1
|
Ravikiran KT, Thribhuvan R, Anilkumar C, Kallugudi J, Prakash NR, Adavi B S, Sunitha NC, Abhijith KP. Harnessing the power of genomics to develop climate-smart crop varieties: A comprehensive review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123461. [PMID: 39622137 DOI: 10.1016/j.jenvman.2024.123461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 10/25/2024] [Accepted: 11/22/2024] [Indexed: 01/15/2025]
Abstract
Abiotic stresses arising as consequences of climate change pose a serious threat to agricultural productivity on a global scale. Most cultivated crop varieties exhibit susceptibility to such environmental pressures as drought, salinity, and waterlogging. Addressing these abiotic stresses through agronomic means is not only financially burdensome but also often impractical, particularly in the case of abiotic stresses like heat stress. Cultivating resilient varieties that can withstand such pressures emerges as an economically feasible strategy to mitigate these challenges. Nevertheless, the development of stress-tolerant cultivars is hindered by the intricate nature of abiotic stress tolerance, often characterized by low heritability values. Compounding this complexity is the dynamic and multifaceted nature of these stresses, which impede conventional breeding efforts, rendering them painstakingly slow. The identification of molecular markers has emerged as a pivotal advancement in this arena. By pinpointing genomic regions associated with tolerance to abiotic stresses, these markers serve as effective tools for selection and trait introgression. In the post-genomic era, the proliferation of high-density SNP markers has revolutionized breeding strategies. Genomic selection, leveraging these markers, has become the method of choice for addressing polygenic traits with low heritability, such as abiotic stress tolerance. With the functional characterization of many genes being done, precise manipulation through genome editing techniques is gaining significant traction. This review delves into the application of molecular markers in breeding stress-tolerant crop varieties, alongside role of recent genomic techniques in enhancing abiotic stress tolerance. It also explores success stories and identifies potential targets for marker-assisted selection.
Collapse
Affiliation(s)
- K T Ravikiran
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute, Regional Research Station, Lucknow, Uttar Pradesh, India
| | - R Thribhuvan
- ICAR-Central Institute of Jute and Allied Fibres, Barrakpore, West Bengal, India
| | - C Anilkumar
- ICAR-National Rice Research Institute, Cuttak, Odisha, India; Department of Agronomy and Plant Genetics, University of Minnesota, MN, USA
| | - Jayanth Kallugudi
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Flowerdale, Shimla, Himachal Pradesh, India
| | - N R Prakash
- ICAR-CSSRI, Regional Research Station, Canning Town, West Bengal, India
| | - Sandeep Adavi B
- ICAR-National Institute of Biotic Stress Management, Raipur, Chhatisgarh, India
| | - N C Sunitha
- ICAR-National Rice Research Institute, Cuttak, Odisha, India
| | - Krishnan P Abhijith
- ICAR-Indian Agricultural Research Institute, Assam, Gogamukh, Dhemaji, Assam, India.
| |
Collapse
|
2
|
Huang M, Zhang S, Yang M, Sun Y, Xie Q, Zhao C, Ren K, Zhao K, Jia Y, Zhang J, Wu S, Li C, Wang H, Fu G, Shaaban M, Wu J, Li Y. One-Off Irrigation Combined Subsoiling and Nitrogen Management Enhances Wheat Grain Yield by Optimizing Physiological Characteristics in Leaves in Dryland Regions. PLANTS (BASEL, SWITZERLAND) 2024; 13:3526. [PMID: 39771224 PMCID: PMC11680070 DOI: 10.3390/plants13243526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/07/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025]
Abstract
Irrigation practice, tillage method, and nitrogen (N) management are the three most important agronomic measures for wheat (Triticum aestivum L.) production, but the combined effects on grain yield and wheat physiological characteristics are still poorly understood. We conducted a three-year split-split field experiment at the junction of the Loess Plateau and Huang-Huai-Hai Plain in China. The two irrigation practices (I0: non-irrigation and I1: one-off irrigation), three tillage methods (RT: rotary tillage, PT: plowing, and ST: subsoiling), and four N managements (N0, N120, N180, and N240) were assigned to the main plots, subplots, and sub-subplots, respectively. Irrigation practice, tillage method, N management, and most of their two-factor and three-factor interactions could significantly affect grain yield and the physiological characteristics of the leaves of winter wheat. One-off irrigation increased the grain yield by 46.9% by optimizing the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT), the contents of proline (Pro) and soluble sugar (SS), and the net photosynthesis rate (Pn) in leaves during most growth stages of wheat. The improvement of grain yield and physiological characteristics under one-off irrigation was considerably affected by the tillage method and N management, and the effectiveness of one-off irrigation was improved under subsoiling and N180 or N240. One-off irrigation combining subsoiling and N180 had no significant difference relative to one-off irrigation combining subsoiling and N240, while it significantly increased grain yield by 47.1% over the three years, as well as increasing the activities of SOD, POD, and CAT, and Pn in wheat leaves by 23.2%, 41.2%, 26.1%, and 53.0%, respectively, and decreasing the contents of malondialdehyde (MDA), Pro, and SS by 29.2%, 65.4%, and 18.2% compared to non-irrigation rotary tillage combined with N240 across the two years and three stages. The wheat grain yield was significantly associated with the physiological characteristics in flag leaves, and the coefficient was greatest for POD activity, followed by SOD activity and Pn. Therefore, one-off irrigation combining subsoiling and N180 is an optimal strategy for the high-yield production of wheat in dryland regions where the one-off irrigation is assured.
Collapse
Affiliation(s)
- Ming Huang
- College of Agriculture, Henan University of Science and Technology, Luoyang 471023, China; (M.H.); (S.Z.); (M.Y.); (Y.S.); (Q.X.); (C.Z.); (K.R.); (K.Z.); (Y.J.); (J.Z.); (S.W.); (C.L.); (H.W.); (G.F.); (M.S.)
| | - Shuai Zhang
- College of Agriculture, Henan University of Science and Technology, Luoyang 471023, China; (M.H.); (S.Z.); (M.Y.); (Y.S.); (Q.X.); (C.Z.); (K.R.); (K.Z.); (Y.J.); (J.Z.); (S.W.); (C.L.); (H.W.); (G.F.); (M.S.)
| | - Mengqi Yang
- College of Agriculture, Henan University of Science and Technology, Luoyang 471023, China; (M.H.); (S.Z.); (M.Y.); (Y.S.); (Q.X.); (C.Z.); (K.R.); (K.Z.); (Y.J.); (J.Z.); (S.W.); (C.L.); (H.W.); (G.F.); (M.S.)
| | - Yuhao Sun
- College of Agriculture, Henan University of Science and Technology, Luoyang 471023, China; (M.H.); (S.Z.); (M.Y.); (Y.S.); (Q.X.); (C.Z.); (K.R.); (K.Z.); (Y.J.); (J.Z.); (S.W.); (C.L.); (H.W.); (G.F.); (M.S.)
| | - Qinglei Xie
- College of Agriculture, Henan University of Science and Technology, Luoyang 471023, China; (M.H.); (S.Z.); (M.Y.); (Y.S.); (Q.X.); (C.Z.); (K.R.); (K.Z.); (Y.J.); (J.Z.); (S.W.); (C.L.); (H.W.); (G.F.); (M.S.)
| | - Cuiping Zhao
- College of Agriculture, Henan University of Science and Technology, Luoyang 471023, China; (M.H.); (S.Z.); (M.Y.); (Y.S.); (Q.X.); (C.Z.); (K.R.); (K.Z.); (Y.J.); (J.Z.); (S.W.); (C.L.); (H.W.); (G.F.); (M.S.)
| | - Kaiming Ren
- College of Agriculture, Henan University of Science and Technology, Luoyang 471023, China; (M.H.); (S.Z.); (M.Y.); (Y.S.); (Q.X.); (C.Z.); (K.R.); (K.Z.); (Y.J.); (J.Z.); (S.W.); (C.L.); (H.W.); (G.F.); (M.S.)
| | - Kainan Zhao
- College of Agriculture, Henan University of Science and Technology, Luoyang 471023, China; (M.H.); (S.Z.); (M.Y.); (Y.S.); (Q.X.); (C.Z.); (K.R.); (K.Z.); (Y.J.); (J.Z.); (S.W.); (C.L.); (H.W.); (G.F.); (M.S.)
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yulin Jia
- College of Agriculture, Henan University of Science and Technology, Luoyang 471023, China; (M.H.); (S.Z.); (M.Y.); (Y.S.); (Q.X.); (C.Z.); (K.R.); (K.Z.); (Y.J.); (J.Z.); (S.W.); (C.L.); (H.W.); (G.F.); (M.S.)
| | - Jun Zhang
- College of Agriculture, Henan University of Science and Technology, Luoyang 471023, China; (M.H.); (S.Z.); (M.Y.); (Y.S.); (Q.X.); (C.Z.); (K.R.); (K.Z.); (Y.J.); (J.Z.); (S.W.); (C.L.); (H.W.); (G.F.); (M.S.)
| | - Shanwei Wu
- College of Agriculture, Henan University of Science and Technology, Luoyang 471023, China; (M.H.); (S.Z.); (M.Y.); (Y.S.); (Q.X.); (C.Z.); (K.R.); (K.Z.); (Y.J.); (J.Z.); (S.W.); (C.L.); (H.W.); (G.F.); (M.S.)
| | - Chunxia Li
- College of Agriculture, Henan University of Science and Technology, Luoyang 471023, China; (M.H.); (S.Z.); (M.Y.); (Y.S.); (Q.X.); (C.Z.); (K.R.); (K.Z.); (Y.J.); (J.Z.); (S.W.); (C.L.); (H.W.); (G.F.); (M.S.)
| | - Hezheng Wang
- College of Agriculture, Henan University of Science and Technology, Luoyang 471023, China; (M.H.); (S.Z.); (M.Y.); (Y.S.); (Q.X.); (C.Z.); (K.R.); (K.Z.); (Y.J.); (J.Z.); (S.W.); (C.L.); (H.W.); (G.F.); (M.S.)
| | - Guozhan Fu
- College of Agriculture, Henan University of Science and Technology, Luoyang 471023, China; (M.H.); (S.Z.); (M.Y.); (Y.S.); (Q.X.); (C.Z.); (K.R.); (K.Z.); (Y.J.); (J.Z.); (S.W.); (C.L.); (H.W.); (G.F.); (M.S.)
| | - Muhammad Shaaban
- College of Agriculture, Henan University of Science and Technology, Luoyang 471023, China; (M.H.); (S.Z.); (M.Y.); (Y.S.); (Q.X.); (C.Z.); (K.R.); (K.Z.); (Y.J.); (J.Z.); (S.W.); (C.L.); (H.W.); (G.F.); (M.S.)
| | - Jinzhi Wu
- College of Agriculture, Henan University of Science and Technology, Luoyang 471023, China; (M.H.); (S.Z.); (M.Y.); (Y.S.); (Q.X.); (C.Z.); (K.R.); (K.Z.); (Y.J.); (J.Z.); (S.W.); (C.L.); (H.W.); (G.F.); (M.S.)
| | - Youjun Li
- College of Agriculture, Henan University of Science and Technology, Luoyang 471023, China; (M.H.); (S.Z.); (M.Y.); (Y.S.); (Q.X.); (C.Z.); (K.R.); (K.Z.); (Y.J.); (J.Z.); (S.W.); (C.L.); (H.W.); (G.F.); (M.S.)
| |
Collapse
|
3
|
Kant K, Rigó G, Faragó D, Benyó D, Tengölics R, Szabados L, Zsigmond L. Mutation in Arabidopsis mitochondrial Pentatricopeptide repeat 40 gene affects tolerance to water deficit. PLANTA 2024; 259:78. [PMID: 38427069 PMCID: PMC10907415 DOI: 10.1007/s00425-024-04354-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/26/2024] [Indexed: 03/02/2024]
Abstract
MAIN CONCLUSION The Arabidopsis Pentatricopeptide repeat 40 (PPR40) insertion mutants have increased tolerance to water deficit compared to wild-type plants. Tolerance is likely the consequence of ABA hypersensitivity of the mutants. Plant growth and development depend on multiple environmental factors whose alterations can disrupt plant homeostasis and trigger complex molecular and physiological responses. Water deficit is one of the factors which can seriously restrict plant growth and viability. Mitochondria play an important role in cellular metabolism, energy production, and redox homeostasis. During drought and salinity stress, mitochondrial dysfunction can lead to ROS overproduction and oxidative stress, affecting plant growth and survival. Alternative oxidases (AOXs) and stabilization of mitochondrial electron transport chain help mitigate ROS damage. The mitochondrial Pentatricopeptide repeat 40 (PPR40) protein was implicated in stress regulation as ppr40 mutants were found to be hypersensitive to ABA and high salinity during germination. This study investigated the tolerance of the knockout ppr40-1 and knockdown ppr40-2 mutants to water deprivation. Our results show that these mutants display an enhanced tolerance to water deficit. The mutants had higher relative water content, reduced level of oxidative damage, and better photosynthetic parameters in water-limited conditions compared to wild-type plants. ppr40 mutants had considerable differences in metabolic profiles and expression of a number of stress-related genes, suggesting important metabolic reprogramming. Tolerance to water deficit was also manifested in higher survival rates and alleviated growth reduction when watering was suspended. Enhanced sensitivity to ABA and fast stomata closure was suggested to lead to improved capacity for water conservation in such environment. Overall, this study highlights the importance of mitochondrial functions and in particular PPR40 in plant responses to abiotic stress, particularly drought.
Collapse
Affiliation(s)
- Kamal Kant
- Institute of Plant Biology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726, Szeged, Hungary
| | - Gábor Rigó
- Institute of Plant Biology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726, Szeged, Hungary
| | - Dóra Faragó
- Institute of Plant Biology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726, Szeged, Hungary
| | - Dániel Benyó
- Institute of Plant Biology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726, Szeged, Hungary
| | - Roland Tengölics
- Institute of Biochemistry, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726, Szeged, Hungary
| | - László Szabados
- Institute of Plant Biology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726, Szeged, Hungary.
| | - Laura Zsigmond
- Institute of Plant Biology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726, Szeged, Hungary
| |
Collapse
|
4
|
Majidian P, Ghorbani HR, Farajpour M. Achieving agricultural sustainability through soybean production in Iran: Potential and challenges. Heliyon 2024; 10:e26389. [PMID: 38404839 PMCID: PMC10884498 DOI: 10.1016/j.heliyon.2024.e26389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/17/2024] [Accepted: 02/12/2024] [Indexed: 02/27/2024] Open
Abstract
The utilization of soybean as a key oil crop to enhance sustainable agriculture has garnered significant attention from researchers. Its lower water requirements compared to rice, along with its reduced environmental impact, including greenhouse gas emissions, improved water quality, enhanced biodiversity, and efficient resource utilization, make it an attractive option. Unfortunately, Iran, like many other developing countries, heavily relies on soybean imports (over 90%) to meet the demand for oil and protein in human and livestock food rations. The decline in soybean production, coupled with diminishing cultivation areas, yield rates, and increasing import needs, underscores the urgent need to address the challenges faced in Iran. The decline in soybean production in the country can be attributed to various factors, including environmental stresses (both biotic and abiotic), limited variation in soybean cultivars, inadequate mechanization for cultivation, and economic policies. Hence, this review provides a comprehensive overview of the current status of soybean production in Iran and highlights its potential to enhance sustainable agriculture. Additionally, it examines the challenges and constraints associated with soybean cultivation, such as environmental changes and unbalanced marketing, and explores potential solutions and management strategies to bridge the gap between small-scale and large-scale production. Given the increasing global demand for plant-based protein and the significance of the feed industry, studying the limitations faced by countries with slower soybean production growth can shed light on the issues and present opportunities to capitalize on novel soybean advancements in the future. By addressing these challenges and unlocking the potential of soybean cultivation, Iran can contribute to sustainable agricultural practices and attain a more resilient food system.
