public acceptability. Concerns were raised about the harms of living with risk, provoking health anxiety and threatening the child's right to an 'open future'. Support systems that met the clinical and psychological needs of the family living with risk were considered essential. Stakeholders were supportive of research into general population screening and acknowledged this would be a priority if an immunoprevention agent were licensed in the UK. CONCLUSIONS Although stakeholders suggested the harms of UK paediatric general population screening currently outweigh the benefits, this view would potentially be altered if prevention therapies were licensed. In this case, an evidence-based screening strategy would need to be formulated and public acceptability explored.
Collapse
Affiliation(s)
- Lauren M Quinn
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Parth Narendran
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- Department of Diabetes, University Hospitals of Birmingham, Birmingham, UK
| | | | | | | | - Sheila M Greenfield
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Ian Litchfield
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| |
Collapse
|
14
|
Galderisi A, Evans-Molina C, Martino M, Caprio S, Cobelli C, Moran A. β-Cell Function and Insulin Sensitivity in Youth With Early Type 1 Diabetes From a 2-Hour 7-Sample OGTT. J Clin Endocrinol Metab 2023; 108:1376-1386. [PMID: 36546354 PMCID: PMC10188312 DOI: 10.1210/clinem/dgac740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
CONTEXT The oral minimal model is a widely accepted noninvasive tool to quantify both β-cell responsiveness and insulin sensitivity (SI) from glucose, C-peptide, and insulin concentrations during a 3-hour 9-point oral glucose tolerance test (OGTT). OBJECTIVE Here, we aimed to validate a 2-hour 7-point protocol against the 3-hour OGTT and to test how variation in early sampling frequency impacts estimates of β-cell responsiveness and SI. METHODS We conducted a secondary analysis on 15 lean youth with stage 1 type 1 diabetes (T1D; ≥ 2 islet autoantibodies with no dysglycemia) who underwent a 3-hour 9-point OGTT. The oral minimal model was used to quantitate β-cell responsiveness (φtotal) and insulin sensitivity (SI), allowing assessment of β-cell function by the disposition index (DI = φtotal × SI). Seven- and 5-point 2-hour OGTT protocols were tested against the 3-hour 9-point gold standard to determine agreement between estimates of φtotal and its dynamic and static components, SI, and DI across different sampling strategies. RESULTS The 2-hour estimates for the disposition index exhibited a strong correlation with 3-hour measures (r = 0.975; P < .001) with similar results for β-cell responsiveness and SI (r = 0.997 and r = 0.982; P < .001, respectively). The agreement of the 3 estimates between the 7-point 2-hour and 9-point 3-hour protocols fell within the 95% CI on the Bland-Altman grid with a median difference of 16.9% (-35.3 to 32.5), 0.2% (-0.6 to 1.3), and 14.9% (-1.4 to 28.3) for DI, φtotal, and SI. Conversely, the 5-point protocol did not provide reliable estimates of φ dynamic and static components. CONCLUSION The 2-hour 7-point OGTT is reliable in individuals with stage 1 T1D for assessment of β-cell responsiveness, SI, and DI. Incorporation of these analyses into current 2-hour diabetes staging and monitoring OGTTs offers the potential to more accurately quantify risk of progression in the early stages of T1D.
Collapse
Affiliation(s)
- Alfonso Galderisi
- Department of Woman and Child's Health, University of Padova,
35128 Padua, Italy
| | - Carmella Evans-Molina
- Center for Diabetes and Metabolic Diseases, Indiana
University, Indianapolis, Indiana 46202, USA
| | - Mariangela Martino
- Department of Woman and Child's Health, University of Padova,
35128 Padua, Italy
| | - Sonia Caprio
- Department of Pediatrics, Yale University, New
Haven, Connecticut 06520, USA
| | - Claudio Cobelli
- Department of Woman and Child's Health, University of Padova,
35128 Padua, Italy
| | - Antoinette Moran
- Department of Pediatrics, University of Minnesota,
Minneapolis, Minnesota 55454, USA
| |
Collapse
|
15
|
Besser REJ, Bell KJ, Couper JJ, Ziegler AG, Wherrett DK, Knip M, Speake C, Casteels K, Driscoll KA, Jacobsen L, Craig ME, Haller MJ. ISPAD Clinical Practice Consensus Guidelines 2022: Stages of type 1 diabetes in children and adolescents. Pediatr Diabetes 2022; 23:1175-1187. [PMID: 36177823 DOI: 10.1111/pedi.13410] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 12/29/2022] Open
Affiliation(s)
- Rachel E J Besser
- Wellcome Centre for Human Genetics, NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Kirstine J Bell
- Charles Perkins Centre and Faculty Medicine and Health, University of Sydney, Sydney, Australia
| | - Jenny J Couper
- Department of Pediatrics, University of Adelaide, South Australia, Australia.,Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Anette-G Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, and Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Diane K Wherrett
- Division of Endocrinology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Mikael Knip
- Children's Hospital, University of Helsinki, Helsinki, Finland
| | - Cate Speake
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Kristina Casteels
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium.,Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Kimberly A Driscoll
- Department of Clinical and Health Psychology, University of Florida, Gainesville, Florida, USA
| | - Laura Jacobsen
- Division of Endocrinology, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | - Maria E Craig
- Department of Pediatrics, The Children's Hospital at Westmead, University of Sydney, Sydney, Australia
| | - Michael J Haller
- Division of Endocrinology, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
16
|
Kontola H, Alanko I, Koskenniemi JJ, Löyttyniemi E, Itoshima S, Knip M, Veijola R, Toppari J, Kero J. Exploring Minimally Invasive Approach to Define Stages of Type 1 Diabetes Remotely. Diabetes Technol Ther 2022; 24:655-665. [PMID: 35653748 DOI: 10.1089/dia.2021.0554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Objective: New methods are pivotal in accurately predicting, monitoring, and diagnosing the clinical manifestation of type 1 diabetes (T1D) in high-risk children. Continuous glucose monitoring (CGM) is a valuable tool for patients with T1D, but there is still a knowledge gap regarding its utility in the prediction of diabetes. The current study explored whether 10-day CGM or CGM during an oral glucose tolerance test (OGTT) performed in the laboratory or at home (home-OGTT) could be accurate in detecting stages of T1D. Research Design and Methods: Forty-six subjects 4-25 years of age carrying genetic risk for T1D were recruited and classified into the following groups: islet autoantibody (IAb) negative, one IAb, and stages 1-3 of T1D, based on the laboratory OGTT and IAb results at baseline. A 10-day CGM was initiated before the OGTT. Results: In this study, we showed that CGM was sensitive in detecting asymptomatic individuals at stage 3, and dysglycemic individuals in stage 2 of T1D both during OGTT and the 10-day period. CGM also showed significant differences in several variables during the 10-day sensoring among individuals at different stages of T1D. Furthermore, CGM showed different OGTT profiles and detected significantly more abnormal OGTT results when compared with plasma glucose. Conclusions: CGM together with home-OGTT could detect stages of T1D and offer an alternative method to confirm normoglycemia in high-risk individuals.
