1
|
Bernal-Ibáñez A, Cacabelos E, Triay-Portella R, Ramalhosa P, Gestoso I. Assessing climatic conditions and biotic interactions shaping the success of Cystoseira foeniculacea early-life stages. JOURNAL OF PHYCOLOGY 2024; 60:1485-1497. [PMID: 39444142 DOI: 10.1111/jpy.13516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024]
Abstract
Early-life stages of canopy-forming macroalgae are critical for the maintenance of natural populations and the success of restoration actions. Unfortunately, the abiotic conditions and biotic interactions shaping the success of these stages have received less attention than the interactions shaping the success of adults. Here, we combined field and mesocosm experiments to explore the effects of temperature, herbivory, and canopy presence on the development of early-life stages of the brown seaweed Cystoseira foeniculacea. We assessed these effects by examining changes in recruit density and size. After recruiting zygotes under laboratory conditions, we conducted one laboratory and three field experiments. In the first field experiment, the density of recruits decreased over time in all rockpools and was negatively affected by rising temperatures and turf cover. Additionally, a marine heatwave (MHW; 11 days >25°C) was recorded in the donor pools, producing strong decay in the density of transplanted recruits and a significant reduction of the mature canopy. The second field experiment tested the survival of recruits based on their positioning within the canopy. We observed a higher density of recruits when placed at the edge or outside the canopy compared to recruits placed under the canopy. In the third field experiment, an herbivory-exclusion experiment, we show how density of recruits decreased in less than 48 h in noncaged treatments. In the laboratory, we conducted a thermotolerance experiment under controlled conditions, exposing the recruits to 19, 22, 25, 28, and 31°C for 7 weeks to assess thermal impacts on their survival and growth. Temperatures above the 25°C threshold reduced the density and size of the recruits. This study sheds light on the performance of the early-life stages of a Cystoseira spp. in Macaronesia, showing a low survival ratio against the current pressures even in the context of the potential refuge provided by the intertidal rockpools.
Collapse
Affiliation(s)
- Alejandro Bernal-Ibáñez
- MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Agência Regional Para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Funchal, Madeira, Portugal
- Faculty of Life Sciences, University of Madeira, Funchal, Portugal
| | - Eva Cacabelos
- MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Agência Regional Para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Funchal, Madeira, Portugal
- Faculty of Life Sciences, University of Madeira, Funchal, Portugal
- Hydrosphere-Environmental Laboratory for the Study of Aquatic Ecosystems, Vigo, Spain
- Centro Oceanográfico de Vigo (COV-IEO), CSIC, Vigo, Spain
| | - Raul Triay-Portella
- MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Agência Regional Para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Funchal, Madeira, Portugal
- Faculty of Life Sciences, University of Madeira, Funchal, Portugal
- Grupo en Biodiversidad y Conservación, IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Las Palmas, Canary Islands, Spain
| | - Patrício Ramalhosa
- MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Agência Regional Para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Funchal, Madeira, Portugal
- Faculty of Life Sciences, University of Madeira, Funchal, Portugal
| | - Ignacio Gestoso
- MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Agência Regional Para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Funchal, Madeira, Portugal
- Faculty of Life Sciences, University of Madeira, Funchal, Portugal
- Department of Biology, Faculty of Marine and Environmental Sciences & Marine Research Institute (INMAR), Universidad de Cádiz (UCA), Puerto Real, Cádiz, Spain
- Smithsonian Environmental Research Center (SERC), Edgewater, Maryland, USA
| |
Collapse
|
2
|
Eger AM, Blain CO, Brown AL, Chan SSW, Miller KI, Vergés A. Kelp forests versus urchin barrens: a comparison of ecosystem functions and services provided by two alternative stable marine habitats. Proc Biol Sci 2024; 291:20241539. [PMID: 39501886 PMCID: PMC11538989 DOI: 10.1098/rspb.2024.1539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 11/08/2024] Open
Abstract
Kelp forests and urchin barrens are two stable states in rocky reef ecosystems, each providing unique ecosystem functions like habitat for marine species and primary production. While studies frequently show that kelp forests support higher levels of some ecosystem functions than urchin barren habitats, no research has yet compared average differences. To address this gap, we first conducted a meta-analysis of studies that directly compared the ecosystem functions, services and general attributes provided by each habitat. We also compiled individual studies on ecosystem properties from both habitats and qualitatively assessed the benefits provided. The meta-analysis included 388 observations from 55 studies across 14 countries. We found that kelp forests consistently delivered higher levels of ecosystem properties such as biodiversity, species richness, abalone abundance and sea urchin roe quality. Urchin barrens supported higher urchin density and crustose coralline algae cover. The qualitative review further supported these findings, showing that kelp forests ranked higher in 11 out of 15 ecosystem properties. These findings can help guide decisions on managing rocky reef habitats and demonstrate the benefits of preserving or expanding kelp forests.