Collapse
Affiliation(s)
- Parastoo Majidian
- Crop and Horticultural Science Research Department, Mazandaran Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Sari, Iran
| | - Hamid Reza Ghorbani
- Crop and Horticultural Science Research Department, Mazandaran Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Sari, Iran
| | - Mostafa Farajpour
- Crop and Horticultural Science Research Department, Mazandaran Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Sari, Iran
| |
Collapse
|
5
|
Sankar TV, Saharay M, Santhosh D, Menon S, Raran-Kurussi S, Padmasree K. Biomolecular interaction of purified recombinant Arabidopsis thaliana's alternative oxidase 1A with TCA cycle metabolites: Biophysical and molecular docking studies. Int J Biol Macromol 2024; 258:128814. [PMID: 38114006 DOI: 10.1016/j.ijbiomac.2023.128814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 11/08/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
In higher plants, the mitochondrial alternative oxidase (AOX) pathway plays an essential role in maintaining the TCA cycle/cellular carbon and energy balance under various physiological and stress conditions. Though the activation of AOX pathway upon exogenous addition of α-ketoacids/TCA cycle metabolites [pyruvate, α-ketoglutarate (α-KG), oxaloacetic acid (OAA), succinate and malic acid] to isolated mitochondria is known, the molecular mechanism of interaction of these metabolites with AOX protein is limited. The present study is designed to understand the biomolecular interaction of pure recombinant Arabidopsis thaliana AOX1A with TCA cycle metabolites under in vitro conditions using various biophysical and molecular docking studies. The binding of α-KG, fumaric acid and OAA to rAtAOX1A caused conformational change in the microenvironment of tryptophan residues as evidenced by red shift in the synchronous fluorescence spectra (∆λ = 60 nm). Besides, a decrease in conventional fluorescence emission spectra, tyrosine specific synchronous fluorescence spectra (∆λ = 15 nm) and α-helical content of CD spectra revealed the conformation changes in rAtAOX1A structure associated with binding of various TCA cycle metabolites. Further, surface plasmon resonance (SPR) and microscale thermophoresis (MST) studies revealed the binding affinity, while docking studies identified binding pocket residues, respectively, for these metabolites on rAtAOX1A.
Collapse
Affiliation(s)
- Tadiboina Veera Sankar
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, India
| | - Moumita Saharay
- Department of Systems and Computational Biology, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, India
| | - Dharawath Santhosh
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, India
| | - Saji Menon
- Senior Field Application Scientist, Nanotemper Technologies GmbH, India
| | - Sreejith Raran-Kurussi
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad, 500107, India
| | - Kollipara Padmasree
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, India.
| |
Collapse
|
6
|
Yin Y, Qiao S, Kang Z, Luo F, Bian Q, Cao G, Zhao G, Wu Z, Yang G, Wang Y, Yang Y. Transcriptome and Metabolome Analyses Reflect the Molecular Mechanism of Drought Tolerance in Sweet Potato. PLANTS (BASEL, SWITZERLAND) 2024; 13:351. [PMID: 38337884 PMCID: PMC10857618 DOI: 10.3390/plants13030351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
Sweet potato (Ipomoea batatas (L.) Lam.) is one of the most widely cultivated crops in the world, with outstanding stress tolerance, but drought stress can lead to a significant decrease in its yield. To reveal the response mechanism of sweet potato to drought stress, an integrated physiological, transcriptome and metabolome investigations were conducted in the leaves of two sweet potato varieties, drought-tolerant zhenghong23 (Z23) and a more sensitive variety, jinong432 (J432). The results for the physiological indexes of drought showed that the peroxidase (POD) and superoxide dismutase (SOD) activities of Z23 were 3.68 and 1.21 times higher than those of J432 under severe drought, while Z23 had a higher antioxidant capacity. Transcriptome and metabolome analysis showed the importance of the amino acid metabolism, respiratory metabolism, and antioxidant systems in drought tolerance. In Z23, amino acids such as asparagine participated in energy production during drought by providing substrates for the citrate cycle (TCA cycle) and glycolysis (EMP). A stronger respiratory metabolism ability could better maintain the energy supply level under drought stress. Drought stress also activated the expression of the genes encoding to antioxidant enzymes and the biosynthesis of flavonoids such as rutin, resulting in improved tolerance to drought. This study provides new insights into the molecular mechanisms of drought tolerance in sweet potato.
Collapse
Affiliation(s)
- Yumeng Yin
- Cereal Crop Research Institute, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou 450002, China;
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shouchen Qiao
- Cereal Crop Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (S.Q.); (Z.K.); (Q.B.); (G.C.); (G.Z.); (Z.W.); (G.Y.)
| | - Zhihe Kang
- Cereal Crop Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (S.Q.); (Z.K.); (Q.B.); (G.C.); (G.Z.); (Z.W.); (G.Y.)
| | - Feng Luo
- Henan Provincial Center of Seed Industry Development, Zhengzhou 450007, China;
| | - Qianqian Bian
- Cereal Crop Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (S.Q.); (Z.K.); (Q.B.); (G.C.); (G.Z.); (Z.W.); (G.Y.)
| | - Guozheng Cao
- Cereal Crop Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (S.Q.); (Z.K.); (Q.B.); (G.C.); (G.Z.); (Z.W.); (G.Y.)
| | - Guorui Zhao
- Cereal Crop Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (S.Q.); (Z.K.); (Q.B.); (G.C.); (G.Z.); (Z.W.); (G.Y.)
| | - Zhihao Wu
- Cereal Crop Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (S.Q.); (Z.K.); (Q.B.); (G.C.); (G.Z.); (Z.W.); (G.Y.)
| | - Guohong Yang
- Cereal Crop Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (S.Q.); (Z.K.); (Q.B.); (G.C.); (G.Z.); (Z.W.); (G.Y.)
| | - Yannan Wang
- Cereal Crop Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (S.Q.); (Z.K.); (Q.B.); (G.C.); (G.Z.); (Z.W.); (G.Y.)
| | - Yufeng Yang
- Cereal Crop Research Institute, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou 450002, China;
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- Cereal Crop Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (S.Q.); (Z.K.); (Q.B.); (G.C.); (G.Z.); (Z.W.); (G.Y.)
| |
Collapse
|
7
|
Zhang S, Yan C, Lu T, Fan Y, Ren Y, Zhao J, Shan X, Guan Y, Song P, Li D, Hu H. New insights into molecular features of the genome-wide AOX family and their responses to various stresses in common wheat (Triticum aestivum L.). Gene 2023; 888:147756. [PMID: 37659597 DOI: 10.1016/j.gene.2023.147756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/22/2023] [Accepted: 08/31/2023] [Indexed: 09/04/2023]
Abstract
Alternative oxidase (AOX) is an important terminal oxidase involved in the alternative oxidation pathway in plants, which is closely related to various biotic and abiotic stress responses. However, a comprehensive research on AOX gene family of wheat is still lacking. In this study, the members of wheat AOX (TaAOX) family were identified, and their molecular characteristics and gene expression patterns were systematically investigated. Seventeen TaAOX genes were identified from Chinese Spring (CS) genome, which were mapped on 7 chromosomes and mainly clustered on the long arm's distal end of the second homologous groups. Phylogenetic analysis showed that TaAOX genes were classified into four subgroups (Ia, Ib, Ic, and Id), and the Ia subgroup possessed the most members. Tandem duplication and segmental duplication events were found during the evolution of TaAOX genes and they were affected by purifying selection demonstrated by Ka/Ks analysis. The exon numbers of this family gene varied greatly from 1 to 9. Except for Ta3BSAOX14, all the proteins encoded by the other 16 TaAOX genes contained the amino acid residues of the key active sites in the AOX domain (cd01053). The expression patterns of TaAOX genes in various tissues and under abiotic and biotic stresses were analyzed using public transcriptome data, furthermore, qRT-PCR analysis was performed for some selected TaAOX genes, and the results suggested that most members of this gene family play an important role in response to different stresses in common wheat. Our results provide basic information and valuable reference for further exploring the gene function of TaAOX family by using gene editing, RNAi, VIGS, and other technologies.
Collapse
Affiliation(s)
- Shengli Zhang
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, China; Henan Engineering Research Center of Crop Genome Editing, Henan Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, Henan, China.
| | - Cuiping Yan
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, China; Henan Engineering Research Center of Crop Genome Editing, Henan Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, Henan, China
| | - Tairui Lu
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, China; Henan Engineering Research Center of Crop Genome Editing, Henan Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, Henan, China
| | - Yuchao Fan
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, China; Henan Engineering Research Center of Crop Genome Editing, Henan Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, Henan, China
| | - Yueming Ren
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, China; Henan Engineering Research Center of Crop Genome Editing, Henan Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, Henan, China
| | - Jishun Zhao
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, China; Henan Engineering Research Center of Crop Genome Editing, Henan Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, Henan, China
| | - Xiaojing Shan
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, China; Henan Engineering Research Center of Crop Genome Editing, Henan Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, Henan, China
| | - Yuanyuan Guan
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, China; Henan Engineering Research Center of Crop Genome Editing, Henan Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, Henan, China
| | - Puwen Song
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, China; Henan Engineering Research Center of Crop Genome Editing, Henan Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, Henan, China
| | - Dongfang Li
- School of Resource and Environmental Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Haiyan Hu
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, China; Henan Engineering Research Center of Crop Genome Editing, Henan Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, Henan, China
| |
Collapse
|
8
|
Pandey P, Tripathi A, Dwivedi S, Lal K, Jhang T. Deciphering the mechanisms, hormonal signaling, and potential applications of endophytic microbes to mediate stress tolerance in medicinal plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1250020. [PMID: 38034581 PMCID: PMC10684941 DOI: 10.3389/fpls.2023.1250020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023]
Abstract
The global healthcare market in the post-pandemic era emphasizes a constant pursuit of therapeutic, adaptogenic, and immune booster drugs. Medicinal plants are the only natural resource to meet this by supplying an array of bioactive secondary metabolites in an economic, greener and sustainable manner. Driven by the thrust in demand for natural immunity imparting nutraceutical and life-saving plant-derived drugs, the acreage for commercial cultivation of medicinal plants has dramatically increased in recent years. Limited resources of land and water, low productivity, poor soil fertility coupled with climate change, and biotic (bacteria, fungi, insects, viruses, nematodes) and abiotic (temperature, drought, salinity, waterlogging, and metal toxicity) stress necessitate medicinal plant productivity enhancement through sustainable strategies. Plants evolved intricate physiological (membrane integrity, organelle structural changes, osmotic adjustments, cell and tissue survival, reclamation, increased root-shoot ratio, antibiosis, hypersensitivity, etc.), biochemical (phytohormones synthesis, proline, protein levels, antioxidant enzymes accumulation, ion exclusion, generation of heat-shock proteins, synthesis of allelochemicals. etc.), and cellular (sensing of stress signals, signaling pathways, modulating expression of stress-responsive genes and proteins, etc.) mechanisms to combat stresses. Endophytes, colonizing in different plant tissues, synthesize novel bioactive compounds that medicinal plants can harness to mitigate environmental cues, thus making the agroecosystems self-sufficient toward green and sustainable approaches. Medicinal plants with a host set of metabolites and endophytes with another set of secondary metabolites interact in a highly complex manner involving adaptive mechanisms, including appropriate cellular responses triggered by stimuli received from the sensors situated on the cytoplasm and transmitting signals to the transcriptional machinery in the nucleus to withstand a stressful environment effectively. Signaling pathways serve as a crucial nexus for sensing stress and establishing plants' proper molecular and cellular responses. However, the underlying mechanisms and critical signaling pathways triggered by endophytic microbes are meager. This review comprehends the diversity of endophytes in medicinal plants and endophyte-mediated plant-microbe interactions for biotic and abiotic stress tolerance in medicinal plants by understanding complex adaptive physiological mechanisms and signaling cascades involving defined molecular and cellular responses. Leveraging this knowledge, researchers can design specific microbial formulations that optimize plant health, increase nutrient uptake, boost crop yields, and support a resilient, sustainable agricultural system.
Collapse
Affiliation(s)
- Praveen Pandey
- Microbial Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Division of Plant Breeding and Genetic Resource Conservation, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Arpita Tripathi
- Microbial Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Faculty of Education, Teerthanker Mahaveer University, Moradabad, India
| | - Shweta Dwivedi
- Division of Plant Breeding and Genetic Resource Conservation, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Kanhaiya Lal
- Division of Plant Breeding and Genetic Resource Conservation, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Tripta Jhang
- Division of Plant Breeding and Genetic Resource Conservation, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| |
Collapse
|
9
|
Jethva J, Lichtenauer S, Schmidt-Schippers R, Steffen-Heins A, Poschet G, Wirtz M, van Dongen JT, Eirich J, Finkemeier I, Bilger W, Schwarzländer M, Sauter M. Mitochondrial alternative NADH dehydrogenases NDA1 and NDA2 promote survival of reoxygenation stress in Arabidopsis by safeguarding photosynthesis and limiting ROS generation. THE NEW PHYTOLOGIST 2023; 238:96-112. [PMID: 36464787 DOI: 10.1111/nph.18657] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Plant submergence stress is a growing problem for global agriculture. During desubmergence, rising O2 concentrations meet a highly reduced mitochondrial electron transport chain (mETC) in the cells. This combination favors the generation of reactive oxygen species (ROS) by the mitochondria, which at excess can cause damage. The cellular mechanisms underpinning the management of reoxygenation stress are not fully understood. We investigated the role of alternative NADH dehydrogenases (NDs), as components of the alternative mETC in Arabidopsis, in anoxia-reoxygenation stress management. Simultaneous loss of the matrix-facing NDs, NDA1 and NDA2, decreased seedling survival after reoxygenation, while overexpression increased survival. The absence of NDAs led to reduced maximum potential quantum efficiency of photosystem II linking the alternative mETC to photosynthetic function in the chloroplast. NDA1 and NDA2 were induced upon reoxygenation, and transcriptional activation of NDA1 was controlled by the transcription factors ANAC016 and ANAC017 that bind to the mitochondrial dysfunction motif (MDM) in the NDA1 promoter. The absence of NDA1 and NDA2 did not alter recovery of cytosolic ATP levels and NADH : NAD+ ratio at reoxygenation. Rather, the absence of NDAs led to elevated ROS production, while their overexpression limited ROS. Our observations indicate that the control of ROS formation by the alternative mETC is important for photosynthetic recovery and for seedling survival of anoxia-reoxygenation stress.