Collapse
Affiliation(s)
- Helena Kontola
- Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Inka Alanko
- Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Jaakko J Koskenniemi
- Department of Pediatrics, Turku University Hospital, Turku, Finland
- Research Center for Integrative Physiology and Pharmacology, and Center for Population Health Research, Institute of Biomedicine, University of Turku, Turku, Finland
| | | | - Saori Itoshima
- Department of Pediatrics, Turku University Hospital, Turku, Finland
- Research Center for Integrative Physiology and Pharmacology, and Center for Population Health Research, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Mikael Knip
- Pediatric Research Center, New Children's Hospital, Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Center for Child Health Research, Tampere University Hospital, Tampere, Finland
| | - Riitta Veijola
- Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
- PEDEGO Research Unit, Department of Pediatrics, Medical Research Center, University of Oulu, Oulu, Finland
| | - Jorma Toppari
- Department of Pediatrics, Turku University Hospital, Turku, Finland
- Research Center for Integrative Physiology and Pharmacology, and Center for Population Health Research, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jukka Kero
- Department of Pediatrics, Turku University Hospital, Turku, Finland
- Research Center for Integrative Physiology and Pharmacology, and Center for Population Health Research, Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
17
|
Melin J, Lynch KF, Lundgren M, Aronsson CA, Larsson HE, Johnson SB. Is staff consistency important to parents' satisfaction in a longitudinal study of children at risk for type 1 diabetes: the TEDDY study. BMC Endocr Disord 2022; 22:19. [PMID: 35012530 PMCID: PMC8744326 DOI: 10.1186/s12902-021-00929-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Participants' study satisfaction is important for both compliance with study protocols and retention, but research on parent study satisfaction is rare. This study sought to identify factors associated with parent study satisfaction in The Environmental Determinants of Diabetes in the Young (TEDDY) study, a longitudinal, multinational (US, Finland, Germany, Sweden) study of children at risk for type 1 diabetes. The role of staff consistency to parent study satisfaction was a particular focus. METHODS Parent study satisfaction was measured by questionnaire at child-age 15 months (5579 mothers, 4942 fathers) and child-age four years (4010 mothers, 3411 fathers). Multiple linear regression analyses were used to identify sociodemographic factors, parental characteristics, and study variables associated with parent study satisfaction at both time points. RESULTS Parent study satisfaction was highest in Sweden and the US, compared to Finland. Parents who had an accurate perception of their child's type 1 diabetes risk and those who believed they can do something to prevent type 1 diabetes were more satisfied. More educated parents and those with higher depression scores had lower study satisfaction scores. After adjusting for these factors, greater study staff change frequency was associated with lower study satisfaction in European parents (mothers at child-age 15 months: - 0.30,95% Cl - 0.36, - 0.24, p < 0.001; mothers at child-age four years: -0.41, 95% Cl - 0.53, - 0.29, p < 0.001; fathers at child-age 15 months: -0.28, 95% Cl - 0.34, - 0.21, p < 0.001; fathers at child-age four years: -0.35, 95% Cl - 0.48, - 0.21, p < 0.001). Staff consistency was not associated with parent study satisfaction in the US. However, the number of staff changes was markedly higher in the US compared to Europe. CONCLUSIONS Sociodemographic factors, parental characteristics, and study-related variables were all related to parent study satisfaction. Those that are potentially modifiable are of particular interest as possible targets of future efforts to improve parent study satisfaction. Three such factors were identified: parent accuracy about the child's type 1 diabetes risk, parent beliefs that something can be done to reduce the child's risk, and study staff consistency. However, staff consistency was important only for European parents. TRIAL REGISTRATION NCT00279318 .
Collapse
Affiliation(s)
- Jessica Melin
- Department of Clinical Sciences, Lund University, Malmö, Sweden.
| | - Kristian F Lynch
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Markus Lundgren
- Department of Clinical Sciences, Lund University, Malmö, Sweden
- Department of Pediatrics, Kristianstad hospital, Kristianstad, Sweden
| | | | - Helena Elding Larsson
- Department of Clinical Sciences, Lund University, Malmö, Sweden
- Department of Pediatrics, Skåne University Hospital, Malmö, Sweden
| | - Suzanne Bennett Johnson
- Department of Behavioral Sciences and Social Medicine, Florida State University College of Medicine, Tallahassee, FL, USA
| |
Collapse
|