Collapse
Affiliation(s)
- Aaron M. Eger
- Center for Marine Science and Innovation, University of New South Wales, Sydney2052, Australia
- Kelp Forest Alliance, Sydney2034, Australia
| | - Caitlin O. Blain
- Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, Leigh0985, New Zealand
- Coastal People Southern Skies Centre of Research Excellence, University of Otago, Dunedin, New Zealand
| | - Amelia L. Brown
- Center for Marine Science and Innovation, University of New South Wales, Sydney2052, Australia
| | - Sharon S. W. Chan
- Center for Marine Science and Innovation, University of New South Wales, Sydney2052, Australia
| | - Kelsey I. Miller
- Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, Leigh0985, New Zealand
| | - Adriana Vergés
- Center for Marine Science and Innovation, University of New South Wales, Sydney2052, Australia
| |
Collapse
|
3
|
Peleg O, Blain CO, Shears NT. Long-term marine protection enhances kelp forest ecosystem stability. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2895. [PMID: 37282356 DOI: 10.1002/eap.2895] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 05/17/2023] [Accepted: 05/25/2023] [Indexed: 06/08/2023]
Abstract
Trophic downgrading destabilizes ecosystems and can drive large-scale shifts in ecosystem state. While restoring predatory interactions in marine reserves can reverse anthropogenic-driven shifts, empirical evidence of increased ecosystem stability and persistence in the presence of predators is scant. We compared temporal variation in rocky reef ecosystem state in New Zealand's oldest marine reserve to nearby fished reefs to examine whether protection of predators led to more persistent and stable reef ecosystem states in the marine reserve. Contrasting ecosystem states were found between reserve and fished sites, and this persisted over the 22-year study period. Fished sites were predominantly urchin barrens but occasionally fluctuated to short-lived turfs and mixed algal forests, while reserve sites displayed unidirectional successional trajectories toward stable kelp forests (Ecklonia radiata) taking up to three decades following protection. This provides empirical evidence that long-term protection of predators facilitates kelp forest recovery, resists shifts to denuded alternate states, and enhances kelp forest stability.
Collapse
Affiliation(s)
- Ohad Peleg
- Institute of Marine Science, The University of Auckland, Auckland, New Zealand
| | - Caitlin O Blain
- Institute of Marine Science, The University of Auckland, Auckland, New Zealand
| | - Nick T Shears
- Institute of Marine Science, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
4
|
Pedicini L, Vannini C, Rindi F, Ravaglioli C, Bertocci I, Bulleri F. Variations in epilithic microbial biofilm composition and recruitment of a canopy-forming alga between pristine and urban rocky shores. MARINE ENVIRONMENTAL RESEARCH 2023; 188:106035. [PMID: 37267663 DOI: 10.1016/j.marenvres.2023.106035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 06/04/2023]
Abstract
Brown algae of the genus Ericaria are habitat formers on Mediterranean rocky shores supporting marine biodiversity and ecosystem functioning. Their population decline has prompted attempts for restoration of threatened populations. Although epilithic microbial biofilms (EMBs) are determinant for macroalgal settlement, their role in regulating the recovery of populations through the recruitment of new thalli is yet to be explored. In this study, we assessed variations in microbial biofilms composition on the settlement of Ericaria amentacea at sites exposed to different human pressures. Artificial fouling surfaces were deployed in two areas at each of three study sites in the Ligurian Sea (Capraia Island, Secche della Meloria and the mainland coast of Livorno), to allow bacterial biofilm colonization. In the laboratory, zygotes of E. amentacea were released on these surfaces to evaluate the survival of germlings. The EMB's composition was assessed through DNA metabarcoding analysis, which revealed a difference between the EMB of Capraia Island and that of Livorno. Fouling surfaces from Capraia Island had higher rates of zygote settlement than the other two sites. This suggests that different environmental conditions can influence the EMB composition on substrata, possibly influencing algal settlement rate. Assessing the suitability of rocky substrata for E. amentacea settlement is crucial for successful restoration.