Collapse
Affiliation(s)
- Jay Jethva
- Plant Developmental Biology and Plant Physiology, University of Kiel, 24118, Kiel, Germany
| | - Sophie Lichtenauer
- Institute of Plant Biology and Biotechnology, University of Münster, 48143, Münster, Germany
| | | | - Anja Steffen-Heins
- Institute of Human Nutrition and Food Science, University of Kiel, 24118, Kiel, Germany
| | - Gernot Poschet
- Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany
| | - Markus Wirtz
- Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany
| | | | - Jürgen Eirich
- Institute of Plant Biology and Biotechnology, University of Münster, 48143, Münster, Germany
| | - Iris Finkemeier
- Institute of Plant Biology and Biotechnology, University of Münster, 48143, Münster, Germany
| | - Wolfgang Bilger
- Ecophysiology of Plants, University of Kiel, 24118, Kiel, Germany
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology, University of Münster, 48143, Münster, Germany
| | - Margret Sauter
- Plant Developmental Biology and Plant Physiology, University of Kiel, 24118, Kiel, Germany
| |
Collapse
|
10
|
Qiao K, Yao X, Zhou Z, Xiong J, Fang K, Lan J, Xu F, Deng X, Zhang D, Lin H. Mitochondrial alternative oxidase enhanced ABA-mediated drought tolerance in Solanum lycopersicum. JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153892. [PMID: 36566671 DOI: 10.1016/j.jplph.2022.153892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
The phytohormone abscisic acid (ABA) plays essential roles in modulating drought stress responses. Mitochondrial alternative oxidase (AOX) is critical for reactive oxygen species (ROS) scavenging in drought stress responses. However, whether ABA signal in concert with AOX to moderate drought stress response remains largely unclear. In our study, we uncover the positive role of AOX in ABA-mediated drought tolerance in tomato (Solanum lycopersicum). Here, we report that ABA participates in the regulation of alternative respiration, and the increased AOX was found to improve drought tolerance by reducing total ROS accumulation. We also found that transcription factor ABA response element-binding factor 1 (SlAREB1) can directly bind to the promoter of AOX1a to activate its transcription. Virus-induced gene silencing (VIGS) of SlAREB1 compromised the ABA-induced alternative respiratory pathway, disrupted redox homeostasis and decreased plant resistance to drought stress, while overexpression of AOX1a in TRV2-SlAREB1 plants partially rescued the severe drought phenotype. Taken together, our results indicated that AOX1a plays an essential role in ABA-mediated drought tolerance partially in a SlAREB1-dependent manner, providing new insights into how ABA modulates ROS levels to cope with drought stress by AOX.
Collapse
Affiliation(s)
- Kang Qiao
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Xiuhong Yao
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Zuxu Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Jiawei Xiong
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Ke Fang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Jiayi Lan
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Fei Xu
- Life Science and Biotechnology, Wuhan Bioengineering Institute, Wuhan, China
| | - Xingguang Deng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Dawei Zhang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, China.
| | - Honghui Lin
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
11
|
Matos IF, Morales LMM, Santana DB, Silva GMC, Gomes MMDA, Ayub RA, Costa JH, de Oliveira JG. Ascorbate synthesis as an alternative electron source for mitochondrial respiration: Possible implications for the plant performance. FRONTIERS IN PLANT SCIENCE 2022; 13:987077. [PMID: 36507441 PMCID: PMC9727407 DOI: 10.3389/fpls.2022.987077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/31/2022] [Indexed: 06/01/2023]
Abstract
The molecule vitamin C, in the chemical form of ascorbic acid (AsA), is known to be essential for the metabolism of humans and animals. Humans do not produce AsA, so they depend on plants as a source of vitamin C for their food. The AsA synthesis pathway occurs partially in the cytosol, but the last oxidation step is physically linked to the respiratory chain of plant mitochondria. This oxidation step is catalyzed by l-galactono-1,4-lactone dehydrogenase (l-GalLDH). This enzyme is not considered a limiting step for AsA production; however, it presents a distinguishing characteristic: the l-GalLDH can introduce electrons directly into the respiratory chain through cytochrome c (Cytc) and therefore can be considered an extramitochondrial electron source that bypasses the phosphorylating Complex III. The use of Cytc as electron acceptor has been debated in terms of its need for AsA synthesis, but little has been said in relation to its impact on the functioning of the respiratory chain. This work seeks to offer a new view about the possible changes that result of the link between AsA synthesis and the mitochondrial respiration. We hypothesized that some physiological alterations related to low AsA may be not only explained by the deficiency of this molecule but also by the changes in the respiratory function. We discussed some findings showing that respiratory mutants contained changes in AsA synthesis. Besides, recent works that also indicate that the excessive electron transport via l-GalLDH enzyme may affect other respiratory pathways. We proposed that Cytc reduction by l-GalLDH may be part of an alternative respiratory pathway that is active during AsA synthesis. Also, it is proposed that possible links of this pathway with other pathways of alternative electron transport in plant mitochondria may exist. The review suggests potential implications of this relationship, particularly for situations of stress. We hypothesized that this pathway of alternative electron input would serve as a strategy for adaptation of plant respiration to changing conditions.
Collapse
Affiliation(s)
- Isabelle Faria Matos
- Plant Genetic Breeding Laboratory, Center for Agricultural Sciences and Technologies, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| | | | - Diederson Bortolini Santana
- Plant Genetic Breeding Laboratory, Center for Agricultural Sciences and Technologies, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| | - Gláucia Michelle Cosme Silva
- Plant Genetic Breeding Laboratory, Center for Agricultural Sciences and Technologies, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| | - Mara Menezes de Assis Gomes
- Plant Genetic Breeding Laboratory, Center for Agricultural Sciences and Technologies, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| | - Ricardo Antônio Ayub
- Laboratory of Biotechnology Applied to Fruit Growing, Department of Phytotechny and Phytosanitary, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil
| | - José Hélio Costa
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Universidade Federal do Ceará, Fortaleza, CE, Brazil
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
| | - Jurandi Gonçalves de Oliveira
- Plant Genetic Breeding Laboratory, Center for Agricultural Sciences and Technologies, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| |
Collapse
|
12
|
Khan K, Van Aken O. The colonization of land was a likely driving force for the evolution of mitochondrial retrograde signalling in plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7182-7197. [PMID: 36055768 PMCID: PMC9675596 DOI: 10.1093/jxb/erac351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Most retrograde signalling research in plants was performed using Arabidopsis, so an evolutionary perspective on mitochondrial retrograde regulation (MRR) is largely missing. Here, we used phylogenetics to track the evolutionary origins of factors involved in plant MRR. In all cases, the gene families can be traced to ancestral green algae or earlier. However, the specific subfamilies containing factors involved in plant MRR in many cases arose during the transition to land. NAC transcription factors with C-terminal transmembrane domains, as observed in the key regulator ANAC017, can first be observed in non-vascular mosses, and close homologs to ANAC017 can be found in seed plants. Cyclin-dependent kinases (CDKs) are common to eukaryotes, but E-type CDKs that control MRR also diverged in conjunction with plant colonization of land. AtWRKY15 can be traced to the earliest land plants, while AtWRKY40 only arose in angiosperms and AtWRKY63 even more recently in Brassicaceae. Apetala 2 (AP2) transcription factors are traceable to algae, but the ABI4 type again only appeared in seed plants. This strongly suggests that the transition to land was a major driver for developing plant MRR pathways, while additional fine-tuning events have appeared in seed plants or later. Finally, we discuss how MRR may have contributed to meeting the specific challenges that early land plants faced during terrestrialization.
Collapse
Affiliation(s)
- Kasim Khan
- Department of Biology, Lund University, Lund, Sweden
| | | |
Collapse
|
13
|
Sweetman C, Waterman CD, Wong DC, Day DA, Jenkins CL, Soole KL. Altering the balance between AOX1A and NDB2 expression affects a common set of transcripts in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:876843. [PMID: 36466234 PMCID: PMC9716356 DOI: 10.3389/fpls.2022.876843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 10/24/2022] [Indexed: 06/17/2023]
Abstract
Stress-responsive components of the mitochondrial alternative electron transport pathway have the capacity to improve tolerance of plants to abiotic stress, particularly the alternative oxidase AOX1A but also external NAD(P)H dehydrogenases such as NDB2, in Arabidopsis. NDB2 and AOX1A can cooperate to entirely circumvent the classical electron transport chain in Arabidopsis mitochondria. Overexpression of AOX1A or NDB2 alone can have slightly negative impacts on plant growth under optimal conditions, while simultaneous overexpression of NDB2 and AOX1A can reverse these phenotypic effects. We have taken a global transcriptomic approach to better understand the molecular shifts that occur due to overexpression of AOX1A alone and with concomitant overexpression of NDB2. Of the transcripts that were significantly up- or down- regulated in the AOX1A overexpression line compared to wild type (410 and 408, respectively), the majority (372 and 337, respectively) reverted to wild type levels in the dual overexpression line. Several mechanisms for the AOX1A overexpression phenotype are proposed based on the functional classification of these 709 genes, which can be used to guide future experiments. Only 28 genes were uniquely up- or down-regulated when NDB2 was overexpressed in the AOX1A overexpression line. On the other hand, many unique genes were deregulated in the NDB2 knockout line. Furthermore, several changes in transcript abundance seen in the NDB2 knockout line were consistent with changes in the AOX1A overexpression line. The results suggest that an imbalance in AOX1A:NDB2 protein levels caused by under- or over-expression of either component, triggers a common set of transcriptional responses that may be important in mitochondrial redox regulation. The most significant changes were transcripts associated with photosynthesis, secondary metabolism and oxidative stress responses.
Collapse
Affiliation(s)
- Crystal Sweetman
- College of Science & Engineering, Flinders University, Bedford Park, SA, Australia
| | | | - Darren C.J. Wong
- College of Science, Australian National University, Canberra, ACT, Australia
| | - David A. Day
- College of Science & Engineering, Flinders University, Bedford Park, SA, Australia
| | - Colin L.D. Jenkins
- College of Science & Engineering, Flinders University, Bedford Park, SA, Australia
| | - Kathleen L. Soole
- College of Science & Engineering, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
14
|
Mansoor S, Khan T, Farooq I, Shah LR, Sharma V, Sonne C, Rinklebe J, Ahmad P. Drought and global hunger: biotechnological interventions in sustainability and management. PLANTA 2022; 256:97. [PMID: 36219256 DOI: 10.1007/s00425-022-04006-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Drought may be efficiently managed using the following strategies: prevention, mitigation, readiness, recovery, and transformation. Biotechnological interventions may become highly important in reducing plants' drought stress in order to address key plant challenges such as population growth and climate change. Drought is a multidimensional construct with several triggering mechanisms or contributing factors working at various spatiotemporal scales, making it one of the known natural catastrophes. Drought is among the causes of hunger and malnutrition, decreasing agricultural output, and poor nutrition. Many deaths caused in children are due to hunger situations, and one in four children face stunted growth. All this hunger and malnutrition may be responsible for the reduction in agricultural productivity caused due to the drought situations affecting food security. Global Hunger Index has been accelerating due to under-nutrition and under-5 deaths. Drought has been covering more than 20% of the world's agricultural areas, leading to significantly less food production than what is required for consumption. Drought reduces soil fertility and adversely affects soil biological activity reducing the inherent capacity of the soil to support vegetation. Recent droughts have had a much greater effect on people's lives, even beyond causing poverty and hunger. Drought may have substantial financial consequences across the globe it may cause a severe impact on the world economy. It is a natural feature of the environment that will appear and disappear as it has in history. Due to increasing temperatures and growing vulnerabilities, it will undoubtedly occur more often and seriously in the coming years. To ensure sustainable socio-economic and social development, it is critical to reducing the effects of potential droughts worldwide using different biotechnological interventions. It's part of a long-term growth plan, and forecasting is essential for early warnings and global hunger management.
Collapse
Affiliation(s)
- Sheikh Mansoor
- Division of Biochemistry, Faculty of Basic Sciences, Sher e Kashmir University of Agricultural Sciences and Technology, Jammu, J&K, 180009, India
| | - Tamana Khan
- Division of Vegetable Science, Faculty of Horticulture, Sher e Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, J&K, 190025, India
| | - Iqra Farooq
- Division of Floriculture and Landscape Architecture, Sher e Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, J&K, 190025, India
| | - Labiba Riyaz Shah
- Division of Vegetable Science, Faculty of Horticulture, Sher e Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, J&K, 190025, India
| | - Vikas Sharma
- Division of Soil Science and Agricultural Chemistry, Sher e Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, J&K, 180009, India
| | - Christian Sonne
- Department of Ecoscience, Arctic Research Centre (ARC), Faculty of Science and Technology, Aarhus University, Frederiksborgvej 399, PO Box 358, 4000, Roskilde, Denmark
| | - Jörg Rinklebe
- Laboratory of Soil and Groundwater Management, Institute of Foundation Engineering, Water and Waste Management, School of Architecture and Civil Engineering, University of Wuppertal, Pauluskirchstraße 7, 42285, Wuppertal, Germany
| | - Parvaiz Ahmad
- Department of Botany, GDC Pulwama, Jammu and Kashmir, 192301, India.
| |
Collapse
|
15
|
Mazorra Morales LM, Cosme Silva GM, Santana DB, Pireda SF, Dorighetto Cogo AJ, Heringer ÂS, de Oliveira TDR, Reis RS, Dos Santos Prado LA, de Oliveira AV, Silveira V, Da Cunha M, Barros CF, Façanha AR, Baldet P, Bartoli CG, da Silva MG, Oliveira JG. Mitochondrial dysfunction associated with ascorbate synthesis in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 185:55-68. [PMID: 35661586 DOI: 10.1016/j.plaphy.2022.05.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/06/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Mitochondria are the major organelles of energy production; however, active mitochondria can decline their energetic role and show a dysfunctional status. Mitochondrial dysfunction was induced by high non-physiological level of L-galactone-1,4-lactone (L-GalL), the precursor of ascorbate (AsA), in plant mitochondria. The dysfunction induced by L-GalL was associated with the fault in the mitochondrial electron partition and reactive oxygen species (ROS) over-production. Using mitochondria from RNAi-plant lines harbouring silenced L-galactone-1,4-lactone dehydrogenase (L-GalLDH) activity, it was demonstrated that such dysfunction is dependent on this enzyme activity. The capacity of alternative respiration was strongly decreased by L-GalL, probably mediated by redox-inactivation of the alternative oxidase (AOX) enzyme. Although, alternative respiration was shown to be the key factor that helps support AsA synthesis in dysfunctional mitochondria. Experiments with respiratory inhibitors showed that ROS formation and mitochondrial dysfunction were more associated with the decline in the activities of COX (cytochrome oxidase) and particularly AOX than with the lower activities of respiratory complexes I and III. The application of high L-GalL concentrations induced proteomic changes that indicated alterations in proteins related to oxidative stress and energetic status. However, supra-optimal L-GalL concentration was not deleterious for plants. Instead, the L-GalLDH activity could be positive. Indeed, it was found that wild type plants performed better growth than L-GalLDH-RNAi plants in response to high non-physiological L-GalL concentrations.
Collapse
Affiliation(s)
- Luis Miguel Mazorra Morales
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, CEP 28013-602, Brazil; Laboratório de Ciências Físicas, Centro de Ciência Tecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, CEP 28013-602, Brazil
| | - Gláucia Michelle Cosme Silva
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, CEP 28013-602, Brazil
| | - Diederson Bortolini Santana
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, CEP 28013-602, Brazil
| | - Saulo F Pireda
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, CEP 28013-602, Brazil
| | - Antônio Jesus Dorighetto Cogo
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, CEP 28013-602, Brazil
| | - Ângelo Schuabb Heringer
- Laboratório de Biotecnologia, Universidade Estadual do Norte Fluminense "Darcy Ribeiro" (UENF), Campos dos Goytacazes, RJ, Brazil
| | - Tadeu Dos Reis de Oliveira
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, CEP 28013-602, Brazil
| | - Ricardo S Reis
- Laboratório de Biotecnologia, Universidade Estadual do Norte Fluminense "Darcy Ribeiro" (UENF), Campos dos Goytacazes, RJ, Brazil
| | - Luís Alfredo Dos Santos Prado
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, CEP 28013-602, Brazil
| | - André Vicente de Oliveira
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, CEP 28013-602, Brazil
| | - Vanildo Silveira
- Laboratório de Biotecnologia, Universidade Estadual do Norte Fluminense "Darcy Ribeiro" (UENF), Campos dos Goytacazes, RJ, Brazil
| | - Maura Da Cunha
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, CEP 28013-602, Brazil
| | - Cláudia F Barros
- Laboratório de Botânica Estrutural, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro - IPJBRJ, Brazil
| | - Arnoldo R Façanha
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, CEP 28013-602, Brazil
| | - Pierre Baldet
- Institut National de la Recherche Agronomique, Université Bordeaux 1, Université Victor Ségalen-Bordeaux 2, Institut Fédératif de Recherche 103, Unité Mixte de Recherche 619 sur la Biologie du Fruit, Centre de Recherche Institut National de la Recherche Agronomique de Bordeaux, BP 81, 33883, Villenave d'Ornon cedex, France
| | - Carlos G Bartoli
- Instituto de Fisiología Vegetal, Facultad Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, CCT-CONICET, cc327 1900, La Plata, Argentina
| | - Marcelo Gomes da Silva
- Laboratório de Ciências Físicas, Centro de Ciência Tecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, CEP 28013-602, Brazil
| | - Jurandi G Oliveira
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, CEP 28013-602, Brazil.
| |
Collapse
|
16
|
Jacobs HT, Ballard JWO. What physiological role(s) does the alternative oxidase perform in animals? BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148556. [PMID: 35367450 DOI: 10.1016/j.bbabio.2022.148556] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Although the alternative oxidase, AOX, was known to be widespread in the animal kingdom by 2004, its exact physiological role in animals remains poorly understood. Here we present what evidence has accumulated thus far, indicating that it may play a role in enabling animals to resist various kinds of stress, including toxins, abnormal oxygen or nutrient levels, protein unfolding, dessication and pathogen attack. Much of our knowledge comes from studies in model organisms, where any benefits from exogenously expressed AOX may be masked by its unregulated expression, which may itself be stressful. The further question arises as to why AOX has been lost from some major crown groups, namely vertebrates, insects and cephalopods, if it plays important roles favouring the survival of other animals. We conclude by presenting some speculative ideas addressing this question, and an outline of how it might be approached experimentally.
Collapse
Affiliation(s)
- Howard T Jacobs
- Faculty of Medicine and Health Technology, FI-33014 Tampere University, Finland; Department of Environment and Genetics, La Trobe University, Melbourne, Victoria 3086, Australia.
| | - J William O Ballard
- Department of Environment and Genetics, La Trobe University, Melbourne, Victoria 3086, Australia; School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
17
|
Li D, Wu X, Li L, Wang Y, Xu Y, Luo Z. Epibrassinolide enhanced chilling tolerance of postharvest banana fruit by regulating energy status and pyridine nucleotide homeostasis. Food Chem 2022; 382:132273. [DOI: 10.1016/j.foodchem.2022.132273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 01/30/2023]
|
18
|
Metabolic Pathways Involved in the Drought Stress Response of Nitraria tangutorum as Revealed by Transcriptome Analysis. FORESTS 2022. [DOI: 10.3390/f13040509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Drought resistance in plants is controlled by multiple genes. To identify the genes that mediate drought stress responses and to assess the associated metabolic pathways in the desert shrub Nitraria tangutorum, we conducted a transcriptome analysis of plants under control (maximum field capacity) and drought (20% of the maximum field capacity) conditions. We analyzed differentially expressed genes (DEGs) of N. tangutorum and their enrichment in the KEGG metabolic pathways database, and explored the molecular biological mechanisms underlying the answer to its drought tolerance. Between the control and drought groups, 119 classified metabolic pathways annotated 3047 DEGs in the KEGG database. For drought tolerance, nitrate reductase (NR) gene expression was downregulated, indicating that NR activity was decreased to improve drought tolerance. In ammonium assimilation, drought stress inhibited glutamine formation. Protochlorophyllide reductase (1.3.1.33) expression was upregulated to promote chlorophyll a synthesis, whereas divinyl reductase (1.3.1.75) expression was downregulated to inhibit chlorophyll-ester a synthesis. The expression of the chlorophyll synthase (2.5.1.62) gene was downregulated, which affected the synthesis of chlorophyll a and b. Overall, drought stress appeared to improve the ability to convert chlorophyll b into chlorophyll a. Our data serve as a theoretical foundation for further elucidating the growth regulatory mechanism of desert xerophytes, thereby facilitating the development and cultivation of new, drought-resistant genotypes for the purpose of improving desert ecosystems.
Collapse
|
19
|
Mir RA, Bhat BA, Yousuf H, Islam ST, Raza A, Rizvi MA, Charagh S, Albaqami M, Sofi PA, Zargar SM. Multidimensional Role of Silicon to Activate Resilient Plant Growth and to Mitigate Abiotic Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:819658. [PMID: 35401625 PMCID: PMC8984490 DOI: 10.3389/fpls.2022.819658] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/31/2022] [Indexed: 05/16/2023]
Abstract
Sustainable agricultural production is critically antagonistic by fluctuating unfavorable environmental conditions. The introduction of mineral elements emerged as the most exciting and magical aspect, apart from the novel intervention of traditional and applied strategies to defend the abiotic stress conditions. The silicon (Si) has ameliorating impacts by regulating diverse functionalities on enhancing the growth and development of crop plants. Si is categorized as a non-essential element since crop plants accumulate less during normal environmental conditions. Studies on the application of Si in plants highlight the beneficial role of Si during extreme stressful conditions through modulation of several metabolites during abiotic stress conditions. Phytohormones are primary plant metabolites positively regulated by Si during abiotic stress conditions. Phytohormones play a pivotal role in crop plants' broad-spectrum biochemical and physiological aspects during normal and extreme environmental conditions. Frontline phytohormones include auxin, cytokinin, ethylene, gibberellin, salicylic acid, abscisic acid, brassinosteroids, and jasmonic acid. These phytohormones are internally correlated with Si in regulating abiotic stress tolerance mechanisms. This review explores insights into the role of Si in enhancing the phytohormone metabolism and its role in maintaining the physiological and biochemical well-being of crop plants during diverse abiotic stresses. Moreover, in-depth information about Si's pivotal role in inducing abiotic stress tolerance in crop plants through metabolic and molecular modulations is elaborated. Furthermore, the potential of various high throughput technologies has also been discussed in improving Si-induced multiple stress tolerance. In addition, a special emphasis is engrossed in the role of Si in achieving sustainable agricultural growth and global food security.
Collapse
Affiliation(s)
- Rakeeb Ahmad Mir
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | | | - Henan Yousuf
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | | | - Ali Raza
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | | | - Sidra Charagh
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Science, Hangzhou, China
| | - Mohammed Albaqami
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Parvaze A. Sofi
- Division of Genetics and Plant Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Srinagar, India
| |
Collapse
|
20
|
Singh P, Kumari A, Gupta KJ. Alternative oxidase plays a role in minimizing ROS and RNS produced under salinity stress in Arabidopsis thaliana. PHYSIOLOGIA PLANTARUM 2022; 174:e13649. [PMID: 35149995 DOI: 10.1111/ppl.13649] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/02/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Under stress conditions, the overproduction of different reactive oxygen species (ROS) and reactive nitrogen species (RNS) causes imbalance in the redox homeostasis of the cell leading to nitro-oxidative stress in plants. Alternative oxidase (AOX) is a conserving terminal oxidase of the mitochondrial electron transport chain, which can minimize the ROS. Still, the role of AOX in the regulation of RNS during nitro-oxidative stress imposed by salinity stress is not known. Here, we investigated the role of AOX in minimizing ROS and RNS induced by 150 mM NaCl in Arabidopsis using transgenic plants overexpressing (AOX OE) and antisense lines (AOX AS) of AOX. Imposing NaCl treatment leads to a 4-fold enhanced expression of AOX accompanied by enhanced AOX capacity in WT Col-0. Further AOX-OE seedlings displayed enhanced growth compared with the AOX-AS line under stress. Examination of NO levels by DAF-FM fluorescence and chemiluminescence revealed that AOX overexpression leads to reduced levels of NO. The total NR activity was elevated under NaCl, but no significant change was observed in wild-type (WT), AOX OE, and AS lines. The total ROS, superoxide, H2 O2 levels, and lipid peroxidation were higher in the AOX-AS line than in WT and AOX-OE lines. The peroxynitrite levels were also higher in the AOX-AS line than in WT and AOX-OE lines; further, the expression of antioxidant genes was elevated in AOX-AS. Taken together, our results suggest that AOX plays an important role in the mitigation of ROS and RNS levels and enhances plant growth, thus providing tolerance against nitro-oxidative stress exerted by NaCl.
Collapse
Affiliation(s)
- Pooja Singh
- National Institute for Plant Genome Research, New Delhi, India
| | - Aprajita Kumari
- National Institute for Plant Genome Research, New Delhi, India
| | | |
Collapse
|
21
|
Dek504 Encodes a Mitochondrion-Targeted E+-Type Pentatricopeptide Repeat Protein Essential for RNA Editing and Seed Development in Maize. Int J Mol Sci 2022; 23:ijms23052513. [PMID: 35269656 PMCID: PMC8910059 DOI: 10.3390/ijms23052513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 12/21/2022] Open
Abstract
In flowering plants, RNA editing is a post-transcriptional process that selectively deaminates cytidines (C) to uridines (U) in organellar transcripts. Pentatricopeptide repeat (PPR) proteins have been identified as site-specific recognition factors for RNA editing. Here, we report the map-based cloning and molecular characterization of the defective kernel mutant dek504 in maize. Loss of Dek504 function leads to delayed embryogenesis and endosperm development, which produce small and collapsed kernels. Dek504 encodes an E+-type PPR protein targeted to the mitochondria, which is required for RNA editing of mitochondrial NADH dehydrogenase 3 at the nad3-317 and nad3-44 sites. Biochemical analysis of mitochondrial protein complexes revealed a significant reduction in the mitochondrial NADH dehydrogenase complex I activity, indicating that the alteration of the amino acid sequence at nad3-44 and nad3-317 through RNA editing is essential for NAD3 function. Moreover, the amino acids are highly conserved in monocots and eudicots, whereas the events of C-to-U editing are not conserved in flowering plants. Thus, our results indicate that Dek504 is essential for RNA editing of nad3, which is critical for NAD3 function, mitochondrial complex I stability, and seed development in maize.
Collapse
|
22
|
Abstract
On the world stage, the increase in temperatures due to global warming is already a reality that has become one of the main challenges faced by the scientific community. Since agriculture is highly dependent on climatic conditions, it may suffer a great impact in the short term if no measures are taken to adapt and mitigate the agricultural system. Plant responses to abiotic stresses have been the subject of research by numerous groups worldwide. Initially, these studies were concentrated on model plants, and, later, they expanded their studies in several economically important crops such as rice, corn, soybeans, coffee, and others. However, agronomic evaluations for the launching of cultivars and the classical genetic improvement process focus, above all, on productivity, historically leaving factors such as tolerance to abiotic stresses in the background. Considering the importance of the impact that abiotic stresses can have on agriculture in the short term, new strategies are currently being sought and adopted in breeding programs to understand the physiological, biochemical, and molecular responses to environmental disturbances in plants of agronomic interest, thus ensuring the world food security. Moreover, integration of these approaches is bringing new insights on breeding. We will discuss how water deficit, high temperatures, and salinity exert effects on plants.
Collapse
|
23
|
Sweetman C, Selinski J, Miller TK, Whelan J, Day DA. Legume Alternative Oxidase Isoforms Show Differential Sensitivity to Pyruvate Activation. FRONTIERS IN PLANT SCIENCE 2022; 12:813691. [PMID: 35111186 PMCID: PMC8801435 DOI: 10.3389/fpls.2021.813691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/27/2021] [Indexed: 05/29/2023]
Abstract
Alternative oxidase (AOX) is an important component of the plant respiratory pathway, enabling a route for electrons that bypasses the energy-conserving, ROS-producing complexes of the mitochondrial electron transport chain. Plants contain numerous isoforms of AOX, classified as either AOX1 or AOX2. AOX1 isoforms have received the most attention due to their importance in stress responses across a wide range of species. However, the propensity for at least one isoform of AOX2 to accumulate to very high levels in photosynthetic tissues of all legumes studied to date, suggests that this isoform has specialized roles, but we know little of its properties. Previous studies with sub-mitochondrial particles of soybean cotyledons and roots indicated that differential expression of GmAOX1, GmAOX2A, and GmAOX2D across tissues might confer different activation kinetics with pyruvate. We have investigated this using recombinantly expressed isoforms of soybean AOX in a previously described bacterial system (Selinski et al., 2016, Physiologia Plantarum 157, 264-279). Pyruvate activation kinetics were similar between the two GmAOX2 isoforms but differed substantially from those of GmAOX1, suggesting that selective expression of AOX1 and 2 could determine the level of AOX activity. However, this alone cannot completely explain the differences seen in sub-mitochondrial particles isolated from different legume tissues and possible reasons for this are discussed.