Collapse
Affiliation(s)
- Ludovica Pedicini
- Dipartimento di Biologia, Università di Pisa, CoNISMa, Via Derna 1, 56126, Pisa, Italy.
| | - Claudia Vannini
- Dipartimento di Biologia, Università di Pisa, CoNISMa, Via Derna 1, 56126, Pisa, Italy; Centro Interdipartimentale di Ricerca per lo Studio degli Effetti del Cambiamento Climatico (CIRSEC), Università di Pisa, Pisa, Italy
| | - Fabio Rindi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, I-60131, Ancona, Italy; National Biodiversity Future Center, Italy
| | - Chiara Ravaglioli
- Dipartimento di Biologia, Università di Pisa, CoNISMa, Via Derna 1, 56126, Pisa, Italy
| | - Iacopo Bertocci
- Dipartimento di Biologia, Università di Pisa, CoNISMa, Via Derna 1, 56126, Pisa, Italy; Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Fabio Bulleri
- Dipartimento di Biologia, Università di Pisa, CoNISMa, Via Derna 1, 56126, Pisa, Italy; Centro Interdipartimentale di Ricerca per lo Studio degli Effetti del Cambiamento Climatico (CIRSEC), Università di Pisa, Pisa, Italy
| |
Collapse
|
5
|
Sánchez de Pedro R, Fernández AN, Melero-Jiménez IJ, García-Sánchez MJ, Flores-Moya A, Bañares-España E. Temporal and spatial variability in population traits of an intertidal fucoid reveals local-scale climatic refugia. MARINE ENVIRONMENTAL RESEARCH 2023; 188:106006. [PMID: 37182324 DOI: 10.1016/j.marenvres.2023.106006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/16/2023]
Abstract
Global change is imposing significant losses in the functional traits of marine organisms. Although areas of climatic refugia ameliorate local conditions and help them to persist, the extent to which mesoscale effects contribute for intraregional variability on population traits and conservation is uncertain. Here we assess patterns of conservation status of Fucus guiryi, the main intertidal habitat-forming seaweed in the Strait of Gibraltar (southern Spain and northern Morocco). We investigated the demography, reproductive phenology, and morphology at northern and southern side populations. Population traits were compared seasonally within populations from each side, and at spatial scale in early summer 2019. In the last decade three populations became extinct; two marginal populations had dispersed individuals with a narrower fertility season and miniaturized individuals below 3 cm; and five populations showed variable density and cover with more than 20% of reproductive individuals over the seasons. Highest density, cover, morphology, and reproductive potential was detected at one population from each side, suggesting local-scale climatic refugia in upwelling areas located inside marine protected areas. Southern recruits were more warm-tolerant but grew less at colder conditions than northern ones, revealing a mesoscale heterogeneity in thermal affinities. This study evidenced functional losses and distinct reproductive strategies experienced by F. guiryi at peripheral locations and urges to prioritize its conservation and restoration at contemporary climatic refugia.
Collapse
Affiliation(s)
- Raquel Sánchez de Pedro
- Universidad de Málaga, Andalucía Tech, Departamento de Botánica y Fisiología Vegetal, Campus de Teatinos, 29010, Málaga, Spain.
| | - Andrea N Fernández
- Universidad de Málaga, Andalucía Tech, Departamento de Botánica y Fisiología Vegetal, Campus de Teatinos, 29010, Málaga, Spain
| | - Ignacio José Melero-Jiménez
- Universidad de Málaga, Andalucía Tech, Departamento de Botánica y Fisiología Vegetal, Campus de Teatinos, 29010, Málaga, Spain; Department of Plant Pathology and Microbiology, Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - María Jesús García-Sánchez
- Universidad de Málaga, Andalucía Tech, Departamento de Botánica y Fisiología Vegetal, Campus de Teatinos, 29010, Málaga, Spain
| | - Antonio Flores-Moya
- Universidad de Málaga, Andalucía Tech, Departamento de Botánica y Fisiología Vegetal, Campus de Teatinos, 29010, Málaga, Spain
| | - Elena Bañares-España
- Universidad de Málaga, Andalucía Tech, Departamento de Botánica y Fisiología Vegetal, Campus de Teatinos, 29010, Málaga, Spain
| |
Collapse
|
6
|
Fabbrizzi E, Giakoumi S, De Leo F, Tamburello L, Chiarore A, Colletti A, Coppola M, Munari M, Musco L, Rindi F, Rizzo L, Savinelli B, Franzitta G, Grech D, Cebrian E, Verdura J, Bianchelli S, Mangialajo L, Nasto I, Sota D, Orfanidis S, Papadopoulou NK, Danovaro R, Fraschetti S. The challenge of setting restoration targets for macroalgal forests under climate changes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116834. [PMID: 36436438 DOI: 10.1016/j.jenvman.2022.116834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
The process of site selection and spatial planning has received scarce attention in the scientific literature dealing with marine restoration, suggesting the need to better address how spatial planning tools could guide restoration interventions. In this study, for the first time, the consequences of adopting different restoration targets and criteria on spatial restoration prioritization have been assessed at a regional scale, including the consideration of climate changes. We applied the decision-support tool Marxan, widely used in systematic conservation planning on Mediterranean macroalgal forests. The loss of this habitat has been largely documented, with limited evidences of natural recovery. Spatial priorities were identified under six planning scenarios, considering three main restoration targets to reflect the objectives of the EU Biodiversity Strategy for 2030. Results show that the number of suitable sites for restoration is very limited at basin scale, and targets are only achieved when the recovery of 10% of regressing and extinct macroalgal forests is planned. Increasing targets translates into including unsuitable areas for restoration in Marxan solutions, amplifying the risk of ineffective interventions. Our analysis supports macroalgal forests restoration and provides guiding principles and criteria to strengthen the effectiveness of restoration actions across habitats. The constraints in finding suitable areas for restoration are discussed, and recommendations to guide planning to support future restoration interventions are also included.
Collapse
Affiliation(s)
- Erika Fabbrizzi
- University of Naples Federico II, Naples, Italy; Stazione Zoologica Anton Dohrn, Naples, Italy.
| | | | | | | | | | | | | | | | - Luigi Musco
- Stazione Zoologica Anton Dohrn, Naples, Italy; University of Salento, Lecce, Italy
| | - Fabio Rindi
- Università Politecnica delle Marche, Ancona, Italy
| | - Lucia Rizzo
- Stazione Zoologica Anton Dohrn, Naples, Italy; Institute of Sciences of Food Production, National Research Council, Lecce, Italy
| | | | | | | | - Emma Cebrian
- Centre d'Estudios Avançats de Blanes, Consejo Superior de Investigaciones Cientìficas (CEAB-CSIC), Blanes, Spain; University of Girona, Girona, Spain
| | - Jana Verdura
- Université Côte d'Azur, CNRS, UMR 7035 ECOSEAS, Nice, France
| | | | | | - Ina Nasto
- University of Vlora "Ismail Qemali", Sheshi Pavaresia, Vlore, Albania
| | - Denada Sota
- University of Vlora "Ismail Qemali", Sheshi Pavaresia, Vlore, Albania
| | - Sotiris Orfanidis
- Fisheries Research Institute, Hellenic Agricultural Organization-Demeter, Kavala, Greece
| | | | - Roberto Danovaro
- Stazione Zoologica Anton Dohrn, Naples, Italy; Università Politecnica delle Marche, Ancona, Italy