Collapse
Affiliation(s)
- Crystal Sweetman
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | - Jennifer Selinski
- Department of Plant Cell Biology, Botanical Institute, Christian-Albrecht University of Kiel, Kiel, Germany
| | - Troy K. Miller
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | - James Whelan
- Department of Animal, Plant, and Soil Science, School of Soil Science, La Trobe University, Bundoora, VIC, Australia
| | - David A. Day
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
24
|
Challabathula D, Analin B, Mohanan A, Bakka K. Differential modulation of photosynthesis, ROS and antioxidant enzyme activities in stress-sensitive and -tolerant rice cultivars during salinity and drought upon restriction of COX and AOX pathways of mitochondrial oxidative electron transport. JOURNAL OF PLANT PHYSIOLOGY 2022; 268:153583. [PMID: 34871988 DOI: 10.1016/j.jplph.2021.153583] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 05/27/2023]
Abstract
Drought and salt stresses are two major abiotic stress factors that hamper crop growth and productivity. Three rice cultivars with different sensitivity and tolerance towards abiotic stress were used in the current study. While cultivar Aiswarya is salt- and drought-sensitive, cultivar Vyttila is salt-tolerant and cultivar Vaisakh is drought-tolerant. We compared the physiological and biochemical responses of these rice cultivars under salt and drought stress conditions after restricting their cytochrome oxidase (COX) and alternative oxidase (AOX) pathways using antimycin A and salicylhydroxamic acid treatment. Further, changes in their expression of AOX genes and corresponding protein levels were compared and analysed. The sensitive and tolerant rice cultivars subjected to drought and salt stress showed differential responses in physiological and biochemical traits. Whereas Aiswarya showed clear phenotypic differences, such as stunted growth, leaf curling, and loss of greening in leaf tissues, with increase in salt content and progressive drought stress, Vyttila and Vaisakh showed no remarkable changes. Moreover, the drought-tolerant cultivar rehydrated after 10 days of drought exposure, whereas the sensitive variety did not show any rehydration of leaf tissue. The leaves of the tolerant cultivars showed lower reactive oxygen species (ROS) production than that of the sensitive plants under drought and salt stress conditions because of the activation of a stronger antioxidant defence. Although, the restriction of COX and AOX pathways increased the susceptibility of sensitive cultivars, it affected the tolerant varieties moderately. Higher photosynthetic rates, an efficient antioxidant system comprising higher superoxide dismutase, ascorbate peroxidase, and catalase activity along with higher AOX1a gene expression levels during drought and salt stress were observed in tolerant cultivars. The results suggest that an efficient antioxidant system and increased transcription of the AOX1a gene along with higher AOX protein levels are important for tolerant rice cultivars to maintain higher photosynthesis rates, lower ROS, and stress tolerance. Restriction of COX and AOX pathways impact the photosynthesis, ROS, and antioxidant enzymes in both sensitive and tolerant cultivars. The restriction of COX and AOX pathways have a stronger impact on gas exchange and fluorescence parameters of the sensitive cultivar than on that of the tolerant cultivars owing to the higher photosynthetic rates in tolerant cultivars.
Collapse
Affiliation(s)
- Dinakar Challabathula
- Plant Molecular Stress Physiology Research Group, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, 610 005, India.
| | - Benedict Analin
- Plant Molecular Stress Physiology Research Group, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, 610 005, India
| | - Akhil Mohanan
- Plant Molecular Stress Physiology Research Group, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, 610 005, India
| | - Kavya Bakka
- Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, 610 005, India
| |
Collapse
|
25
|
Tao M, Zhu W, Han H, Liu S, Liu A, Li S, Fu H, Tian J. Mitochondrial proteomic analysis reveals the regulation of energy metabolism and reactive oxygen species production in Clematis terniflora DC. leaves under high-level UV-B radiation followed by dark treatment. J Proteomics 2021; 254:104410. [PMID: 34923174 DOI: 10.1016/j.jprot.2021.104410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/08/2021] [Accepted: 10/19/2021] [Indexed: 11/15/2022]
Abstract
Clematis terniflora DC. is an important medicinal plant from the family Ranunculaceae. A previous study has shown that active ingredients in C. terniflora, such as flavonoids and coumarins, are increased under ultraviolet B radiation (UV-B) and dark treatment and that the numbers of genes related to the tricarboxylic acid cycle and mitochondrial electron transport chain (mETC) are changed. To uncover the mechanism of the response to UV-B radiation and dark treatment in C. terniflora, mitochondrial proteomics was performed. The results showed that proteins related to photorespiration, mitochondrial membrane permeability, the tricarboxylic acid cycle, and the mETC mainly showed differential expression profiles. Moreover, the increase in alternative oxidase indicated that another oxygen-consuming respiratory pathway in plant mitochondria was induced to minimize mitochondrial reactive oxygen species production. These results suggested that respiration and mitochondrial membrane permeability were deeply influenced to avoid energy consumption and maintain energy balance under UV-B radiation and dark treatment in C. terniflora leaf mitochondria. Furthermore, oxidative phosphorylation was able to regulate intracellular oxygen balance to resist oxidative stress. This study improves understanding of the function of mitochondria in response to UV-B radiation and dark treatment in C. terniflora. SIGNIFICANCE: C. terniflora was an important traditional Chinese medicine for anti-inflammatory. Previous study showed that the contents of coumarins which were the main active ingredient in C. terniflora were induced by UV-B radiation and dark treatment. In the present study, to uncover the regulatory mechanism of metabolic changes in C. terniflora, mitochondrial proteomics analysis of leaves was performed. The results showed that photorespiration and oxidative phosphorylation pathways were influenced under UV-B radiation and dark treatment. Mitochondria in C. terniflora leaf played a crucial role in energy mechanism and regulation of cellular oxidation-reduction to maintain cell homeostasis under UV-B radiation followed with dark treatment.
Collapse
Affiliation(s)
- Minglei Tao
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China; The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Wei Zhu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; Changshu Qiushi Technology Co. Ltd, Suzhou 215500, PR China
| | - Haote Han
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Shengzhi Liu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Amin Liu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Shouxin Li
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Hongwei Fu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Jingkui Tian
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China; The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China.
| |
Collapse
|
26
|
Hou L, Zhao M, Huang C, He Q, Zhang L, Zhang J. Alternative oxidase gene induced by nitric oxide is involved in the regulation of ROS and enhances the resistance of Pleurotus ostreatus to heat stress. Microb Cell Fact 2021; 20:137. [PMID: 34281563 PMCID: PMC8287771 DOI: 10.1186/s12934-021-01626-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 07/04/2021] [Indexed: 12/13/2022] Open
Abstract
Background In China, during the cultivation process of Pleurotus ostreatus, the yield and quality of fruiting bodies are easily affected by high temperatures in summer. Nitric oxide (NO) plays an important regulatory role in the response to abiotic stress, and previous studies have found that NO can induce alternative oxidase (aox) experssion in response to heat stress (HS) by regulating aconitase. However, the regulatory pathway of NO is complex, and the function and regulation of the aox gene in the response to HS remain unclear. Results In this study, we found that NO affected nicotinamide adenine dinucleotide (NADH) and adenosine triphosphate (ATP) levels, reduced hydrogen peroxide (H2O2) and superoxide anion (O2−) contents, and slowed O2− production. Further RNA-Seq results showed that NO regulated the oxidation-reduction process and oxidoreductase activity, affected the cellular respiration pathway and activated aox gene expression. The function of aox was determined by constructing overexpression (OE) and RNA interference (RNAi) strains. The results showed that the OE-aox strains exhibited obviously improved growth recovery after exposure to HS. During exposure to HS, the OE-aox strains exhibited reduced levels of NADH, the product of the tricarboxylic acid (TCA) cycle, and decreased synthesis of ATP, which reduced the production and accumulation of reactive oxygen species (ROS), whereas the RNAi-aox strains exhibited the opposite result. In addition, aox mediated the expression of antioxidant enzyme genes in the mycelia of P. ostreatus under HS through the retrograde signaling pathway. Conclusions This study shows that the expression of the aox gene in P. ostreatus mycelia can be induced by NO under HS, that it regulates the TCA cycle and cell respiration to reduce the production of ROS, and that it can mediate the retrograde signaling pathway involved in the mycelial response to HS. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01626-y.
Collapse
Affiliation(s)
- Ludan Hou
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 10081, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, 10081, Beijing, China
| | - Mengran Zhao
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 10081, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, 10081, Beijing, China
| | - Chenyang Huang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 10081, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, 10081, Beijing, China
| | - Qi He
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 10081, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, 10081, Beijing, China.,Jilin Agricultural University, 130118, Jilin, China
| | - Lijiao Zhang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 10081, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, 10081, Beijing, China
| | - Jinxia Zhang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 10081, Beijing, China. .,Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, 10081, Beijing, China.
| |
Collapse
|
27
|
Rodríguez-Calcerrada J, Rodrigues AM, António C, Perdiguero P, Pita P, Collada C, Li M, Gil L. Stem metabolism under drought stress - a paradox of increasing respiratory substrates and decreasing respiratory rates. PHYSIOLOGIA PLANTARUM 2021; 172:391-404. [PMID: 32671841 DOI: 10.1111/ppl.13145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Metabolic changes underpinning drought-induced variations in stem respiration (Rs ) are unknown. We measured Rs rates and metabolite and gene expression profiles in Ulmus minor Mill. and Quercus ilex L. seedlings subjected to increasing levels of drought stress to better understand how carbon, nitrogen and energy metabolism interact during drought. In both species, only plants showing extreme stress symptoms - i.e. negligible rates of leaf stomatal conductance and photosynthesis, and high stem dehydration (30-50% of maximum water storage) and contraction (50-150 μm week-1 ) - exhibited lower Rs rates than well-watered plants. Abundance of low-molecular weight sugars (e.g. glucose and fructose) and sugar alcohols (e.g. mannitol) increased with drought, at more moderate stress and to a higher extent in Q. ilex than U. minor. Abundance of amino acids increased at more severe stress, more abruptly, and to a higher extent in U. minor, coinciding with leaf senescence, which did not occur in Q. ilex. Organic acids changed less in response to drought: threonate and glycerate increased, and citrate decreased although slightly in both species. Transcripts of genes coding for enzymes of the Krebs cycle decreased in Q. ilex and increased in U. minor in conditions of extreme drought stress. The maintenance of Rs under severe growth and photosynthetic restrictions reveals the importance of stem mitochondrial activity in drought acclimation. The eventual decline in Rs diverts carbon substrates from entering the Krebs cycle that may help to cope with osmotic and oxidative stress during severe drought and to recover hydraulic functionality afterwards.
Collapse
Affiliation(s)
- Jesús Rodríguez-Calcerrada
- Grupo de Investigación Sistemas Naturales e Historia Forestal, Universidad Politécnica de Madrid, Madrid, 28040, Spain
| | - Ana M Rodrigues
- Plant Metabolomics Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, 2780-157, Portugal
| | - Carla António
- Plant Metabolomics Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, 2780-157, Portugal
| | - Pedro Perdiguero
- Animal Health Research Center, National Institute for Agriculture and Food Research and Technology (CISA-INIA), Valdeolmos, Madrid, 28130, Spain
| | - Pilar Pita
- Grupo de Investigación Sistemas Naturales e Historia Forestal, Universidad Politécnica de Madrid, Madrid, 28040, Spain
| | - Carmen Collada
- Grupo de Investigación Sistemas Naturales e Historia Forestal, Universidad Politécnica de Madrid, Madrid, 28040, Spain
| | - Meng Li
- Grupo de Investigación Sistemas Naturales e Historia Forestal, Universidad Politécnica de Madrid, Madrid, 28040, Spain
| | - Luis Gil
- Grupo de Investigación Sistemas Naturales e Historia Forestal, Universidad Politécnica de Madrid, Madrid, 28040, Spain
| |
Collapse
|
28
|
Wojciechowska D, Karachitos A, Roszkowska M, Rzeźniczak W, Sobkowiak R, Kaczmarek Ł, Kosicki JZ, Kmita H. Mitochondrial alternative oxidase contributes to successful tardigrade anhydrobiosis. Front Zool 2021; 18:15. [PMID: 33794934 PMCID: PMC8015188 DOI: 10.1186/s12983-021-00400-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/15/2021] [Indexed: 12/14/2022] Open
Abstract
Anhydrobiosis can be described as an adaptation to lack of water that enables some organisms, including tardigrades, to survive extreme conditions, even some that do not exist on Earth. The cellular mechanisms underlying anhydrobiosis are still not completely explained including the putative contribution of mitochondrial proteins. Since mitochondrial alternative oxidase (AOX), described as a drought response element in plants, was recently proposed for various invertebrates including tardigrades, we investigated whether AOX is involved in successful anhydrobiosis of tardigrades. Milnesium inceptum was used as a model for the study. We confirmed functionality of M. inceptum AOX and estimated its contribution to the tardigrade revival after anhydrobiosis of different durations. We observed that AOX activity was particularly important for M. inceptum revival after the long-term tun stage but did not affect the rehydration stage specifically. The results may contribute to our understanding and then application of anhydrobiosis underlying mechanisms.
Collapse
Affiliation(s)
- Daria Wojciechowska
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Poznań, Poland.,Department of Bioenergetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Andonis Karachitos
- Department of Bioenergetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Milena Roszkowska
- Department of Bioenergetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland.,Department of Animal Taxonomy and Ecology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Wiktor Rzeźniczak
- Department of Bioenergetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Robert Sobkowiak
- Department of Cell Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Łukasz Kaczmarek
- Department of Animal Taxonomy and Ecology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Jakub Z Kosicki
- Department of Avian Biology and Ecology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Hanna Kmita
- Department of Bioenergetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland.
| |
Collapse
|
29
|
Kedem I, Milrad Y, Kaplan A, Yacoby I. Juggling Lightning: How Chlorella ohadii handles extreme energy inputs without damage. PHOTOSYNTHESIS RESEARCH 2021; 147:329-344. [PMID: 33389446 DOI: 10.1007/s11120-020-00809-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
The green alga Chlorella ohadii was isolated from a desert biological soil crust, one of the harshest environments on Earth. When grown under optimal laboratory settings it shows the fastest growth rate ever reported for a photosynthetic eukaryote and a complete resistance to photodamage even under unnaturally high light intensities. Here we examined the energy distribution along the photosynthetic pathway under four light and carbon regimes. This was performed using various methodologies such as membrane inlet mass spectrometer with stable O2 isotopes, variable fluorescence, electrochromic shift and fluorescence assessment of NADPH level, as well as the use of specific inhibitors. We show that the preceding illumination and CO2 level during growth strongly affect the energy dissipation strategies employed by the cell. For example, plastid terminal oxidase (PTOX) plays an important role in energy dissipation, particularly in high light- and low-CO2-grown cells. Of particular note is the reliance on PSII cyclic electron flow as an effective and flexible dissipation mechanism in all conditions tested. The energy management observed here may be unique to C. ohadii, as it is the only known organism to cope with such conditions. However, the strategies demonstrated may provide an insight into the processes necessary for photosynthesis under high-light conditions.