| | - Simonetta Fraschetti
- University of Naples Federico II, Naples, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy
| |
Collapse
|
7
|
Eger AM, Marzinelli EM, Christie H, Fagerli CW, Fujita D, Gonzalez AP, Hong SW, Kim JH, Lee LC, McHugh TA, Nishihara GN, Tatsumi M, Steinberg PD, Vergés A. Global kelp forest restoration: past lessons, present status, and future directions. Biol Rev Camb Philos Soc 2022; 97:1449-1475. [PMID: 35255531 PMCID: PMC9543053 DOI: 10.1111/brv.12850] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 01/08/2023]
Abstract
Kelp forest ecosystems and their associated ecosystem services are declining around the world. In response, marine managers are working to restore and counteract these declines. Kelp restoration first started in the 1700s in Japan and since then has spread across the globe. Restoration efforts, however, have been largely disconnected, with varying methodologies trialled by different actors in different countries. Moreover, a small subset of these efforts are 'afforestation', which focuses on creating new kelp habitat, as opposed to restoring kelp where it previously existed. To distil lessons learned over the last 300 years of kelp restoration, we review the history of kelp restoration (including afforestation) around the world and synthesise the results of 259 documented restoration attempts spanning from 1957 to 2020, across 16 countries, five languages, and multiple user groups. Our results show that kelp restoration projects have increased in frequency, have employed 10 different methodologies and targeted 17 different kelp genera. Of these projects, the majority have been led by academics (62%), have been conducted at sizes of less than 1 ha (80%) and took place over time spans of less than 2 years. We show that projects are most successful when they are located near existing kelp forests. Further, disturbance events such as sea-urchin grazing are identified as regular causes of project failure. Costs for restoration are historically high, averaging hundreds of thousands of dollars per hectare, therefore we explore avenues to reduce these costs and suggest financial and legal pathways for scaling up future restoration efforts. One key suggestion is the creation of a living database which serves as a platform for recording restoration projects, showcasing and/or re-analysing existing data, and providing updated information. Our work establishes the groundwork to provide adaptive and relevant recommendations on best practices for kelp restoration projects today and into the future.
Collapse
Affiliation(s)
- Aaron M. Eger
- Centre for Marine Science and Innovation & Ecology and Evolution Research Centre, School of Biological, Earth and Environmental SciencesThe University of New South WalesSydneyNSW2052
| | - Ezequiel M. Marzinelli
- The University of Sydney, School of Life and Environmental SciencesSydneyNSW2006Australia
- Sydney Institute of Marine Science19 Chowder Bay RdMosmanNSW2088Australia
- Singapore Centre for Environmental Life Sciences EngineeringNanyang Technological UniversitySingapore637551Singapore
| | - Hartvig Christie
- Norwegian Institute for Water ResearchØkernveien 94Oslo0579Norway
| | | | - Daisuke Fujita
- University of Tokyo Marine Science and Technology, School of Marine Bioresources, Applied PhycologyKonan, Minato‐kuTokyo108‐8477Japan
| | - Alejandra P. Gonzalez
- Departamento de Ciencias Ecológicas, Facultad de CienciasUniversidad de ChileLas Palmeras 3425, ÑuñoaSantiagoChile
| | - Seok Woo Hong
- Department of Biological SciencesSungkyunkwan UniversitySuwon2066South Korea
| | - Jeong Ha Kim
- Department of Biological SciencesSungkyunkwan UniversitySuwon2066South Korea
| | - Lynn C. Lee
- Gwaii Haanas National Park Reserve, National Marine Conservation Area Reserve, and Haida Heritage Site60 Second Beach Road, SkidegateHaida GwaiiBCV0T 1S1Canada
- Canada & School of Environmental Sciences, University of Victoria3800 Finnerty RoadVictoriaBCV8P 5C2Canada
| | - Tristin Anoush McHugh
- Reef Check Foundation, Long Marine Laboratory115 McAllister RoadSanta CruzCA95060U.S.A.
- Present address:
The Nature Conservancy830 S StreetSacramentoCA95811U.S.A.
| | - Gregory N. Nishihara
- Organization for Marine Science and TechnologyInstitute for East China Sea Research, Nagasaki University1551‐7 Taira‐machiNagasaki City851‐2213Japan
| | - Masayuki Tatsumi
- Institute for Marine and Antarctic Studies, University of TasmaniaHobartTAS7004Australia
| | - Peter D. Steinberg
- Centre for Marine Science and Innovation & Ecology and Evolution Research Centre, School of Biological, Earth and Environmental SciencesThe University of New South WalesSydneyNSW2052
- Sydney Institute of Marine Science19 Chowder Bay RdMosmanNSW2088Australia
| | - Adriana Vergés
- Centre for Marine Science and Innovation & Ecology and Evolution Research Centre, School of Biological, Earth and Environmental SciencesThe University of New South WalesSydneyNSW2052
- Sydney Institute of Marine Science19 Chowder Bay RdMosmanNSW2088Australia
| |
Collapse
|
8
|
Miller KI, Shears NT. The efficiency and effectiveness of different sea urchin removal methods for kelp forest restoration. Restor Ecol 2022. [DOI: 10.1111/rec.13754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kelsey I. Miller
- Leigh Marine Laboratory University of Auckland 160 Goat Island Road Leigh 0985 New Zealand
| | - Nick T. Shears
- Leigh Marine Laboratory University of Auckland 160 Goat Island Road Leigh 0985 New Zealand
| |
Collapse
|
9
|
Tamburello L, Chiarore A, Fabbrizzi E, Colletti A, Franzitta G, Grech D, Rindi F, Rizzo L, Savinelli B, Fraschetti S. Can we preserve and restore overlooked macroalgal forests? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150855. [PMID: 34678362 DOI: 10.1016/j.scitotenv.2021.150855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/20/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
Habitat degradation and loss are severely affecting macroalgal forests worldwide, and their successful mitigation depends on the identification of the drivers of loss and the implementation of effective conservation and restoration actions. We made an extensive literature review 1- to document the historical (1789-1999) and recent (2000-2020) occurrence of the genus Cystoseira, Ericaria and Gongolaria reported in the literature along the 8000 km of the coasts of Italy, 2- to assess their decline and patterns of extinction, 3- to ascertain the drivers responsible for these changes, 4- to highlight the existence of success stories in their conservation and natural recovery. In the last twenty years, overall information on the distribution of Cystoseira s.l. exponentially increased, although research focused almost exclusively on intertidal reefs. Despite the lack of systematic monitoring programs, the local extinction of 371 populations of 19 different species of Cystoseira s.l. was documented across several regions, since 2000. Coastal engineering and poor quality of waters due to urban, agricultural or industrial activities were often documented as leading causes of habitat loss. However, the drivers of extinction were actually unknown for the majority of the populations and cause-effects relationships are scarcely documented. Although the proportion of protected populations increased to 77.8%, Marine Protected Areas are unlikely to guarantee adequate conservation efficacy, possibly also for the widespread lack of management and monitoring plans dealing specifically with Cystoseira s.l. species, and few evidences of natural recovery were observed. Our review shows the dramatic lack of baseline information for macroalgal forests, highlighting the urgent need for the monitoring of less accessible habitats, the collection of long-term data to unveil drivers of loss, and an updated reporting about the conservation status of the species of interest to plan future interventions.
Collapse
Affiliation(s)
- Laura Tamburello
- Department of Integrative Marine Ecology (EMI), Ischia Marine Centre, Stazione Zoologica Anton Dohrn, Punta San Pietro, Ischia, NA, Italy.
| | - Antonia Chiarore
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Erika Fabbrizzi
- Department of Integrative Marine Ecology (EMI), Ischia Marine Centre, Stazione Zoologica Anton Dohrn, Punta San Pietro, Ischia, NA, Italy; Department of Biology, University of Naples Federico II, Naples, Italy
| | - Alberto Colletti
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Giulio Franzitta
- Department of Research Infrastructures for Marine Biological Resources (RIMAR), Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, Italy
| | - Daniele Grech
- IMC - International Marine Centre, Loc. Sa Mardini, Torre Grande, 09170 Oristano, Italy
| | - Fabio Rindi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Lucia Rizzo
- Department of Integrative Marine Ecology (EMI), Ischia Marine Centre, Stazione Zoologica Anton Dohrn, Punta San Pietro, Ischia, NA, Italy
| | | | - Simonetta Fraschetti
- Department of Integrative Marine Ecology (EMI), Ischia Marine Centre, Stazione Zoologica Anton Dohrn, Punta San Pietro, Ischia, NA, Italy; Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
10
|
Riquet F, De Kuyper CA, Fauvelot C, Airoldi L, Planes S, Fraschetti S, Mačić V, Milchakova N, Mangialajo L, Bottin L. Highly restricted dispersal in habitat-forming seaweed may impede natural recovery of disturbed populations. Sci Rep 2021; 11:16792. [PMID: 34408197 PMCID: PMC8373921 DOI: 10.1038/s41598-021-96027-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023] Open
Abstract
Cystoseira sensu lato (Class Phaeophyceae, Order Fucales, Family Sargassaceae) forests play a central role in marine Mediterranean ecosystems. Over the last decades, Cystoseira s.l. suffered from a severe loss as a result of multiple anthropogenic stressors. In particular, Gongolaria barbata has faced multiple human-induced threats, and, despite its ecological importance in structuring rocky communities and hosting a large number of species, the natural recovery of G. barbata depleted populations is uncertain. Here, we used nine microsatellite loci specifically developed for G. barbata to assess the genetic diversity of this species and its genetic connectivity among fifteen sites located in the Ionian, the Adriatic and the Black Seas. In line with strong and significant heterozygosity deficiencies across loci, likely explained by Wahlund effect, high genetic structure was observed among the three seas (ENA corrected FST = 0.355, IC = [0.283, 0.440]), with an estimated dispersal distance per generation smaller than 600 m, both in the Adriatic and Black Sea. This strong genetic structure likely results from restricted gene flow driven by geographic distances and limited dispersal abilities, along with genetic drift within isolated populations. The presence of genetically disconnected populations at small spatial scales (< 10 km) has important implications for the identification of relevant conservation and management measures for G. barbata: each population should be considered as separated evolutionary units with dedicated conservation efforts.