Collapse
Affiliation(s)
- Isaac Kedem
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, 9190401, Jerusalem, Israel
| | - Yuval Milrad
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Aaron Kaplan
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, 9190401, Jerusalem, Israel.
| | - Iftach Yacoby
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
30
|
Chen W, Cui Y, Wang Z, Chen R, He C, Liu Y, Du X, Liu Y, Fu J, Wang G, Wang J, Gu R. Nuclear-Encoded Maturase Protein 3 Is Required for the Splicing of Various Group II Introns in Mitochondria during Maize (Zea mays L.) Seed Development. ACTA ACUST UNITED AC 2021; 62:293-305. [DOI: 10.1093/pcp/pcaa161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/05/2020] [Indexed: 11/12/2022]
Abstract
Abstract
Splicing of plant organellar group II introns from precursor-RNA transcripts requires the assistance of nuclear-encoded splicing factors. Maturase (nMAT) is one such factor, as its three homologs (nMAT1, 2 and 4) have been identified as being required for the splicing of various mitochondrial introns in Arabidopsis. However, the function of nMAT in maize (Zea mays L.) is unknown. In this study, we identified a seed development mutant, empty pericarp 2441 (emp2441) from maize, which showed severely arrested embryogenesis and endosperm development. Positional cloning and transgenic complementation assays revealed that Emp2441 encodes a maturase-related protein, ZmnMAT3. ZmnMAT3 is highly expressed during seed development and its protein locates to the mitochondria. The loss of function of ZmnMAT3 resulted in the reduced splicing efficiency of various mitochondrial group II introns, particularly of the trans-splicing of nad1 introns 1, 3 and 4, which consequently abolished the transcript of nad1 and severely impaired the assembly and activity of mitochondrial complex I. Moreover, the Zmnmat3 mutant showed defective mitochondrial structure and exhibited expression and activity of alternative oxidases. These results indicate that ZmnMAT3 is essential for mitochondrial complex I assembly during kernel development in maize.
Collapse
Affiliation(s)
- Weiwei Chen
- Center of Seed Science and Technology, Beijing Innovation Center for Seed Technology (MOA), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yu Cui
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zheyuan Wang
- Center of Seed Science and Technology, Beijing Innovation Center for Seed Technology (MOA), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Rongrong Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cheng He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yan Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xuemei Du
- Center of Seed Science and Technology, Beijing Innovation Center for Seed Technology (MOA), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yunjun Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Junjie Fu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guoying Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianhua Wang
- Center of Seed Science and Technology, Beijing Innovation Center for Seed Technology (MOA), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Riliang Gu
- Center of Seed Science and Technology, Beijing Innovation Center for Seed Technology (MOA), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
31
|
Han HL, Liu J, Feng XJ, Zhang M, Lin QF, Wang T, Qi SL, Xu T, Hua XJ. SSR1 is involved in maintaining the function of mitochondria electron transport chain and iron homeostasis upon proline treatment in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2021; 256:153325. [PMID: 33271443 DOI: 10.1016/j.jplph.2020.153325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 06/12/2023]
Abstract
Although increasing intracellular proline under stressed condition could help the plants survive, treating plant with high level of proline under normal condition could be inhibitory to plant growth. Among other possible mechanisms, proline-induced mitochondrial reactive oxygen species (ROS) production due to electron overflow in mitochondria electron transport chain (mETC) caused by elevated proline degradation may contribute to the proline toxicity. However, direct evidences are still elusive. Here, we reported a functional characterization of SSR1, encoding a protein localized in mitochondria matrix, in maintaining the function of mETC through analyzing the proline hypersensitive phenotype of an Arabidopsis mutant ssr1-1 with a truncated SSR1 protein. Our analysis demonstrated that upon proline treatment, there were higher mitochondrial ROS, lower ATP content, reduced activity of mETC complex I and II, and reduced iron content in ssr1-1, in comparison to the wild type. Therefore, SSR1 is involved in maintaining normal capacity of mETC in transporting electrons in a way that related to iron homeostasis. Our results also supported that normal mETC activity is required for alleviating the proline toxicity.
Collapse
Affiliation(s)
- Hui Ling Han
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jie Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xuan Jun Feng
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Min Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Qing Fang Lin
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Ting Wang
- College of Life Sciences, Shangrao Normal University, Shangrao, Jiangxi, 334001, China.
| | - Shi Lian Qi
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Tao Xu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China.
| | - Xue Jun Hua
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China.
| |
Collapse
|
32
|
Romero-Aguilar L, Cárdenas-Monroy C, Garrido-Bazán V, Aguirre J, Guerra-Sánchez G, Pardo JP. On the use of n-octyl gallate and salicylhydroxamic acid to study the alternative oxidase role. Arch Biochem Biophys 2020; 694:108603. [PMID: 32986977 DOI: 10.1016/j.abb.2020.108603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/28/2020] [Accepted: 09/24/2020] [Indexed: 10/23/2022]
Abstract
The alternative oxidase (AOX) catalyzes the transfer of electrons from ubiquinol to oxygen without the translocation of protons across the inner mitochondrial membrane. This enzyme has been proposed to participate in the regulation of cell growth, sporulation, yeast-mycelium transition, resistance to reactive oxygen species, infection, and production of secondary metabolites. Two approaches have been used to evaluate AOX function: incubation of cells for long periods of time with AOX inhibitors or deletion of AOX gene. However, AOX inhibitors might have different targets. To test non-specific effects of n-octyl gallate (nOg) and salicylhydroxamic acid (SHAM) on fungal physiology we measured the growth and respiratory capacity of two fungal strains lacking (Ustilago maydis-Δaox and Saccharomyces cerevisiae) and three species containing the AOX gene (U. maydis WT, Debaryomyces hansenii, and Aspergillus nidulans). For U. maydis, a strong inhibition of growth and respiratory capacity by SHAM was observed, regardless of the presence of AOX. Similarly, A. nidulans mycelial growth was inhibited by low concentrations of nOg independently of AOX expression. In contrast, these inhibitors had no effect or had a minor effect on S. cerevisiae and D. hansenii growth. These results show that nOg and SHAM have AOX independent effects which vary in different microorganisms, indicating that studies based on long-term incubation of cells with these inhibitors should be considered as inconclusive.
Collapse
Affiliation(s)
- Lucero Romero-Aguilar
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Copilco, Cd. Universitaria, Coyoacán, 04510, Ciudad de México, Mexico
| | - Christian Cárdenas-Monroy
- Ciencia Forense, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Copilco, Cd. Universitaria, Coyoacán, 04510, Ciudad de México, Mexico
| | - Verónica Garrido-Bazán
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Copilco, Cd. Universitaria, Coyoacán, 04510, Ciudad de México, Mexico
| | - Jesus Aguirre
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Copilco, Cd. Universitaria, Coyoacán, 04510, Ciudad de México, Mexico
| | - Guadalupe Guerra-Sánchez
- Departamento de Microbiología, Laboratorio de Bioquímica y Biotecnología de Hongos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala S/N., Miguel Hidalgo, 11350, Ciudad de México, Mexico
| | - Juan Pablo Pardo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Copilco, Cd. Universitaria, Coyoacán, 04510, Ciudad de México, Mexico.
| |
Collapse
|
33
|
Liu Y, Gong Q, He J, Sun X, Li X, Zhao S, Meng Q, Lin H, Zhou H. PpAOX regulates ER stress tolerance in Physcomitrella patens. JOURNAL OF PLANT PHYSIOLOGY 2020; 251:153218. [PMID: 32559711 DOI: 10.1016/j.jplph.2020.153218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 06/11/2023]
Abstract
Severe environments disturb the folding or assembly of newly synthesized proteins, resulting in accumulation of misfolded or unfolded proteins in the endoplasmic reticulum (ER) as well as cytotoxic aggregation of abnormal proteins. Therefore, ER stress is evoked due to disturbed ER homeostasis. Alternative oxidase (AOX) plays an important role in coping with various abiotic stresses and plant growth. Our previous study has reported that PpAOX is involved in the regulation of salt tolerance in moss Physcomitrella patens (P. patens), but its biological functions in modulating ER stress remain unknown. Here we report that the gametophyte of P. patens displays severe growth inhibition and developmental deficiency under tunicamycin (Tm, an elicitor of ER stress)-induced ER stress conditions. PpAOX and selected ER stress response-like genes in P. patens were induced under Tm treatment. PpAOX knockout (PpAOX KO) plants exhibited decreased resistance to Tm-induced ER stress, whereas PpAOX-overexpressing lines (PpAOX OX) plants were more tolerant to Tm-induced ER stress. Data showed that PpAOX contributes to redox homeostasis under Tm treatment. In addition, we observed that PpAOX completely restores the Tm-sensitive phenotype of Arabidopsis AOX1a mutant (Ataox1a). Taken together, our work reveals a functional link between PpAOX and ER stress tolerance regulation in P. patens.
Collapse
Affiliation(s)
- Yunhong Liu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Qianyuan Gong
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Jiaxian He
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Xia Sun
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Xiaochuan Li
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Shuangshuang Zhao
- Key Laboratory of Plant Stress, Life Science College, Shandong Normal University, Jinan 250014, China
| | - Qingwei Meng
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, 271018, China
| | - Honghui Lin
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Huapeng Zhou
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
34
|
Batnini M, Fernández Del-Saz N, Fullana-Pericàs M, Palma F, Haddoudi I, Mrabet M, Ribas-Carbo M, Mhadhbi H. The alternative oxidase pathway is involved in optimizing photosynthesis in Medicago truncatula infected by Fusarium oxysporum and Rhizoctonia solani. PHYSIOLOGIA PLANTARUM 2020; 169:600-611. [PMID: 32108952 DOI: 10.1111/ppl.13080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/13/2020] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
Phytopathogen infection alters primary metabolism status and plant development. The alternative oxidase (AOX) has been hypothesized to increase under pathogen attack preventing reductions, thus optimizing photosynthesis and growth. In this study, two genotypes of Medicago truncatula, one relatively resistant (Jemalong A17) and one susceptible (TN1.11), were infected with Fusarium oxysporum and Rhizoctonia solani. The in vivo foliar respiratory activities of the cytochrome oxidase pathway (COP) and the alternative oxidase pathway (AOP) were measured using the oxygen isotope fractionation. Gas exchange and photosynthesis-related parameters were measured and calculated together with antioxidant enzymes activities and organic acids contents. Our results show that the in vivo activity of AOX (valt ) plays a role under fungal infection. When infected with R. solani, the increase of valt in A17 was concomitant to an increase in net assimilation, in mesophyll conductance, to an improvement in the maximum velocity of Rubisco carboxylation and to unchanged malate content. However, under F. oxysporum infection, the induced valt was accompanied by an enhancement in the antioxidant enzymes, superoxide dismutase (SOD; EC1.15.1.1), catalase (CAT; EC1.11.1.6) and guaiacol peroxidase (GPX; EC1.11.1.7), activities and to an unchanged tricarboxylic acid cycle intermediates. These results provide new insight into the role of the in vivo activity of AOX in coordinating primary metabolism interactions that, partly, modulate the relative resistance of M. truncatula to diseases caused by soil-borne pathogenic fungi.
Collapse
Affiliation(s)
- Marwa Batnini
- Laboratory of Legumes, Center of Biotechnology of Borj Cedria, Hammamlif, Tunisia
- Faculty of Sciences of Tunis, University Tunis El Manar, Tunis, 2092, Tunisia
| | - Néstor Fernández Del-Saz
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Mateu Fullana-Pericàs
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, Palma de Mallorca, 07122, Spain
| | - Francisco Palma
- Department of Plant Physiology, Faculty of sciences, University of Granada, Granada, 18071, Spain
| | - Imen Haddoudi
- Laboratory of Legumes, Center of Biotechnology of Borj Cedria, Hammamlif, Tunisia
- Faculty of Sciences of Tunis, University Tunis El Manar, Tunis, 2092, Tunisia
| | - Moncef Mrabet
- Laboratory of Legumes, Center of Biotechnology of Borj Cedria, Hammamlif, Tunisia
| | - Miquel Ribas-Carbo
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Haythem Mhadhbi
- Laboratory of Legumes, Center of Biotechnology of Borj Cedria, Hammamlif, Tunisia
| |
Collapse
|
35
|
Baslam M, Mitsui T, Hodges M, Priesack E, Herritt MT, Aranjuelo I, Sanz-Sáez Á. Photosynthesis in a Changing Global Climate: Scaling Up and Scaling Down in Crops. FRONTIERS IN PLANT SCIENCE 2020; 11:882. [PMID: 32733499 PMCID: PMC7357547 DOI: 10.3389/fpls.2020.00882] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 05/29/2020] [Indexed: 05/06/2023]
Abstract
Photosynthesis is the major process leading to primary production in the Biosphere. There is a total of 7000bn tons of CO2 in the atmosphere and photosynthesis fixes more than 100bn tons annually. The CO2 assimilated by the photosynthetic apparatus is the basis of crop production and, therefore, of animal and human food. This has led to a renewed interest in photosynthesis as a target to increase plant production and there is now increasing evidence showing that the strategy of improving photosynthetic traits can increase plant yield. However, photosynthesis and the photosynthetic apparatus are both conditioned by environmental variables such as water availability, temperature, [CO2], salinity, and ozone. The "omics" revolution has allowed a better understanding of the genetic mechanisms regulating stress responses including the identification of genes and proteins involved in the regulation, acclimation, and adaptation of processes that impact photosynthesis. The development of novel non-destructive high-throughput phenotyping techniques has been important to monitor crop photosynthetic responses to changing environmental conditions. This wealth of data is being incorporated into new modeling algorithms to predict plant growth and development under specific environmental constraints. This review gives a multi-perspective description of the impact of changing environmental conditions on photosynthetic performance and consequently plant growth by briefly highlighting how major technological advances including omics, high-throughput photosynthetic measurements, metabolic engineering, and whole plant photosynthetic modeling have helped to improve our understanding of how the photosynthetic machinery can be modified by different abiotic stresses and thus impact crop production.
Collapse
Affiliation(s)
- Marouane Baslam
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, Japan
| | - Toshiaki Mitsui
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, Japan
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Michael Hodges
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Université Paris-Saclay, Université Evry, Université Paris Diderot, Paris, France
| | - Eckart Priesack
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Matthew T. Herritt
- USDA-ARS Plant Physiology and Genetics Research, US Arid-Land Agricultural Research Center, Maricopa, AZ, United States
| | - Iker Aranjuelo
- Agrobiotechnology Institute (IdAB-CSIC), Consejo Superior de Investigaciones Científicas-Gobierno de Navarra, Mutilva, Spain
| | - Álvaro Sanz-Sáez
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL, United States
| |
Collapse
|
36
|
Young L, Rosell-Hidalgo A, Inaoka DK, Xu F, Albury M, May B, Kita K, Moore AL. Kinetic and structural characterisation of the ubiquinol-binding site and oxygen reduction by the trypanosomal alternative oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148247. [PMID: 32565080 DOI: 10.1016/j.bbabio.2020.148247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/08/2020] [Accepted: 06/12/2020] [Indexed: 12/15/2022]
Abstract
The alternative oxidase (AOX) is a monotopic di‑iron carboxylate protein which acts as a terminal respiratory chain oxidase in a variety of plants, fungi and protists. Of particular importance is the finding that both emerging infectious diseases caused by human and plant fungal pathogens, the majority of which are multi-drug resistant, appear to be dependent upon AOX activity for survival. Since AOX is absent in mammalian cells, AOX is considered a viable therapeutic target for the design of specific fungicidal and anti-parasitic drugs. In this work, we have mutated conserved residues within the hydrophobic channel (R96, D100, R118, L122, L212, E215 and T219), which crystallography has indicated leads to the active site. Our data shows that all mutations result in a drastic reduction in Vmax and catalytic efficiency whilst some also affected the Km for quinol and oxygen. The extent to which mutation effects inhibitor sensitivity was also investigated, with mutation of R118 and T219 leading to a complete loss of inhibitor potency. However, only a slight reduction in IC50 values was observed when R96 was mutated, implying that this residue is less important in inhibitor binding. In silico modelling has been used to provide insight into the reason for such changes, which we suggest is due to disruptions in the proton transfer network, resulting in a reduction in overall reaction kinetics. We discuss our results in terms of the structural features of the ubiquinol binding site and consider the implications of such findings on the nature of the catalytic cycle. SIGNIFICANCE: The alternative oxidase is a ubiquinol oxidoreductase enzyme that catalyses the oxidation of ubiquinol and the reduction of oxygen to water. It is widely distributed amongst the plant, fungal and parasitic kingdoms and plays a central role in metabolism through facilitating the turnover of the TCA cycle whilst reducing ROS production.
Collapse
Affiliation(s)
- Luke Young
- Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom.
| | - Alicia Rosell-Hidalgo
- Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| | - Daniel Ken Inaoka
- Department of Molecular Infection Dynamics, Shinogi Global Infectious Diseases Division, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki 852-8523, Japan; School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki 852-8523, Japan
| | - Fei Xu
- Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| | - Mary Albury
- Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| | - Benjamin May
- Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| | - Kiyoshi Kita
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki 852-8523, Japan
| | - Anthony L Moore
- Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| |
Collapse
|
37
|
Rasmusson AG, Escobar MA, Hao M, Podgórska A, Szal B. Mitochondrial NAD(P)H oxidation pathways and nitrate/ammonium redox balancing in plants. Mitochondrion 2020; 53:158-165. [PMID: 32485334 DOI: 10.1016/j.mito.2020.05.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 05/05/2020] [Accepted: 05/26/2020] [Indexed: 12/19/2022]
Abstract
Plant mitochondrial oxidative phosphorylation is characterised by alternative electron transport pathways with different energetic efficiencies, allowing turnover of cellular redox compounds like NAD(P)H. These electron transport chain pathways are profoundly affected by soil nitrogen availability, most commonly as oxidized nitrate (NO3-) and/or reduced ammonium (NH4+). The bioenergetic strategies involved in assimilating different N sources can alter redox homeostasis and antioxidant systems in different cellular compartments, including the mitochondria and the cell wall. Conversely, changes in mitochondrial redox systems can affect plant responses to N. This review explores the integration between N assimilation, mitochondrial redox metabolism, and apoplast metabolism.
Collapse
Affiliation(s)
- Allan G Rasmusson
- Lund University, Department of Biology, Sölvegatan 35B, 22362 Lund, Sweden.
| | - Matthew A Escobar
- California State University San Marcos, 333 S. Twin Oaks Valley Rd., San Marcos, CA 92096, USA
| | - Mengshu Hao
- Lund University, Department of Biology, Sölvegatan 35B, 22362 Lund, Sweden
| | - Anna Podgórska
- University of Warsaw, Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, Ilii Miecznikowa 1, 02-096 Warsaw, Poland
| | - Bożena Szal
- University of Warsaw, Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, Ilii Miecznikowa 1, 02-096 Warsaw, Poland
| |
Collapse
|
38
|
Sweetman C, Miller TK, Booth NJ, Shavrukov Y, Jenkins CL, Soole KL, Day DA. Identification of Alternative Mitochondrial Electron Transport Pathway Components in Chickpea Indicates a Differential Response to Salinity Stress between Cultivars. Int J Mol Sci 2020; 21:E3844. [PMID: 32481694 PMCID: PMC7312301 DOI: 10.3390/ijms21113844] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 11/16/2022] Open
Abstract
All plants contain an alternative electron transport pathway (AP) in their mitochondria, consisting of the alternative oxidase (AOX) and type 2 NAD(P)H dehydrogenase (ND) families, that are thought to play a role in controlling oxidative stress responses at the cellular level. These alternative electron transport components have been extensively studied in plants like Arabidopsis and stress inducible isoforms identified, but we know very little about them in the important crop plant chickpea. Here we identify AP components in chickpea (Cicer arietinum) and explore their response to stress at the transcript level. Based on sequence similarity with the functionally characterized proteins of Arabidopsis thaliana, five putative internal (matrix)-facing NAD(P)H dehydrogenases (CaNDA1-4 and CaNDC1) and four putative external (inter-membrane space)-facing NAD(P)H dehydrogenases (CaNDB1-4) were identified in chickpea. The corresponding activities were demonstrated for the first time in purified mitochondria of chickpea leaves and roots. Oxidation of matrix NADH generated from malate or glycine in the presence of the Complex I inhibitor rotenone was high compared to other plant species, as was oxidation of exogenous NAD(P)H. In leaf mitochondria, external NADH oxidation was stimulated by exogenous calcium and external NADPH oxidation was essentially calcium dependent. However, in roots these activities were low and largely calcium independent. A salinity experiment with six chickpea cultivars was used to identify salt-responsive alternative oxidase and NAD(P)H dehydrogenase gene transcripts in leaves from a three-point time series. An analysis of the Na:K ratio and Na content separated these cultivars into high and low Na accumulators. In the high Na accumulators, there was a significant up-regulation of CaAOX1, CaNDB2, CaNDB4, CaNDA3 and CaNDC1 in leaf tissue under long term stress, suggesting the formation of a stress-modified form of the mitochondrial electron transport chain (mETC) in leaves of these cultivars. In particular, stress-induced expression of the CaNDB2 gene showed a striking positive correlation with that of CaAOX1 across all genotypes and time points. The coordinated salinity-induced up-regulation of CaAOX1 and CaNDB2 suggests that the mitochondrial alternative pathway of respiration is an important facet of the stress response in chickpea, in high Na accumulators in particular, despite high capacities for both of these activities in leaf mitochondria of non-stressed chickpeas.
Collapse
Affiliation(s)
- Crystal Sweetman
- College of Science & Engineering, Flinders University, GPO Box 5100, Adelaide SA 5001, Australia; (T.K.M.); (N.J.B.); (Y.S.); (C.L.D.J.); (K.L.S.); (D.A.D.)
| | | | | | | | | | | | | |
Collapse
|
39
|
Ali M, Raza MA, Li S, Huan C, Zheng X. 1-Methylcyclopropene treatment controls ethanol accumulation associated with regulation of mitochondrial energy metabolism in kiwifruit (Actinidia deliciosa) cv. "Bruno" during storage at room temperature. J Food Biochem 2020; 44:e13273. [PMID: 32449545 DOI: 10.1111/jfbc.13273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/03/2020] [Accepted: 04/18/2020] [Indexed: 01/17/2023]
Abstract
In this paper, the effects of 1-methylcyclopropene (1-MCP) treatment on the ethanol accumulation and mitochondrial energy metabolism in kiwifruit (Actinidia deliciosa) cv. "Bruno" were investigated during storage at room temperature (24 ± 1°C). The results showed that 1-MCP treatment significantly reduced the ethanol accumulation, maintained higher levels of adenosine triphosphate (ATP) content and energy charge (EC), enhanced enzymes activities involved in mitochondrial energy metabolism, such as succinic dehydrogenase, cytochrome C oxidase, H+ -adenosine triphosphatase (H+ -ATPase), and Ca2+ -adenosine triphosphatase (Ca2+ -ATPase), and regulated the NADH/NAD+ ratio, and pyruvate to tricarboxylic acid cycle (TCA) by suppressing the glutamate-pyruvate transaminase and promoting the pyruvate dehydrogenase activity, and decarboxylation of citric acid in harvested kiwifruit. These shifts in mitochondrial energy metabolism and oxidative phosphorylation correlated the higher ATP yield and an elevated EC with lower ethanol accumulation (13.71% of those in the control fruit) under 1-MCP treatment, and reduced the susceptibility of ethanol related off-flavor disorder in kiwifruit during storage. PRACTICAL APPLICATIONS: A kiwifruit (Actinidia deliciosa) cv. "Bruno," a major cultivated kiwifruit in China, is prone to accumulate ethanol sharply after respiratory climacteric during storage. Ethanol has been accounted as a vital aroma volatile metabolite in various fruits. However, over accumulation of ethanol often leads to the development of alcohol off-flavor disorder, particularly in typical climacteric fruit such as kiwifruit. This work was aimed to maintain the flavor quality of kiwifruit cv. "Bruno" via improving the mitochondrial energy metabolism and functional TCA cycle, and limiting the ethanol accumulation under 1-MCP treatment. Thus, 1-MCP treatment could be beneficial to prevent the occurrence of alcohol off-flavor disorder along with sustainment of the flavor quality of kiwifruit cv. "Bruno" during storage at room temperature.
Collapse
Affiliation(s)
- Maratab Ali
- School of Food Science and Biotechnology, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, P.R. China
| | - Muhammad Ammar Raza
- School of Food Science and Biotechnology, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, P.R. China
| | - Shenge Li
- School of Food Science and Biotechnology, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, P.R. China
| | - Chen Huan
- School of Food Science and Biotechnology, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, P.R. China
| | - Xiaolin Zheng
- School of Food Science and Biotechnology, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, P.R. China
| |
Collapse
|
40
|
Golin S, Negroni YL, Bennewitz B, Klösgen RB, Mulisch M, La Rocca N, Cantele F, Vigani G, Lo Schiavo F, Krupinska K, Zottini M. WHIRLY2 plays a key role in mitochondria morphology, dynamics, and functionality in Arabidopsis thaliana. PLANT DIRECT 2020; 4:e00229. [PMID: 32490348 PMCID: PMC7261051 DOI: 10.1002/pld3.229] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/18/2020] [Accepted: 04/24/2020] [Indexed: 06/02/2023]
Abstract
WHIRLY2 is a single-stranded DNA binding protein associated with mitochondrial nucleoids. In the why 2-1 mutant of Arabidopsis thaliana, a major proportion of leaf mitochondria has an aberrant structure characterized by disorganized nucleoids, reduced abundance of cristae, and a low matrix density despite the fact that the macroscopic phenotype during vegetative growth is not different from wild type. These features coincide with an impairment of the functionality and dynamics of mitochondria that have been characterized in detail in wild-type and why 2-1 mutant cell cultures. In contrast to the development of the vegetative parts, seed germination is compromised in the why 2-1 mutant. In line with that, the expression level of why 2 in seeds of wild-type plants is higher than that of why 3, whereas in adult plant no difference is found. Intriguingly, in early stages of shoots development of the why 2-1 mutant, although not in seeds, the expression level of why 3 is enhanced. These results suggest that WHIRLY3 is a potential candidate to compensate for the lack of WHIRLY2 in the why 2-1 mutant. Such compensation is possible only if the two proteins are localized in the same organelle. Indeed, in organello protein transport experiments using intact mitochondria and chloroplasts revealed that WHIRLY3 can be dually targeted into both, chloroplasts and mitochondria. Together, these data indicate that the alterations of mitochondria nucleoids are tightly linked to alterations of mitochondria morphology and functionality. This is even more evident in those phases of plant life when mitochondrial activity is particularly high, such as seed germination. Moreover, our results indicate that the differential expression of why 2 and why 3 predetermines the functional replacement of WHIRLY2 by WHIRLY3, which is restricted though to the vegetative parts of the plant.
Collapse
Affiliation(s)
- Serena Golin
- Department of Biology University of Padova Padova Italy
| | | | - Bationa Bennewitz
- Institute of Biology-Plant Physiology Martin Luther University Halle-Wittenberg Halle (Saale) Germany
| | - Ralf B Klösgen
- Institute of Biology-Plant Physiology Martin Luther University Halle-Wittenberg Halle (Saale) Germany
| | - Maria Mulisch
- Institute of Botany Christian-Albrechts University of Kiel Kiel Germany
| | | | | | - Gianpiero Vigani
- Department of Life Science and Systems Biology University of Turin Turin Italy
| | | | - Karin Krupinska
- Institute of Botany Christian-Albrechts University of Kiel Kiel Germany
| | | |
Collapse
|
41
|
Zhao Y, Yu H, Zhou JM, Smith SM, Li J. Malate Circulation: Linking Chloroplast Metabolism to Mitochondrial ROS. TRENDS IN PLANT SCIENCE 2020; 25:446-454. [PMID: 32304657 DOI: 10.1016/j.tplants.2020.01.010] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/29/2019] [Accepted: 01/27/2020] [Indexed: 05/02/2023]
Abstract
In photosynthetic cells, chloroplasts and mitochondria are the sites of the core redox reactions underpinning energy metabolism. Such reactions generate reactive oxygen species (ROS) when oxygen is partially reduced. ROS signaling leads to responses by cells which enable them to adjust to changes in redox status. Recent studies in Arabidopsis thaliana reveal that chloroplast NADH can be used to generate malate which is exported to the mitochondrion where its oxidation regenerates NADH. Oxidation of this NADH produces mitochondrial ROS (mROS) which can activate signaling systems to modulate energy metabolism, and in certain cases can lead to programmed cell death (PCD). We propose the term 'malate circulation' to describe such redistribution of reducing equivalents to mediate energy homeostasis in the cell.
Collapse
Affiliation(s)
- Yannan Zhao
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Hong Yu
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Steven M Smith
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; School of Natural Sciences, University of Tasmania, Hobart, TAS 7001, Australia.
| | - Jiayang Li
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
42
|
Costa PC, Barsottini MR, Vieira ML, Pires BA, Evangelista JS, Zeri AC, Nascimento AF, Silva JS, Carazzolle MF, Pereira GA, Sforça ML, Miranda PC, Rocco SA. N-Phenylbenzamide derivatives as alternative oxidase inhibitors: Synthesis, molecular properties, 1H-STD NMR, and QSAR. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
43
|
Braun HP. The Oxidative Phosphorylation system of the mitochondria in plants. Mitochondrion 2020; 53:66-75. [PMID: 32334143 DOI: 10.1016/j.mito.2020.04.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/26/2020] [Accepted: 04/21/2020] [Indexed: 10/24/2022]
Abstract
Mitochondrial Oxidative Phosphorylation (OXPHOS) provides ATP for driving cellular functions. In plants, OXPHOS takes place in the context of photosynthesis. Indeed, metabolism of mitochondria and chloroplasts is tightly linked. OXPHOS has several extra functions in plants. This review takes a view on the OXPHOS system of plants, the electron transfer chain (ETC), the ATP synthase complex and the numerous supplementary enzymes involved. Electron transport pathways are especially branched in plants. Furthermore, the "classical" OXPHOS complexes include extra subunits, some of which introduce side activities into these complexes. Consequently, and to a remarkable degree, OXPHOS is a multi-functional system in plants that needs to be efficiently regulated with respect to all its physiological tasks in the mitochondria, the chloroplasts, and beyond. Regulatory mechanisms based on posttranslational protein modifications and formation of supramolecular protein assemblies are summarized and discussed.