Collapse
Affiliation(s)
- Florentine Riquet
- Institut de Recherche pour le Développement (IRD), UMR ENTROPIE, Nouméa, New Caledonia.
- Sorbonne Université, CNRS, UMR LOV, Villefranche‑sur‑Mer, France.
| | | | - Cécile Fauvelot
- Institut de Recherche pour le Développement (IRD), UMR ENTROPIE, Nouméa, New Caledonia
- Sorbonne Université, CNRS, UMR LOV, Villefranche‑sur‑Mer, France
| | - Laura Airoldi
- Department of Biology, Chioggia Hydrobiological Station Umberto D'Ancona, University of Padova, Chioggia, Italy
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, UO CoNISMa, Ravenna, Italy
| | - Serge Planes
- PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, Perpignan, France
| | - Simonetta Fraschetti
- Department of Biology, University of Naples Federico II, Naples, Italy
- Stazione Zoologica Anton Dohrn, Naples, Italy
- CoNISMa, Rome, Italy
| | - Vesna Mačić
- Institut za biologiju mora, Univerzitet Crne Gore, Kotor, Montenegro
| | - Nataliya Milchakova
- Laboratory of Phytoresources, Kovalevsky Institute of Biology of the Southern Seas of RAS (IBSS), Sevastopol, Russia
| | | | - Lorraine Bottin
- Université Côte d'Azur, CNRS, UMR 7035 ECOSEAS, Nice, France
| |
Collapse
|
11
|
Danovaro R, Aronson J, Cimino R, Gambi C, Snelgrove PVR, Van Dover C. Marine ecosystem restoration in a changing ocean. Restor Ecol 2021. [DOI: 10.1111/rec.13432] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Roberto Danovaro
- Dipartimento di Scienze della Vita e dell'Ambiente Università Politecnica delle Marche Ancona 60131 Italy
- Stazione Zoologica Anton Dohrn Naples 80121 Italy
| | - James Aronson
- Center for Conservation and Sustainable Development Missouri Botanical Garden 4344 Shaw Boulevard St Louis MO 63110 U.S.A
- EcoHealth Network 1330 Beacon St, Suite 355a Brookline MA 02446 U.S.A
| | - Roberto Cimino
- ENI S.p.A., Development, Operations & Technology (DOT) Milan Italy
| | - Cristina Gambi
- Dipartimento di Scienze della Vita e dell'Ambiente Università Politecnica delle Marche Ancona 60131 Italy
| | | | - Cindy Van Dover
- Division of Marine Science and Conservation, Nicholas School of the Environment Duke University 135 Duke Marine Lab Road Beaufort NC 28516 U.S.A
| |
Collapse
|
12
|
Orlando-Bonaca M, Pitacco V, Slavinec P, Šiško M, Makovec T, Falace A. First Restoration Experiment for Gongolaria barbata in Slovenian Coastal Waters. What Can Go Wrong? PLANTS (BASEL, SWITZERLAND) 2021; 10:239. [PMID: 33530631 PMCID: PMC7911296 DOI: 10.3390/plants10020239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 11/16/2022]
Abstract
The global decline of brown algal forests along rocky coasts is causing an exceptional biodiversity loss. Regardless of conservation efforts, different techniques have been developed for large-scale restoration strategies in the Mediterranean Sea. In this study we tested ex situ pilot restoration of Gongolaria barbata (=Treptacantha barbata) for the first time in Slovenian coastal waters. Healthy apical fronds of the species were collected and the development of recruits on clay tiles was followed under laboratory conditions for 20 days. Despite the experimental difficulties experienced, especially due to the lack of antibiotics to prevent the growth of the biofilm, G. barbata recruits were outplanted in the sea on two concrete plates with 48 tiles each, protected by purpose-built cages to avoid grazing by herbivorous fish. The high survival rate of juveniles after four months in the field (89% of the tiles on the plate that was constantly protected) suggests that outplanting G. barbata is an operable approach for restoration efforts in the northern Adriatic Sea. Our first experiment in Slovenian coastal waters provides new information for the optimization of the best practices during the laboratory cultivation and addresses the early steps of restoration and introduction of young thalli in the natural environment.
Collapse
Affiliation(s)
- Martina Orlando-Bonaca
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, SI-6330 Piran, Slovenia; (V.P.); (P.S.); (M.Š.); (T.M.)
| | - Valentina Pitacco
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, SI-6330 Piran, Slovenia; (V.P.); (P.S.); (M.Š.); (T.M.)
| | - Petra Slavinec
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, SI-6330 Piran, Slovenia; (V.P.); (P.S.); (M.Š.); (T.M.)
| | - Milijan Šiško
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, SI-6330 Piran, Slovenia; (V.P.); (P.S.); (M.Š.); (T.M.)
| | - Tihomir Makovec
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, SI-6330 Piran, Slovenia; (V.P.); (P.S.); (M.Š.); (T.M.)
| | - Annalisa Falace
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy;
| |
Collapse
|
13
|
Medrano A, Hereu B, Mariani S, Neiva J, Pagès-Escolà M, Paulino C, Rovira GL, Serrão EA, Linares C. Ecological traits, genetic diversity and regional distribution of the macroalga Treptacantha elegans along the Catalan coast (NW Mediterranean Sea). Sci Rep 2020; 10:19219. [PMID: 33154466 PMCID: PMC7644675 DOI: 10.1038/s41598-020-76066-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023] Open
Abstract
The widespread decline of canopy-forming macroalgal assemblages has been documented in many regions during the last decades. This pattern is often followed by the replacement of structurally complex algal canopies by more simplified habitats (e.g., turfs or sea urchin barren grounds). Against all odds, the fucoid Treptacantha elegans, a large Mediterranean brown macroalga, broadened its depth range to deeper and exposed environments and displayed an unexpected range expansion along the northern coast of Catalonia over the last two decades. Here, we reconstruct the spread of T. elegans in time and space and unravel ecological and demographic traits such as population dynamics and genetic patterns to provide a comprehensive and integrated view of the current status and geographical expansion for this species. Fast-growing dynamics, early fertile maturity, and high turnover rate are the main competitive advantages that allow the exposed populations of T. elegans to colonize available substrata and maintain dense and patchy populations. We also provided evidence that the deeper and exposed populations of T. elegans constitute a single group across the Catalan coast, with little genetic differentiation among populations. This seems to support the hypothesis of a unique source of spread in the last decades from the Medes Islands No-Take Zone towards both southern and northern waters.
Collapse
Affiliation(s)
- Alba Medrano
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Institut de Recerca de La Biodiversitat (IRBIO), University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain.
| | - Bernat Hereu
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Institut de Recerca de La Biodiversitat (IRBIO), University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
| | - Simone Mariani
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Institut de Recerca de La Biodiversitat (IRBIO), University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
- Centre d'Estudis Avançats de Blanes - CSIC, Accés Cala Sant Francesc 14, Blanes, 17300, Girona, Spain
| | - João Neiva
- Center of Marine Science (CCMAR), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Marta Pagès-Escolà
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Institut de Recerca de La Biodiversitat (IRBIO), University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
| | - Cristina Paulino
- Center of Marine Science (CCMAR), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Graciel la Rovira
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Institut de Recerca de La Biodiversitat (IRBIO), University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
| | - Ester A Serrão
- Center of Marine Science (CCMAR), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Cristina Linares
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Institut de Recerca de La Biodiversitat (IRBIO), University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
| |
Collapse
|