Collapse
Affiliation(s)
- Hans-Peter Braun
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany.
| |
Collapse
|
44
|
Wang Y, Li X, Liu N, Wei S, Wang J, Qin F, Suo B. The iTRAQ-based chloroplast proteomic analysis of Triticum aestivum L. leaves subjected to drought stress and 5-aminolevulinic acid alleviation reveals several proteins involved in the protection of photosynthesis. BMC PLANT BIOLOGY 2020; 20:96. [PMID: 32131734 PMCID: PMC7057492 DOI: 10.1186/s12870-020-2297-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 02/20/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUNDS The perturbance of chloroplast proteins is a major cause of photosynthesis inhibition under drought stress. The exogenous application of 5-aminolevulinic acid (ALA) mitigates the damage caused by drought stress, protecting plant growth and development, but the regulatory mechanism behind this process remains obscure. RESULTS Wheat seedlings were drought treated, and the iTRAQ-based proteomic approach was employed to assess the difference in chloroplast protein content caused by exogenous ALA. A total of 9499 peptides, which could be classified into 2442 protein groups, were identified with ≤0.01 FDR. Moreover, the contents of 87 chloroplast proteins was changed by drought stress alone compared to that of the drought-free control, while the contents of 469 was changed by exogenous ALA application under drought stress compared to that of drought stress alone. The Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis results suggested that the ALA pretreatment adjusted some biological pathways, such as metabolic pathways and pathways involved in photosynthesis and ribosomes, to enhance the drought resistance of chloroplasts. Furthermore, the drought-promoted H2O2 accumulation and O2- production in chloroplasts were alleviated by the exogenous pretreatment of ALA, while peroxidase (POD) and glutathione peroxidase (GPX) activities were upregulated, which agreed with the chloroplast proteomic data. We suggested that ALA promoted reactive oxygen species (ROS) scavenging in chloroplasts by regulating enzymatic processes. CONCLUSIONS Our results from chloroplast proteomics extend the understanding of the mechanisms employed by exogenous ALA to defend against drought stress in wheat.
Collapse
Affiliation(s)
- Yuexia Wang
- College of Life Sciences, Henan Agricultural University, No. 63, Nongye Rd., Zhengzhou, 450002 Henan Province China
| | - Xiaoyan Li
- College of Life Sciences, Henan Agricultural University, No. 63, Nongye Rd., Zhengzhou, 450002 Henan Province China
| | - Nana Liu
- College of Science, China Agricultural University, Beijing, 100193 China
| | - Shimei Wei
- College of Life Sciences, Henan Agricultural University, No. 63, Nongye Rd., Zhengzhou, 450002 Henan Province China
| | - Jianan Wang
- College of Life Sciences, Henan Agricultural University, No. 63, Nongye Rd., Zhengzhou, 450002 Henan Province China
| | - Fujun Qin
- Department of Pathology, University of Virginia, Charlottesville, VA 22908 USA
| | - Biao Suo
- College of Food Science and Technology, Henan Agricultural University, No. 63, Nongye Rd., Zhengzhou, 450002 Henan Province China
| |
Collapse
|
45
|
Cao BL, Ma Q, Xu K. Silicon restrains drought-induced ROS accumulation by promoting energy dissipation in leaves of tomato. PROTOPLASMA 2020; 257:537-547. [PMID: 31811389 DOI: 10.1007/s00709-019-01449-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 10/18/2019] [Indexed: 05/23/2023]
Abstract
Energy dissipation plays a crucial role in mediating responses to oxidative stress in plants. Although the beneficial effects of silicon on plant resistance to drought stress have been well documented, the potential interactions between energy dissipation and Si in response to drought stress have not been examined. Here, a project was initiated that focused on the relationship between energy dissipation and the functions of Si. In this study, silicon-mediated proteins promoted the consumption of light energy capture and NPQ in chloroplasts. Additionally, we confirmed that the role of silicon-mediated energy dissipation in mitochondria was important for photosynthetic optimization. The energy dissipation in mitochondria was improved, which further optimized the energy dissipation in chloroplasts via Si-mediated alternative oxidase and the malate/oxaloacetate shuttle. ROS accumulation decreased because of the silicon-mediated energy dissipation.
Collapse
Affiliation(s)
- Bi-Li Cao
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, China
- Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Shandong Agricultural University, Tai'an, 271018, Shandong, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Qiang Ma
- Tai'an Second Hospital of Traditional Chinese Medicine, Tai'an, 271000, Shandong, China
| | - Kun Xu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
- Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
46
|
Yamada S, Ozaki H, Noguchi K. The Mitochondrial Respiratory Chain Maintains the Photosynthetic Electron Flow in Arabidopsis thaliana Leaves under High-Light Stress. PLANT & CELL PHYSIOLOGY 2020; 61:283-295. [PMID: 31603217 DOI: 10.1093/pcp/pcz193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 10/07/2019] [Indexed: 05/02/2023]
Abstract
The plant respiratory chain includes the ATP-coupling cytochrome pathway (CP) and ATP-uncoupling alternative oxidase (AOX). Under high-light (HL) conditions, plants experience photoinhibition, leading to a damaged photosystem II (PSII). The respiratory chain is considered to affect PSII maintenance and photosynthetic electron transport under HL conditions. However, the underlying details remain unclear. In this study, we investigated the respiratory chain functions related to PSII maintenance and photosynthetic electron transport in plants exposed to HL stress. We measured the HL-induced decrease in the maximum quantum yield of PSII in the leaves of wild-type and AOX1a-knockout (aox1a) Arabidopsis thaliana plants in which CP was partially inhibited by a complex-III inhibitor. We also calculated PSII photodamage and repair rate constants. Both rate constants changed when CP was partially inhibited in aox1a plants, suggesting that the respiratory chain is related to both processes. Before HL stress, photosynthetic linear electron flow (LEF) decreased when CP was partially inhibited. After HL stress, aox1a in the presence of the CP inhibitor showed significantly decreased rates of LEF. The electron flow downstream from PSII and on the donor side of photosystem I may have been suppressed. The function of respiratory chain is required to maintain the optimal LEF as well as PSII maintenance especially under the HL stress.
Collapse
Affiliation(s)
- Shoya Yamada
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392 Japan
| | - Hiroshi Ozaki
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392 Japan
| | - Ko Noguchi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392 Japan
| |
Collapse
|
47
|
Menéndez AB, Calzadilla PI, Sansberro PA, Espasandin FD, Gazquez A, Bordenave CD, Maiale SJ, Rodríguez AA, Maguire VG, Campestre MP, Garriz A, Rossi FR, Romero FM, Solmi L, Salloum MS, Monteoliva MI, Debat JH, Ruiz OA. Polyamines and Legumes: Joint Stories of Stress, Nitrogen Fixation and Environment. FRONTIERS IN PLANT SCIENCE 2019; 10:1415. [PMID: 31749821 PMCID: PMC6844238 DOI: 10.3389/fpls.2019.01415] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 10/11/2019] [Indexed: 05/31/2023]
Abstract
Polyamines (PAs) are natural aliphatic amines involved in many physiological processes in almost all living organisms, including responses to abiotic stresses and microbial interactions. On other hand, the family Leguminosae constitutes an economically and ecologically key botanical group for humans, being also regarded as the most important protein source for livestock. This review presents the profuse evidence that relates changes in PAs levels during responses to biotic and abiotic stresses in model and cultivable species within Leguminosae and examines the unreviewed information regarding their potential roles in the functioning of symbiotic interactions with nitrogen-fixing bacteria and arbuscular mycorrhizae in this family. As linking plant physiological behavior with "big data" available in "omics" is an essential step to improve our understanding of legumes responses to global change, we also examined integrative MultiOmics approaches available to decrypt the interface legumes-PAs-abiotic and biotic stress interactions. These approaches are expected to accelerate the identification of stress tolerant phenotypes and the design of new biotechnological strategies to increase their yield and adaptation to marginal environments, making better use of available plant genetic resources.
Collapse
Affiliation(s)
- Ana Bernardina Menéndez
- Instituto Tecnológico de Chascomús (INTECH), UNSAM-CONICET, Chascomús, Argentina
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, UBA-CONICET, Buenos Aires, Argentina
| | | | | | | | - Ayelén Gazquez
- Instituto Tecnológico de Chascomús (INTECH), UNSAM-CONICET, Chascomús, Argentina
| | | | | | | | | | | | - Andrés Garriz
- Instituto Tecnológico de Chascomús (INTECH), UNSAM-CONICET, Chascomús, Argentina
| | - Franco Rubén Rossi
- Instituto Tecnológico de Chascomús (INTECH), UNSAM-CONICET, Chascomús, Argentina
| | | | - Leandro Solmi
- Instituto Tecnológico de Chascomús (INTECH), UNSAM-CONICET, Chascomús, Argentina
| | - Maria Soraya Salloum
- Instituto de Fisiología y Recursos Genéticos Vegetales (IFRGV) Ing “Victorio S Trippi,” Instituto Nacional de Tecnología Agropecuaria (INTA), Córdoba, Argentina
| | - Mariela Inés Monteoliva
- Instituto de Fisiología y Recursos Genéticos Vegetales (IFRGV) Ing “Victorio S Trippi,” Instituto Nacional de Tecnología Agropecuaria (INTA), Córdoba, Argentina
| | - Julio Humberto Debat
- Instituto de Patología Vegetal (IPAVE) Ing “Sergio Nome,” Instituto Nacional de Tecnología Agropecuaria (INTA), Córdoba, Argentina
| | - Oscar Adolfo Ruiz
- Instituto Tecnológico de Chascomús (INTECH), UNSAM-CONICET, Chascomús, Argentina
- Instituto de Fisiología y Recursos Genéticos Vegetales (IFRGV) Ing “Victorio S Trippi,” Instituto Nacional de Tecnología Agropecuaria (INTA), Córdoba, Argentina
| |
Collapse
|
48
|
Vanlerberghe GC, Dahal K, Chadee A. Does the stromal concentration of P i control chloroplast ATP synthase protein amount in contrasting growth environments? PLANT SIGNALING & BEHAVIOR 2019; 14:1675473. [PMID: 31583956 PMCID: PMC6866698 DOI: 10.1080/15592324.2019.1675473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 05/16/2023]
Abstract
Changes in the growth environment can generate imbalances in chloroplast photosynthetic metabolism. Under water deficit, stomatal closure limits CO2 availability such that the production of ATP and NADPH by the thylakoid membrane-localized electron transport chain may not match the consumption of these energy intermediates by the stroma-localized Calvin-Benson cycle, thus challenging energy balance. Alternatively, in an elevated CO2 atmosphere, carbon fixation by the Calvin-Benson cycle may outpace the activity of downstream carbohydrate-utilizing processes, thus challenging carbon balance. Our previous studies have shown that, in both of the above scenarios, a mitochondrial alternative oxidase contributes to maintaining energy or carbon balance, highlighting the importance of photosynthesis-respiration interactions in optimizing photosynthesis in different growth environments. In these previous studies, we observed aberrant amounts of chloroplast ATP synthase protein across the different transgenic plant lines and growth conditions, compared to wild-type. Based on these observations, we develop here the hypothesis that an important determinant of chloroplast ATP synthase protein amount is the stromal concentration of inorganic phosphate. ATP synthase is a master regulator of photosynthesis. Coarse control of ATP synthase protein amount by the stromal inorganic phosphate status could provide a means to coordinate the electron transport and carbon fixation reactions of photosynthesis.
Collapse
Affiliation(s)
- Greg C. Vanlerberghe
- Department of Biological Sciences and Department of Cell and Systems Biology, University of Toronto Scarborough, Toronto, ON, Canada
| | - Keshav Dahal
- Department of Biological Sciences and Department of Cell and Systems Biology, University of Toronto Scarborough, Toronto, ON, Canada
| | - Avesh Chadee
- Department of Biological Sciences and Department of Cell and Systems Biology, University of Toronto Scarborough, Toronto, ON, Canada
| |
Collapse
|
49
|
Lin Z, Wu J, Jamieson PA, Zhang C. Alternative Oxidase Is Involved in the Pathogenicity, Development, and Oxygen Stress Response of Botrytis cinerea. PHYTOPATHOLOGY 2019; 109:1679-1688. [PMID: 31479404 DOI: 10.1094/phyto-01-19-0012-r] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Alternative oxidase (AOX) is a ubiquinol terminal oxidase that is involved in fungal mitochondrial oxidative phosphorylation. In this study, we analyzed the roles of AOX in Botrytis cinerea by generating BcAOX deletion mutants. The mutants exhibited defects in mycelial growth, sporulation, spore germination, and virulence. Furthermore, the sensitivity of the mutants to quinone outside inhibitor fungicides and oxidative stress were increased. All phenotypic variations could be restored in the complemented strain. In summary, these results showed that BcAOX is involved in the regulation for vegetative development, adaptation to environmental stress, and virulence of B. cinerea.
Collapse
Affiliation(s)
- Zesong Lin
- Department of Crop Protection, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| | - Jianyan Wu
- Department of Crop Protection, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| | - Pierce A Jamieson
- Department of Plant Pathology and Microbiology, and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, U.S.A
| | - Chuanqing Zhang
- Department of Crop Protection, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| |
Collapse
|
50
|
A Mitochondrial Transcription Termination Factor, ZmSmk3, Is Required for nad1 Intron4 and nad4 Intron1 Splicing and Kernel Development in Maize. G3-GENES GENOMES GENETICS 2019; 9:2677-2686. [PMID: 31196888 PMCID: PMC6686911 DOI: 10.1534/g3.119.400265] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The expression systems of the mitochondrial genes are derived from their bacterial ancestors, but have evolved many new features in their eukaryotic hosts. Mitochondrial RNA splicing is a complex process regulated by families of nucleus-encoded RNA-binding proteins, few of which have been characterized in maize (Zea mays L.). Here, we identified the Zea mays small kernel 3 (Zmsmk3) candidate gene, which encodes a mitochondrial transcription termination factor (mTERF) containing two mTERF motifs, which is conserved in monocotyledon; and the target introns were also quite conserved during evolution between monocotyledons and dicotyledons. The mutations of Zmsmk3 led to arrested embryo and endosperm development, resulting in small kernels. A transcriptome of 12 days after pollination endosperm analysis revealed that the starch biosynthetic pathway and the zein gene family were down-regulated in the Zmsmk3 mutant kernels. ZmSMK3 is localized in mitochondria. The reduced expression of ZmSmk3 in the mutant resulted in the splicing deficiency of mitochondrial nad4 intron1 and nad1 intron4, causing a reduction in complex I assembly and activity, impairing mitochondria structure and activating the alternative respiratory pathway. So, the results suggest that ZmSMK3 is required for the splicing of nad4 intron 1 and nad1 intron 4, complex I assembly and kernel development in maize.
Collapse
|